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Abstract

This paper examines the empirical analysis of treatment effects on duration
outcomes from data that contain instrumental variation. We focus on social
experiments in which an intention to treat is randomized and compliance
may be imperfect. We distinguish between cases where the treatment starts
at the moment of randomization and cases where it starts at a later point
in time. We derive exclusion restrictions under various informational and
behavioral assumptions and we analyze identifiability under these restric-
tions. It turns out that randomization (and by implication, instrumental
variation) by itself is often insufficient for inference on interesting effects,
and needs to be augmented by a semi-parametric structure. We develop
corresponding non- and semi-parametric tests and estimation methods.
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1 Introduction

Social experiments have become important tools for policy evaluation in general,

and the evaluation of active labor market policies in particular (see Heckman,

LaLonde and Smith, 1999, for a survey). Until recently, it was generally thought

that policy evaluation using social experiments merely involved trivial compar-

isons of outcomes between the various treatment statuses assigned in the exper-

iment. The studies of Ham and LaLonde (1996), Meyer (1996), and Eberwein,

Ham and LaLonde (1997) show that complications arise if the outcome variable

of interest is a duration variable (e.g. unemployment duration) or depends on the

realization of a duration variable (e.g. the post-unemployment wage or the sub-

sequent employment duration). The evaluation based on outcomes among those

who survive up to a certain point is confounded by dynamic selection effects even

if initial treatment assignment is randomized. Further problems arise if compli-

ance to the treatment status assigned in the experiment (the intention to treat, or

ITT) is imperfect and if actual program enrollment is a time-consuming process.

In this paper, we explore the use of social experiments in duration and event-

history analysis. We consider the randomized ITT as an instrumental variable

(IV), and more generally consider the use of instrumental variables in duration

analysis.

To motivate the paper and outline its contributions, it is useful to give (in the

next paragraphs) a taxonomy of different cases that may arise in practice. This

corresponds to the way the paper is organized. In all cases we allow the popula-

tion under study to be heterogeneous. Throughout the paper, we use the terms

“randomization” and “random assignment” to denote situations in which an ITT

is assigned independently of agents’ individual characteristics. An agent is said

to “comply” with the ITT outcome if the actual treatment status coincides with

it.1 In every case, the policy setting determines what is meant with “treatment”.

In Section 2, we start with the benchmark case where (i) randomization of

ITT occurs at time 0 (which is usually the moment of inflow into the state of

which the subsequent time spent in it is the outcome of interest), (ii) agents are

immediately subject to the treatment, and (iii) there is perfect compliance. We

briefly review the main insights from the literature and we discuss how to define

and estimate average treatment effects.

Subsequently, as the second main case, we relax in Section 3 the perfect com-

1In the literature, compliance is often only used for agents who are assigned to be treated
instead of being in the control group, but here we also use it for those who are assigned to the
control group, unless stated otherwise.
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pliance assumption (iii) but maintain assumptions (i) and (ii). This case arises

e.g. if there is randomization of program offers (ITT) at time 0 and agents choose

immediately whether to accept the offer and enroll. In such cases, ITT can be

used as an IV for, but does not coincide with, actual treatment. In fact, re-

searchers often restrict analyze the effect of ITT instead of the actual treatment.

Methodologically, such an analysis fits our first main case. Moreover, under the

appropriate IV conditions, the null of no treatment effects and the null of no

ITT effects are equivalent (e.g. Robins and Tsiatis, 1991, and Abadie, 2002).

Two advantages of an ITT-analysis are often cited (see e.g. Robins and Tsiatis,

1991). First, randomization can be ensured even if compliance is imperfect and

selective. Second, ITT rather than actual treatment is the relevant public-policy

instrument if the policy maker cannot control compliance any better than the an-

alyst.2 On the other hand, an IV analysis allows to some extent to disentangle the

effects of compliance (participation) and the effects of actual treatment. If enough

structure is imposed, the results of an IV analysis can be extrapolated beyond

the scope of the experiment. Therefore, and because an ITT-analysis is already

covered by our first case, we consider the effects of actual treatment using ITT as

an IV. We first develop and analyze a non-parametric IV estimator that, unlike

existing estimators, allows for censoring. We then provide novel semi-parametric

identification results.

In the third main case, which is examined in Section 4, both assumptions

(ii) and (iii) are violated, i.e. randomization of ITT occurs at time 0, the actual

treatment occurs later, and compliance is imperfect. Again, ITT can be used as

an instrument (see e.g. Eberwein, Ham and LaLonde, 1997). However, as argued

by e.g. Abbring and Van den Berg (2003b), it is often hard to justify exclusion

restrictions in a dynamic setting with forward-looking agents. In particular, if

ITT affects the treatment, as it should if it is to be a valid instrument, then it is

likely to affect the outcome hazard up to the moment of treatment enrollment as

well. To proceed, it is useful to distinguish between such ex ante effects on the

outcome hazard and the ex post effects on the hazard after treatment enrollment.

From an economic and policy point of view it is often interesting to know the

magnitude of both of these effects. We give some examples; one on training pro-

grams for unemployed workers, and one on vouchers for public housing tenants.

We introduce a weaker-than-usual IV assumption that only requires “ex post

exclusion”, meaning exclusion of ITT from the outcome hazard after treatment

enrollment. We discuss informational and behavioral assumptions under which

2For example, the threat of a punishment treatment may be considered as a treatment itself
(Abbring, Van den Berg and Van Ours, 2005, and Black et al., 2003).
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this weaker IV assumption holds, and discuss its implications for identifiability.

We show that, even though ITT is randomly assigned, “ex ante” effects of ITT

on treatment assignment and on outcome hazards before treatment enrollment

cannot be identified, and can typically not even be signed. Moreover, the effects

of actual treatment are poorly identified in this case. More constructively, we

argue that the observable relation between ITT and the outcome hazard after

treatment enrollment is informative on selection effects. After all, under ex post

exclusion such a relation cannot be causal. A selectivity test based on this idea

bears an analogy to tests on cohort effects in mortality rates (Vaupel and Yashin,

1985) and on unobserved heterogeneity in duration models with time-varying

explanatory variables (Van den Berg and Van Ours, 1997).

All results also apply to cases where there is no deliberate randomization at

time 0 but the data contain appropriate instrumental variation (e.g., because

of a natural experiment). Also, our results carry over to more complex, dynamic

experimental designs than considered here.3 In all cases, we follow non-parametric

as well as semi-parametric approaches. We do not restrict attention to effects on

survival probabilities but, in line with duration analysis in general, we focus on

the effects on the hazard rate of the outcome duration variable, because of the

intimate link between the hazard rate and economic behavioral models (Van den

Berg, 2001). Knowing the effect on individual behavior as reflected in the hazard

rate and the way this changes over time enables one to learn something about

the reasons for the effectiveness or ineffectiveness of a policy, and this allows

one to extrapolate the experimental results to different policies and policies in

different environments. For example, consider the third case above, where the

empirical distinction between “ex ante” and “ex post” effects calls for a hazard

rate analysis. We return to this below.

Various papers consider methods for IV analysis of distributional treatment

effects that apply to some extent to the problems studied in this paper. The

non-parametric approach for effects on survival probabilities in our second main

case is closely related to Imbens and Rubin (1997) and Abadie (2002), who dis-

cuss identification, estimation, and testing of distributional treatment effects in

a non-parametric setting.4 Their methods, however, do not handle censoring. In

3Section 5 provides some discussion. Further generalizations concern cases where treatment
and instrument may change over time at the same discrete (deterministic or random) points of
times. This avoids the substantive problems discussed in Abbring and Van den Berg (2003b),
but is unlikely to have many applications. The methodology for such cases has been discussed
in the context of transformation models by Bijwaard (2003). We do not consider such cases.

4Also, Abadie, Angrist and Imbens (2002) develop and apply a semi-parametric IV estimator
of quantile treatment effects. This estimator does not allow for censoring. It is moreover based
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contrast, our focus is on methods that allow for right-censoring. Duration-model

IV estimators that allow for censoring have been developed by Robins and Tsi-

atis (1991), Bijwaard and Ridder (2005), Bijwaard (2003), and Chesher (2003).

These estimators apply to our second and/or third main cases. They require

(semi-)parametric structure and additional substantive assumptions like perfect

compliance in the control group (Bijwaard and Ridder, 2005). With some excep-

tions, they do not focus on effects on the individual hazard rate. We discuss these

estimators where appropriate.

Throughout the paper, we consider experiments at face value and we do not

address their external validity. Specifically, we do not address endogenous selec-

tion into the experimental population, differences between the experiment and

the permanent imposition of a policy, and equilibrium effects in general. See

Heckman, LaLonde and Smith (1999) for a detailed discussion, Ferrall (2002) for

a comprehensive dynamic economic framework, and Van den Berg and Van der

Klaauw (2005) for an empirical illustration in a reduced-form duration-analysis

framework.

The remainder of the paper is organized as follows. Sections 2, 3, and 4 discuss

our three main cases. Section 5 concludes.

2 Randomization with perfect compliance

2.1 Potential outcomes, individual treatment effects, and

available data

We consider the population of agents or individuals flowing into a state of interest,

and the durations these individuals subsequently spend in that state. Upon inflow,

an individual is assigned to a treatment s from a set S. In this section, we assume

that the individual complies with the assigned treatment, so that ITT and actual

treatment coincide. We do not need to specify the length of the time span during

which a treatment takes place. For example, the length can be zero (if the time

span equals the singular point {0}) or it can be infinite. We are interested in the

causal effect of the treatment on the duration spent in the state of interest (the

“outcome”).

We model this effect using the potential-outcome framework pioneered by

Neyman (1923). To each treatment s ∈ S corresponds a random variable T (s),

the potential outcome duration that would prevail if we would intervene and

on quantile models that are designed for outcomes like earnings and that do not apply naturally
to duration and event-history outcomes.
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assign treatment s. We assume that {T (s)} := {T (s); s ∈ S} is a measurable

stochastic process.5 Moreover, for ease of exposition we assume that each T (s) is

continuous, and we denote the hazard rate of T (s) by θT (s). We are interested in

contrasts between the distributions of T (s) and T (s′) corresponding to treatments

s, s′ ∈ S. These contrasts are summarized in so-called treatment effects. We focus

on two of these,

θT (s′)(t)

θT (s)(t)
and Pr(T (s′) > t)− Pr(T (s) > t), (1)

which are, respectively, the relative effect on the hazard rate at t and the addi-

tive effect on the survival probability at t of replacing one treatment s by another

treatment s′, as functions of t. The former captures the effect on the most inter-

esting feature of the duration distribution. The latter, as we shall see, can easily

be related to the standard literature on treatment evaluation. For the time being

we consider a single subject, or, equivalently, a homogeneous group of subjects.

