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Abstract

Household composition can be expected to affect the allocation of household expen-
diture among goods, at the very least because of economies of scale as household size
increases and because different people have different needs (adults versus children, for
example). Specifying demographic effects correctly in demand analysis is important
both in order to estimate correct price and expenditure elasticities and for the purpose
of making household welfare comparisons. A common way of including demographics is
as a function that scales total expenditure, and to make this scaling function indepen-
dent of the level of total expenditure. A popular method in the parametric estimation
of demand systems is to estimate share equations that are quadratic in the logarithm
of total expenditure, but there is also a substantial literature on the semi-parametric
estimation of Engel curves. We employ some of these semi-parametric techniques to
show that, for some goods, further terms are likely to be required in the Engel curve
addition to quadratic terms. We use this to identify the parameters of a scaling function
that varies with total expenditure.
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Summary

� Specifying demographic effects correctly in demand analysis is important both in order
to estimate correct price and expenditure elasticities and for the purpose of making

household welfare comparisons.

� A common way of including demographics is as a function that scales total expendi-
ture, and to make this scaling function independent of the level of total expenditure.

A popular method in the parametric estimation of demand systems is to estimate

share equations that are quadratic in the logarithm of total expenditure. In addition

the parameters of a base independent scale can be identiÞed with quadratic Engel

curves.

� We Þnd evidence that both the quadratic speciÞcation and the base independent
restriction may be overly restrictive, and use further terms to identify the parameters

of a scale that varies with total expenditure.

� The parameter that shows how the scale varies with total expenditure is well deter-
mined and is less than one, which means the scale decreases as total expenditure

increases. The base independent scale estimated on the same data is generally hard

to identify precisely and the point estimate is often implausibly low.
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1 Introduction

Demand analysis invariably takes place at the level of the household, not the individual, and

so how to include household structure in demand analysis is a crucial question. At the very

least we would expect young children to have different needs to adults, and for economies

of scale in the provision of some household goods and services to mean that a couple living

together, for example, do not have the same demands as two single adult households with

half the couple�s budget each.

There are at least two reasons why specifying demographic effects correctly is important.

The Þrst is in order to estimate correct price and expenditure elasticities. Given enough

data, one approach would be simply to estimate the responses of demands to changes in

prices and total budget separately for each household type. Scarcity of data usually prevents

this, and, in addition, if there is some relationship between demand across household types,

not pooling the data leads to a loss in estimation efficiency. The second is for the purpose

of making household welfare comparisons.

In share equation demand systems such as the Almost Ideal Demand System (AIDS) of

Deaton and Muellbauer (1980) and its quadratic extension the QUAIDS (Banks, Blundell

and Lewbel (1997)) a popular way of including demographics is as a function that scales

total expenditure. For reasons expanded on below it is also common to make this scaling

function independent of the level of total expenditure (or �base independent�). Figure 1

below shows various budget share Engel curves for couples without children and with one

child which have been estimated in different ways. One is a quadratic logarithmic (in total

expenditure) speciÞcation (as in QUAIDS) and the other two are an unrestricted semi-

parametric regression (using spline smoothing) and a semi-parametric regression imposing

base independence. These regressions (and the data) will be discussed in more detail be-

low, but the reason for introducing them at this early stage is to illustrate Þrstly that the

quadratic logarithmic speciÞcation appears overly restrictive when compared to the unre-

stricted semi-parametric regression (for at least some of the goods); and secondly that the

base independence restricted regressions look quite different from the unrestricted regres-

sions for many of the goods. Both these points are important motivations for the analysis

in this paper.

In section 2 we review some important previous work on incorporating demographics

in demand systems. We discuss the notion of expenditure scaling and introduce a scale

which is dependent on the level of expenditure. In section 3 we discuss the data we use

in the empirical part of the paper and do some preliminary analysis. In section 4 we

discuss the theoretical and empirical identiÞcation of the parameters of the expenditure
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scaling functions and then move on to the main empirical application in section 5, where

we concentrate on semi-parametric estimation of Engel curves.

2 Demographically extended demand systems

If we are simply interested in allowing price and expenditure elasticities to vary across

household types then it seems natural to incorporate demographics by just letting some

parameters of the particular demand system being estimated vary by household composi-

tion. For example, in recent years, semi-parametric estimation of budget share Engel curves

has become quite common, and a popular approach, because of its simplicity, has been to

estimate a partially linear form, where demographics only enter as intercept shifters. The

problem with this speciÞcation is that the restrictions imposed by consumer theory have

implications for the way in which demographics can enter the demand system. As shown by

Blundell, Duncan and Pendakur (1998), consideration of the integrability conditions means

that including demographics via the partially linear speciÞcation imposes strong restrictions

� for example, if one good has a budget share that is linear in log expenditure (linearity is

usually a good approximation for food, for example) then all goods are restricted to have

linear budget shares.

