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Abstract 

Bivariate time series data often show strong relationships between the two components, 

while both individual variables can be approximated by random walks in the short run and 

are obviously bounded in the long run. Three model classes are considered for a time-series 

model selection problem: stable vector autoregressions, cointegrated models, and globally 

stable threshold models. It is demonstrated how simulated decision maps help in classifying 

observed time series. The maps process the joint evidence of two test statistics: a canonical 

root and an LR--type specification statistic for threshold effects. 
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1 Introduction
Bivariate time series data often exhibit features like the pair of retail interest
rates in Figure 1. The two component series appear to be closely linked
such that deviations from each other are relatively small. For long time
spans, the variables move up or down the positive diagonal, with very little
memory with respect to this motion. Individually, the series appear to be well
described as random walks or at least as …rst-order integrated processes with
low autocorrelation in the di¤erences. Eventually, however, the upward or
downward motion seemingly hits upon some outer boundary and is reversed,
such that all observations are contained in a bounded interval, in the long
run. The bounds of the interval are assumed as unknown. A good example
for such pairs of time series data are interest rates, such as saving and loan
rates or bill and bond rates, though a deep economic analysis of interest
rates is outside the scope of this paper. We just observe that they attain
their maximum in phases of high in‡ation and that their minimum is usually
strictly positive.

Figure 1: Time-series scatter plot of monthly data on U.S. interest rates on
loans and 7-days deposits, 1963–2002.

This paper is concerned with selecting an appropriate time series model
for data such as the depicted series, if the set of available classes is given by
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the three following ideas. Firstly, the observed reversion to some distribu-
tional center may suggest a linear stable vector autoregression. This model
class has the drawback that the autoregression is unable to re‡ect the random
movement in the short run. Secondly, this movement and the obvious link
between the components may suggest a cointegrated vector autoregression.
Particularly for interest rates of di¤erent maturity, this is an idea that ap-
pears in the econometric literature, see for example Campbell and Shiller
(1987), Hall et al. (1992), or Johansen and Juselius (1992). Enders
and Siklos (2001) even state that “it is generally agreed that interest-rate
series are I(1) variables that should be cointegrated”. The drawback of this
model class is that it is unable to match the long-run boundedness condi-
tion. The model contains a unit root, is non-ergodic and inappropriate from
a longer-run perspective (see Weidmann, 1999, for a similar argument in
economics). Thirdly, one may consider a mixture of the two models, with
cointegration prevailing in a ‘normal’ regime and global mean reversion in
an ‘outer’ regime. This idea yields a threshold cointegration speci…cation,
as it was used by Jumah and Kunst (2002), again for interest rates. The
drawback of the model is that it is nonlinear and that it contains some poorly
identi…ed parameters.

The concept of threshold cointegration is due to Balke and Fomby
(1997, henceforth BF) who assumed a version with cointegration in the outer
regime and an integrated process without cointegration in an inner regime.
Jumah and Kunst (2002) suggested a modi…cation of BF’s model that
is in focus here. Threshold cointegration models were also considered by
Enders and Granger (1998), Enders and Falk (1998), and Enders
and Siklos (2001). These contributions focus on asymmetric adjustment
to disequilibrium and hence they mainly use two-regime or single-threshold
models. Hansen and Seo (2002) analyze hypothesis testing for single-
threshold cointegration models and assume cointegration in both regimes,
though with di¤erent cointegrating vectors. Like BF, Lo and Zivot (2001)
consider the case of three regimes, with cointegration in the lower and upper
regimes and no cointegration in the central regime. While these authors allow
for asymmetric reaction or di¤erent cointegrating structures across regimes,
only symmetric reaction outside the band will be considered here, due to
the limited information that is provided by the few observations in the outer
region of our models. Weidmann (1999) analyzed bivariate time series of
an in‡ation index and an interest rates and suggested a three-regimes model
that is close to the one used here. Whereas his model assumes di¤erent
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cointegration structures across regimes and achieves global stability by the
choice of cointegrating vectors in the outer regimes, we impose local stability
in the outer regimes. Tsay (1998) considered related models in a more
general framework. His example of ‡ow data for two Icelandic rivers may
also conform to the pattern of Figure 1, as the ‡ow is bounded from below
by zero and from above by some natural maximum.

Threshold cointegration models are particular threshold vector autore-
gressions of the SETAR (self-exciting threshold autoregression) type that was
considered by Chan et al. (1985), Tong (1990), Chan (1993), and Chan
and Tsay (1998). Particularly Chan et al. (1985) found that stability in
the outer regimes is su¢cient, though not necessary, for global stability and
geometric ergodicity. It follows that the models suggested here are globally
stable and geometrically ergodic. To the author’s knowledge, the proof of
this important property has not been given explicitly in the literature. It has
been added to this paper as an appendix.

Each of the three outlined model classes deserves attention as a possi-
ble data-generating mechanism. It is therefore interesting to study methods
that allow selecting among the classes on the basis of observed data. The
decision set consists of three elements: the stable vector autoregression, the
linear cointegration model, and the threshold cointegration model. Candi-
dates for discriminatory statistics are likelihood ratios for any two of these
model classes or approximations thereof. The theory of likelihood ratios be-
tween the …rst and the second class has been developed by Johansen (1988),
hence it is convenient to include this ratio in the vector statistic. As another
statistic, we add an approximation to the likelihood ratio of the …rst and the
third class.