We may of course consider a whole range of alternative treatment effects, like

Pr(T (s′) > t)/Pr(T (s) > t) and E[T (s′)]/E[T (s)]. In fact, the relative effect on

the survival probability may often be more interesting than the additive effect.

However, as we shall see in the next subsection, heterogeneity across subjects

causes related methodological difficulties for all average treatment effects except

for the average additive effect on the survival probability and the effects derived

from it. The two special effects in (1) therefore cover the whole range of treatment

effects from a methodological point of view.

The treatment is assigned according to a S-valued random variable S. Through-

out this section, we assume that treatment assignment is randomized, i.e.6

Assumption 1 (Randomization). S⊥⊥{T (s)}.
The actual outcome duration is T := T (S); all other potential outcomes are

counterfactual.

We allow for random right-censoring.7 To this end, define a random cen-

soring time C that is independent of (T, S). Our data are derived from the

5This process, viewed as a random function s 7→ Ts, can alternatively be interpreted as a
non-parametric structural equation for the determination of the outcome by the treatment.

6More generally, randomization could be conditional on observed covariates, or even observed
external covariate processes. Throughout much of this paper, we ignore observed covariates. If
appropriate, it is implicitly understood that results hold conditional on covariates. In the case
of discrete covariates, all empirical methods can be directly applied to strata defined by the
covariates.

7The censoring mechanism specified here is usually referred to as “simple random right-
censoring”. Extensions to more general forms of independent censoring and filtering are straight-
forward (see Andersen et al., 1993, and Fleming and Harrington, 1991).
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full-information random sample ((T1, S1, C1), . . . , (Tn, Sn, Cn)) from the distri-

bution of (T, S, C). Suppose that observation i is censored if Ti > Ci, and

complete if Ti ≤ Ci. Then our data are the limited-information random sam-

ple ((T̃1, S1, D1), . . . , (T̃n, Sn, Dn)), where Di is defined as Di := I(Ti ≤ Ci), so

Di = 1 indicates a complete observation, and

T̃ =

{
Ti if Ti ≤ Ci

Ci if Ti > Ci

is the possibly censored outcome duration. In the sequel we do not consider

treatment effects on moments of the outcome duration (like the mean) because

typically the observation window is finite (i.e., observed durations are always

right-censored if they exceed some finite time) and the moments are not non-

parametrically identified from such data.

2.2 Heterogeneity, average treatment effects, and non-

parametric inference

We only consider ex ante individual heterogeneity in outcomes that can be cap-

tured by time-invariant unobserved characteristics V , because this is sufficient

to obtain the main insights. Randomization (Assumption 1) implies that S⊥⊥V .

For ease of exposition, we take V to be a continuous random variable and S to

be a binary indicator with realizations 1 (“treatment”) and 0 (“control”), and

we assume that the hazard rates θT (s)(t|V ) satisfy the usual regularity conditions

that guarantee existence of the expressions below.

Individual treatment effects are now defined in terms of the distributions

of T (0)|V and T (1)|V , whereas average treatment effects now concern aver-

ages over the relevant population, i.e. over the distribution of V in the rele-

vant population. Thus, the individual treatment effects on the hazard rate and

the survival probability at t (see (1)) are defined as θT (1)(t|V )/θT (0)(t|V ) and

Pr(T (1) > t|V )− Pr(T (0) > t|V ), respectively.

The average additive treatment effect on the survival probability at t is nat-

urally defined as E[Pr(T (1) > t|V ) − Pr(T (0) > t|V )]. This equals Pr(T (1) >

t)−Pr(T (0) > t). With randomization, as in Assumption 1, this in turn is equal

to Pr(T > t|S = 1) − Pr(T > t|S = 0). The two survivor functions in the latter

can be estimated straightforwardly using non-parametric survival analysis taking

account of right-censoring (like Kaplan-Meier estimation; see e.g. Andersen et al.,

1993, and Fleming and Harrington, 1991). One can immediately derive uniform

confidence bounds on the potential duration distributions and tests of hypotheses
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like F T (1) = F T (0) (see Andersen et al., 1993). One may also obtain point-wise

results for isolated survival probabilities, e.g. to assess the effect of training on

the probabilities of staying unemployed for 6 or 12 months.8 These results are

straightforwardly extended to general discrete s,9 and to more general types of

heterogeneity than considered here (e.g. V may vary over time).

Unfortunately, the above approach (of writing an average treatment effect

as the difference of quantities that can be straightforwardly non-parametrically

estimated) cannot be applied to any other treatment effect of interest. Consider

the effect on the hazard rate. As indicated by Ham and LaLonde (1996) and

Meyer (1996), if the treatment has a causal effect on the duration, then, typically,

the distribution of V among the survivors at points in time t > 0 depends on

the treatment, so V⊥⊥�S|T > t. In other words, there is no randomization at

t > 0 despite the randomization at 0. To see this, let f , F , Θ and F be generic

symbols for a density, a distribution function, an integrated hazard, and a survivor

function, with subscripts denoting the corresponding random variable (note that

F = 1−F = e−Θ). Further, denote the hazard and integrated hazard of T by θT

and ΘT . From e.g. Lancaster (1990),

fV (v|T > t, S) =
F T (t|S, V )fV (v)∫∞

0
F T (t|S, V )dFV (v)

, (2)

with F T (t|S, V ) = exp [−ΘT (t|S, V )]. It is not difficult to construct examples in

which the distribution of V among the treated survivors at t is first-order stochas-

tically dominated by the distribution of V among the non-treated survivors at

t, in particular if there is a strong positive interaction between S and V in the

hazard rate of T , and this hazard rate increases in V and S. Then the individual

hazard rate at t is very large if both S = 1 and V is large, and as a result the

survivors at t may contain relatively few treated individuals with a high V .

A first implication is that one has to carefully define the subpopulation over

which an individual treatment effect on the hazard rate is averaged. Consider the

8Because of right-censoring, discrete-choice models like probit models are not a good alter-
native. Also, those models have difficulties handling time-varying explanatory variables. The
dynamically assigned treatment of Section 4 of this paper provides an example of such an
explanatory variable.

9The model is versatile in dealing with alternative timing patterns. In particular, the treat-
ment space itself may include time dimensions. For example, a treatment in S may not only
specify a particular program but also the time of enrolling into this program. Perfect compliance
requires that agents comply with the full ITT, including the assigned timing of the program. We
do not elaborate on this case. As noted in Section 1, perfect compliance is a strong assumption
in this case.
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average treatment effect ATE(t) defined by

E[θT (1)(t|V )/θT (0)(t|V )]

This involves aggregation over V in the whole population. However, a hazard

concerns a subpopulation of survivors at t, which is systematically different from

the population, so instead one would like to take the average over V among sur-

vivors. But because the selectivity of survivors at t > 0 depends on the treatment

status, one has to be specific about this status as well. We propose the following

novel average treatment effects on the individual hazard rate,

E
[
θT (1)(t|V )

θT (0)(t|V )

∣∣∣ T (1) ≥ t

]
, E

[
θT (1)(t|V )

θT (0)(t|V )

∣∣∣ T (1) ≥ t, T (0) ≥ t

]

which can be called the Average Treatment effect on the Treated Survivors at

t (ATTS(t)) and the Average Treatment effect on the Survivors at t (ATS(t)).

ATTS(t) averages over the distribution of V among the survivors at t if the

agents are assigned to the treatment. Under randomization, this is equivalent to

averaging over the distribution of V among the treated survivors at t (so with

T ≥ t, S = 1). ATS(t) averages over the distribution of V among individuals

who are survivor at t under both possible treatments. It basically equals the

survivor average causal effect of Rubin (2000) in case the latter would be applied

to the duration outcome itself rather than to effects on non-duration outcomes.

Note that in general both ATTS(t) and ATS(t) are properties of subpopulations

whose composition depends on the treatment effect on [0, t).

Non-parametric inference produces sample equivalents of θT (t|S = 1)/θT (t|S =

0). There holds that

θT (t|S = 1)

θT (t|S = 0)
=
E[θT (t|S = 1, V ) | T ≥ t, S = 1]

E[θT (t|S = 0, V ) | T ≥ t, S = 0]
,

so this ratio reflects (i) the treatment effect and (ii) the selection effect that at

T = t, among the survivors at t, the treated and controls have systematically

different unobserved characteristics despite the randomization at t = 0. The non-

parametric estimator therefore does not capture any meaningful treatment effect.

In fact, one can construct examples where

θT (t|S = 1) < θT (t|S = 0)

even if

θT (1)(t|V ) > θT (0)(t|V ) almost surely for all t. (3)

8



For example, let V have a discrete distribution with Pr(V = 0.2) = Pr(V =

2.5) = 0.5, and let ΘT (s)(t|V ) = Θ∗
T (s)(t)V with Θ∗

T (1)(t) > Θ∗
T (0)(t) for all t > 0

(note that this is weaker than inequality (3) for θT (s)(t|V ) in this example). Then

θT (t|S = 1) < θT (t|S = 0) for values of Θ∗
T (s)(t) in an interval around 1. In

such cases the dynamic selection effect on the observed hazard rate dominates

the treatment effect, in certain time intervals. Obviously, this may lead to invalid

non-parametric inference on the sign of the treatment effect.

Similar results can be derived for e.g. the use of the sample equivalent of

FT (t + a|T > t, S = 1)/FT (t + a|T > t, S = 0) for a > 0 (e.g. from a probit

analysis of whether T ∈ (t, t + a] given T > t, S) to estimate the corresponding

average effect on the individual conditional survival probability.10

Ham and LaLonde (1996) consider inference of treatment effects on post-

spell outcomes if randomization occurs at t = 0. Consider an outcome W that is

realized immediately after T . Let W (s) be the random outcome that would prevail

if we hypothetically assign the treatment s to the agent. In general, {W (s)} may

depend on V . The observation window is denoted by [0, T ) with T < ∞. We

observe W iff T < T . The distribution of V |S = s among the agents for whom

W is observed equals the distribution of V |T < T , S = s. It follows that, among

the observed W , the distribution of V among the treated in general differs from

the distribution of V among the controls. So, despite randomization at t = 0, we

cannot simply compare the observed mean outcomes of W among treated and

controls in order to uncover e.g. E[W (1)−W (0)]. We conclude that the problem

with causal inference on post-duration outcomes arises because of a bounded

observational window (i.e., right-censoring on a bounded interval). Without the

latter, the former does not arise.

