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1 Introduction

Genetic Algorithms (GA) and Simulated Annealing (SA) are powerful stochastic
global search and optimization methods. They are particularly powerful when
applied to problems for which little prior information about the general topology
is available. Both methods converge asymptotically probabilistically to a global
optimum.

Genetic Algorithms thereby mimic an evolutionary biological process. Gener-
ations of solutions are evaluated according to a fitness value and only those can-
didates with high fitness values are used to create further solutions via crossover
and mutation procedures.

Simulated Annealing simulates the behavior of a system of particles which is
gradually cooling down until a strong crystalline structure is reached. In terms of
computational simulation, a global minimum would correspond to such a “cold”
(steady) state. Both methods are valid and efficient methods in numeric program-
ming and have been employed in various fields due to their strong convergence
properties.1

Step function maximization is a challenge for any computer package provid-
ing numeric optimization tools. The inherent discontinuities and computational
restrictions in approximating stepwise functions cause many standard packages
to either break off in its calculations, to hit time limits, to simply miscalculate
the solution or to get stuck in local optima.

This paper demonstrates how traditional numerical methods fail on multi-
objective step optimization problems and how such problems can be overcome
by a hybrid-algorithm which combines elements of Genetic Algorithms and Simu-
lated Annealing. We develop a general procedure which is open enough such that
it can easily be extended to solve a variety of specific step function problems. For
the sake of fast implementation and the possibility to use many pre-programmed
functions, Matlab is the chosen platform.

Finally, we use a model of ownership and control2 with large numbers of
possible coalitions to examine the effectiveness of the proposed algorithm. In
addition, we use data on German corporations to further test the algorithm in
an applied setting and solve the model numerically.

In section 2 we introduce the basic setup of our step function maximization
problem and problems we encountered using traditional maximization techniques.
Section 3 introduces Genetic Algorithms (GA) and Simulated Annealing (SA)
and the implementation of the combined GASA-algorithm. Section 4 describes a
complex model of ownership and control structures that seems to be a suitable
application for the algorithm. The last section concludes our observations.

1(Wu and Wang, 1998) give an introduction of how Simulated Annealing can be employed
to calculate economic equilibria.

2Developped by (Ritzberger and Shorish, 2002).
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2 Why Standard Optimization Routines Fail

We start by introducing the general formulation of a multiple-objective step func-
tion maximization problem:

max {τ1, τ2 . . . τm} (1)

s.t.

Fτ (Ξ + CΣ) = C and

eC = e,

where τ is a vector of positive integers, C is an integer matrix, Ξ and Σ are real
numbered matrices, Fτ is a nonlinear function, and e is a summation vector of
appropriate size which sums up each column of C. Maximizing vector τ means
maximizing a weighted indicator which “summarizes” all entries in τ (e.g. the
norm or any other criterion). We have found a maximum if it is not possible
anymore to increase an entry in τ without violating a constraint.

Next we define a real numbered n×m input matrix X = [x1 · · ·xm] ∈ Rn×m
+

and define function Fτ (X) : Rn×m
+ → Zn×m

+

Fτ (X) =
[
fτ(1)(x

1) · · · fτ(m)(x
m)
]

(2)

such that F is composed of step functions:3

ft(x) = (f1t . . . fnt)
′ : Rn

+ → Zn
+ (3)

applied on each single column vector in X. Function F also depends on a vector
τ of integers, τ = (τ1, τ2 . . . τm) ∈ Zm

+ . This vector puts additional structure on
function F .