Model selection is a …nite-action problem and requires procedures beyond
the dichotomy of the standard Neyman-Pearson framework of null and alter-
native hypotheses. Here, the three competing model classes are modeled as
three alternative Bayes data measures. Each measure can be conditioned on
the values of a vector statistic, such that the probability for each hypothesis
can be evaluated conditional on the given or observed test statistic. The
model or hypothesis with maximum probability is then the suggested choice
for the observed value of the statistic. In the space of null fractiles of the test
statistics, one obtains ‘decision maps’ that show distinct regions of preference
for each model class. This approach builds on a suggestion by Hatanaka
(1996) and was used by Kunst and Reutter (2002), among others. For
the present problem, non-informative prior distributions are elicited on the
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basis of Jordan distributions (see also Kunst, 2002). Discrete uniform priors
over the three hypotheses are allotted implicitly. All calculations of decision
maps have been conducted by means of simulation. Decision maps are par-
ticularly well suited for model selection based on the joint evaluation of two
test statistics.

The remainder of this paper is structured as follows. Section 2 explains
the decision maps approach and details the properties of the entertained
models, including the elicitation of non-informative prior distributions. Sec-
tion 3 reports the simulation results, including the maps and their tentative
interpretation. Section 4 concludes.

2 Designing the simulation

2.1 Decision maps
The decision maps approach can be applied to all parameterized problems
(fµ; µ 2 £) for …nite-dimensional £, where a decision is searched among a
…nite number of rival hypotheses (a partition of £), preferably on the basis
of a bivariate vector statistic. For a univariate statistic, the maps collapse to
intervals on the real line. For vector statistics with a higher dimension, the
visual representation of the maps encounters technical di¢culties.

Assume a decision concerns the indexed set of hypotheses fHj = fµ 2 £jg,
j = 1; : : : ; hg. Usually, model selection utilizes h¡1 likelihood-ratio statistics
S1(j);2(j) or approximations thereof, for ‘null’ hypothesis H1(j) and alternative
H2(j), with 1 · j < h, 1(j) 6= 2(j), and 1(j), 2(j) 2 f1; : : : ; hg. For ease of
notation, let these statistics be collected in an h¡ 1–dimensional vector sta-
tistic S = (S1; : : : ; Sh¡1)0, such that Sj and S1(j)2(j) can be used equivalently.
The classical approach requires nested hypotheses, such that £1(j) ½ ¹£2(j) ,
where bars denote topological closure. If parameter sets can be completely
ordered, one may write £j ½ ¹£j+1 for 1 · j < h. Then, two typical
choices of vector likelihood-ratio statistics are S = (S1;2; S2;3; : : : Sh¡1;h)0 and
S = (S1;h; S2;h; : : : ; Sh¡1;h)0.

Let weighting prior distributions be de…ned on each £j, 1 · j · h by
their densities ¼j. For any pair (1(j); 2(j)), 1 · j < h, the collection of
distributions

¡
fµ ; µ 2 £1(j)

¢
de…nes a null distribution f1(j) of the statistic Sj
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via the implied p.d.f. of this statistic under µ, denoted as fj;µ by
Z

£j1

fj;µ(x)¼j(µ)dµ = f1(j)(x) : (1)

Note that it is equally possible to de…ne a null distribution f2(j) of the very
same statistic. Let F1(j) denote the c.d.f. that corresponds to f1(j). Then,
the preference area for £j is de…ned by

PAj = fz = (z1; : : : ; zh¡1)0 2 (0; 1)h¡1 j j = arg max
j
P (HjjS) ;

zk = F1(k) (Sk)g: (2)

The transformation F1(k) serves to represent the preference areas conveniently
in a simplex instead of some possibly unbounded subspace of Rh¡1. A graph-
ical representation of preference areas is called a decision map.

The meaning of (2) can be highlighted by considering its counterpart in
classical statistics. Suppose h = 3, and two statistics are evaluated. In a
(0; 1)2–diagram for the fractiles of the null distributions for S12 and S23, a
given sample of observations de…nes a point of realized statistics. Classical
statistics would base its decision on rejections in a test sequence, for example
starting from the more general decision on S23. If one-sided tests are used that
reject for the upper tails of their null distributions, the classical preference
area for hypothesis £3 or H3 is the rectangle A3 = (0; 1)£ (0:95; 1). If £2 is
not rejected, test S12 will be applied and separates the preference areas for
£1, A1 = (0; 0:95)£ (0; 0:95), and for £2, A2 = (0:95; 1)£ (0; 0:95). Classical
statistics may face di¢culties in uniquely determining the null distributions,
as fractiles usually vary within each collection. The (0; 1)2–chart split into
the three rectangles constitutes a classical decision map.

Bayesian decision maps are more complex than classical decision maps, as
the boundaries among the preference areas may be general curves. Excepting
few simple decision problems, it is di¢cult to calculate the value of a condi-
tional probability for a given point of the (0; 1)2–square in the fractile space.
It is more manageable to generate, by numerical simulation, a large number
of statistics from the priors with uniform weights across the hypotheses and
to collect the observed statistics in a bivariate grid over the fractile space.
Within each ‘bin’, the maximum of the observed values can be evaluated
easily. In computer time, the simulation can be time-consuming but requires
little more storage than hg2, where h is the number of considered hypotheses
and g is the inverse resolution of the grid, i.e., there are g2 bins.
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In summary, numerical calculation of a decision map consists of the fol-
lowing steps: …rst, a conveniently large number of replications for each of
the two statistics under their respective null distributions are generated; sec-
ond, a grid of fractiles are calculated from the sorted simulated data; third,
both statistics are generated from any of the competing hypotheses, i.e., from
the prior distributions ¼j. These statistics are allotted into the bins as de-
…ned by the fractiles grid. Finally, each bin is marked as ‘belonging’ to that
hypothesis from which it has collected the maximum number of entries.