2.3 Semi-parametric approaches

To obtain more constructive results, we need to impose some semi-parametric

structure on the distribution of T (s)|V . Two approaches can be taken, depending

10Average non-additive treatment effects on quantities that are defined for the whole popu-
lation, such as the average of the relative effect on the survival probability defined in Sub-
section 2.1, can also not be inferred non-parametrically, but this is only because of the
non-additivity. Note that if ΘT (1)(t|V ) > ΘT (0)(t|V ) for all t > 0 and at all V , then the
observable quantity FT (t|S = 1)/FT (t|S = 0) − 1 is always negative (this follows from
FT (t|S = s) = E[exp(−ΘT (s)(t|V ))]) and vice versa, so then this observable quantity always
has the same sign as the average treatment effect E[exp(−ΘT (1)(t|V ))/ exp(−ΘT (0)(t|V ))]− 1.
A similar result holds for θT (0|S = 0)− θT (0|S = 1). All these quantities are based on samples
drawn at t = 0, at which there has been no dynamic selection yet.
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on the amount of structure imposed. First, one may abandon point identification

and estimation, and focus on bounding the parameters of interest (e.g. Manski,

1997). Second, one may impose a structure that is sufficiently specific to enable

point identification and estimation of relevant treatment effects.

We start by assuming

Assumption 2 (Multiplicative unobserved heterogeneity).

θT (s)(t|V ) = θ∗T (s)(t)V (4)

for all t, s, with Θ∗
T (s)(t) defined analogously. This imposes that the individual

characteristics V affect the counterfactual hazard rates in the same proportional

way. It implies that the individual treatment effect on the hazard at t equals

θ∗T (1)(t)/θ
∗
T (0)(t), so it is homogeneous across individuals (but not necessarily over

time). Indeed, the individual effect at t equals ATE(t), ATTS(t) and ATS(t).

Moreover, let the treatment effect be monotone in the following way: the

individual-level potential-outcome distributions can be ranked in terms of first-

order stochastic dominance, i.e. Θ∗
T (1)(t) > Θ∗

T (0)(t) for all t > 0, or Θ∗
T (1)(t) =

Θ∗
T (0)(t) for all t > 0, or Θ∗

T (1)(t) < Θ∗
T (0)(t) for all t > 0.

Along the lines of Meyer (1996) it can be shown directly that

θT (t|S = 1)

θT (t|S = 0)
< ATE(t) = ATTS(t) = ATS(t). (5)

if Θ∗
T (1)(t) > Θ∗

T (0)(t), for all t > 0. The results for the other two rankings

follow straightforwardly. The ranking of the individual-level potential-outcome

distributions can be inferred from the ranking of FT ;S=1(t) and FT ;S=0(t) near

t = 0, so the average treatment effects on the hazard rate can be bounded by the

observable left-hand side of equation (5).

Imposition of (4) is insufficient for point identification. This can be achieved

by the additional restriction that the hazard rate of T (s)|V is proportional in t

and s as well,

θT (s)(t) = γs λ(t) V

for some scalar treatment effect parameter γ > 0 and some “baseline hazard”

function λ. This results in the so-called MPH model for T |S, V with θT (t|S, V ) =

λ(t) γS V . Under the additional assumption that E [V ] < ∞ the parameter γ is

identified from (see Elbers and Ridder, 1982, and Kortram et al., 1995),11

11Intuitively, the non-parametric hazard rates at zero are not yet affected by dynamic selection
on survival, and semi-parametric identification involves an extrapolation of the treatment effect
on the hazard at zero to positive durations. This does of course not mean that semi-parametric
estimation results are completely driven by extremely short durations.
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γ = lim
t↓0

FT (t|S = 1)

FT (t|S = 0)
. (6)

In applications of MPH models, the “random effects” assumption that observed

and unobserved explanatory variables are independent is often controversial.

However, here this assumption follows from the randomization of S.

Other semi-parametric structures of the hazard rate of T (s)|V may also lead

to point identification and estimation of treatment effects (see Heckman and

Taber, 1994, and Van den Berg, 2001, for surveys). Concerning treatment effects

of post-duration outcomes in case of a finite observational window, a solution is

to estimate a model that takes unobserved heterogeneity into account.

3 Randomization and immediate treatment with

imperfect compliance

3.1 Model and data

We now relax Section 2’s assumption of perfect compliance, but retain the as-

sumption that treatment is immediate. Instead of being randomly assigned to a

treatment as in Assumption 1, agents are randomly assigned a label Z ∈ Z at

time 0. In the typical experimental setup, Z takes values in the set Z = S of

possible treatments and is interpreted as the ITT with the treatment Z. More

generally, we allow Z to be an IV with support Z 6= S. We will nevertheless refer

to Z as the ITT throughout.

Let S(z) be the random actual treatment that would prevail if we hypothet-

ically assign the agent the label z ∈ Z. The process {S(z)}, which is assumed

measurable, can again be given a structural interpretation. The actual treatment

is S = S(Z). In the ITT case with perfect compliance, we would have that

S(z) = z for all z ∈ Z = S, and S = S(Z) = Z. In the present section, however,

we allow for imperfect compliance (so S = S(Z) 6= Z) by allowing S(z) to be

non-degenerate. If Z is discrete and an effective ITT, it should be the case that

Pr(S(z) = z) > Pr(S(z) = z′) for all z, z′ ∈ S such that z′ 6= z.

Throughout this section we maintain

Assumption 3 (IV). (i) z 7→ S(z) is non-trivial (in a way that will be further

specified in special cases below), and (ii) Z⊥⊥({T (s)}, {S(z)}).

11



Underlying Assumption 3(ii) is the notion that (a) the ITT does not causally

affect outcomes directly, so that potential outcomes T (s) need not be indexed

by z, (b) outcomes do not causally affect treatment, so that S(z) need not be

indexed by possible values t of T , and (c) the ITT is not causally affected by

either outcomes or treatment (see Abbring, 2003, for discussion).

With imperfect compliance, the actual treatment S = S(Z) and the potential

outcomes {T (s)} are typically dependent, because agents non-experimentally self-

select or are selected in actual treatment. This sets the present analysis apart from

that of Section 2. Note, however, that a reduced-form analysis of the effect of ITT

on outcomes fits Section 2’s framework. Formally, the outcome equation can be

reduced to {T (S(z))}. Under Assumption 3, Z⊥⊥{T (S(z))}, so that Assumption

1 holds for the reduced-form model with Z replacing S.

The data of Subsection 2.1 are accordingly enriched with instrumental varia-

tion. We now have a random sample ((T̃1, S1, D1, Z1), . . . , (T̃n, Sn, Dn, Zn)) from

the joint distribution of (T̃ , S,D, Z).

3.2 Non-parametric estimation and testing with IV

For now, consider the binary treatment-binary instrument case that S = {0, 1}
and Z = {0, 1}. Again, it is convenient to think of the treatment statuses as

“treatment” (s = 1) and “control” (s = 0) in this case. Define p(z) := Pr(S(z) =

1). Note that p(z) = Pr(S = 1|Z = z) under Assumption 3. Assume that Im-

bens and Angrist’s (1994) monotonicity property holds, that is S(0) ≤ S(1) or

S(0) ≥ S(1). Without further loss of generality, we take S(0) ≤ S(1). Then, the

subpopulation that switches treatment status between propensities p(0) and p(1)

all switch from treatment 0 to treatment 1. This subpopulation, called “com-

pliers” by Imbens and Rubin (1997), is therefore Q := {S(0) = 0, S(1) = 1},
and has probability mass Pr(Q) = p(1) − p(0). We formalize Subsection 3.1’s

Assumption 3(i) by assuming that Pr(Q) > 0.

In this subsection we only consider the average additive treatment effect on

the survival probabilities, since from Section 2 we know that non-parametric

inference of other effects is not feasible. Existing methods in the literature would

focus on various average contrasts between T (1) and T (0) on Q, and the marginal

distributions F0;Q and F1;Q of, respectively, T (0) and T (1) on Q. However, we have

to adapt them to allow for censoring.

Identification of the marginal potential-outcome distributions F0;Q and F1;Q

12



on Q is straightforward (Imbens and Rubin, 1997). In particular,

F 0;Q(t) =
Pr (T > t, S = 0|Z = 0)− Pr (T > t, S = 0|Z = 1)

p(1)− p(0)
and

F 1;Q(t) =
Pr (T > t, S = 1|Z = 1)− Pr (T > t, S = 1|Z = 0)

p(1)− p(0)
.

By implication, the mean survival probability contrast on Q

∆Q(t) := F 1;Q(t)− F 0;Q(t),

is identified (Imbens and Angrist, 1994). This is a local average treatment effect

on survival for at least t periods.

Next, for testing, we can use that

∆Q =
F T ;Z=1 − F T ;Z=0

p(1)− p(0)
,

where F T ;Z=z (t) := Pr(T > t|Z = z). This equality implies that the causal

null that F 0 = F 1 is equivalent to the reduced-form null that F T ;Z=0 = F T ;Z=1

(Robins and Tsiatis, 1991, and Abadie, 2002). Thus, under the IV assumptions,

we can test for distributional treatment effects using any of the non-parametric

tests of Section 2.

Next, consider estimating F 0;Q, F 1;Q, and ∆Q. First note that F T ;Z=z(t) and

F T ;S=s,Z=z(t) := Pr(T > t|S = s, Z = z) can be estimated by the Kaplan-Meier

estimator. Also, p(z) can be estimated by

p̂(z) =

∑n
i=1 SiI(Zi = z)∑n
i=1 I(Zi = z)

.

Thus, F 0 and F 1 can be estimated by

F̂ 0;Q =
[1− p̂(0)] F̂ T ;S=0,Z=0 − [1− p̂(1)] F̂ T ;S=0,Z=1

p̂(1)− p̂(0)
and (7)

F̂ 1;Q =
p̂(1)F̂ T ;S=1,Z=1 − p̂(0)F̂ T ;S=1,Z=0

p̂(1)− p̂(0)
, (8)

respectively, and ∆Q can be estimated by

∆̂Q = F̂ 1;Q − F̂ 0;Q =
F̂ T ;Z=1 − F̂ T ;Z=0

p̂(1)− p̂(0)
.

Asymptotic behavior of these estimators follows from standard results for the

Kaplan-Meier estimator. Let qz := Pr(Z = z). We have
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Proposition 1. Under Assumption 3,
√

n
(
F̂ 1;Q − F 1;Q, F̂ 0;Q − F 0;Q

) D−→
1

p(1)− p(0)

( (
F T ;S=1,Z=1 − F 1;Q

)N1 −
(
F T ;S=1,Z=0 − F 1;Q

)N0

−
√

p(1)

q1

F T ;S=1,Z=1G11 +

√
p(0)

q0

F T ;S=1,Z=0G10,

(
F T ;S=0,Z=1 − F 0;Q

)N1 −
(
F T ;S=0,Z=0 − F 0;Q

)N0

+

√
1− p(1)

q1

F T ;S=0,Z=1G01 −
√

1− p(0)

q0

F T ;S=0,Z=0G00

)
,

with Nz (z = 0, 1) a normal random variable with zero mean and variance

p(z) [1− p(z)] /qz, Gsz (s, z = 0, 1) a Gaussian martingale such that Gsz(0) = 0

and, for t < t′,

cov (Gsz(t),Gsz(t
′)) =

∫ t

0

θT ;S=s,Z=z (τ)

F T ;S=s,Z=z (τ) FC (τ−)
dτ =: σ2

sz (t) ,

and N1, N0, G11, G01, G10, and G00 mutually independent.

