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Abstract 

Assuming a normal-Wishart modelling framework we compare two methods for finding 
outliers in a multivariate regression (MR) system. One method is the add-1-dummy approach 
which needs fewer parameters and a model choice criterion while the other method 
estimates the outlier probability for each observation by a Bernoulli mixing outlier location 
shift model. For the simple add-1-dummy model the Bayes factors and the posterior 
probabilities can be calculated explicitly. In the probabilistic mixing model we show how the 
posterior distribution can be obtained by a Gibbs sampling algorithm. The number of outliers 
is determined using the marginal likelihood criterion. The methods are compared for test 
scores of language examination data of Fuller (1987): The results are similar but differ in 
their strength of their empirical evidence. 
 

Keywords 
Multivariate regression, multivariate one-way ANOVA, outliers, Gibbs sampling, marginal 
likelihoods, sensitivity analysis 

JEL Classifications 
C11, C39 



 

Comments 
The author wants to thank two unknown referees for their comments. The program can be found in the 
program page BASEL under http://www.unibas.ch/iso/basel. 



Contents 

1 Introduction 1 

2 Multivariate regression (MR) analysis with outliers 2 
2.1 Gibbs sampling in the probabilistic MR+outlier model ...................................................... 4 

3 The marginal likelihood for the MR+outlier model 5 
3.1 Model selection with Bayes factors.................................................................................... 7 

4 Example 8 
4.1 The results of the add-1-dummy MR outlier model ........................................................... 9 
4.2 The results of the probabilistic MR outlier model ............................................................. 10 
4.3 Prior probabilities and sensitivity analysis ....................................................................... 12 

5 Summary 14 

References 15 

Appendix: The marginal likelihood of MR models 
                   for informative priors 16 

Figures 18 

 



1 Introduction

Multivariate regression (MR) models are a popular tool in social sciences
(e.g., economics, psychology and sociology) for explaining a multivariate data
matrix by a common set of ”independent” variables or regressors. Such an
approach is particularly useful if one encounters many variables (repeated
measures) which can be related by some common variables. The literature
on multivariate outliers is surprisingly short, and in this paper we demon-
strate a computational Bayesian approach.
In particular we are interested as to whether or not the new technique of
Monte Carlo Markov Chain (MCMC) methods can be used to detect mul-
tivariate outliers and if they can beat simpler models of outlier detections
in a multivariate context. Using the Gibbs sampling approach of Verdinelli
and Wasserman (1991) for multivariate location shift outlier models, we show
how to derive the marginal likelihoods from the Gibbs sampling algorithm.
Marginal likelihoods are used for Bayesian testing and are a widely used tool
for model selection. Therefore, they can be used to determine the number
of outliers in a univariate or multivariate regression (MR) model. The ratio
of marginal likelihoods defines the Bayes factor and for simple models this
ratio can be obtained in closed form. For the more complicated probabilistic
outlier model we will show how the approach of Chib (1995) can be used to
calculate marginal likelihoods from the MCMC simulation output. The prob-
abilistic outlier model is a mixture model for each observation in the sample:
The ordinary regression model is contaminated by an location shift outlier
model, where the mixing probability follows a Bernoulli distribution with
unknown parameter. In the Bernoulli mixing location shift outlier model,
which we will call briefly the ”probabilistic MR outlier model” this approach
is possible, since all the full conditional distributions of the MR model can
be derived in closed form.
Though various approaches to outlier modelling can be found in the litera-
ture (see, e.g., Kitagawa and Akaike (1982), Barnett and Lewis (1984), Pettit
and Smith (1985)), little work has been done for outlier models in multivari-
ate Bayesian analysis. Therefore we will use the simple location shift outlier
model as a basic model for detecting outliers in regression analysis. In uni-
variate comparisons, location shift outlier models have been found superior
to, e.g., multiplicative or variance inflation outliers because they produce
more likely aberrant observations than ”inliers”. In order to constrain the
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computational burden, a simple probabilistic outlier model is needed to im-
plement the Gibbs sampler but also to facilitate the computational burden
for model choice.
The plan of the paper is as follows: In section two we introduce the probabilis-
tic Bayesian regression model with additive outliers. This is a multivariate
extension of the outlier approach of Verdinelli and Wasserman (1991). The
marginal likelihoods needed for model testing and the number of factors are
derived in section three. This also allows to determine the number of regres-
sor variables in a multivariate regression model. In section four we analyze
the language data set of Fuller (1987) and compare inferences for possible
(location shift) outliers.
Section five concludes and in the appendix we have listed an explicit result as
how to obtain the marginal likelihood in an informative multivariate regres-
sion model (based on results of Polasek and Ren (1998)). Thus, the marginal
likelihood of the MR+outlier model (or add-1-dummy variable model) is used
as a simple benchmark for outlier modelling, and additionally, will be com-
pared with the probabilistic MR outlier modelling approach.
In summary, we will show that marginal likelihoods can be used as a pow-
erful criterion for modelling outliers: Because it can be calculated for any
model and any parametrization it can used not only for finding outliers but
also to answer which model is the best and how many outliers are possibly
present. Like information criteria the marginal likelihoods tend to pick the
parsimonious model and allows also to quantify the presence of outliers by
posterior probabilities.