The simulation of the null fractiles requires a number of replications that
is large enough to ensure a useful precision of the fractiles. For the purpose
of the graphical map, a high precision may not be required. If the map is
intended for usage in later applications, it may also be convenient to replace
the exact null distribution by an approximation, particularly if that approx-
imation is a standard distribution that allows an evaluation in a closed form.
If the null fractiles indeed have to be simulated, a large number of replica-
tions slows down the simulation considerably due to the sorting algorithm
that is applied in order to determine empirical fractiles.

By contrast, a fairly large number of replications can be attained for the
simulation of statistics conditional on the respective hypotheses. Computer
time is limited by the calculation time of the statistics only, which may
take time if some iteration or non-linear estimation is required, while only a
g£ g matrix of bins for each hypothesis is stored during the simulation. For
g = 100, 106 replications yield acceptable maps. For h hypotheses, this gives
106 ¢ h replications. It was found that kernel smoothing of the bin entries
improves the visual impression of the map more than considerably increasing
the number of replications (see Section 2.4).

2.2 The model hypotheses
For model selection, prior distributions with point mass on lower-dimensional
parameter sets are required. Then, ‡at or Gaussian distributions are used on
the higher-dimensional sets, with respect to a convenient parameterization.
The speci…c requirements of decision map simulations rule out improper or
Je¤reys priors, hence the priors do not coincide with the suggestions for unit-
root test priors in the literature (see Bauwens et al., 1999). They are maybe
closest to the reference priors of Berger and Yang (1994), that peak close
to the lower-dimensional sets and are relatively ‡at elsewhere.
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The …rst model H1 is the stable vector autoregression
µ
xt
yt

¶
= ¹ +

pX

j=1

©j
µ
xt¡j
yt¡j

¶
+

µ
"1t
"2t

¶
(3)

with all zeros of the polynomial Q (z) = det(I¡Pp
j=1©jz

j) outside the unit
circle. For p = 1, this condition is equivalent to the condition that all latent
values of © =©1 have modulus less than one. This again is equivalent to
the property that © has a Jordan decomposition

© = TJT¡1 (4)

with non-singular transformation matrix T and ‘small’ Jordan matrix J. If
one restricts attention to real roots and to non-derogatory Jordan forms,
the matrix J is diagonal with both diagonal elements in the interval (¡1; 1).
Therefore, the prior distribution for this model ¼1 can be simply taken from
the family of Jordan distributions and is de…ned by

t12; t21 » N(0; 1)
t11 = t22 = 1
j11; j22 » U(¡1; 1)

"t = ("1t; "2t)
0 » N(0; I2); (5)

where the notation J = (jkl) etc. is used. The concept can be extended
easily to the case p > 1 and to non-zero ¹. For the basic experiments,
p = 1 and ¹ = 0 is retained. Unless otherwise indicated, all draws are
mutually independent. For example, "t and "s are independent for s 6= t in
all experiments, thus assuming strict white noise for error terms.

This prior distribution is not exhaustive on the space of admissible mod-
els. It excludes derogatory Jordan forms and complex roots. Derogatory
Jordan forms are ‘rare’ in the sense that they occupy a lower-dimensional
manifold. Complex roots are covered in an extension that was used for
some experiments. In this variant, 50% of the © matrices were drawn from
© = TJcT¡1 instead of (4), with

Jc =
µ
r cos Á r sinÁ
¡r sin Á r cos Á

¶
: (6)
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It is known from matrix algebra that Jc is obtained from an original diagonal
2 £ 2–matrix J with conjugate complex elements that is transformed by a
complex matrix

Tc =
µ

1 + i 1¡ i
1¡ i 1 + i

¶
(7)

such that Jc = TcJT¡1
c . The prior distribution for Jc is constructed by

drawing r from a U(0; 1) distribution and Á from a U(0; ¼) distribution. The
speci…cation for the priors for T is unchanged. For these experiments with
complex roots, also the prior distribution for H3 was modi…ed accordingly.

In H1, both variables x and y have a …nite expectation and revert to it
geometrically. In geometric terms, the (x; y)–plane has a unique equilibrium
point (¹x; ¹y), which in the case ¹ = 0 collapses to (0; 0).

The second model class H2 consists of cointegrating vector autoregres-
sions, with the cointegrating vector de…ned as the di¤erence of the two vari-
ables (1;¡1). For interest rates of di¤erent maturity, this di¤erence is the
‘yield spread’. For saving and loan rates, it is the mark-up of banks. For
…rst-order vector autoregressions of this type, a prior distribution is obtained
from the error-correction representation

µ
¢xt
¢yt

¶
= ¹ +¦

µ
xt¡1
yt¡1

¶
+

µ
"1t
"2t

¶
(8)

with a matrix ¦ of rank one. The matrix ¦ can be represented in the form

¦ =
µ
®1
®2

¶
(1;¡1) : (9)

The elements ®1 and ®2 are chosen in such a way that explosive modes in
the system are avoided. Again, this condition is more readily imposed on the
Jordan representation ¦ = TJT¡1 with diagonal matrix J =diag (¸; 0) for
¸ 2 (¡2; 0). The speci…cation

T =
µ

1 1
a 1

¶
(10)

with a »N (0; 1) covers a wide variety of admissible matrices ¦. The implied
form of ¦ is

¦ =
1

1¡ a

µ
¸ ¡¸
a¸ ¡a¸

¶
(11)
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and satis…es the general form (9). The class H2 again assumes "jt » N(0; 1)
for the disturbances and, in the basic speci…cation, ¹ = 0. The thus de…ned
prior ¼2 is more di¢cult to generalize to higher p than ¼1.