Next we define a control matrix Cn×m with entries cij ∈ C = {0, 1} as integer
switching variables. The additional restriction eC = e, makes sure that the sum
of each column in C is 1, hence only one entry per matrix column is equal to one,
all other entries are zero. In addition, we impose that C enters the function F in
the (non-integer) form Ξ + CΣ, where Ξ and Σ are arbitrary real value matrices
defined as Ξ ∈ Rn×m

+ and Σ ∈ Rm×m
+ . The output of function F , will be of the

same integer form as C.
In (1) the constraint is formulated as a fixed-point search. Function Fτ maps

the actual set of control coefficients into a new such set. In other words, an
equilibrium is a matrix C which is reproduced by the following iteration, given a
maximum integer vector τ . Since our constraint function is a fixed-point problem
we can also represent the entire integer system in hierarchical form as a double

3We are not restricted to the integer set Zn+. We could also map f into Rn+ and partition
the range of f into any subset of Rn+, as long as the step character of f is maintained.
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optimization problem:

max {τ1, τ2 . . . τm}
s.t.

min
C

[Fτ (Ξ + CΣ)− C]

s.t.

eC = e

This formulation allows us, to use different algorithms for the master problem
(objective function) and the slave problem (first constraint).

Since the optimization-routines provided by Matlab work best on continuous
functions, we replace one discrete part of the optimization problem, the function
ft with a continuous approximation of the discrete step function defined as:4

gt(x, ε) = (g1t . . . gnt)
′ : Rn

+ → Rn
+ (4)

Parameter ε determines how “good” function gt approximates the discrete step-
function ft. Computation time increases sharply with small ε values, due to
combinatorics in the approximation function gt. Function F then becomes func-
tion Gτ (X) : Rn×m

+ → Rn×m
+ which is composed as:

Gτ (X) =
[
gτ(1)(x

1) · · · gτ(m)(x
m)
]

As a first approach we develop small test cases for which it is relatively easy to cal-
culate all solution manually. We then check whether pre-programmed computer
routines find the same correct results within feasible time. The step function
system for these test cases are not larger than C3×5 and thus τ = [τ(1) · · · τ(5)].

In a first attempt, we use the internal Matlab function fmincon, which pro-
vides various options to minimize continuous functions given a number of con-
straints. In order to use fmincon we have to reinterpret (1) as a minimization
problem:

min(−τ) s.t. [Gτ (Ξ + CΣ)− C].2 = [0] and eC = e, (5)

where .2 squares a matrix pointwise instead of multiplying the matrix with itself
and [0] is a zero-matrix of size m × n. The second constraint can be calculated
easily, but for the first, we have to find a suitable set of control coefficients C.
This fixed-point problem is itself a minimization problem and we can therefore
rewrite (5) as a double minimization with one constraint:

min(−τ) s.t.
{

min
C

[Gτ (Ξ + CΣ)− C].2 s.t. eC = e
}

(6)

4Compare appendix in (Ritzberger and Shorish, 2002).
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As long as the result of minimizing Gτ leads to a zero-matrix and the sum of each
column equals 1, the vector −τ has to be minimized. This minimization problem
is implemented and applied on the small test cases.

The results are poor, suggesting that this method will not work for larger
data-sets. The most difficult problem is that convergence depends heavily on the
starting values of C. A good combination of C and ε leads to convergence towards
control coefficients cij ∈ C with values ranging between 0.6 and 0.9 where a 1
would be the correct solution. We get values between 0.1 and 0.2 where entries
should be zero instead. This is not necessarily a problem, since after rounding
these values we could use them recursively as input in the constraint of (1). If
the resulting C is the same as the one used as input, a fixed-point – and thus a
solution – has been found.

However, the actual problem is that finding a suitable pair of τ and C depends
very strongly on initial starting guesses on C and ε. We usually find that for given
starting guesses on C, the corresponding ε for which (6) converges, varies between
10−4 and 10−7 and even small deviations from the “right” ε keep fmincon from
finding a solution. For any starting guess on C, candidate ε values come from an
interval that is several thousand times larger than the “correct” interval for which
(6) converges. Further, it seems as if there is no continuous link between C and
ε. Since there is no consistent rule to pick the right ε, the algorithm cannot find
a solution to (6), although there is one by construction of the test cases. This
is a result of the step-function characteristic of the initial discrete step function
problem which is not eliminated by the continuous approximation.