2 Multivariate regression (MR) analysis with

outliers

Consider the MR analysis model, i.e. n observations consisting of a row
response vector yi = (y1, ..., yp) : 1 × p of length p where each response
variable is explained by a K-dimensional regressor xi = (x1, ..., xK) : 1 × K
and we assume a multivariate normal distribution for the error term

yi ∼ Np[xiB,Ψ], i = 1, . . . , n,

where B is a K×p matrix of regression coefficients and Ψ is a p×p symmet-
ric covariance matrix of the observations. We now explain how this model
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is extended to the ”probabilistic MR outlier model”, i.e. more precisely the
Bernoulli mixing location shift outlier model. The first model of this sort was
the univariate location shift outlier model that was analyzed by the Gibbs
sampler in Verdinelli and Wasserman (1991). The multivariate location shift
outlier model is formulated with the n Bernoulli distributed indicator vari-
ables ϑ1, . . . , ϑn

f(yi) = P (ϑi = 0)f(yi | ϑi = 0) + P (ϑi = 1)f(yi | ϑi = 1) (1)

= (1 − ε∗) Np [yi | xiB,Ψ] + ε∗ Np [yi | ai + xiB,Ψ] (2)

where yi is the i-th row of the n × p observation matrix Y with Y′ =
(y′

1, . . . ,y
′
n), and ai : 1×p is the i-th row of the n×p location shift matrix A

with A′ = (a′
1, . . . , a

′
n). Dϑ = diag(ϑ1, . . . , ϑn) is a n×n indicator matrix for

the (multivariate) outliers. We assume that each indicator is distributed as
a Bernoulli random variable with parameter ε∗, the prior (mixing or ”prob-
ability”) parameter that the i-th observation is an outlier.
Assuming independence between the observations, the probabilistic MR model
with outliers is given by

Y ∼ Nn×p[XB + DϑA,Ψ ⊗ In] (3)

and can be written in transposed form as

Y′ ∼ Np×n[B′X′ + A′Dϑ, In ⊗ Ψ] (4)

where the n × K regressor matrix X is defined as X′ = (x′
1, . . . ,x

′
n). The

prior information for the parameter matrices can be compactly formulated
as

B ∼ NK×p[B∗,G∗ ⊗ H∗],

Ψ−1 ∼ Wp[Ψ∗, n∗],

A ∼ Nn×p[A∗,P∗ ⊗ In],

ϑi ∼ Ber[εi∗], i = 1, . . . , n,

where Ber[εi∗] denotes the Bernoulli distribution and εi∗ is the prior proba-
bility parameter that observation i is an outlier.
Furthermore, A∗ : n× p and P∗ : p× p are a-priori known parameter matri-
ces for the location and variances of outliers and εi∗ is the known ”success”
probability of being an outlier, mostly set to a constant value ε∗.
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2.1 Gibbs sampling in the probabilistic MR+outlier
model

The multivariate regression model is given by

Y = X B + E.
(n×p) (n×K) (K×p) (n×p)

Let A be a n× p location shift parameter matrix and Dϑ = diag(ϑ1, . . . , ϑn)
an n × n indicator matrix for multivariate outliers. We can then formulate
the model by assuming a normal distribution

Y ∼ Nn×p[XB + DϑA,Ψ ⊗ In ].

The joint distribution of the data Y and the parameter θ = (B,Ψ,A,Dϑ)
is

p(Y, θ) = Nn×p[Y | XB + DϑA,Ψ ⊗ In ] · NK×p[B|B∗,G∗ ⊗ H∗] ·
·Wp[Ψ

−1 | Ψ∗, n∗] · Nn×p[A | A∗,P∗ ⊗ In] ·
n∑

i=1

Ber(ϑi | εi∗).