In order to ensure integrability of a demographically extended demand system it is most

straightforward to start from the underlying cost function for a reference household (a sin-

gle adult household, say) and introduce demographics in a way that guarantees that the

demographically modiÞed cost function is still a valid cost function1. For example, in the

demographic translating procedure of Pollak and Wales (1980), Þxed costs are added to or

deducted from the operations of the household. If the cost function of the reference house-

hold is � (�� �) then translating replaces this by � (�� �� �) = � (�� �)+
P
�

���� for a household

with characteristics �, where the ��s are the translation parameters, which are functions of �

(for example, �� (�) =
P

� ����� or
Q

� �
���
� ). If the reference demands are �� (	�p) then the

demographically translated demands, �� (	�p� �), are equal to �� + ��

Ã
	 −P

�

�����p

!
.

This is a speciÞc example of a general method for letting demographics enter the cost

function explored by Lewbel (1985). Following his analysis

� (�� �� �) = 
 [� (�� � [�� �]) � �� �]

or

	 = 

£
	∗� �� �

¤
1i.e. concave, homogenous of degree one and non-decreasing in prices (and increasing in at least one

price) and increasing in �.

4



where	∗ = � (�� � [�� �]). For � (�� �� �) to be a valid cost function, 
 must be monotonically

increasing in 	∗ and so can be inverted to give 	∗ = � [	��� �]. Hence, if 

¡
	��

¢
is

the indirect utility function associated with the inversion of � (�� �) and 
 (	��� �) is that

associated with � (�� �� �) then we have the relationship


 (	��� �) = 
 (� [	��� �] � �∗)

where �∗ = � [�� �].

Since (compensated) budget shares are derived from the differentiation of the log of the

cost function with respect to log prices we obtain the following relationship between the

budget shares of the reference household and the demographically modiÞed budget shares:

�� (�� �� �) =
� ln 
 [� (�� �∗) � �� �]

� ln � (�� �∗)

X
�

��� [�� �]

� ln ��

� ln � (�� �∗)
� ln ��

+
� ln 
 [� (�� �∗) � �� �]

� ln ��

=
� ln 
 [� (�� �∗) � �� �]

� ln � (�� �∗)

X
�

��� [�� �]

� ln ��
�� (�� �

∗) +
� ln 
 [� (�� �∗) � �� �]

� ln ��

or in Marshallian form

�� (	��� �) =
� ln 


£
	∗� �� �

¤
� ln	

X
�

��� [�� �]

� ln ��
��

¡
	∗� �∗

¢
+
� ln 


£
	∗� �� �

¤
� ln ��

2.1 Expenditure scaling

2.1.1 Expenditure invariant scales

In budget share analysis it is natural to let demographics simply scale total expenditure

(equivalently translate log total expenditure), and a scaling function that is commonly used

is 	 =	�� (�� �) so that ln � (�� �� �) = ln � (�� �) + ln � (�� �) � i.e. the scale does not vary

with the expenditure level. Thus we have that

�� (	��� �) = ��

¡
	��

¢
+
� ln � (�� �)

� ln ��

= �� (ln	 − ln � (�� �) � �) + � ln � (�� �)

� ln ��
(1)

which illustrates the implications that this form of expenditure scaling has for the relation-

ship of share equations across different demographic groups � namely that �� cannot just

have demographic terms in the intercept unless �� is linear in ln	 so that �� is linear in

(ln	 − ln � (�� �)). If �� were to be quadratic in ln	 , for example, then �� would involve

(ln	 − ln � (�� �))2 which introduces interactions between ln � (�� �) and ln	 in ��.
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2.1.2 Expenditure dependent scales

Since the studies of Working (1943) and Leser (1963) it has been common to model budget

shares as functions of log total expenditure � for example, the AIDS model and Jorgenson,

Lau and Stoker�s (1982) Translog model are linear in log total expenditure, and Banks,

Blundell and Lewbel (1997) extended the AIDS model to include quadratic terms following

evidence that linearity was insufficiently ßexible for some goods. Focusing on specifying

Engel curves as functions of log total expenditure, then, if we want the modiÞed Engel

curves to be made up of the same functions of log expenditure as the reference Engel curves,

ln	 must be a linear function of ln	 , and so, apart from the expenditure invariant scale,

the only other possible transformation is of the form

ln	 = Φ1 (�� �) ln	 + lnΦ0 (�� �)

⇒ ln	 =
ln	 − lnΦ0

Φ1

This gives

�� (ln	��� �) = Φ1��

µ
ln	 − lnΦ0

Φ1
� �

¶
+

�Φ1
� ln ��

·
ln	 − lnΦ0

Φ1

¸
+
� lnΦ0
� ln ��

which means that �� and �� will usually be functions of the same basic functions of log

expenditure as long as �� has a linear term in log expenditure. With this modifying function,

the scaling term will now depend on utility (or expenditure) and is given by

ln �(�� �� �) = ln � (� (�� �) � �� �) = lnΦ0 (�� �) + (Φ1 (�� �)− 1) ln � (�� �)