Larger test cases lead to even smaller valid intervals for ε taken from even
larger possible sets, while at the same time the resulting matrices become more
difficult to interpret. Instead of a 1, values between 0.5 and 0.7 are found, which
makes them nearly indistinguishable from the zero-values, which range from 0.1
to 0.5.

The worst problem is that calculation time for (4) goes up dramatically when
n and t are increased since the combinatorics become very large. Even for small
dimensional problems calculating solutions for (4) takes a prohibitionary long
time if one takes into account that fmincon iterates on this function several
thousand times. We encounter the same problems as mentioned above when we
use fmin and fminimax, which work on continuous functions as well.

Therefore, we decide to drop that approach and concentrate on the original
discrete version as in (3). The big advantage is that the inherent combinatorics
through the approximation procedure is reduced. Thus, we lose the property of
a continuous function but calculation time can be reduced to a small fraction of
a second, compared to probably hours or years in case of (4).

In the next step, we try the function fminconset, written by Ingar Solberg.5

fminconset solves problems where some or all of the constraints are restricted

5http://www.mathworks.com/matlabcentral/fileexchange
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to a set of discrete numbers. Unfortunately, this function uses continuous target
functions for internal computations so that we end up with the same problems
as before.

3 The Hybrid Approach

We start again with the formulation in (1) and partition the problem into two,
simultaneously solvable parts. To solve for the first part (the constraint), we plug
discrete function fτ (x) defined in (3) back into our problem and again use the
fixed-point interpretation for the constraint with, eC = e. By iterating

Fτ (Ξ + ClΣ) = Cl+1 until Cl = Cl+1 (7)

with l being the counter for the number of iterations, one can find the fixed-point
C∗. The advantage is that this method is extremely fast since one iteration takes
only a few milliseconds and C∗ is usually found after a small number of iterations.
The disadvantage is that condition eC = e does not necessarily hold, even if the
starting value C1 fulfills it.

The second part of the problem is to find the largest τ for which such an
equilibrium, or fixed-point exists. To account for both problems, we develop a
hybrid GASA algorithm: While a GA searches for the largest τ vector, an SA
algorithm calculates a valid set of control coefficients (one with a fixed-point C
and eC = e) that goes along with the τ .

3.1 The Genetic Algorithm (GA)

Genetic Algorithms were developped by John H. Holland in the late 1960ies
and since then they are a widely used heuristic method that is particularly well
suited for searching extrema in hardly known and large topologies. GAs interpret
function inputs as “chromosomes” of an individual and function outputs as the
individuals’s fitness values. The higher this fitness value, the higher the individ-
uals’s probability for reproduction. Offspring is created by crossing chromosomes
of individuals from a parent generation. Randomly, an individual’s chromosomes
underly mutation. The newly created generation of individuals is again subject
to selection, cross-over and mutation.

Mathematically, this translates into viewing input vector x of length L of
function f as the individual (i.e. its chromosome realization). The fitness value
φ = f(x) determines the quality of x. In case of a minimization problem, lower
values are better and result in higher reproduction probabilities. Of course, one
needs several x-vectors for creating new offspring. In general, between 5 and 25
different parent vectors give good results. These vectors should be initialized
with random numbers from within the vector entry’s domain or good guesses of
the solution vector. How the candidates for reproduction are chosen, depends on
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the actual problem. Most often, the best half of the population is chosen or a
random function together with the probabilities determines the parents.

The chromosome vectors of individuals of the parent group are re-combined
(cross-over). Equivalent parts of the vectors are exchanged. A two point cross-
over cuts each vector into three parts by inserting cutting-points at lin and lout
in each of the two parent vectors. How these points are chosen depends on the
problem. A uniform distribution might serve best in many cases, but there are
no restrictions on the form of this distribution. The cutting-points have to be
the same for the two parents, since the middle part is then exchanged and the
length L of the vectors has to be maintained. In that way, two new “children”
are formed from their parents’ chromosomes.