We use θc as conditional argument in a full conditional distribution to de-
note the parameter set θ without the current parameter argument. The full
conditional distributions for the Gibbs sampler are
a) For the matrix regression coefficients B:

p(B | Y, θc) = NK×p[B∗∗,C∗∗]

a multivariate normal distribution with the parameters

C−1
∗∗ = G−1

∗ ⊗ H−1
∗ + Ψ−1 ⊗ X′X,

vec B∗∗ = C∗∗[vec (G−1
∗ B∗H−1

∗ + X′(Y − DϑA)Ψ−1)].

b) For the covariance matrix Ψ:

p(Ψ−1 | Y, θc) = Wp[Ψ∗∗, n∗∗ = n∗ + n]

a p-dimensional Wishart distribution with scale parameter

Ψ∗∗ = Ψ∗ + (Y − XB − DϑA)′(Y − XB − DϑA).
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c) For the level shift matrix A:

p(A | Y, θc) = Nn×p[A∗∗,G∗∗]

a multivariate normal distribution with the parameters

G−1
∗∗ = P−1

∗ ⊗ In + Ψ−1 ⊗ D′
ϑDϑ,

vec A∗∗ = G∗∗[vec (A∗P−1
∗ + Dϑ(Y − XB)Ψ−1)].

For each observation the posterior mean can be calculated by breaking up
the system into univariate equations:

G−1
∗∗i = P−1

∗ + ϑi
2Ψ−1, i = 1, . . . , n,

a∗∗i = G∗∗i[P−1
∗ a∗i + ϑiΨ

−1(yi − Bxi)].

d) For the indicator variables ϑi:

Pr(ϑi | Y, θc) = Ber[εi∗∗ =
ci

ci + di

], i = 1, . . . , n,

a Bernoulli distribution with the components obtained via Bayes theorem,
i.e.,

ci = Np[yi | xiB + ai,Ψ] · εi∗,

di = Np[yi | xiB,Ψ] · (1 − εi∗), i = 1, . . . , n,

where xi is the i-th row of X and ai is the i-th row of A.

3 The marginal likelihood for the MR+outlier

model

Using the approach of Chib (1995) we will evaluate the marginal likelihood
at the point

θ̂1 = (θ̂0, Â = 0, D̂ϑ = 0) (5)
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where θ̂0 = (B̂, Ψ̂) is the same point as for the MR without outliers. There-
fore we have the following factorization

p(θ̂ | Y) = p(D̂ϑ | Y) · p(Â | D̂ϑ,Y) · p(θ̂0 | Â, D̂ϑ,Y) (6)

and

p(θ̂) = p(θ̂0)N [A∗, In ⊗ P∗]
n∏

i=1

Ber(ε∗). (7)

1. Use the Gibbs run of J sample points of the ‘MR+outlier’ program to
calculate the ordinate:

p(D̂ϑ | Y) =
∫ n∏

i=1

Ber(εi∗∗)p(θ | Y)dθ

=
1

J

J∑
j=1

n∏
i=1

Ber(ε
(j)
i∗∗) (8)

where the parameter of the i-th posterior density of the Bernoulli distribution
is given by

ε
(j)
i∗∗ =

c
(j)
i

c
(j)
i + d

(j)
i

,

with c
(j)
i = Np[yi | a(j)ϑ

(j)
i + Λjz

(j)
i ],

d
(j)
i = Np[yi | Λ(j)z

(j)
i ].

2. The ordinate for the second component can be obtained without a Gibbs
sampling output by

p(Â | D̂ϑ = 0,Y) = Nn×p[Â | A∗∗, In ⊗ G∗∗] =
n∏

i=1

N [âi|ai∗∗,G∗∗]. (9)

It can be seen from the full conditional distribution for the location shift
parameter A that setting D̂ϑ = 0 the conditional distribution equals the
prior distribution:

G∗∗ = In ⊗ P∗ and vec A∗∗ = vec A∗.
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3. Finally we can obtain the ordinate of the third factor p(θ̂0 | Â, D̂ϑ,Y) in
(6) by the marginal likelihood calculations of a MR model without outliers.
In appendix A it is shown how this marginal likelihood can be calculated
in explicit form. (For further possibilities on model selection by marginal
likelihoods see Polasek and Ren (1998).
Calculations become simpler if we use the marginal likelihoods in logarithmic
form

log p(Y) = log p(Y | θ̂1) + log p(θ̂1) − log p(θ̂ | Y) (10)

where the likelihood part is given by

p(Y | θ̂1) = N [Y | X̂B̂, Ψ̂ ⊗ In], (11)

which is the same value as for the MR without outliers, since D̂ϑ = 0.
Note that formula (8) is a simplification since the components for the location
shifts Â in (10) cancel out.