The third model class H3 are threshold cointegrating models. The basic
form of these models isµ

¢xt
¢yt

¶
= ¹ +

µ
®11
®21

¶
(1;¡1)

µ
xt¡1
yt¡1

¶

+
µ
®12
®22

¶
(1; 0)

µ
xt¡1
yt¡1

¶
Ifjxt¡1 ¡ »j > cg+

µ
"1t
"2t

¶
:(12)

The symbol If:g denotes the indicator function on the set f:g. There are
two cointegrating vectors. The …rst one, (1;¡1), is always active whereas the
second one, (1; 0), is only activated at ‘large’ values of the trigger variable, in
our case xt¡1. An obvious variant is obtained by replacing the second vector
by (0; 1) and the trigger variable by yt¡1. We do not focus on the choice of
the trigger variable, nor do we consider a variation of the trigger lag (‘delay’),
as is common in the literature on threshold time series models.

The model is ergodic and both variables x and y have …nite expectation
(see Appendix). The typical behavior is obtained if the mean implied by the
‘outer’ linear regime

µ
¢xt
¢yt

¶
= ¹ +

µ
®11 ®12
®21 ®22

¶µ
1 ¡1
1 0

¶ µ
xt¡1
yt¡1

¶
+

µ
"1t
"2t

¶
(13)

is contained in the set C = fjxt¡1 ¡ »j< cg. Then, the mean is targeted
for ‘large’ values of x and, because of cointegration, also for large values
of y, that imply large values of x. If the band C is reached, i.e., if x is
‘small’ again, the ‘outer’ mean is no longer interesting. Instead, the dynamic
behavior of the variables resembles cointegrated processes, until the band is
left and the cycle starts anew. Whenever the ‘outer’ mean falls outside the
band, typical trajectories will remain near the ‘outer’ mean for long time
spans. Only atypically large errors will shift them into the band, where
cointegrated behavior takes over. In the …rst case, the intersection of C
and the generic error-correction vector f(x; x) jx 2 Rg can be regarded as an
‘equilibrium’, with the error-correction vector possibly suitably shifted up or
down by restrictions on ¹. In the second case, the implied mean of the outer
regime constitutes a further element of the equilibrium or attractor set.

Hence, the threshold model allows for substantial variation in behavior.
In concordance with the other models, we do not elicit informative priors
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but rather de…ne non-informative reference structures with stochastic para-
meters. To this aim, we adhere to the following basic principle. Suppose we
are given the traditional statistical problem of testing a point value against a
…nite interval. In that case, we would assume weights of 0.5 for each hypoth-
esis and a uniform prior on the interval for the ‘alternative’. Treating the
present problem in an analogous manner, we use a normal distribution for »
and a half-normal distribution for c. These laws are su¢ciently ‡at around
0 to mimic the behavior of the typical uniform and normal laws. However,
as a consequence of these assumptions, many processes show trajectories
with little indication of threshold behavior. In fact, many trajectories closely
resemble those drawn from the …rst model. Occasionally, ‘non-revealing’ tra-
jectories occur if the threshold criterion is never activated in the assumed
sample length. Statistical criteria cannot be expected to classify such cases
correctly. In summary, it may be more di¢cult to discriminate H3 from
H1 [H2 than to discriminate between H1 and H2.

2.3 The discriminatory statistics
In order to discriminate among the three candidate models, two discrimi-
natory statistics were employed. The statistic S2 is designed to be power-
ful in discriminating H1 and H2. In the notation of section 2.1, it would
be labelled S21. S2 is de…ned as the smaller canonical root for (¢xt;¢yt)
and (xt¡1; yt¡1). As Johansen (1995) pointed out, this root makes part of
the likelihood-ratio test for hypotheses that concern the cointegrating rank
of vector autoregressions. If the larger canonical root is zero, (x; y) forms
a bivariate integrated process without a stable mode. If only the smaller
canonical root is zero, (x; y) is a cointegrated process with a stationary lin-
ear combination ¯1x + ¯2y. If also the smaller canonical root is non-zero,
(x; y) is a stationary process with all modes being stable. It was outlined
above why the rank-zero model is not acceptable for interest rates. Hence,
the smaller root is in focus.

The statistic to appear on the x–axis, S1, is designed to discriminate
H1 and H3, hence in the notation of section 2.1 it would be labelled S13,
though it may also be useful in discriminating H2 and H3. S1 is an approx-
imate likelihood-ratio test statistic for the stationary vector autoregression
H1 versus the quite special threshold-cointegrating model with c and » being
determined over a grid of fractiles of x. In detail, c is varied from the halved
interquartile range to the halved distance between the empirical 0.05 and
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0.95 fractiles, with » thus assumed in the center of the range. For assumed
models of type (12), the error sum of squares is minimized over a grid with
step size of 0.05. As T ! 1, this grid should be re…ned. Conditional on
» and c, estimating (12) is an ordinary least-squares problem with a corre-
sponding residual covariance, whose log determinant can be compared to that
of the unrestricted linear autoregression. The residual under the assumption
of model class Hj is denoted by "̂(j)t . For j = 1; 2, this residual is calcu-
lated using the maximum-likelihood estimator. For j = 3, the approximate
maximum likelihood estimator over the outlined grid is used. The residual
covariance matrix is denoted by §̂j = T¡1

PT
t=1 "̂

(j)
t "̂

(j)0
t . With this notation,

the second statistic is de…ned as S1 = ln
³
det §̂3

´
¡ ln

³
det §̂1

´
.