Degree-one-homogeneity of the cost function with respect to prices places some restric-

tions on the parameters of the scaling function � adding up over the share equations, it can

be seen that

1 = Φ1 +

·
ln	 − lnΦ0

Φ1

¸X
�

�Φ1
� ln ��

+
X
�

� lnΦ0
� ln ��

⇒ Φ1 = 1−
·
ln	 − lnΦ0

Φ1

¸X
�

�Φ1
� ln ��

−
X
�

� lnΦ0
� ln ��

Since Φ1 does not depend on ln	 , this implies that
P

� �Φ1�� ln �� = 0, i.e. Φ1 is

homogeneous of degree zero in prices, and we obtain

Φ1 = 1−
X
�

� lnΦ0
� ln ��
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This method of including demographic effects into a demand system is, in fact, used in

a paper by Ray (1983), although the precise model and implications are not really explicitly

worked through. Ray uses an AIDS model2 so that budget shares are given by

��(ln	��� �) =
� ln � (�� �)

� ln ��
+
� ln � (�� �)

� ln ��
(ln	 − ln � (�� �))

(since the AIDS cost function is ln � (��p�z) = ln �(p�z) + ��(p� z)) and it turns out that

in the parameterisation that Ray chooses, since ln�(�� �) is speciÞed such that the ef-

fect of characteristics are price independent, and Φ1 (�� �) is speciÞed as
Q

� �
���

� so that

� lnΦ1�� ln �� = ��, all the parameters can be identiÞed in the linear speciÞcation. If this

was not the case, then it would not be possible to identify all the parameters of ln� (�� �).

Indeed, this would be so even under utility independence of the scaling function, as can be

seen from the following (and is discussed in Dickens, Fry and Pashardes (1993)). Denoting

� ln ��� ln �� by ��, recall from equation 1 that

�� (ln	�p�z) = �� (ln	 − ln ��p) + ��

Denoting the reference household�s Engel curves by

�� = �� + �� ln	

and the Engel curves for a household with characteristics � by

��
� = ��� + ��� ln	

then

��
� = ��� + ��� ln	

= �� + �� (ln	 − ln �) + ��

= [�� − �� ln �+ ��] + �� ln	

so that ln � and �� cannot be identiÞed separately. With quadratic Engel curves, identiÞca-

tion is possible, since

�� = �� + �� ln	 + �� (ln	)
2

2The cost function for the AIDS model is ln � (�� �) = ln �(�) + ��(�). Ray presents his �general scale� as
(using his notation) �0 (�)	 (�� �� �), where �0 is a �basic� component and 	 the price and utility varying
component. As is common in AIDS modelling, ln �(�) is speciÞed as 
0+

P
� 
� ln ��+

1
2

P
�

P
� ��� ln �� ln ��

and �(�) as
Q

� �
��

� . Ray then parameterises ln	 (�� �� �) as �
Q

� �
��

�

¡Q
� �

���

� − 1¢ = ��(�) [�(�� �)− 1] (de-
noting

Q
� �

���

� by �(�� �)) which can be seen to equal [ln � (�� �)− ln�(�)] (�(�� �)− 1), and so ln � (�� �� �) =
Φ1 (�� �) ln � (�� �) + lnΦ0 (�� �) with lnΦ0 (�� �) = ln�0 (�)− ln� (�) (�(�� �)− 1) and Φ1 (�� �) = �(�� �).
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and

��
� = ��� + ��� ln	 + ��� (ln	)

2

= �� + �� (ln	 − ln �) + �� (ln	 − ln �)2 + ��

= �� − �� ln �+ �� (ln �)
2 + ��

+(�� − �� ln �) ln	

+�� (ln	)
2

So

��� = ��

��� = �� − �� ln � (2)

��� = �� − �� ln �+ �� (ln �)
2 + ��

and we have two equations and two unknowns with 1 good, or 2� equations and � + 1

unknowns with � goods.

With the base dependent scaling function, quadratic Engel curves no longer identify all

the parameters, since (denoting � lnΦ0�� ln �� by �0� and �Φ1�� ln �� by �1�)

��
� = ��� + ��� ln	 + ��� (ln	)

2

= Φ1

"
�� + ��

µ
ln	 − lnΦ0

Φ1

¶
+ ��

µ
ln	 − lnΦ0

Φ1

¶2#
+ �1�

µ
ln	 − lnΦ0

Φ1

¶
+ �0�

= Φ1�� − lnΦ0�� + �� (lnΦ0)
2

Φ1
− �1� lnΦ0

Φ1
+ �0�

+

µ
�� − 2�� lnΦ0

Φ1
+
�1�
Φ1

¶
ln	

+
��
Φ1
(ln	)2

which gives

��� =
��
Φ1

��� = �� − 2�� lnΦ0
Φ1

+
�1�
Φ1

(3)