3.1 Model selection with Bayes factors

Posterior odds are used in Bayesian analysis to choose between two or more
different models for the same data set. The basic formula for choosing be-
tween models M1 and M2 is

posterior odds = Bayes factor · prior odds

or
p(M1|Y)

p(M2|Y)
= B · p(M1)

p(M2)
, (12)

where p(M1|Y) and p(M2|Y) are the posterior probabilities for models M1

and M2, respectively. p(M1) and p(M2) are the prior probabilities for models
M1 and M2, and, in the simplest case, they are set to be equal. Thus, in
these cases the posterior odds are equal to the Bayes factor, which is defined
as the ratio of marginal likelihoods

B =
p(M1|Y)

p(M2|Y)
=

∫
p(Y, θ1)dθ1∫
p(Y, θ2)dθ2

, (13)

where θ1 and θ2 are the parameters for models M1 and M2, respectively. If
B > 1 we choose model M1 and if B < 1 we choose model M2. Therefore
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the model with the largest marginal likelihood will be chosen using simple
Bayes factors. For example: The Bayes factor for testing the factor analysis
model with outliers against no outliers is:

B =
p(Y|outliers)

p(Y|no outliers)
.

4 Example

We use the language data in Fuller (1987, page 154) as an example for iden-
tifying outliers in a multivariate regression analysis. This data consists of
100 observations with eight variables (measured on a scale which is assumed
to be approximately continuous: it is the sum of marks on 2 essays, i.e. the
range is 1-10): the first three variables related to the way the essay is written
(poorly developed - well developed, difficult to understand - easy to under-
stand, illogical-logical), three variables related to the way how the language
used (inappropriate - appropriate, unacceptable - acceptable, irritating - not
irritating), and two variables related to the writing style (careless - careful,
unintelligent - intelligent).
We are interested to see if we can detect outliers in this data set of typical
school subject scores. The multivariate approach seem to be particularly
interesting since the scores of one person of an essay by 8 categories might
be not independent. Knowing if a particular data set (like this 8-dimensional
variable set) contains outliers might be important for any further analysis
(e.g. like factor analysis or cluster analysis).
To make the multivariate model as simple as possible, we have used as inde-
pendent regressor variables only the intercept which reduces the multivariate
regression model to a multivariate one-way ANOVA model.
The prior distribution for the MR model (1) consists of two parts. The first
part is the set of parameters which is identical to the MR model without out-
liers and in the second part we elicit the parameters for the outlier model.
The prior mean is simply set to the mid point of the valuation scale which
is 5. Therefore the prior mean matrix reduces to a vector, i.e. B∗ = 5 ∗ 1k.
Furthermore, we assume that the residual variances of the factor model are
about one tenth of the variances of the observed variables. The value of the
prior information of the Wishart distribution is n∗ = ν∗ = 1, i.e. 1/100 in
terms of the sample size n = 100.
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Ψ∗ = diag(var(y1), . . . , var(yp))/10.

For the prior distribution of the location shifts we have assumed A∗ = 0
and var(ai) = P∗ = diag(var(y)). Convergence of the Gibbs sampler was
achieved quite quickly for the present specification. The convergence was
monitored by diagnostic measures proposed in the CODA package of Best et
al. (1995) written in S-plus which uses the Gelman and Rubin (1992) and
the Raftery and Lewis (1992) statistics. A good introduction to the theory
and practice of MCMC modelling can be found in Gilks et al. (1990). Only
the last 100 simulations of the MCMC sequence were used to calculate the
mean and variances of the posterior distribution.