Note that S1 can be positive or negative. S1 < 0 for strong nonlinear
threshold e¤ects, as H3 attains a better …t. S1 > 0 for stable autoregres-
sions. The hypotheses H1 and H3 are not nested. The statistic S1 uses
optimizing the likelihood ratio over a limited range, which is the prevalent
approach for nonlinearity testing. An alternative is the semi-parametric test
by Tsay (1998) that relies on sorting the observations according to the source
of nonlinearity. The fully parametric nature of our decision problem suggests
the use of S1, however.

The null fractiles were generated as follows. For S2, Jordan priors were
used on a cointegrating autoregression—the classical lower-dimensional ‘null’
hypothesis H2. The cointegrating rank was …xed at one, whereas the cointe-
grating vector was not speci…ed in constructing S2. The null fractiles di¤er
from those that were tabulated by Johansen (1995), as those were calcu-
lated under the hypothesis of multivariate random walks. For S1, Jordan
priors on stable vector autoregressions were used, corresponding to the clas-
sical ‘null’ hypothesis H1.

2.4 Smoothing
The technique of discretizing the statistics in bins corresponds to a rectangu-
lar smoothing kernel in density estimation. Similarly, simulated boundaries
of the decision areas often have a rough appearance, even for a high number
of replications. It was found that smoothing the original numbers in the bins
across neighboring bins is not so reliable as smoothing approximate poste-
rior probabilities for the hypotheses. This e¤ect is likely due to the scaling
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of numbers. As a smoothing kernel, an inverse absolute function

w (i; j) = W
1 + ji¡ i0j + jj ¡ j0j

; i0 ¡ nw · i · i0 + nw;

j0 ¡ nw · j · j0 + nw (14)

was used over an (2nw +1)£ (2nw +1) submatrix of the complete matrix of
bins. This submatrix is centered at the location (i0; j0), where the value is
to be estimated. W is set such that the sum of kernel weights

P
w(i; j) over

the submatrix equals one. As a general rule, the number nw was selected
as the minimum number, at which smooth boundary curves were obtained.
The maps show some deliberate variation of nw, in order to demonstrate its
in‡uence on the results.

3 Simulation results: the maps
Figures 2 and 3 show decision maps resulting from 3 £ 106 simulations of
process trajectories of length T = 50 with stochastic parameters according to
the prior distributions that were described in Section 2.2, i.e., 106 simulations
for each model. In Figure 2, no smoothing was performed (nw = 0), while
nw = 3 was set in Figure 3. In color coding, the preference area for the
stationary autoregression H1 is indicated in yellow (light gray), the one for
the cointegrated autoregression H2 in blue (dark gray), and for the threshold
cointegrated model H3 in red (medium gray). One sees that the main e¤ect
of smoothing is a better separation of the preference areas for H1 and H3,
which is mainly achieved by eliminating the scattered preference specks for
the rather inhomogeneous hypothesis H3. Further increases of nw distort the
main boundaries of H1 and H2 and of H1 and H3.

The main features of the decision map are somewhat surprising. The
threshold statistic S1 appears to be valuable in discriminating cointegrated
and stable models, while it was designed to point out threshold structures.
The Johansen-type statistic S2 separates linear cointegrated models from
cases of threshold cointegration, while it was designed to test for potential
cointegration in stable vector autoregressions. A closer look reveals that
H3 models are indeed characterized by small values of S1, as expected, and
hence are most numerous in the left part of the chart. However, H2 models
also incur small values of the statistic S1, as a threshold structure with the
critical value pushed away from the starting values will achieve a better …t
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to data than an unrestricted vector autoregression for cointegrated models.
In other words, linear cointegration results as a limiting case of threshold
cointegration. The posterior probability for H2 is more concentrated than
that for H3, hence H2 dominates the left part of the diagram. Similarly,
rejection of the smaller canonical root being zero may point to a stable linear
model without unit roots but it may also point to a threshold model, which is
stationary and ergodic though non-linear. The joint evidence of two non-zero
canonical roots and a better …t by a restricted structure yields the preference
area for H3 in the north-west.

The map implies a crude empirical guideline. First, use the threshold
statistic S1. For values larger than the 0.3 fractile, a linear stable model is
suggested. For smaller values, use the lesser canonical root S2. If this root
is ‘signi…cant’ at 0.05, consider the threshold model, otherwise opt for linear
cointegration.

Figure 2: Decision map for processes without deterministic part. T = 50,
nw = 0. The blue (dark) area prefers H2, the yellow (light) area prefers H1
and the red (medium) area prefers H3. The same color code is used for the
other …gures.

In Figure 4, the sample size has increased to T = 100, while the other
simulation parameters were retained. The smoothing bandwidth was kept at
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Figure 3: Decision map for processes without deterministic part. T = 50,
nw = 3.

nw = 3. The nominal signi…cance level of the canonical root has decreased
to 0.02, whereas the critical fractile of the threshold statistic decreases to
0.2. These features are in line with expectations regarding large-sample per-
formance. There is now more evidence on a preference for threshold models
in a wedge between the other two models, i.e., for threshold statistics in the
fractile range (0:2; 0:3), particularly if S2 is ‘not too small’. The scattered
appearance of the H3 area re‡ects the varying shape of trajectories of length
T = 100, which generally does not permit a safe classi…cation. Many of these
H3 trajectories are indeed very similar or identical to H1 trajectories from
the stable model class.