Proof. See Appendix 1.

Proposition 1 can be used to compute asymptotic standard errors of F̂0,Q(t),

F̂1;Q(t), and ∆̂Q(t), and (point-wise and uniform) confidence bounds on F0,Q,

F1;Q, and ∆Q. In particular, for ∆̂Q we have

Corollary 1. For t ≤ t′, the asymptotic covariance of ∆̂Q(t) and ∆̂Q(t′) equals

1

[p(1)− p(0)]2

{p(1) [1− p(1)]

nq1

[
F T ;S=1,Z=1(t)− F T ;S=0,Z=1(t)−∆Q(t)

]

× [
F T ;S=1,Z=1(t

′)− F T ;S=0,Z=1(t
′)−∆Q(t′)

]

+
p(0) [1− p(0)]

nq0

[
F T ;S=1,Z=0(t)− F T ;S=0,Z=0(t)−∆Q(t)

]

× [
F T ;S=1,Z=0(t

′)− F T ;S=0,Z=0(t
′)−∆Q(t′)

]

+
p(1)F T ;S=1,Z=1(t)F T ;S=1,Z=1(t

′)σ2
11(t)

nq1

+
[1− p(1)] F T ;S=0,Z=1(t)F T ;S=0,Z=1(t

′)σ2
01(t)

nq1

+
p(0)F T ;S=1,Z=0(t)F T ;S=1,Z=0(t

′)σ2
10(t)

nq0

+
[1− p(0)] F T ;S=0,Z=0(t)F T ;S=0,Z=0(t

′)σ2
00(t)

nq0

}
.
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(9)

A consistent estimator of this asymptotic covariance follows by plugging the esti-

mators p̂(z) of p(z), Mz :=
∑n

i=1 I(Zi = z) of nqz, F̂ T ;S=s,Z=z of F T ;S=s,Z=z, ∆̂s;Q

of ∆s;Q, and consistent estimators

σ̂2
sz (t) =

∑

{j:Dj=1,T̃j≤t,Sj=s,Zj=z}

[
Rsz(T̃j)

]−2

of σsz(t) into equation (9). Note that Corollary 1 provides the asymptotic variance

of ∆̂Q(t), and therefore its asymptotic standard error, for t = t′.
One special case deserves some attention. In the case that there is no cen-

soring, ∆̂Q(t) reduces to Imbens and Angrist’s (1994) IV estimator of the local

average treatment effect on the binary outcome I(T > t), the Wald estimator12

∆̂Q(t) =
M−1

1

∑n
i=1 ZiI(Ti > t)−M−1

0

∑n
i=1(1− Zi)I(Ti > t)

M−1
1

∑n
i=1 ZiSi −M−1

0

∑n
i=1(1− Zi)Si

.

In this case, Proposition 1 implies

Corollary 2. If FC = 1 (no censoring), then, for t ≤ t′, the asymptotic covari-

ance of ∆̂Q(t) and ∆̂Q(t′) equals

1

[p(1)− p(0)]2

{p(1) [1− p(1)]

nq1

[
F T ;S=1,Z=1(t)− F T ;S=0,Z=1(t)−∆Q(t)

]

× [
F T ;S=1,Z=1(t

′)− F T ;S=0,Z=1(t
′)−∆Q(t′)

]

+
p(0) [1− p(0)]

nq0

[
F T ;S=1,Z=0(t)− F T ;S=0,Z=0(t)−∆Q(t)

]

× [
F T ;S=1,Z=0(t

′)− F T ;S=0,Z=0(t
′)−∆Q(t′)

]

+
p(1)FT ;S=1,Z=1(t)F T ;S=1,Z=1(t

′)
nq1

+
[1− p(1)] FT ;S=0,Z=1(t)F T ;S=0,Z=1(t

′)
nq1

+
p(0)FT ;S=1,Z=0(t)F T ;S=1,Z=0(t

′)
nq0

+
[1− p(0)] FT ;S=0,Z=0(t)F T ;S=0,Z=0(t

′)
nq0

}
.

12See e.g. Angrist and Krueger (1999) and Heckman, LaLonde and Smith (1999) for general
discussions of the Wald estimator in the treatment evaluation context.
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For t = t′, this reduces to the asymptotic variance given by Imbens and Angrist

(1994),

E
[(

I(T > t)− F T (t)−∆Q(t) (S − E[S])
)2

(Z − E[Z])2
]

[cov (S, Z)]2
.

In general, the functions F 0;Q, F 1;Q, and ∆Q inherit the disadvantages of the

local average treatment effect parameter in Imbens and Angrist’s (1994) work.

Unless p(0) = 0 and p(1) = 1 (in which case S = Z a.s.) the set Q, and there-

fore these functions, are instrument-dependent for given propensity scores p(0)

and p(1) (see Heckman, 1997, Heckman, LaLonde and Smith, 1999, and Ab-

bring, 2003, for discussion). Policy-evaluation problems may require information

on “parameters of interest” other than the identified local average treatment

effects. Moreover, one may be more interested in average treatment effects on

individual hazard rates than on survivor functions. This requires imposition of

some semi-parametric structure.

3.3 Semi-parametric IV in a proportional hazards frame-

work

In this subsection we adopt structures for the hazard rate of T (s) that are related

to the familiar mixed proportional hazards (MPH) model, allowing for unobserved

heterogeneity V across individuals. As in Subsection 2.2, this enables us to focus

on individual treatment effects and achieve point identification. We only allow

{T (s)} and S to be dependent by way of a common dependence on the individ-

ual V , so {T (s)}⊥⊥S|V . This means that in the case where S differs from the

randomized assignment due to selective compliance, this selection mechanism is

captured by V .

We start by adopting the multiplicative structure for θT (s)(t|V ) from Subsec-

tion 2.3 resulting in the MPH model for T |S, V ,

θT (t|S, V ) = λ(t) γS V. (10)

We again assume that E [V ] < ∞, but we now replace the assumption from

Subsection 2.3 that S⊥⊥V by the assumption that there is an instrument Z that

satisfies Assumption 3. We again take Z to be binary (e.g. an ITT indicator,

or an IV capturing that otherwise identical regions supply different labor market

programs). Among other things, Assumption 3(ii) in this case implies that Z⊥⊥V .

We now formalize Assumption 3(i) by assuming that p(1)E[V |S = 1, Z = 1] 6=
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p(0)E[V |S = 1, Z = 0]. Note that p(0) 6= p(1) is necessary for this condition

to hold. Here, as elsewhere in the paper, the semi-parametric model framework

is not well-suited to incorporate endogenous drop-out from ongoing treatments.

One would like to model this as self-selection, and the identification of its effect

on hazard rates would require additional information (see Heckman, Smith and

Taber, 1998, for a discussion).

In the MPH model it is useful to focus on limits as t ↓ 0, because at 0 the

dynamic selection that we examined in Subsection 2.2 has not yet taken place.

There holds that

γ = lim
t↓0

p(1)FT ;S=1,Z=1(t)− p(0)FT ;S=1,Z=0(t)

[1− p(0)] FT ;S=0,Z=0(t)− [1− p(1)] FT ;S=0,Z=1(t)
(11)

(see Appendix 1). The right-hand side of this only depends on observable quan-

tities. Thus, γ is identified. We summarize this result in

Proposition 2. With a valid binary instrument (i.e. that satisfies Assumption

3), and under the assumption that E[V ] < ∞, the treatment effect parameter γ

in an MPH model with an endogenous binary treatment is identified.

Note that we do not require exogenous explanatory variables. We also do not

require parametric assumptions (like a parametric latent-variable selection equa-

tion) on the treatment selection process {S(z)}. If, in violation of Assumption 3,

Z is not informative on S (i.e., if p(1) = p(0)) then equation (11) does not have

a solution for γ.

We conjecture that, by analogy to Lenstra and Van Rooij (1998), γ can be

consistently estimated by the sample equivalent of the right-hand side of (11).

This IV estimator can be seen as a version for our non-linear model of the Wald

IV estimator of a treatment effect in the linear regression model.13 To see this,

note that at t ↓ 0, the specification (10) resembles a non-linear regression model

with an endogenous regressor and a constant treatment effect parameter, and

that equation (11) can be re-expressed as follows,

γ−1 = lim
t↓0

θT (t|Z = 1)− θT (t|Z = 0)

(1− p(0))θT (t|S = 0, Z = 0)− (1− p(1))θT (t|S = 0, Z = 1)
(12)

The practical use of estimators that require t ↓ 0 is limited because very short

durations are often ill-recorded.

13See e.g. Angrist and Krueger (1999) and Heckman, LaLonde and Smith (1999) for discus-
sions in a regression model context.
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Although the proposition does not concern identification of other model pa-

rameters, this may be achieved by way of including observed exogenous explana-

tory variables X. Our results may be seen as a justification of empirical models

that consist of two equations: (i) an MPH model equation for T |S, X, V , say

θT (t|S, X, V ) = λ(t)γS exp(αX)V , and (ii) a latent-variable selection equation,

say S∗ = β0+β1Z+β2X+ε, with S := I(S∗ > 0), and where ε and V are possibly

dependent. The corresponding estimates are not fully driven by functional-form

assumptions.

It is clear that a continuous instrument Z enables identification of more gen-

eral models. Chesher (2003) considers an MPH-type model with an endogenous

continuous treatment indicator S as well as exogenous variables X, a continuous

instrument Z, and a latent variable equation relating S and Z. He demonstrates

local identification of ratios of the derivatives of the individual hazard rate with

respect to S and X.

We now proceed to the case where Z represents an ITT and non-compliance

is asymmetric in the sense that agents always comply if assigned to the control

group (z = 0), i.e. S(0) = 0 and p(0) = 0. Under this restriction, Bijwaard and

Ridder (2005) develop an estimator of a treatment effect in an MPH model with

a parametric baseline hazard. They exploit that, because of randomization, the

subpopulation of agents with Z = 0 is representative for the population. This

ensures that all parameters except the treatment effect are identified from the

data on this subpopulation. The treatment effect is subsequently identified from

the outcomes of the agents with Z = 1. Here we follow the same approach. This

requires an MPH model that is fully identified in the absence of treatments.14 This

is usually achieved by including exogenous X variables, so we augment equation

(10) with such variables. In addition, we now allow the treatment effect γ to

depend on the elapsed time t since treatment and on X, leading to

θT (t|S, V, X) = λ(t) γ(t,X)S φ(X) V, (13)

and we make standard assumptions that ensure identification of λ, φ, and the

distribution of V in the population in the absence of treatments (notably, this

requires X⊥⊥V ). We obtain

Proposition 3. Consider a standard MPH model that is augmented by an en-

dogenous binary treatment and that is identified in the absence of this treatment.