4.1 The results of the add-1-dummy MR outlier model

Simple outlier detection is possible by adding a dummy variable to the regres-
sor matrix of a regression model. When the 1-location of the dummy varies
over all possible observations we obtain n different model estimates and we
are confronted with a model choice problem. Assuming equal probabilities
for all these Bayesian regression models we can use the marginal likelihoods
as model choice criterion.
Table 1 calculates all the marginal likelihoods with the MR outlier model
based on the results of the appendix A (Polasek and Ren (1998)) which ex-
tends the MR model by a single dummy variable. If the marginal likelihood
is calculated successively for all observations (from 1 to 100) then we obtain
a plot of marginal likelihoods as in Figure 1. The peaks of this plot show the
observation numbers which are potential outliers.
Comparing the log-marginal likelihoods by a ratio leads to a Bayes test.
Bayes factors (BFs) can be judged by the 9 : 19 : 99 rule, assuming that the
more likely model is in the nominator: A BF > 9 is remarkable, BF > 19
is significant and a BF > 99 is highly significant. Transforming this rule
to the log scale, we just have to calculate the differences between marginal
likelihoods:

lnBF = lnf(Y|model1) − lnf(Y|model2).

On the log scale the cut-off points of the 9 : 19 : 99 rule are ln9 = 2.2, ln19 =
2.9 and ln99 = 4.6 or in short: 2, 3 and 5.
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Model obs. log. marginal likelihood
MR no -1317.0456

MR-outlier 8 -1306.8017
11 -1299.397
31 -1305.674
37 -1304.267
80 -1304.086
85 -1307.717

Table 1: The log.-marginal likelihood of the language data in Fuller (1987)
for the MR and 6 MR-outlier models.

For a formal Bayes test we just have to compare the log-marginal likelihoods
in Table 1. The MR model with no outliers (the ”null model”) has a log-
marginal likelihoods of −1317.0. The MR model with observation #8 as an
outlier has a log-marginal likelihood of −1306.8. The difference is 10.2 and
we infer from the log cut-off points that this result is highly significant (given
a prior probability that both models are equally likely). In the same way we
do a pairwise comparison of all the 6 potential outlier locations and compare
them with the MR model without outliers. All outliers locations are highly
significant and the highest significance is found for observation number 11.
(Note that it would be also possible to test all the observations jointly for
being outliers. This requires the extension of the MR model by 6 dummy
variables and is not the main goal of this analysis.)

4.2 The results of the probabilistic MR outlier model

Figure 3 plots all the posterior probabilities that a certain observation is an
outlier from the probabilistic Gibbs sampling model. All the observations
for which the probabilities are greater than .5 can be found in column 2 of
Table 2. It can be seen that the set of observations which is classified as
outliers by the two procedures, is the same. Only the implicit evaluation
what is significant is quite different between these 2 approaches. Since the
Gibbs sampling approach is based on a simultaneous estimation model with
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Obs. Prob. Location Shift (std)
Developed Logical Irritating Intelligent

8 0.9189 0.5157(1.3461) -0.1012(0.8603) -0.0752(1.5642) -0.1201(0.9854)
11 0.5522 -0.2088(0.9334) 0.1395(1.0421) -0.3051(1.0641) 0.1337(0.0998)
31 0.5477 -0.0572(0.9214) -0.2612(1.3041) -0.5623(1.4952) 0.3357(1.0911)
37 0.6258 -0.1265(1.1921) -0.1919(1.2320) -0.2093(1.4961) 0.1751(1.3272)
80 0.5227 -0.0183(1.3321) 0.0591(0.9468) 0.0820(0.7019) 0.0844(0.7635)
85 0.5153 0.6850(1.2030) -0.1029(0.7405) 0.0555(1.1533) -0.1935(1.2412)

Obs. Prob. Location Shift (std)
Understand Appropriate Acceptable Careful

8 0.9189 -0.1109(1.1913) -0.0193(0.7842) -0.1090(1.2711) -0.1177(1.0913)
11 0.5522 0.4183(0.8916) -0.1615(1.4734) 0.0185(1.3451) 0.0725(1.3422)
31 0.5477 0.4740(1.15512) -0.1983(1.0581) 0.2741(1.4472) 0.0166(1.4311)
37 0.6258 -0.0116(1.411) -0.1313(1.0091) 0.1389(0.1296) -0.1983(0.1122)
80 0.5227 -0.1012(1.2631) 0.1119(0.1061) -0.2566(1.0832) 0.0407(0.8509)
85 0.5153 -0.1753(1.3020) 0.0102(1.4132) 0.3242(0.8961) -0.0278(1.1960)

Table 2: The probability of being an outlier and the posterior mean of loca-
tion shifts and standard deviations in MR with outliers model of the language
data in Fuller (1987). Posterior means larger than posterior standard devia-
tions are bold face.

many more parameters, it is not surprising that the ”significant” results are
less occurring.