Figure 5 shows the map for T = 200. The critical fractile of S1 for
H1 [H3 versus H2 decisions shifts in to 0.12, while the implied signi…cance
level of S2 for H2 versus H3 decisions has fallen to 0.01. The boundary is
‡anked by an unconnected preference area for H3. Metaphorically speaking,
it looks as if the dark H2 curtain were drawn from a window that reveals a
landscape that is populated by H1 as well as H3 models. Due to the large
variation in appearance of H3 trajectories, the typical shape of the decision
map is likely to persist in even much larger samples. As a consequence, the
empirical guideline for sample sizes around T = 200 is to …rst have a look at
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Figure 4: Decision map for processes without deterministic part. T = 100,
nw = 3.

the S1 statistic. If it is situated between the 0.12 and 0.2 fractiles of its null
distribution, H3 or H1 deserve consideration. Additional information from
subject matter theory may help in the decision between these two classes. If
S1 is larger than its 0.2 null fractile, H1 is recommended. If S1 is less than
its 0.12 null fractile, S2 should be consulted. Highly signi…cant values of S2
imply a preference for H3, otherwise H2 is selected.

For the smallest sample size considered, T = 50, Figure 6 shows the map
for a variant with standard normal constants included in the data genera-
tion mechanism. The assumption ¹ = 0 in (3), (6), (10) was replaced by
¹~N(0; I2). The existence of a constant was also assumed in calculating the
statistics S1 and S2. The e¤ects of this intercept are di¤erent for each hy-
pothesis. In H1, only the mean is a¤ected. In H2, a linear trend is added.
In H3, a linear trend is generated within the inner regime. These asymmet-
ric e¤ects tend to simplify decisions between the model classes. Hence, the
vertical boundary of the H2 preference area is to the left of the comparable
one in Figure 3. The critical fractile for this decision is around 0.1. The
preference area for threshold models H3 has grown considerably and shows
a connected pattern in the upper part of the map between the 0.1 and 0.3
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Figure 5: Decision map for processes without deterministic part. T = 200,
nw = 3.

fractiles of S1. The in‡uence of the canonical root S2 on the decision has
disappeared with respect to the H2 class and is rather secondary for the H1
versus H3 decision. As a rough guideline, this map suggests that threshold
cointegration should be considered whenever S1 is between its lower decile
and lower quartile and S2 is not in its lower tail. It is di¢cult to explain the
H3 preference in the north-east corner or the S–shape in the right boundary
of the main H3 preference area. These features may be caused by speci…c
properties of the prior distributions or may be artifacts.

If T = 100, the map of Figure 7 is obtained. The critical fractile of S1 for
the decision H1 [H3 versus H2 has shifted in to about 0.05. By contrast, the
boundary between the preference areas for H1 and H3 has hardly changed.
The e¤ect of the ‘drawn curtain’ is felt again, such that the H3 preference
area stretches down to the x–axis, i.e., to low S2 values. The spot in the
north-east persists.The asymptotic behavior suggested by Figure 7 is corrob-
orated for T = 200 in Figure 8. The critical fractile for the S1 statistic and
the H2 versus H1 [ H3 areas decreases to 0.03, whereas the boundary be-
tween the hypotheses H1 and H3 remains in place. In this setup, hypothesis
H2 corresponds to the only transient model, which simpli…es its detection in
larger samples. Contrary to what may be an intuitive assumption, discrimi-
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Figure 6: Decision map for processes with standard normal constant term.
T = 50, nw = 3.

Figure 7: Decision map for processes with standard normal constant term.
T = 100, nw = 3.
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nating threshold structures from linear autoregressions is not automatically
simpli…ed as T ! 1. Note, however, that the resolution of the grid and the
range for the grid search were kept constant. For asymptotic properties such
as consistency, such parameters should depend on T .

Figure 8: Decision map for processes with standard normal constant term.
T = 200, nw = 3.

These deterministic speci…cations were varied and further variations in
the maps were obtained that are not reported here. It was found that the
two reported variants—without deterministic part and with constant added
to the basic dynamic model—represent important benchmark cases. In the
presence of a strong ‘drift’, the decision according to the nonlinearity statistic
S1 should be regarded as separating H1 [ H3 from H2 and should not be
overruled by any value of S2. By contrast, if drifts can be ruled out a priori,
a clear vertical boundary separates H1 from H2 [ H3. This classi…cation
rule is con…rmed by a further experiment that is reported in Figure 9. The
di¤erence from Figure 6 is thatH2 processes were generated with a constant
that is restricted to a multiple of the loading vector ®. Johansen (1995)
showed that this restriction implies the absence of drift, thereby removing
a part of the asymmetry among the unstable H2 and the stable H1 and H3
in the experiments 6–8. Note that H2 is still the only unstable case, though
the divergence of its probability law as T ! 1 comes at a slower pace.For
restricted constants, the behavior of the decision map for T ! 1 can be
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Figure 9: Decision map for processes with standard normal constant term
and a no-drift restriction for linear cointegration. T = 50, nw = 4.

guessed from the corresponding map for T = 100, which is shown as Figure
10. The preference area for H3 in the northwest corner has shrunk, such
that the implicit signi…cance level of S2 has decreased to 0.01. Scattered H3
preference specks appear across a rather ample area.