Assume perfect compliance among the controls. With a valid binary instrument

(i.e. that satisfies Assumption 3), the treatment effect as a function of the elapsed

14See Heckman and Taber (1994) and Van den Berg (2001) for surveys.
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duration and observed covariates is identified, as are all other functions in the

model.

Proof. See Appendix 1.

From a policy point of view it is obviously important to be able to identify

the way in which the individual treatment effect changes over time and across

individuals.15

4 Randomization with later treatment and im-

perfect compliance

4.1 Model and data

We further extend the model of Subsection 3.1 by not only allowing for imperfect

compliance, but also for positive amounts of time between treatment assignment

and treatment enrollment. Again, a Z-valued label Z is randomly assigned at

time 0 (see Subsection 4.3 for examples). Then, the agents engage in a time-

consuming process of enrolling in a program. We focus on the case of a binary

program, in which the agents either enroll at some time in [0,∞) or not enroll

at all. Following Abbring and Van den Berg (2003b), we can formalize this by

taking S = [0,∞]. Then, S simply denotes the random time at which an agent

enrolls in the program. The point ∞ corresponds to never enrolling at all.

As before, denote the model for the treatment as a function of the instrument

by {S(z)}. In a social experiment, perfect compliance would again arise if Z = S
and S(z) = z. An interpretation is that a full treatment plan Z, stipulating

the timing of future program participation, is randomly assigned at time 0 and

is adhered to in all states of the world. If Z is observed by the agent, which

we typically assume it is, this is the perfect-foresight case briefly mentioned in

Subsection 2.2. In this section, we allow for the more relevant case of imperfect

compliance, i.e. non-degenerate {S(z)}.
For expositional convenience, we take the instrument (ITT) to be binary (Z =

{0, 1}). Because S is larger than Z, Z cannot contain a treatment plan for each

possible treatment. Therefore, S(0) and S(1) cannot both be non-degenerate,

except in the trivial case that S has binary support. Thus, there is imperfect

compliance.

15One might want to consider inference in models where the individual treatment effect γ is
allowed to depend in a general way on V , but this seems too ambitious.
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In the next subsection we argue that the ITT is likely to affect outcomes

directly in this case. To accommodate this, we augment the outcomes model by

indexing potential outcomes not only by treatments in S, but also by the labels

in Z. Thus, the potential-outcomes process is now {T (s, z)} := {T (s, z); (s, z) ∈
S × Z}. We again assume that each T (s, z) is continuously distributed, with

hazard rate θT (s,z) and integrated hazard ΘT (s,z). For expositional convenience,

we restrict the joint distributions of {T (s, z)} for fixed z as in

Assumption 4. For all z ∈ Z, there exists a unit exponential random variable

Ez such that T (s, z) = Θ−1
T (s,z)(Ez) for all s ∈ [0,∞].

Because we never observe two potential outcomes jointly, Assumption 4 is em-

pirically innocuous.

Following Abbring and Van den Berg (2003b), we assume that there is no

anticipation of future treatment. This means that current potential integrated

hazards do not depend on future treatment enrollment, i.e.

Assumption 5. For all s ∈ [0,∞), z ∈ Z, ΘT (s,z)(t) = ΘT (∞,z)(t) for all t ≤ s.

Recall that ΘT (∞,z) is the integrated hazard of the potential duration correspond-

ing to never enrolling in treatment.16

We assume that treatments are only observed if enrollment has taken place be-

fore the outcome spell is completed. This is natural in combination with Assump-

tion 5, and natural in many applications.17 Thus, we now have a random sam-

ple y((T̃1, S1I(S1 < T̃1), D1, I(S1 < T̃1), Z1), . . . , (T̃n, SnI(Sn < T̃n), Dn, I(Sn <

T̃n), Zn)) from the joint distribution of (T̃ , SI(S < T̃ ), D, I(S < T̃ ), Z).

4.2 Exclusion restrictions and causal effects

An equivalent of Assumption 3 for this section would require that (i) z 7→ S(z)

is non-trivial, and (ii) Z⊥⊥({T (s, Z)}, {S(z)}). A sufficient condition for (ii) is

that ITT does not causally affect outcomes directly, i.e. T (s, z) = T (s, z′) for

all s ∈ S, z, z′ ∈ Z. With imperfect compliance and dynamic enrollment in

16Note that Assumptions 4 and 5 imply that T (s, z) = T (∞, z) on {T (∞, z) ≤ s}.
17The analysis can be straightforwardly extended to the case that treatments are always

observed. A natural symmetric extension of the present model allows outcomes to affect future
treatment and imposes that neither future outcomes nor future treatments are anticipated.
Alternatively, under the assumption that treatments are not causally affected by outcomes at
all, we can allow for for anticipation of future treatment. See Abbring and Van den Berg (2003b)
and Abbring (2003) for details.
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treatment, randomization is unlikely to ensure such exclusion. To see this, con-

sider a social experiment in which the treatment is a public training program

for the unemployed, and the outcome is the unemployment duration. Suppose

that agents operate in a continuous-time dynamic environment in which they

may affect treatment and outcomes by (i) investing in some (human) capital,

and (ii) searching for job and training opportunities. Agents are informed about

their ITT status and possible some other predetermined variables (called V be-

low). Otherwise, information accumulates in the obvious way. In this framework,

the ITT status may affect the present value of unemployment, and this affects

the optimal strategy concerning exit to work. Thus, at the level of an individual

agent, ITT not only causally affects the moment of treatment, but it may also

causally affect outcomes. In that case there is no exclusion restriction and we may

not apply the methods of Case II. We will now make these claims more precise

by distinguishing between the periods before and after treatment.

The causal effect on the outcome before the actual treatment is called the ex

ante causal ITT effect on the outcome. In line with this, we say that if this effect

is absent then the ex ante exclusion restriction is satisfied. Violation of the ex

ante exclusion restriction is often likely, because ITT has to causally affect actual

treatment in order to be a useful instrument in the first place (as in Assumption

3(i)), and anything observable that influences the distribution of the moment of

a relevant event in the future has an effect on current behavior. To put it simple:

if you like training and you are likely to get it, then you stop searching until the

training; if you do not like training, and you are likely to get it, then you make a

maximum effort to find a job before the training starts; if you are unlikely to get

it then you search with moderate effort (see Van den Berg, 2004, for a decision-

theoretical analysis of IV in general in a dynamic setting with forward-looking

agents).

The causal effect of ITT on the outcome after actual enrollment in the treat-

ment is called the ex post causal ITT effect on the outcome, and we refer to the

absence of such effects as ex post exclusion. The ex post exclusion restriction is

not per se inconsistent with ITT being an instrument and may be reasonable in

some applications. In the training example, this restriction may be violated if

ITT affects investments in financial or human capital.

A formal statement of such an assumption requires notation that allows us to

explicitly control for dynamic selection. To this end, again suppose that all ex ante

heterogeneity is captured by a random variable V and that {T (s, z)}⊥⊥{S(z)}|V .

Then, a weak version of Assumption 3 that only imposes ex post exclusion is

Assumption 6 (IV with ex post exclusion). (i) z 7→ S(z) is non-trivial, (ii)
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Z⊥⊥({T (s, z)}, {S(z)}, V ), and (iii) for all s ∈ [0,∞), and z, z′ ∈ Z,

θT (s,z)(t|V ) = θT (s,z′)(t|V ) almost surely, for all t > s. (14)

Informally, (iii) states that θT (s,z)(t|V ) does not vary with z after s. Note that

without Assumption 6 there would be no need to introduce V at this stage. Also

note that ex ante exclusion would require equation (14) to hold for all t ≤ s.

With ex post exclusion, we are left with three causal effects or causal pa-

rameters. In terms of effects on individual hazard rates, they can be expressed

as follows. First and foremost, the ex post causal treatment effect of s on the

outcome hazard rate after s (“the” treatment effect). Second, the ex ante causal

effect of z on the outcome hazard rate before s. Third, the ex ante causal effect of

z on the treatment rate θS(z)(t|V ) before s. In the experimental training program

example, these are, respectively, the effect of training on the exit rate to work,

the effect of being randomized in, on the exit rate to work before the training,

and the effect of being randomized in, on the rate of getting into training. Note

that Assumption 6(i) states that the third causal effect exists.

The ex ante causal effect on the outcome is represented by the change in

the distribution of T (∞, z) when z changes from 0 to 1. As discussed above, we

expect this effect to operate because of the effect of z on the random treatment

assignment rule S(z). Under the assumption that this is the only channel through

which z affects outcomes, the ex ante causal effect on the outcome reflects the

behavioral effect of moving between the assignment rules S(0) and S(1). In gen-

eral, both S(0) and S(1) may have at least some support in (0,∞), so under

both rules, agents may face a positive probability of eventually enrolling in the

treatment. We must therefore contrast the outcomes under these actual treat-

ment rules S(0) and S(1) to an agent’s outcomes in the hypothetical case the

agent faces a rule that never assigns treatment (i.e. is degenerate at ∞). Unless

either S(0) or S(1) is such a rule, this effect can in general not be identified.

Still, this behavioral effect is likely to be non-zero (especially if the ex ante causal

effect on the outcome hazard is non-zero), and in that case its presence affects the

interpretation of the identified causal effects (see in particular Subsection 4.5.2).

4.3 Reduced-form ITT analysis

As with our Case II, one may carry out a reduced-form analysis of the over-all

effect of ITT on the outcome duration. In particular, one may non-parametrically

study the average additive effect of z on the survival probability of T (S(z), z).

This is a net effect of the three causal effects defined above. The analysis again

fits under our Case I.
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The usefulness of such an analysis is limited, for two reasons. The first also

applies to reduced-form ITT analysis in Case II and was already mentioned in the

introduction of the paper, namely that the analysis does not enable one to learn

the size of the average causal effect of the actual treatment. Below we provide

two examples in which in the context of our Case III it is useful to know this

treatment effect. The second limitation only applies to Case III. Recall that in

Case II the null hypothesis of no over-all ITT effects is equivalent to the null

hypothesis of no average causal treatment effect (at least, if one is interested in

the average additive effect on the outcome survival probability). As is clear from

the previous subsection, this equivalence breaks down in the present Case III.

Our first example concerns the effect of a training program for unemployment

insurance recipients on their unemployment duration. In a social experiment, a

random subsample of the inflow into unemployment is chosen to become partici-

pant in the program. Actual training occurs at a later point in time, depending

on the behavior of the case worker and other (potential) applicants. This moment

is random from the point of view of the individual. Individuals may choose to

withdraw from the program, in which case they face the distribution of the mo-

ment of training that is also faced by those who are initially randomized out. This

description is not dissimilar to the actual enrollment into the experimental JTPA

program (see e.g. Heckman, LaLonde and Smith, 1999). In a non-experimental

situation, the randomization upon inflow may be replaced by different regional

active labor market policies in otherwise identical regions, as an instrumental

variable.