��� = Φ1�� − lnΦ0�� + �� (lnΦ0)
2

Φ1
− �1� lnΦ0

Φ1
+ �0�

So ��� can identify Φ1, but then (with one good) we have two other equations but three

unknowns, so we cannot identify the remaining parameters, most importantly the other

component of the scale, lnΦ0, cannot be identiÞed. If we add another good, we get two
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more equations (since ��� just identiÞes Φ1 again) and two more unknowns, and adding

another good again gives two more equations and two more unknowns, and so on � so that,

in fact, in the quadratic model, there are no restrictions between ��� and �� or �
�
� and ��.

So quadratic Engel curves cannot give identiÞcation of all the parameters in this model.

Although all the parameters cannot be identiÞed, quadratic Engel curves can still be used to

test the restriction that ��� = ���Φ1 � obviously this is only a restriction if we are estimating

shares for more than one good.

3 Data and preliminary analysis

Our data are taken from the UK Family Expenditure Survey (FES). The FES is a contin-

uous household survey which began in 1957 and is carried out by the Office for National

Statistics. Approximately 7,000 households are interviewed each year. The survey consists

of a comprehensive household questionnaire which asks about regular household bills and

expenditure on major but infrequent purchases (e.g. rent, gas and electricity bills), an in-

dividual questionnaire for each adult (aged 16 or over) which asks detailed questions about

their income, including details about economic activity (primary and secondary) and sources

of income (including wages, pensions and beneÞts), and a diary of all personal expenditure

kept by each adult for two weeks.

Our reference household group is working age couples (married or cohabiting) where

the household head is employed and our comparison group is working age couples, head

employed with one dependent child. We look at the pattern of non-housing expenditure. We

estimate a system of budget shares for food in, food out, alcohol, fuel, clothing, transport

and other goods and services. In order to prevent the number of observations we have

becoming too small we pool data across two years.

We use three pairs of years spaced over nearly Þfteen years � from 1985/86 to the most

up-to-date years we have available, which are 1998/99. We begin with a brief look at the

quadratic logarithmic speciÞcation since the QUAIDS is widely used in empirical demand

analysis. We test ��� = ���Φ1 as implied by the base dependent scale and the restrictions in

equation 2 implied by base independence against the unrestricted model using a chi-squared

test.

The models are estimated by arranging the data as w =

µ
w
w�

¶
and x =

µ
x 0
0 x�

¶
(where � =

©
1� ln	� (ln	)2

ª
) and estimating

w = xβ + ε

where β =

µ
β

β�

¶
(β = {a�b� c}, β� =

©
a� �b� � c�

ª
) and the relevant restrictions be-
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tween β and β� are imposed. We estimate the budget share equations as a system allowing

for correlations in the error terms across equations and using the weighted sum of squared

residuals as our criterion function (i.e. weighted by a consistent estimator of the cross-

equation residual covariance matrix). The results of the tests are shown in table 1 where

BD denotes the base dependent scale model and BI the base independent scale model.

Table 1: Chi-squared tests for base dependent (BD) and independent (BI) models.
BD BI

�25 p value estimate of Φ1 �211 p value ln � scale estimate
Year
1998-99 2�424 0�788 0�857 (0�209) 13�912 0�237 −0�013 (0�074) 0�986
1992-93 3�068 0�689 0�841 (0�177) 17�952 0�082 0�035 (0�073) 1�035
1980-81 4�218 0�519 0�849 (0�196) 15�807 0�148 0�012 (0�071) 1�012

While base independence is not strongly rejected by the data under the quadratic model,

ln � is not very well identiÞed and the point estimates of the scale parameter are rather

implausible. Of course, these estimates will be biased if the quadratic model is not the

correct model. As mentioned in the introduction, and illustrated in Þgure 1, comparisons

of the quadratic regressions with semi-parametric regressions where little prior structure

is placed on the shape of the Engel curves indicate that the quadratic speciÞcation may

be overly restrictive. This is important here since we have seen that the quadratic model

cannot identify all the parameters of the scale, and we now turn to this subject in the next

section.