The last variant to be reported concerns the complex-roots modi…cation
of the Jordan forms of the priors for H1 and the outer regime of H3, which
was mentioned in Section 2.2. 50% of the coe¢cient matrices for hypotheses
H1 and the outer regime of H3 were drawn from TJcT¡1 de…ned in (6) and
50% from the hitherto usedTJT¡1 with two real roots. ForH2 and the inner
band of H3, one root is …xed at unity, which implies that the other root is
real. These designs remain unchanged. The deterministic constant ¹ was set
at zero, as in the basic experiments shown as Figures 3–5. The di¤erences
between Figure 11 and the corresponding map with an all-real design in Fig-
ure 4 are due to the cycles caused by the conjugate complex roots in H1 and
H3. The main e¤ect appears to be the absence of an extended support area
for H3 around the point (0:2; 0:9). A tentative explanation is as follows. The
complex roots in H1 and H3 increase the average ‘distance’ between the coin-
tegrated modelH2 and the other models. The increased accuracy of decisions
among H1 and H2 reduces the chance of the ‘compromise’ hypothesis H3 to
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Figure 10: Decision map for processes with standard normal constant term
and a no-drift restriction for linear cointegration. T = 100, nw = 4.

rule areas of con‡ict. As in the other maps for models without a constant,
the statistic S1 separates the preference areas for H1 and H2 [ H3, while
the statistic S2 separates H2 and H3, conditional on the …rst-round decision.
Several other experiments were run with minor modi…cations and resulted in
only small di¤erences to the reported cases.

For a …nal note, one may return to the empirical example shown in Figure
1. The generating mechanism of this data set does not correspond exactly to
the design of the maps, for two reasons. Firstly, the sample size is T = 470,
much above the T = 200 that was used as a maximum in this section. Sec-
ondly, the autocorrelation function suggests a slightly longer memory in the
process than a …rst-order autoregression, even a nonlinear one. A tentative
calculation of the null fractiles according to the version with restricted drift
constant and of the statistics S1 and S2 yields the coordinates (0:01; 0:95).
A simulation of the decision map for this large data set yields a leftward
shift of the critical fractile for S1 to around 0.02. Therefore, the evidence
favors the model class H2, i.e., the non-ergodic cointegrated models. If this
class is regarded as unacceptable, it may be removed from the set of avail-
able alternatives. In that case, class H3 is supported. Even with all caveats,
the exemplary data set con…rms the common observation that the actually
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Figure 11: Decision map for processes with zero constant and a 0.5 chance
of conjugate complex roots in stable autoregressive coe¢cient matrices. T =
100, nw = 3.

existing boundaries are not hit frequently enough to provide clear evidence
of their existence.

4 Summary and conclusion
Decision maps can be useful in their own right. Assuming a researcher an-
alyzes a data set and his or her a priori plausible hypotheses correspond to
the set-up of the decision map simulation. If the coordinates of the decision
map are available, two statistics S1 and S2 can quickly be calculated from
the data and can be encoded as null fractiles. Otherwise, a simulation may
be used for performing the encoding. In the map, preference areas for the
con‡icting hypotheses are clearly separated by boundaries.

Decision maps are, however, even more important as summary guidelines
for the empirical researcher. Vertical or almost vertical boundaries indicate
that relying on S1 is almost as valuable for discriminating the hypotheses as
the joint evaluation of S1 and S2. Similarly, horizontal boundaries underscore
the value of S2 relative to S1. In the present experiments, it was found that
the main discriminatory power rests on the threshold statistic S1, not only
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among hypotheses H1 and H2, i.e., stationarity and cointegration. Correct
identi…cation of threshold models turned out to be extremely di¢cult even
for relatively large samples such as T = 200. This di¢culty is corroborated
by tentatively removing H2 from the set of available hypotheses. The im-
plied map shows that H2 and H3 approximately dominate the same area, a
vertical band, with H2 more concentrated there. Formally, the decision maps
suggest decisions for H3 around the boundary between the preference areas
for the other two hypotheses, i.e., for S1 values around the ‘critical values’.
Another preference area for H3 is the more ‘natural’ one in the northwest
corner, where S2 is in the upper tail of its null distribution. The empiri-
cal recommendation by some authors (see Lo and Zivot, 2001) to test for
cointegration in a linear frame …rst and then to check for nonlinearity is not
generally con…rmed. Rather, the maps recommend to test for nonlinearity
…rst. Structures with su¢ciently large values of S1 are classi…ed as stationary
H1 models. As a second step, a cointegration test is conducted. If cointegra-
tion is rejected for a model classi…ed as ‘nonlinear’, a threshold model H3 is
indicated. If cointegration cannot be rejected, a cointegrated linear model
H2 is supported. Traditional simulation with …xed parametric designs could
never unveil this general decision pattern.

The unconnected specks of preference forH3 reveal that threshold processes
generate two species of trajectories: typical trajectories with statistics clus-
tered in the northwest region and atypical trajectories with hardly recog-
nizable threshold e¤ects and statistics almost anywhere in the left part of
thee [0; 1] £ [0; 1]–plane. Most atypical trajectories stem from designs with
small values of c and therefore roughly ‘look like’ trajectories from station-
ary autoregressions. The high risk of incorrectly classifying the generating
processes as H1 may incur a relatively modest risk if one proceeds with the
incorrect model, as the linear model may be a good workhorse for typical
econometric tasks such as prediction. A careful evaluation of this conjecture
is a promising task for future work.

Many researchers may be skeptical about the usage of decision maps, par-
ticularly when the dynamic speci…cation of short-run nuisance for Hj; j =
1; : : : ; 3 is slightly simpler than time-series structures that prevail in the liter-
ature. In order to counter this argument, more sophisticated priors must be
introduced, which unfortunately entails a considerable increase in computer
time. For an example of higher-order autoregressions and elements of lag or-
der search via information criteria within the decision-maps framework, see
Kunst (2002). Such extensions are possible directions for future research.
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Appendix: Geometric ergodicity of threshold
cointegrated models
The recent econometric literature on threshold cointegrated models o¤ers no
formal proof of the stability properties of threshold cointegrated models with
stable outer regimes. For the variant that is used as hypothesis H3 in the
paper, such a proof is provided here.