One may want to know the causal effect of having been trained on the exit

rate to work, as well as the ex ante causal effect of being eligible for training

on the exit rate to work before actual training. For example, if the former is

positive and the latter is negative then this may suggest that the program should

be offered more frequently or earlier in the spell of unemployment. In this case

a reduced-form ITT analysis may just indicate that the net effect is zero. As

another illustration, Richardson and Van den Berg (2001) show that the effect

of an expensive training program only works up to three months after finishing

the training. This suggests that the merits of the program are in job search

assistance rather than human capital accumulation, in which case the program

can be replaced by a much cheaper job search assistance program.

Our second example is the Moving to Opportunity for Fair Housing Demon-

stration (MTO). This is an experimental residential mobility program that has

been carried out by the U.S. Department of Housing and Urban Development in

five major U.S. cities since 1994. It is targeted to families living in public housing
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or project-based subsidized private housing in poor neighborhoods.18 Participat-

ing families are randomized into three groups, the MTO experimental group, the

Section 8 Comparison group, and the Control group (Feins, Holin and Phipps,

1996). Families in the MTO experimental group receive vouchers that can only be

used to subsidize private housing in low-poverty areas. Intensive counseling and

assistance are provided to support these families’ search for such housing. The

Section 8 Comparison group receives geographically unrestricted Section 8 vouch-

ers and ordinary briefings and assistance.19 Finally, the Control group does not

receive any vouchers, but continues to qualify for public housing or project-based

support.

A wide variety of outcome measures, such as housing conditions, employment,

earnings, and welfare dependence, are recorded in the MTO demonstration. A

comparison of these outcomes across the three program groups is of clear policy

interest. Because of the randomization of group assignment, such ITT analyses

are informative on the effects of the MTO and the existing Section 8 voucher

programs on the target group’s socio-economic outcomes. However, the MTO

demonstration explicitly states the ambition to move beyond ITT analyses and

to separately explore the effects of the program on housing mobility and the sub-

sequent effects of housing mobility on other outcomes (Feins, Holin and Phipps,

1996; Orr et al., 2003). There is a direct connection to the empirical literature on

neighborhood effects. Katz, Kling and Liebman (2001), for example, study the

MTO program in Boston and propose to use the initial program status as an

instrument for housing mobility.

4.4 Non-parametric identification

Let Pr(S = T ) = 0. Following Abbring and Van den Berg (2003b), a large data

set would provide20

QS;Z=z(t, s) := Pr(T > t, S > s, T > S|Z = z) and

QT ;Z=z(t) := Pr(T > t, T < S|Z = z)
(15)

for all (t, s) ∈ R2
+ and z = 0, 1. These are the sub-survivor-functions of (T, S)

and T on Z = z for the subpopulations with respectively T > S and T < S.

18This includes only housing subsidized under the project-based Section 8 program. In this
program, rent subsidies are connected to dwellings: if tenants move from project-based Section
8 housing they lose their project-based Section 8 subsidies.

19The Section 8 vouchers are housing subsidies connected to tenants and should not be
confused with the project-based Section 8 assistance that some families originally receive.

20Simple random censoring does not matter for identification, provided that some straight-
forward support conditions hold.
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As before, non-parametric identification is concerned with average additive ef-

fects on survival probabilities. We first consider the identifiability of the average

additive ex ante causal effect of z on F T (∞,z)(t|V ), and we simultaneously consider

the likewise effect of z on F S(z)(t|V ) (note that the focus on F T (∞,z) here is justi-

fied by Assumption 5). Thus, we examine the differences F T (∞,1)(t)− F T (∞,0)(t)

and F S(1)(t)− F S(0)(t).

Any effects of z on the treatment process are only observable (and only rele-

vant) on [0, T ]. Moreover, by Assumption 6, z only possibly causally affects the

outcome process on [0, S]. Intuitively, we should therefore learn about these ef-

fects from data on the “identified minimum” of (T, S), i.e. the smallest of T and

S joint with the identity of this smallest duration, for Z = 0 and Z = 1. The

distribution of this identified minimum given Z = z is fully characterized by

(Q0
S;Z=z, QT ;Z=z), with Q0

S;Z=z(·) := QS;Z=z(−∞, ·) (Tsiatis, 1975). We can think

of such data as being generated by a competing risks model that is embedded

in our full model, and in which one risk is enrollment in the treatment (which

terminates the ex ante causal effect on the outcome) and the other risk is realized

by the outcome transition (which terminates observability of the ex ante causal

effect on the treatment process).

In the particular case that {S(z)}⊥⊥{T (s, z)} (randomized treatment), there

holds that (Q0
S;Z=z, QT ;Z=z) is consistent with an independent competing risks

model in which the outcome risk has survivor function F T (∞,z) and the treatment

risk has survivor function F S(z). If it is known that the risks are independent, this

means that F T (∞,0) and F S(0) are identified from (Q0
S;Z=0, QT ;Z=0), and F T (∞,1)

and F S(1) are identified from (Q0
S;Z=1, QT ;Z=1), all in this particular case of ran-

domized treatment.

However, we allow for general dependence of {S(z)} and {T (s, z)} through a

common dependence on the unobservable V . The data (Q0
S;Z=z, QT ;Z=z) are then

consistent with a particular dependent risks model in which the outcome risk has

marginal survivor function F T (∞,z) and the treatment risk has marginal survivor

function F S(z). Dependent competing risks models are not non-parametrically

identified (Cox, 1959, 1962; Tsiatis, 1975). In general there is an observationally

equivalent independent competing risks model, with marginal survivor functions

that do not equal F T (∞,z) and F S(z). In sum, the two ex ante causal effects of z

are not non-parametrically identified from (Q0
S;Z=z, QT ;Z=z; z = 0, 1).21

Application of Peterson’s (1976) bounds for marginal survivor functions in

21See Abbring and Van den Berg (2003a) for some intuition on (non-)identification of com-
peting risks models. Note that the difference between the “crude” ex ante outcome hazards
θT (t|S ≥ t, Z = z) at z = 1 and z = 0 does not only reflect the ex ante causal effect of z on the
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dependent competing risks models gives that

Proposition 4. For given data (Q0
S;Z=z, QT ;Z=z), F T (∞,z) and F S(z) satisfy

Q0
S;Z=z + QT ;Z=z ≤ F T (∞,z) ≤ QT ;Z=z + Q0

S;Z=z(−∞) and

Q0
S;Z=z + QT ;Z=z ≤ F S(z) ≤ Q0

S;Z=z + QT ;Z=z(−∞),

for z = 0, 1. The bounds are sharp.

The bounds in Proposition 4 are typically wide and may overlap across groups

with different z, whether z affects T (∞, z) and S(z) or not. With overlap, the ex

ante causal effects of z cannot even be signed. This would imply that, contrary

to typical IV analyses, one cannot infer empirically whether the ITT variable z

has a causal effect on S. Moreover, a priori information on one of the risks is not

informative on the marginal distributions of the other risk: the bounds on either

marginal distribution can be attained even if we arbitrarily fix the other marginal

distribution.22

As an example, suppose that T (∞, z) is exponential with parameter µz, S(z)

is exponential with parameter νz, and that {S(z)}⊥⊥{T (s, z)}. To shape thoughts,

one may think of T , S, and Z as the unemployment duration, the unforeseeable

duration at which unemployment benefits are reduced, and the randomized as-

signment of different rates of benefits reduction, respectively. Such a setting arises

in the case of an unemployment-insurance system with imperfect monitoring and

punitive benefits reductions (Abbring, Van den Berg and Van Ours, 2005). If the

researcher does not know or assume that {S(z)}⊥⊥{T (s, z)}, then he has to settle

for Proposition 4’s bounds. If we replace the directly estimable expressions for

the bounds in Proposition 4 by the corresponding model expressions based on

outcome, but also differences in unobservable characteristics between the subpopulations

{S(0) ≥ t, T (∞, 0) ≥ t, Z = 0} and {S(1) ≥ t, T (∞, 1) ≥ t, Z = 1}.

These differences in particular exist because z 7→ S(z) is non-trivial by Assumption 6, so
that S(0) ≥ t and S(1) ≥ t in general select different subpopulations. These selection effects
disappear as t ↓ 0, but in the non-parametric case this cannot be exploited.

22Peterson’s bounds on, for example, FT (∞,z) follow from FT (∞,z) = QT ;Z=z+Q∗
T ;Z=z, where

Q∗T ;Z=z(t) := Pr(T > t, S < T |Z = z). We know QT ;Z=z. Non-tight bounds on FT (∞,z) arise
because we only know that Q0

S;Z=z ≤ Q∗T ;Z=z ≤ Q0
S;Z=z(∞). Now, suppose that we do not only

know Q0
S;Z=z and QT ;Z=z, but also FS(z). This is equivalent to also knowing the marginal sub-

survivor-functions Q∗S;Z=z of S on {S > T}. Given Q0
S;Z=z, Q∗S;Z=z is clearly not informative

on the sub-survivor-functions Q∗T ;Z=z of T on {S < T}. Therefore, this additional information
cannot be used to tighten the bounds on FT (∞,z).
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the exponential distributions then we obtain

exp [−(µz + νz)t] ≤ F T (∞,z)(t) ≤ µz

µz + νz

exp [−(µz + νz)t] +
νz

µz + νz

and

exp [−(µz + νz)t] ≤ F S(z)(t) ≤ νz

µz + νz

exp [−(µz + νz)t] +
µz

µz + νz

,

for z = 0, 1.

Now let µ0 = ν0 = 1 and µ1 = ν1 = 2. (Agents in the group with the higher

rate of benefits reduction respond to this by increasing their unemployment exit

rate.) The bounds then reduce to

l0(t) := exp (−2t) ≤ F T (∞,0)(t), F S(0)(t) ≤ 1

2
exp (−2t) +

1

2
=: u0(t) and

l1(t) := exp (−4t) ≤ F T (∞,1)(t), F S(1)(t) ≤ 1

2
exp (−4t) +

1

2
=: u1(t).

Now note that l0(0) = u0(0) = l1(0) = u1(0) = 1 and, more importantly, that

l1 < l0 < u1 < u0 on (0,∞). Thus, even though the ex ante causal effect of z on

the outcome is substantial, the bounds for FT (∞,z) overlap for z = 0, 1, meaning

that the ex ante causal effect of z on the outcome cannot be signed. The same

applies to the ex ante causal effect of z on the treatment.