Table 2 shows the rows of the estimated location shift matrix A (pre-
cisely it is the posterior mean) for which the posterior probability parameter
εi∗∗ (the probability of being an outlier) is larger than 1/2. The prior prob-
ability that observation i is an outlier is assumed to be εi∗ = 0.1. The
(posterior) standard deviations of the location shifts are printed in parenthe-
ses. Those location shifts aij which are larger than the standard deviation
are printed in bold font. It is interesting to note that all five outlier points
have location shifts which are shifted by more than one standard deviation in
exactly one of the eight variables. This shows that the grading process of the
language papers was quite independent with respect to these eight judgment
variables. No outlier point shows remarkable or significant location shifts
in two or more variables jointly. Note that the standard deviations of the
location shifts varies quite a lot across the outliers. There seems to be no
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obvious relation to the posterior probability of being an outlier. The size of
the location shifts are generally not too large and lie in a reasonable range
when compared to the original data.

Figure 2 shows the posterior distribution of the location shifts by parallel
box plots. The posterior means εi∗∗ are plotted in Figure 3 and are inter-
preted as posterior probabilities of being an outlier. This leads us to the
following stochastic outlier analysis: While the posterior means for three ob-
servations are above 60%, two more observations just lie above the 50% line.
Three (or almost four) additional observations are above 40% while the other
observations are certainly not candidates for outlier locations. We conclude
that checking for outliers can be important for multivariate regression when
there are data sets that contain possibly aberrant observations.

4.3 Prior probabilities and sensitivity analysis

Sensitivity analysis is important in all those cases where prior probabilities
might have a large influence on the results. Since the outlier model with the
Gibbs sampler estimates a model with a outlier parameter for each obser-
vation we are faced with a problem with many parameters. Therefore it is
not surprising that the Gibbs-outlier model in Table 2 comes up with smaller
probabilities that a single observation can be an outlier.
Now we can perform the following thought experiment: Given the posterior
probabilities of the Gibbs outlier model and the Bayes factor of the add-1-
dummy MR model, what prior probabilities of the ”null model” could have
generated these results?
The posterior odds W of an outlier model is obtained from the Bayes factor
BF by W = BF ∗ w (in (12) and in logs this relationship is given by

logW = logBF + logw

where w is the prior odds, i.e.

w = P (outlier)/(1 − P (outlier)).

Given the posterior odds W from the Gibbs sampling model and the BF from
the non-Gibbs model, we can calculate the prior odds which is given by

Logw = logWGibbs − logBFnon−Gibbs.
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From the value of the prior odds w we can calculate P (outlier). The results
of this analysis can be seen in the next table.

Hypothetical outlier probabilities
Obs. Gibbs-prob. log. BF prior prob.

8 .9189 10.2439 0.00040291
11 .5522 17.6490* 2.6678E-08
31 .5477 11.3718 1.3944E-05
37 .6258 12.9597 3.9355E-06
80 .5227 12.9597 2.5771E-06
85 .5153 9.3284 9.4466E-05

Table 3: Sensitivity analysis with respect to prior probabilities
(The asterisk marks the observation with the highest BF)

The first column shows the observation number of the outlier in the data
set (out of 100 observations). The second column reports the posterior prob-
abilities to be an outlier from the Gibbs sampling model. The third column
shows the Bayes factor of being an outlier based on the non-Gibbs model
and the final column calculates the hypothetical prior probabilities for the
MR-outlier model to match the probabilities of the Gibbs model.
Note that if the prior odds w are 1, i.e. it is equally likely that an outlier
exists at a certain location or not, then the large BF produces a high prob-
ability that the outlier model is correct. If we assign a smaller probability
that just this observation could be an outlier (i.e. under equal possibilities
a 1/100 chance) then the influence of the BF is weakened. How low this
probability has to become to get the Gibbs sampler probability is shown in
the last column of Table 3.
As we see from the last column, the prior probabilities that an outlier model
exists would have to be really small (or the probability of the null model
really large) to obtain the posterior probability results of the Gibbs sampler.
Thus we conclude that the prior probabilities are not influencing the empiri-
cal evidence for the non-Gibbs MR model: Any reasonable probability of the
existence of an outlier model would have given overwhelming evidence that
there exist an outlier on this location.
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5 Summary