4 IdentiÞcation and interpretation of scaling parameters

4.1 Empirical identiÞcation

If we move from the quadratic speciÞcation to Engel curves that include further functions of

log expenditure then we may get identiÞcation of all the parameters of the base dependent

scaling function. For example, budget shares that are cubic3 in log total expenditure give

full identiÞcation, since:

�� = �� + �� ln	 + �� (ln	)
2 + �� (ln	)

3

3Note that we do not require the Engel curves to be restricted to have a maximum rank of three since
we do not require them to be exactly aggregable (see Gorman (1981) and Lewbel (1991)).
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Figure 1: Quadratic regression, and unrestricted and base independent spline regressions.
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Fuel
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and

��
� = ��� + ��� ln	 + ��� (ln	)

2 + ��� (ln	)
3

= Φ1

"
�� + ��

µ
ln	 − lnΦ0

Φ1

¶
+ ��

µ
ln	 − lnΦ0

Φ1

¶2
+ ��

µ
ln	 − lnΦ0

Φ1

¶3#

+�1�

µ
ln	 − lnΦ0

Φ1

¶
+ �0�

= Φ1�� − lnΦ0�� + �� (lnΦ0)
2

Φ1
− �� (lnΦ0)

3

Φ21
− �1� lnΦ0

Φ1
+ �0�

+

Ã
�� − 2�� lnΦ0

Φ1
+ 3

�� (lnΦ0)
2

Φ21
+
�1�
Φ1

!
ln	

+

µ
��
Φ1
− 3�� lnΦ0

Φ21

¶
(ln	)2

+
��
Φ21
(ln	)3
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so

��� =
��
Φ21

��� =
��
Φ1
− 3�� lnΦ0

Φ21

��� = �� − 2�� lnΦ0
Φ1

+ 3
�� (lnΦ0)

2

Φ21
+
�1�
Φ1

��� = Φ1�� − lnΦ0�� + �� (lnΦ0)
2

Φ1
− �� (lnΦ0)

3

Φ21
− �1� lnΦ0

Φ1
+ �0�

and all the parameters can be identiÞed (for example, even with one good ��� allows Φ1 to

be identiÞed, then ��� gives identiÞcation of lnΦ0, then �
�
� gives �1� and �

�
� gives �0�.

Another way of identifying all the parameters would be to further parameterise the

quadratic regression4. For example, it is common in the base independent model to estimate

a QUAIDS speciÞcation over varying prices with ln � linear in lnp so that �� (= � ln ��� ln ��)

is constant across price regimes. However, our preliminary quadratic analysis did not sup-

port the hypothesis of a constant �� over price regimes, and this, coupled with the impli-

cation from the semi-parametric regressions that the quadratic speciÞcation may be overly

restrictive, means that we do not pursue that route here but move to non-quadratic Engel

curves.

4.2 Implications for the Engel curves for children�s goods

Further help in identiÞcation may be obtained from the fact that, as well as the general

restrictions on the shape of the Engel curves between demographic groups, these scaling

models have strong implications for the shape of the comparison group Engel curves for

goods that the reference group does not buy. In the two groups we are looking at, for in-

stance, the reference household is without children, and so the two models have implications

for the shape of the Engel curve for children�s goods for households with children. Since

�� = 0 (where the � subscript denotes children�s goods), then under base independence

�� (ln	��� �) = ��

i.e. spending on children�s goods is a constant share of total expenditure, and under the

base dependent model

�� (ln	��� �) = �1�

·
ln	 − lnΦ0

Φ1

¸
+ �0�

4This approach is taken in Donaldson and Pendakur (1999), who look at relaxing base independence for
both relative scales and absolute scales (i.e. the Þxed cost type model as in the translating procedure of
Pollak and Wales (1980) discussed above). Ray (1996) also tests, and rejects, a base independent equivalence
scale in favour of one that varies with utility using a non-linear preference cost function proposed in Blundell
and Ray (1984).
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i.e. the share of spending on children�s goods is linear in log total expenditure. The constant

budget share for children�s goods implied by the base independent model is clearly a very

strong restriction and one we would expect to be quite unrealistic empirically. This turns

out to be the case in our data, where the hypothesis of constant shares for children�s clothing

is rejected.

This is clearly an extra restriction, but it does not, in the base dependent model, identify

lnΦ0 on its own since we have

�� = �0� − �1� lnΦ0
Φ1

�� =
�1�
Φ1

ln	

i.e. two equations and three unknowns (given that Φ1 can be identiÞed even in the quadratic

model).

4.3 Semi-parametric estimation

We want to estimate the following general form for the budget shares

�� = 
� (ln	) + ��

There are a variety of smoothing techniques available for semi-parametric estimation �

we choose to estimate the share equations via cubic spline smoothing using a power-basis

for the splines, i.e.


� (ln	 ;β) = �0 + �1 ln	 + �2 (ln	)
2 + �3 (ln	)

3 +
�X
�=1

�3+� (ln	 − ��)
3
+

where (�)+ = �� (� � 0) and �1 � ��� � �� are the knot points. The parameters {��}3+�
�=0

are estimated using penalised least squares (with the roughness penalty on
©
�3+�

ª�
�=1
) �

so that bβ ( ) is the minimiser of
	X
�=1

(�� − 
� (�� ;β))
2 +  

�X
�=1

!
¡
�3+�

¢
where ! (�) is the roughness penalty function and  controls the trade-off between smooth-

ness and Þt (as  becomes large, the regression approaches a cubic speciÞcation). We use a

simple quadratic penalty function, ! (�) = �2 as in Ruppert and Carrol (1997), so that

bβ ( ) = ¡X0X+ S¢−1X0Y
where S is a (" + 4)×(" + 4) diagonal matrix with the Þrst 4 diagonal elements being 0 and

the remaining " diagonal elements being 1. The smoothing weight,  , is chosen by visual

14



inspection � there is a point at which the curve goes fairly quickly from being quite rough

to being reasonably smooth. We experimented with an automated procedure for choosing

 by using the cross-validation method (refs), but the resulting Engel curves looked quite

under-smoothed. As a check, an adaptive local linear regression was run alongside the spline

model to verify that the two looked reasonably similar at the chosen smoothing parameter.