At last, each entry in the children’s chromosomes might be mutated with
a certain, normally low, probability. Then the particular entry is replaced by
a new value out of the according domain. This procedure keeps the algorithm
from getting caught in local optima. The new generation now replaces a part of
the old one and the algorithm starts again unless some condition is met. This
could be a fitness threshold, the maximum number of iterations being reached,
or a certain running time has passed. For further information about GAs refer
to (Chipperfield et al., 1999) and to the vast number of good introductory and
advanced articles available on the internet.

3.2 Simulated Annealing (SA)

Simulated annealing is a numerical optimization technique based on the principles
of thermodynamics. The idea was first developed by (Metropolis et al., 1953).
The algorithm simulates the cooling process of a system of particles by gradually
lowering the temperature until the system reaches a frozen state, the steady
state. (Moins, 2002) also compares simulated annealing to a bouncing ball that
can bounce over mountains in a geographical terrain. The higher the temperature
is, the more likely it is for the ball to bounce over mountaintops and find other
local (global) valleys (minima). As the temperature cools down, the ball bounces
less strongly, until it stops at a (global) minimum. Hence the literature also puts
forward the expression stochastic hill-climbing as a descriptive name for simulated
annealing.

The algorithm uses two parameters. A cost function and an acceptance distri-
bution, which depends on the difference of the cost function at the present state
and the memorized lowest state (valley) so far. The algorithm starts out with
a valid solution and calculates its cost. Then, it randomly generates new states
and calculates the associated cost function. If the new cost function is lower,
this state is accepted as the new lowest state. If the new cost function returns a
higher value, then the new state is accepted with a certain probability.

P (worse state accepted) = e(
Cost−Costnew
Temperature ) (8)

6



Therefore, even worse states are sometimes accepted. If the temperature param-
eter is high, as in the beginning of the process, the likeliness of a worse state
being accepted is higher. Once temperature drops, the probability of accepting
worse states drops also. The temperature parameter reduces by a fixed percent-
age (usually 10%) after a certain number of iterations. This procedure allows
the search algorithm to break out of local minima and find the global minimum
under certain conditions.

3.3 Construction of the GASA-Algorithm

Figure 1 presents a flow-diagram of the combined GASA -algorithm. The doc-
umentation to the GASA-Algorithm ((Grohall and Jung, 2003)) contains more
detailed information about the functionality of the coded procedures.6

The Main GASA-Routine In a nutshell the routine is doing the following.
The GA-function searches for a maximally stable τ -vector, τmax, while simulta-
neously an SA Algorithm checks whether an accompanying C matrix fulfills the
properties of a fixed-point.7

The routine starts with the creation of a population of random τ vectors.
Then we sum up the squared entries of all vectors. These are the according
fitness values for the τ population. Next we check for each τ whether we can find
a control coefficient matrix C that fulfills the properties of a fixed point. For this
we create a random starting Cl and plug it into (2). If Cl = Cl+1, we found a fixed
point and the fitness value of τ remains equal to the sum of squared entries. If it
does not fulfill the constraint in (1), we calculate the “deviation from equality”
or the “costs” as

costs = 1 [Cl − Cl+1].2 1

where 1 are summation vectors. In short, we sum up all the squared entries
of the resulting deviation matrix. In the next step we calculate a new random C,
Cnew. An implicit “temperature” variable determines the randomness we allow
for the creation of the new matrix. If temperature is low, the new random matrix
is less likely to deviate a lot from the old C matrix. However, if temperature
is still high, a completely “different” Cnew is very likely. We again calculate the
cost of Cnew as 1 [Cnew,l − Cnew,l+1 ].2 1.