Clearly, without identification of the two ex ante causal effects of z on the

survivor functions F T (∞,z) and F S(z), the scope for non-parametric identification

of the ex post causal effect of treatment enrollment on outcomes is very limited.

However, the exclusion restriction embedded in Assumption 6(iii) does allow for

an assessment of unobserved heterogeneity in the hazard rate θT (s,z) of T (s, z)

after treatment enrollment. To see this, note that absence of a direct causal effect

of z on θT (s,z)(t|V ) at t > s implies that any observed relation between z and

the hazard rate θT (t|S = s, Z = z) must be due to a selection effect of z on the

distribution of V among survivors at s. Such a selection effect can arise for two

reasons. First, z may have an ex ante causal effect on the individual hazard rate

θT (s,z)(t|V ) before treatment, and this affects the distribution of [V | T ≥ t, S =

s, Z = z]. Second, z 7→ S(z) is non-trivial by Assumption 6, and {S(z)} and

{T (s, z)} may be dependent through joint dependence on V , in which case the

distribution of [V | T ≥ t, S = s, Z = z] again varies with z.

This can be used for a non-parametric test on unobserved heterogeneity in

the outcome hazard rate after treatment enrollment.23 If the null hypothesis of

no unobserved heterogeneity is accepted then one may proceed by estimating

23The underlying idea can be related to tests for unobserved heterogeneity and dynamic
selection effects in the event-history literature. First, consider the test by Van den Berg and
Van Ours (1997) on (dynamic selection effects due to) unobserved heterogeneity in duration
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models that impose this hypothesis. Recall that the test requires that z has a

causal effect on S, which is a non-testable assumption in this case.

4.5 Semi-parametric approaches

4.5.1 Bounds for the two ex ante causal effects

Bond and Shaw (2003) provide bounds on functions that are informative on

covariate effects on marginal distributions in a general class of competing risks

models. In this subsection we apply these to sign the average additive ex ante

causal effects of z on the survival probabilities of T (∞, z) and S(z).

With the non-parametric bivariate competing risks model for {T (∞, z), S(z)}
as a starting point, we make the assumption that the dependence structure is

invariant to the values of the covariates (i.e., in our case, z), so that the covariates

only affect the marginal distributions. Specifically,

Assumption 7 (Dependency-invariance to z). There exist increasing func-

tions ξS and ξT such that (S(0), T (∞, 0)) equals (ξS(S(1)), ξT (T (∞, 1))) in dis-

tribution.24

This implies that the copula (and therefore Kendall’s τ) associated with the joint

distribution is invariant to the value of z. The copula describes the dependence

structure while being distribution-free with respect to the marginals.

Assumption 7 is satisfied if the two hazard rates associated with T (∞, z)|V
and S(z)|V are multiplicative in V (this is the bivariate extension of Assumption

2 in Section 2). To see this, note first that we may allow V to be two-dimensional,

which leads to

Pr (S(z) > s, T (∞, z) > t) = L (
ΛS(z)(s), ΛT (∞,z)(t)

)
(z = 0, 1),

with L the bivariate Laplace transform of the mixing distribution. This satisfies

Assumption 7 with ξS = Λ−1
S(0) ◦ ΛS(1) and ξT = Λ−1

T (∞,0) ◦ ΛT (∞,1). Assumption

7 is also satisfied by the MPH competing risks model studied by e.g. Abbring

analysis. If the value of an exogenous time-varying explanatory variable in the first period is
related to the observed hazard rate in the second period then this indicates such selection effects.
Second, in Abbring, Chiappori and Pinquet (2003)’s model of car-insurance claims under moral
hazard and experience rating, individual claim propensities are only causally affected by the
past occurrence of claims, but not their timing. Any variation of observed claim intensities with
the timing of past claims conditional on their occurrence should therefore be due to selection
effects.

24Bond and Shaw (2003) call t 7→ ((t, ξS), (t, ξT )) a “covariate-time transformation”. For both
risks, t 7→ t is the (normalized) time-transformation for the first covariate value (z = 0).
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and Van den Berg (2003a) and the more general model studied by Heckman and

Honoré (1989).

Assumption 7 is insufficient for point identification. Assuming in addition that

the dependence works by way of multiplicative V in the hazard rates does not

help here. However, Bond and Shaw (2003) provide bounds for (ξS, ξT ). Those

are all we need to know to rank FT (∞,z) and FS(z) over z in terms of first-order

stochastic dominance. For example, if ξS(t) = t for all t then F S(0) = F S(1). If

ξS(t) > t for all t, on the other hand, then F S(1) < F S(0), etcetera.

Define QS;Z=z(t) := Pr(S ≤ t, T > S|Z = z), QT ;Z=z(t) := Pr(T ≤ t, T <

S|Z = z), and HZ=z(t) := Pr(S ≤ t, T ≤ t|Z = z), for t ≥ 0. These are all

observable. Bond and Shaw (2003)’s results immediately imply

Proposition 5. Suppose that either ξS ≥ ξT or ξS ≤ ξT . Then, either

H−1
Z=0 ◦HZ=1 ≤ ξS ≤ Q

−1

S;Z=0 ◦QS;Z=1 and

Q
−1

T ;Z=0 ◦QT ;Z=1 ≤ ξT ≤ H−1
Z=0 ◦HZ=1

or

H−1
Z=0 ◦HZ=1 ≥ ξS ≥ Q

−1

S;Z=0 ◦QS;Z=1 and

Q
−1

T ;Z=0 ◦QT ;Z=1 ≥ ξT ≥ H−1
Z=0 ◦HZ=1.

These bounds are tight if ξS = ξT .

Proof. See Appendix 2.

Note that either the lower bound on ξS coincides with the upper bound on ξT or

the upper bound on ξS equals the lower bound on ξT . As a consequence, either

the potential-treatment distributions or the potential-outcome distributions (or

both) can be ranked.

4.5.2 Point-identification of ex ante and ex post causal effects

We start by imposing a semi-parametric structure on the embedded competing

risks model for T (∞, z) and S(z), in order to achieve point identification of the

two ex ante causal effects. In line with the semi-parametric models in the previous

sections, which were based on the MPH framework, we impose an MPH structure,

that is,

θT (∞,z)(t|X, V ) = λ1(t) V1 eβ1X+η1z

(16)

θS(z)(t|X, V ) = λ2(t) V2 eβ2X+η2z,
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where V := (V1, V2). The ex ante causal effect of z on the outcome T is represented

by η1. The ex ante exclusion restriction would impose η1 = 0. Note that in this

MPH model agents face a positive treatment enrollment rate in both ITT states

(z = 0 and z = 1). Recall from Subsection 4.2 that this implies that neither θT (∞,0)

nor θT (∞,1) is likely to equal the ex ante outcome hazard under a hypothetical

rule that never assigns treatment. Outcomes under such a rule are not specified

in the model and consequently are not identified. The parameter η2 captures the

ex ante causal effect of z on S.

As shown by Abbring and Van den Berg (2003a), this model is identified

under some additional conditions, notably (i) V⊥⊥X and (ii) X contains at least

two continuous regressors. In particular, the individual ex ante causal effects can

be identified from the observable sub-survival functions near 0.

We now turn to point identification of the ex post causal effect of treatment

enrollment at s on the outcome T . Consider the following model framework,

θT (s,z)(t|X, V ) = λ1(t) V1 γI(t>s) eβ1X+η1z I(t≤s)

(17)

θS(z)(t|X, V ) = λ2(t) V2 eβ2X+η2z,

This is the Timing-of-Events model (Abbring and Van den Berg, 2003b) aug-

mented with an ITT or IV variable Z. We make the same underlying assumptions

on the model determinants as in Abbring and Van den Berg (2003b). The model

embeds the competing risks model (16). If Z is degenerate at say Z = 0 then

the model reduces to the Timing-of-Events model, and the ex ante causal effects

η1 and η2 are not identified. Note that the model satisfies Assumption 6(iii) (ex

post exclusion) since θT (s,z)(t|X,V ) does not depend on z for t > s. We relax this

below.

The ex post causal effect in this augmented Timing-of-Events model is repre-

sented by

θT (s,z)(t|X, V )

θT (∞,z)(t|X,V )
= γe−η1z

for t > s. Unlike the ex post causal effect in the Timing-of-Events model, this

effect may depend on the ITT status z. Clearly, if Z is dispersed and γ is iden-

tified then the augmented model framework allows for richer inference on the

ex post causal effect than the Timing-of-Events model. The relevance of this

richer specification can be illustrated with the unemployment-insurance example

of Subsection 4.4. In this example, z reflects the strictness of monitoring search

effort, and s is the time at which benefits are (punitively) reduced. For simplicity,
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ignore the punitive nature of benefits reductions and suppose that z = 1 simply

corresponds to a higher rate of benefits reductions than z = 0. Then, an agent

assigned to z = 1 will search harder ex ante, before a benefits reduction, and

increase his search effort less when benefits are actually reduced (1 ≤ γe−η1 ≤ γ).

In fact, the identification proofs of Abbring and Van den Berg (2003b) can be

straightforwardly adapted to prove identification of the full model (17). In partic-

ular, we may simply treat Z as another regressor in the embedded competing-risks

model, so

Proposition 6. The Timing-of-Events model augmented by a binary treatment

assignment indicator Z (see equations (17)) is identified without ex ante exclusion

restrictions.

Some comments are in order. First, the variation in Z enables us to identify

substantially more than Abbring and Van den Berg (2003b). In particular, we

can now identify the ex ante effect on the outcome hazard rate, and we can now

identify different ex post effects for those assigned to different z.

Second, we may include in (17) an additive term η3z I(t > s) to the log

outcome hazard log θT (s,z)(t|X, V ) for t > s, capturing a direct (ex post causal

ITT) effect of z on the outcome hazard. This does not lead to loss of identification,

provided that both z = 0 and z = 1 lead to a positive probability of being

treated before the outcome is realized. Incidentally, this also demonstrates that

Assumption 6(iii) is not required to achieve identification of the model with

η3 = 0.25,26

Third, the above model is also over-identified in other directions. Following

Abbring and Van den Berg (2003b), γ in (17) can be allowed to depend on t and

X and on either s or a multiplicative unobserved heterogeneity term that may

itself depend on V1, V2. This incorporates heterogeneous treatment effects. The

data variation in the moment of treatment is pivotal here.

In addition, if for any given z the corresponding Timing-of-Events model is

identified then we may allow for interactions between z on the one hand and the

25Recall that if we do not impose Assumption 6(iii) then the test on unobserved heterogeneity
from Subsection 4.4 can not be applied. One may of course still test for η3 = 0 in models (17)
that incorporate unobserved heterogeneity.