For the Engel curves shown in Þgure 1, a J-test (Davidson and MacKinnon (1981))

showed that the estimates from the spline regression had explanatory power when added to

the quadratic regression.

Under semi-parametric estimation, the parameters of the scaling function are chosen

following a generalised least squares regression approach suggested in Ai and Chen (2000).

For example, in the base dependent model the following approach is adopted. Starting from

the shape restrictions, we Þnd

��
� (ln	) = Φ1��

µ
ln	 − lnΦ0

Φ1

¶
+ �1�

·
ln	 − lnΦ0

Φ1

¸
+ �0� + #��

=⇒
��
� (ln	)

Φ1
≡ e��

� = ��

³
lnf	´+ �1�

Φ1
lnf	 +

�0�
Φ1

+
#��
Φ1

where lnf	 = (ln	 − lnΦ0) �Φ1. So transforming ��
� into e��

� and ln	� into lnf	
given the values chosen for lnΦ0 and Φ1, the data can be pooled and the model estimated

using the cubic spline method. Then lnΦ0 and Φ1 are chosen (using a grid search) to

minimise the weighted sum of squared residuals. Note that both lnf	 and a constant

interacted with a dummy for the $ type household must also be added, and the coefficients

on these will give �1��Φ1 and �0��Φ1 respectively � hence, we only need to search over lnΦ0

and Φ1, since, given these parameters, �1� and �0� are determined by the model. In the

data transformation, the error term for the $-type households is divided by Φ1, and so, as

in generalised-least-squares estimation, when pooling the transformed data for estimation,

the observations for the $-type households must be weighted by Φ1.

4.4 Theoretical identiÞcation

We might not actually care about knowing all the parameters of the scale, but one cir-

cumstance where we will care is if we want to give the scale an �equivalence scale� inter-

pretation, where, when we write � (�� �� �) = � (�� �) � (�� �� �), we describe � (�� �� �) as the

amount by which a reference-type household�s budget needs to be multiplied for a house-

hold with characteristics � to enjoy the same level of welfare that the reference household

achieves. Whereas the inclusion of demographics in demand systems to account for the

fact that spending patterns vary across households is fairly innocuous (provided that the
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way they are included accords with the restrictions of consumer theory), this is not the

case when the demographic parameters estimated from the demand analysis are given the

equivalence scale interpretation. This is because of the well documented problem of iden-

tifying equivalence scales from demand patterns alone (Pollak and Wales (1979)). Specif-

ically, the demands generated from the utility function % (�� �) are indistinguishable from

those generated by Ψ (% (�� �) � �) (where Ψ is monotonically increasing in %). If the cost

function for % (�� �) is � (�� �� �) and that for Ψ (% (�� �) � �) is e� (�� �� �) then we have that
� (�� �� �) = e� (Ψ (�� �) � �� �). In the Þrst case the equivalence scale � (�� �� �) is equal to

� (�� �� �)

� (�� �)

but
� (�� �� �)

� (�� �)
=
e� (Ψ (�� �) � �� �)e� (Ψ (�) � �)

and in general it will not be the case thate� (Φ (�� �) � �� �)e� (Φ (�) � �) =
e� (�∗� �� �)e� (�∗� �) ≡ e� (�∗� �� �)

where �∗ = Φ (�� �) and e� (�� �� �) is the equivalence scale associated with e� (�� �� �).
The appeal of the base-independence restriction on the equivalence scale is that, in

general, the restriction allows identiÞcation of the equivalence scale from demand behaviour

alone (Lewbel (1989), Blackorby and Donaldson (1991)). Suppose there were two base

independent equivalence scales associated with a given demand behaviour so that

ln � (�� �� �) = ln � (�� �) + ln � (�� �)

and

lne� (�� �� �) = ln � (Φ (�� �) � �� �) = ln � (Φ (�� �) � �) + ln � (�� �)

= ln � (�� �) + ln e� (�� �)
where ln e� (�� �) = ln � (�� �) + ln � (�� �) say. This gives

�� (ln	��� �) = ��

µ
ln

·
	

� (�� �)

¸
� �

¶
+
� ln � (�� �)