The ‘threshold cointegration model’ is de…ned as the nonlinear …rst-order
autoregressive structure

µ
¢xt
¢yt

¶
= ®¯0

µ
xt¡1
yt¡1

¶
+

µ
°1
°2

¶
xt¡1I (jxt¡1 ¡ x¤j > ±) + "t :

For simplicity, no deterministic terms are used except for the x center x¤. The
model is equivalent to a stable autoregression for the outer region fjxt¡1 ¡
x¤j > ±g and to a cointegrating partial stable autoregression for the inner
region. We assume the following condition:

A1: The polynomial detfI¡(I+®¯ 0) zg has no roots inside the unit circle
or for jzj = 1 but z 6= 1. The second-order matrix condition for the Granger
representation theorem (see Engle and Granger, 1987, and Johansen,
1995) det®0?¯? 6= 0 applies, where the subscript ? denotes the orthogonal
complement.

A2: The polynomial detfI ¡ (I+ ®¯ 0 + °e01)g has all roots outside the
unit circle.

For the errors "t we assume the regularity condition:
A3: The distribution of the errors "t is absolutely continuous and strictly

positive on R2.
Conditions A1 and A2 guarantee that the model corresponds to the above

concept, with A1 essentially due to Engle and Granger (1987) and to
Johansen (1988) and A2 a standard assumption of time series analysis.
Given A1, note that A2 restricts ° and excludes ¯ = (1; 0)0. A3 implies
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irreducibility and aperiodicity for all threshold autoregressive models. With
these assumptions, the following result by Tong (1990, p. 457) can be
applied:

Theorem 1 (Drift criterion, Tong) Let fZtg be aperiodic and irreducible.
Suppose there exists a small set C, a non-negative measurable function g,
and constants r > 1, ° > 0, and B > 0 such that

Efrg (Zt+1) jZt = zg < g(z)¡ °; z =2 C (15)

and
Efg (Zt+1) jZt = zg < B; z 2 C: (16)

Then, fZtg is geometrically ergodic.

The small set C is meant to contain the ‘center’ of the stationary dis-
tribution, assuming that such a one exists. For a …rst-order autoregression
with stable coe¢cient, the condition (15) holds for any subset of R2 outside
the mean, that is, outside a disk around zero if there are no deterministic
terms. For the de…nition of a small set, see Tong (1990, p. 454). A tech-
nical complication is to prove that compact sets are small. For all nonlinear
autoregressions of the threshold type, this can be shown as in Chan et al.
(1985). This result implies the following.

Theorem 2 Let Zt = (xt; yt)0 for t > 0 obey the model (1) with the condi-
tions A1–A3 and arbitrary …xed starting conditions. Then, fZtg is geomet-
rically ergodic.

Proof: Decompose the space R2 into …ve disjoint areas such that R2 =
[5
j=1Aj. We analyze all of them in turn.

1. A1 = fxt¡1 < x¤ ¡ ±g The process is locally geometric stable and con-
dition (2) is ful…lled for many functions g (z), among them all absolute
values of linear functions in the arguments x and y, provided that the
implied mean of the autoregressionZt = (I+ ®¯0 + °e01)Zt¡1+"t is out-
side A1. The maximum eigenvalue ¸ of the regressor matrix is less than
one in modulus because of A2, hence any value ¸0 in the open interval
(j¸j; 1) can be chosen for 1=r. ° can be set to (¸0 ¡ ¸) minfg(z)jz 2 A1g.
If the implied mean ¹ is inside A1, the proof must be formulated with
respect to A¤1 = fxt¡1 < x¤¤ ¡ ±g for x¤¤ being the x–component of ¹.
The area A¤1 ¡ A1 is appropriately allotted to A3 [A4 [A5.
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2. A2 = fxt¡1 > x¤ + ±g Same as A1. Again, A2 may be replaced by A¤2
if necessary.

3. A3 = fjxt¡1 ¡ x¤j < ± and jyj < Kg with K chosen large enough that
the inner equilibrium line segment ¯ 0 (x; y)0 is fully contained in A3.
Note that this construction assumes that the second element of ¯ is
non-zero, which is excluded by assumption A2, as the system given
in A2 and de…ned by the ‘outer regime’ cannot become stable if both
cointegrating vectors coincide: Clearly, condition (3) is ful…lled. The
implication is una¤ected by the change from A1 to A¤1 and the implied
change of A3 to A¤3. For the fact that A3 is small under the assumptions
A1–A3, we refer to Tong (1990) who states that, for locally linear
models with continuous error distribution, all compact sets are small.

4. A4 = fjxt¡1 ¡ x¤j < ± and y > Kg. De…ning g(x) as the distance
to the equilibrium line segment, for example in the Euclidean metric,
yields condition (2) for this area. This function is also valid for A1
and A2. The implication is una¤ected by the change from Aj to A¤j for
j = 1; : : : ; 5.

5. A5 = fjxt¡1 ¡ x¤j < ± and y < Kg. Same as A4.

A3 is small in the sense of Theorem 1, which completes the proof.¥
Note that Theorem 2 gives no result for the case that the inner regime

does not cointegrate. In fact, then ‘probability mass escapes’, as trajectories
may wander in the direction of the unrestricted variable y. The result by
Chan et al. (1985) does not generalize to the multivariate case immediately,
when the inner area is not completely bounded. A similar observation holds
with respect to the degenerate case where the equilibrium line segment is
vertical in the sense that ¯ = (1; 0)0. Obviously, the proof is una¤ected by
changing the signal variable x to y or even to a linear combination of x and
y that is di¤erent from ¯ 0X.
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