The paper has compared two approaches for outlier detection in a Bayesian
multivariate regression model which we have called the probabilistic MR+outlier
model and the add-1-dummy MR model. Under the usual assumption of a
normal-Wishart distribution and a location-shift outlier model with Bernoulli
distributed indicator variables, all the full conditional distributions of the
Gibbs sampler can be derived in closed form. A simpler model for outlier
detection is the estimation of a dummy variable in the MR model for all pos-
sible observations, i.e. the add-1-dummy method. While the Gibbs model
estimates the probability of seeing an outlier on the j-th position, the add-1-
dummy MR model gives a hypothesis probability in a series of model choice.
Both methods have been demonstrated with the Fuller (1987) language data
set and the presence of outliers is explored probabilistically. The marginal
likelihood can be computed in both approaches and are used for Bayes tests.
Both methods yield the same set of outliers but differ in the strength of their
empirical evidence. The results show that the model with fewer parameter
produces higher posterior probabilities for the presence of outliers. Further
research in this area will show if MR models can be analyzed unsuccessfully
or more efficiently by different MCMC strategies (which allows faster model
comparisons) or different outliers modelling approaches, like different distri-
butional assumptions.
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A Appendix: The marginal likelihood of MR

models for informative priors

Theorem A.1 The marginal likelihood for informative priors
Consider the regression model for the n × p matrix Y

Y = XB + U, (14)

or

Y ∼ N [XB, Σ ⊗ V∗],

with the regressor matrix X : (n×K), coefficient matrix B : (K ×Mp) and
V∗ is a known covariance matrix (e.g. V∗ = In). Assuming a normal-Wishart
prior

f(B, Σ−1) = NW [B∗, H∗, Σ∗, n∗],

then the marginal likelihood is

f(Y ) = (2π)−
np
2

cn∗∗

cn∗

|Σ∗|n∗
2

|Σ∗∗|n∗∗
2

|H∗∗| p
2

|H∗| p
2

(15)

with
Σ∗∗ = Σ∗ + Û ′Û + ∆, Û = Y − XB̂,

H−1
∗∗ = X ′X + H−1

∗ ,

∆ = (B̂ − B∗)′[(X ′X)−1 + H∗]−1(B̂ − B∗),

B̂ = (X ′X)−1X ′Y,

n∗∗ = n∗ + n,

and the constant cn∗ is given by

cn∗ = 2
pn∗
2 π

p(p−1)
4

p∏
j=1

Γ[
n∗ + 1 − j

2
]. (16)
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The constant cn∗∗ is given in similar way, where n∗∗ replaces n∗. Note that
the marginal likelihood does not depend on the number of regressors K.
Proof: The likelihood function is

f(Y |B, Σ−1) = N [Y |XB, Σ ⊗ In]

= (2π)−
np
2 |Σ ⊗ In|−1/2 exp{−1

2
trΣ−1(Y − XB)′(Y − XB)}.

The prior distribution is

f(B, Σ−1) = N [B|B∗, Σ ⊗ H∗] Γ[Σ−1|Σ∗, n∗]

= (2π)−
Kp
2 |Σ ⊗ H∗|− 1

2 exp{−1

2
trΣ−1(B − B∗)′H−1

∗ (B − B∗)} ·

·c−1
n∗ · |Σ∗|n∗

2 |Σ−1|n∗−p−1
2 exp{−1

2
trΣ−1Σ∗}

with cn∗ as in (16), being the integration constant of the Wishart distribution.
The joint density of Y and (B,Σ−1) in the normal-Wishart model is

f(Y,B, Σ−1) = (2π)−
p
2
(n+K)|Σ|−n+K

2 |H∗|−
p
2 ·

·c−1
n∗ |Σ∗|n∗

2 |Σ|−n∗−p−1
2 exp{−1

2
trΣ−1Σ∗∗}

· exp{−1

2
trΣ−1(B − B∗∗)′H−1

∗∗ (B − B∗∗)}.

Integrating out B and Σ−1 gives the result. (q.e.d.)
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Figure 1: The log. marginal likelihood plot of the language data in Fuller
(1987) for the MR outlier model of Polasek and Ren (1998) with fractional
prior.
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Figure 2: The plot of the shift parameter for potential outliers of the language
data in Fuller (1987) in the MR-outlier model.
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Figure 3: The probability of being an outlier for the language data in Fuller
(1987) for the MR-outlier model.
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