� ln ��

and

e�� (ln	��� �) = ��

µ
ln

·
	

� (�� �)

¸
− ln � (�� �) � �

¶
+
� ln � (�� �)

� ln ��
+
� ln � (�� �)

� ln ��

But since, by assumption, �� (ln	��� �) = e�� (ln	��� �), then

��

µ
ln

·
	

� (�� �)

¸
− ln � (�� �) � �

¶
+
� ln � (�� �)

� ln ��
= ��

µ
ln

·
	

� (�� �)

¸
� �

¶
(4)
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This is of the form & ('+ �) = & (') +  (�) which implies that & (' + �)− & (') depends

only on �, and if & is continuous, the solution can only be of the form & (') = �+�' for some

constants � and � (Aczel (1966)). Hence �� must be linear in log expenditure, which implies

that ln � (�� �) must be of the form ln( (�)+� (�)� (�) giving �� = ��+�� [ln	 − ln(] where
�� = � ln( (�) �� ln �� and �� = � ln� (�) �� ln ��. Thus equation 4 gives

�� + ��

·
ln
	

�
− ln(− ln �

¸
+

� ln �

� ln ��
= �� + ��

·
ln
	

�
− ln(

¸
⇒ � ln �

� ln ��
= �� ln �

⇒ � ln �

� ln ��
=

� ln�

� ln ��
ln �

⇒ ln � (�� �) = � (�)) (�)

for some ) (�). So, as long as budget shares are not affine functions of log expenditure, then

a unique base independent equivalence scale is associated with a given demand behaviour.

Not surprisingly, it turns out that the extended scaling function also, generally, allows

unique identiÞcation of the equivalence scale from demand behaviour alone. Again sup-

pose there were two scales associated with the same behaviour, say lnΦ0�Φ1 and ln eΦ0 =
ln 
0 (�� �) + lnΦ0� eΦ1 = 
1 (�� �)Φ1, then (suppressing p and � for brevity)

�� (ln	��� �) = Φ1��

µ
ln (	�Φ0)

Φ1

¶
+
� lnΦ1
� ln ��

ln

µ
	

Φ0

¶
+
� lnΦ0
� ln ��

and

�� (ln	��� �) = 
1Φ1��

µ
ln (	�Φ0)− ln 
0


1Φ1

¶
+

·
� lnΦ1
� ln ��

+
� ln 
1
� ln ��

¸
ln

µ
	

Φ0
− ln 
0

¶
+
� lnΦ0
� ln ��

+
� ln 
0
� ln ��

which implies

Φ1��

µ
ln (	�Φ0)

Φ1

¶
= 
1Φ1��

µ
ln (	�Φ0)− ln 
0


1Φ1

¶
+

�
1

1� ln ��

ln

µ
	

Φ0
− ln 
0

¶
−� lnΦ1
� ln ��

ln 
0+
� ln 
0
� ln ��

(5)

.

Since the left hand side of equation 5 obviously can involve no interactions between 
1

and ln (	�Φ0) then we must have �
1�� ln �� = 0 so 
1 (�� �) = 
1 (�). Then equation 5

becomes

Φ1��

µ
ln (	�Φ0)

Φ1

¶
= 
1Φ1��

µ
ln (	�Φ0)− ln 
0


1Φ1

¶
+
� ln 
0
� ln ��
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which again implies that �� must be linear in log expenditure, giving

Φ1�� + ��

·
ln
	

Φ0
−Φ1 ln(

¸
= 
1Φ1�� + ��

·
ln
	

Φ0
− ln 
0 − 
1Φ1 ln(

¸
− � lnΦ1

� ln ��
ln 
0 +

� ln 
0
� ln ��

⇒
� ln 
0
� ln ��

=
� lnΦ1
� ln ��

ln 
0 +
� ln�

� ln ��
[ln 
0 −Φ1 ln( (1− 
1)] +Φ1

� ln(

� ln ��
(1− 
1)

⇒
ln 
0 = Φ1 [�* (�) + ln( (1− 
1)]

for some * (�).

5 Results

We split clothing into its adult and child components and use the restrictions implied for

children�s goods by the two scaling models. As a check that the grid search procedures were

working we ran them for a cubic speciÞcation and checked that the criterion function was

minimised at the parameters estimated from running restricted generalised least squares on

the cubic model. As before, we estimate all the goods as a system of equations and minimise

the weighted sum of squared residuals. We choose the initial values to search around from

the results of a cubic regression. The parameters from the grid search were always very

similar to those from the simple cubic regression, and so we present these results in tables 2

and 3 below. The semi-parametric Engel curves lie well within the conÞdence bands of the

cubic regressions as is shown for alcohol and food out for couples with children in Þgure 2

(for the unrestricted estimates).