26Because X affects S, one may claim that the effect of X on the outcome hazard rate before
s incorporates an ex ante effect. In that case, it seems restrictive to impose that the effect of X

on the outcome hazard after s is the same as before s. A similar case can be made for λ1. The
identification results in Abbring and Van den Berg (2003b) can be applied to prove that these
extensions do not lead to loss of identification. Also note that the interpretation of η3 affects the
interpretation of γ. For example, one may interpret η3 as an indicator of effect heterogeneity.
We do not pursue this further here.
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covariate effects and duration dependence terms in (17) on the other. Note that

this automatically leads to violation of Assumption 6(iii), although this can be

remedied by imposing absence of such interactions if t > s. Finally, the presence

of exogenous time-varying explanatory variables generally allows for identification

of less restrictive duration models (see Honoré, 1991, and Heckman and Taber,

1994).

Does it help to impose restrictions on the modeling of non-compliance? Con-

sider the interpretation of Z as a randomized ITT. In the above model, non-

compliance is incorporated in the specification of {S(z)}. However, in practical

applications, the experimental design may lead to types of non-compliance that

justify restrictions on {S(z)}. For example, like in Subsection 3.3, non-compliance

may be asymmetric in the sense that agents always comply if assigned to the con-

trol group (z = 0), i.e. Pr(S(0) = ∞) = 1. As another example, S(z) may have a

mass point at ∞ with Pr(S(z) = ∞) dependent on z and with [S(z)|S(z) < ∞]

having a distribution that does not depend on z. Unfortunately, such restrictions

do not enable identification under much weaker conditions than above, because

they do not substantially facilitate the identification of the embedded dependent

competing risks model for T (∞, z) and S(z).

We conclude this section by noting that even though ITT is randomly as-

signed, not much can be learned about either (i) ex ante ITT effects or (ii) ex

post treatment effects, without imposing semi-parametric structure. This means

that results based on actual social (or, for that sake, laboratory) experiments

depend on the chosen semi-parametric structure.

5 Conclusion

Social experiments in which the outcome of interest is a duration variable are

more difficult to analyze than social experiments with time-independent out-

comes. First, the outcome may be censored. Second, the randomization occurs at

time zero but the composition of survivors changes over time in different ways

in the treatment and control groups, and this complicates inference of average

effects on the individual hazard rate. The paper studies the three most important

benchmark cases, distinguished by whether treatment is immediate or not and

whether compliance is perfect or not.

In the intermediate case of imperfect compliance and immediate treatment,

one can make non-parametric inference on local average treatment effects on

survival probabilities, and we derive the relevant asymptotic results. To infer

average effects on hazard rates, one has to resort to semi-parametric models. As
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a by-product, the paper establishes identification of MPH models with a binary

endogenous regressor and a binary instrumental variable. In the most complicated

case (imperfect compliance, later treatment), non-parametric analyses are not

informative on (ex ante) effects on survival before actual treatment, nor on ex

post effects. Non-parametric bounds are so wide that ex ante effects typically

can not be signed. Again, semi-parametric models provide identification, and the

paper establishes identification of Timing-of-Events models augmented with ex

ante effects.

The results of this paper lead to the conclusions that (1) while it is possible to

make non-parametric inferences on additive effects on survival probabilities, the

degree to which these are informative decreases with the complexity of the case at

hand, and (2) to study the more interesting average effects on individual hazard

rates and conditional exit probabilities one needs a semi-parametric structure,

despite the randomization at time zero. In sum, despite the randomization not

much can be learned without a semi-parametric structure.

One approach to these problems is to use more complex dynamic experimen-

tal designs than the simple design considered in this paper. However, the main

arguments and results carry over to such designs in which randomization takes

place repeatedly at discrete (possibly random) times. If actual treatment enroll-

ment takes place at the same times, an extension of our first two cases applies. If

agents enroll in treatment more frequently, say continuously, then an extension

of our third case applies. With continuous outcomes and treatment enrollment,

repeated randomization can at best reduce the inference problems, e.g. by nar-

rowing bounds on some parameters of interests, but not solve these problems

altogether. A topic for further research is to design and explore the use of exper-

iments in which individuals are on purpose misinformed about the regime they

are assigned to.

The results have some implications for the design of social experiments and

laboratory experiments. First, experimental inference requires semi-parametric

structure, so results depend on the chosen semi-parametric structure. Second, it

is useful to collect as many explanatory variables on the subjects as possible,

for two reasons: it serves to reduce the magnitude of unobserved heterogeneity,

and it facilitates the semi-parametric inference. Third, it is advisable to minimize

imperfect compliance.
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Appendix

Appendix 1 Proofs of statements in Section 3

Proof of Proposition 1. First write

√
n

(
F̂ 0;Q − F 0;Q

)
=

1− p̂(0)
p̂(1)− p̂(0)

√
n

(
F̂T ;S=0,Z=0 − FT ;S=0,Z=0

)

− 1− p̂(1)
p̂(1)− p̂(0)

√
n

(
F̂T ;S=0,Z=1 − FT ;S=0,Z=1

)

+ FT ;S=0,Z=0

√
n

(
1− p̂(0)

p̂(1)− p̂(0)
− 1− p(0)

p(1)− p(0)

)

− FT ;S=0,Z=1

√
n

(
1− p̂(1)

p̂(1)− p̂(0)
− 1− p(1)

p(1)− p(0)

)
and

√
n

(
F̂ 1;Q − F 1;Q

)
=

p̂(1)
p̂(1)− p̂(0)

√
n

(
F̂T ;S=1,Z=1 − FT ;S=1,Z=1

)

− p̂(0)
p̂(1)− p̂(0)

√
n

(
F̂T ;S=1,Z=0 − FT ;S=1,Z=0

)

+ FT ;S=1,Z=1

√
n

(
p̂(1)

p̂(1)− p̂(0)
− p(1)

p(1)− p(0)

)

− FT ;S=1,Z=0

√
n

(
p̂(0)

p̂(1)− p̂(0)
− p(0)

p(1)− p(0)

)
.

Next, note that
√

n
(
F̂T ;S=0,Z=z − FT ;S=0,Z=z

)
(z = 0, 1),

√
n

(
F̂T ;S=1,Z=z − FT ;S=1,Z=z

)

(z = 0, 1), and
√

n (p̂(z)− p(z)) (z = 0, 1) converge jointly in distribution to −FT ;S=0,Z=zG0z/√
(1− p(z)) qz (z = 0, 1), −FT ;S=1,Z=zG1z/

√
p(z)qz (z = 0, 1), and Nz (z = 0, 1), with N1,

N0, G11, G01, G10, and G00 mutually independent with distributions as given in Proposition 1.
Furthermore, p̂(z) D−→ p(z) by the law of large numbers. The claimed result follows from con-
secutively applying Slutsky’s lemma, the delta method, and the continuous-mapping theorem
(see e.g. Van der Vaart and Wellner, 1996).

Derivation of equation (11). Note that the right-hand side of (11) equals

lim
t↓0

p(1)fT ;S=1,Z=1(t)− p(0)fT ;S=1,Z=0(t)
[1− p(0)] fT ;S=0,Z=0(t)− [1− p(1)] fT ;S=0,Z=1(t)

by De l’Hospital’s rule, and that

fT ;S=s,Z=z(t) = λ(t)γsE
[
V exp

(
−γsV

∫ t

0

λ(τ)dτ

)
|S = s, Z = z, T ≥ t

]
.

Next, we substitute the equation below, which follows from E[V |Z = 1] = E[V |Z = 0],

p(1)E[V |S = 1, Z = 1]−p(0)E[V |S = 1, Z = 0] = [1−p(0)]E[V |S = 0, Z = 0]−[1−p(1)]E[V |S = 0, Z = 1]

Proof of Proposition 3. The X variables only play a role in the identification of λ, φ and FV

from the outcomes for Z = 0. We therefore proceed conditional on X, subsume φ(X) into λ,
and suppress X in the notation.
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Among agents with S = 0, Z = 1 there holds that

FT ;S=0,Z=1(t) = LV ;S=0,Z=1

(∫ t

0

λ(τ)dτ

)
,

with LV ;S=0,Z=1 being the Laplace transform of [V |S = 0, Z = 1]. Its argument
∫ t

0
λ(τ)dτ is

an already identified function. Thus, LV ;S=0,Z=1 is identified, and therefore FV ;S=0,Z=1.
From

FV (v) = FV ;Z=1(v) = p(1)FV ;S=1,Z=1(v) + [1− p(1)]FV ;S=0,Z=1(v)

we can now also identify FV ;S=1,Z=1, since all other quantities in this equation are observed or
identified. Note that this requires p(1) > 0, which is the present formalization of Assumption
3(i).

Among agents with S = 1, Z = 1 there holds that

FT ;S=1,Z=1(t) = LV ;S=1,Z=1

(∫ t

0

λ(τ)γ(τ)dτ

)
,

with LV ;S=1,Z=1 being the Laplace transform of [V |S = 1, Z = 1]. Because this is already
identified, and the left-hand side is observed, we can back out the argument of this Laplace
transform. Since λ is also already (almost everywhere) identified, it follows that γ is (almost
everywhere) identified.

Appendix 2 Proofs of statements in Section 4

Proof of Proposition 5. This proof follows as a special case of Bond and Shaw (2003). First,
suppose that ξS ≥ ξT . Then,

QS;Z=1(t) = Pr (S(1) ≤ t, T (∞, 1) > S(1))

= Pr
(
S(0) ≤ ξS(t), ξ−1

T (T (∞, 0)) > ξ−1
S (S(0))

)

≥ Pr (S(0) ≤ ξS(t), T (∞, 0) > S(0)) = QS;Z=0(ξS(t)),

QT ;Z=1(t) = Pr (T (∞, 1) ≤ t, T (∞, 1) < S(1))

= Pr
(
T (∞, 0) ≤ ξT (t), ξ−1

T (T (∞, 0)) < ξ−1
S (S(0))

)

≤ Pr (T (∞, 0) ≤ ξT (t), T (∞, 0) < S(0)) = QT ;Z=0(ξT (t)),

and

HZ=0(ξT (t)) ≤ HZ=1(t) = Pr(T (∞, 1) ≤ t, S(1) ≤ t)

= Pr (T (∞, 0) ≤ ξT (t), S(0) ≤ ξS(t)) ≤ HZ=0(ξS(t)).

Taken together, these inequalities imply that

H−1
Z=0 ◦HZ=1 ≤ ξS ≤ Q

−1

S;Z=0 ◦QS;Z=1 and

Q
−1

T ;Z=0 ◦QT ;Z=1 ≤ ξT ≤ H−1
Z=0 ◦HZ=1.

Similarly, if ξS ≤ ξT we have that

H−1
Z=0 ◦HZ=1 ≥ ξS ≥ Q

−1

S;Z=0 ◦QS;Z=1 and

Q
−1

T ;Z=0 ◦QT ;Z=1 ≥ ξT ≥ H−1
Z=0 ◦HZ=1.
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