Figure 2: Some semi-parametric and cubic regressions with conÞdence bands.
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Table 2: Parameter estimates for base dependent model � cubic regression with clothing
restrictions.

scale at:
lnΦ0 Φ1 mean med min Q1 Q3 max

Year
1998-99 0�529 (0�662) 0�909 (0�154) 1�131 1�144 1�335 1�176 1�113 0�982
1992-93 0�339 (0�690) 0�969 (0�163) 1�228 1�234 1�291 1�244 1�221 1�157
1985-86 0�402 (0�719) 0�947 (0�194) 1�249 1�257 1�327 1�275 1�239 1�144

Note: standard errors in parentheses

Table 3: Parameter estimates for base independent model � cubic regression with clothing
restrictions.

ln � scale

Year
1998-99 −0�021 (0�066) 0�979
1992-93 0�091 (0�066) 1�094
1985-86 0�118 (0�075) 1�125

Note: standard errors in parentheses

The point estimates of the base independent scale are rather low, and, as with the

quadratic regressions, are imprecisely determined. Remember that the scale is the amount of

expenditure a couple with a child needs compared to a childless couple � so a value of 1�05, for

example, means that the child �costs� only 5% of two adults. The scale implied by the base

dependent model seems more reasonable � although the scale is less that one at maximum

expenditure for 1998-99, which does not really make much sense. This could be due to the

fact that lnΦ0 is not very precisely determined. As with the quadratic regressions, though,

Φ1 is determined quite precisely, and Φ1 is, perhaps, really the more interesting parameter

here anyway if we are interested in how the scale varies across the expenditure distribution.

In all years Φ1 is less than one, which means the scale decreases as total expenditure

increases. This makes sense � one quite implausible feature of a base independent scale is

that the absolute cost of a child can rise a great deal as expenditure rises. For example, if

a couple with $20,000 requires an extra $4,000 (so the scale is 1�2), then a couple with $

200,000 requires $ 40,000. Although, of course, all family members are required to be better

off in the second, higher expenditure household, it seems implausible, particularly for very

young children whose needs are mainly food and clothing, that expenditure would need to

increase this much. Again, the value of the scale we obtain at the minimum expenditure

level is quite interesting � it is quite close to 1.3, which is almost exactly the value of the
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OECD scale comparing a couple with one child to a childless couple5.

For comparison, tables 4 and 5 show the results of the analysis when clothing is not

split into its adult and child related components. The point estimates of Φ1 are, again,

below one � a little higher than the previous estimates for 1992-93 and 1985-86 and a little

lower for 1998-99. Again lnΦ0 is not very precisely determined, in fact even less so than

before, and the overall scales are lower than the previous estimates � indeed for 1992-93,

they are always below one. The point estimates for the base independent scales are also

slightly lower than before.

Table 4: Parameter estimates for base dependent model � cubic regression with aggregate
clothing .

scale at:
lnΦ0 Φ1 mean med min Q1 Q3 max

Year
1998-99 0�541 (0�736) 0�889 (0�154) 1�045 1�061 1�309 1�099 1�025 0�876
1992-93 −0�108 (0�755) 0�982 (0�147) 0�830 0�832 0�854 0�836 0�827 0�801
1985-86 0�344 (0�832) 0�951 (0�191) 1�174 1�181 1�241 1�196 1�165 1�082

Note: standard errors in parentheses

Table 5: Parameter estimates for base independent model � cubic regression with aggregate
clothing .

ln � scale

Year
1998-99 −0�025 (0�075) 0�974
1992-93 0�053 (0�066) 1�054
1985-86 0�104 (0�076) 1�110

Note: standard errors in parentheses

The nonparametric regression curves for the unrestricted, base dependent and base

independent models (both at the parameters resulting from the grid search) are shown

below in Þgure 3.

5The OECD scale normalised at one for a single adult gives a value of 0.7 to each additional adult and
0.5 to each child. So the scale comparing a couple with one child to a childless couple is 2
2�1
7 ' 1
29.
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Figure 3: Spline regression - unrestricted, base dependent and base independent models.
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Food in
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6 Conclusions

Specifying demographic effects correctly in demand analysis is important both in order to

estimate correct price and expenditure elasticities and for the purpose of making household

welfare comparisons. A common way of including demographics is as a function that scales

total expenditure, and to make this scaling function independent of the level of total expen-

diture. A popular method in the parametric estimation of demand systems is to estimate

share equations that are quadratic in the logarithm of total expenditure, but there is also
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a substantial literature on the semi-parametric estimation of Engel curves. We have used

some of these semi-parametric techniques to show that, for some goods, it is likely that

further terms are required in addition to quadratic terms in the Engel curves. We have

used this to identify the parameters of a scaling function that varies with total expenditure.

Although the �intercept� of this scale is not very precisely determined, the term that shows

how the scale varies with total expenditure is well determined and is less than one, which

means the scale decreases as total expenditure increases. The base independent scale es-

timated on the same data is generally hard to identify precisely and the point estimate is

often implausibly low.
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