If costs of Cnew are lower than costs of the initial C, we accept Cnew as a
candidate. If costs of Cnew are higher, we do reject Cnew with a certain probability.
This probability depends again on the temperature variable. The probability of
rejecting Cnew is low at the beginning of the SA-process. The accepted C is then
iterated forward as in (2). If we are inside the basin of attraction of a fixed

6The documentation is available upon request from the authors. Contact:
grohall@ihs.ac.at or jung@ihs.ac.at

7Compare constraint in (2).

7



point, the iteration of (2) is a quick way to find it. However, if the candidate C
lies outside, the iteration does not converge. In the latter case we decrease the
temperature variable by 10% and create another Cnew. In case we cannot find a
fixed point C after a prefixed number of iterations, the fitness value of τ is set to
zero and the routine proceeds to the next τ of the population.

Once we repeat this procedure for every τ , we end up having the same, un-
changed τ population as before. However, some fitness values will have changed.
In the next step we sort all τ ’s according to fitness and then employ crossover
and mutation procedures on the best candidates. This gives us a new population
of τ vectors for which we can again calculate fitness values.

Repeating this procedure for several generations of τ populations will results
in a large τmax vector and an accompanying C matrix that fulfills the properties
of a fixed point.

The Improvement Routine In this section we try to improve the results
from the last section. We use the bundle τmax and C as starting values for an
improvement routine. This routine searches much faster for even higher entries in
τmax which still support the equilibrium given the supplied control coefficients in
C. Therefore, the algorithm does not need to find an equilibrium, it just checks
whether the equilibrium supplied, is still valid with higher values in τmax. This is
done in two steps.

At first, higher entries in τmax for the given C are searched by the GA-function,
leaving away the SA-part. We do not need the SA-part since we already have a
suitable control coefficient matrix, namely C∗. The routine increases each single
entry in τmax one at a time by 1, and then uses the constraint of (1) to check,
whether the new τ still respects it. Thus, a maximum τ̄max is found, when no
entry in τ̄max can be increased anymore, without violating the constraint in (1).
If good starting guesses exist already, we can use this guess on C and check for
the largest possible τ -vector supporting this C as a fixed-point.

After the GA and the special routine delivered the maximally stable τ̄max, we
run a search function (findAllC) on it which finds all stable control coefficient
matrices C1, C2, ... for that vector. Note that the SA routine and the search
function of the last paragraph can take extremely long to finish.

4 Applying the Algorithm

Complex ownership structures have been reported to serve as control devices
for investor groups or the management (e.g. pyramid structures etc.). Cross-
ownership plays a particulary interesting role in control strategies and so far,
theory is not able to clearly identify control rights from ownership data, once
cross-holding structures are present. Cross-ownership makes it possible for mi-
nority shareholders to effectively control large numbers of companies while keep-
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ing a low profile and stay virtually undetected. In the extreme, it can be shown
that under a given ownership structure, even a zero-shareholder who is assigned
control rights (a CEO for example) cannot be unseated by the actual owners of
the companies. The model by (Ritzberger and Shorish, 2002) allows to identify
such controlling individuals using data on interfirm and private shareholding.
Since these private shareholders or better, ultimate owners.

This model employs a very complex nonlinear, multi-objective maximization
of a step function. Due to the inherent possibility of coalition building among
agents the problem is computationally very expensive, especially when one has to
rely on gradient descent methods for continuous problems. Therefore, this model
seems to be an ideal candidate for the GASA-algorithm.

In the next section we give a motivating example, similar to the one given
in (Ritzberger and Shorish, 2002). Then we employ the GASA-algorithm on one
of Germany’s largest firm conglomerates, the “Allianz Group”. The Allianz AG
used to have cross-ownership in parts of a very complex firm network. Our data
are from the year 2001. Since then, the network got somewhat disentangled and
the cross-ownership structure has been broken up by now. However, tests on
the older data suggest that given the data restrictions that we face at this point,
Bank Austria and AB Industriebesitz- und Beteiligungen AG & Co.KG are strong
players in the Allianz network as of 2001. Strong in this sense means, that both
firms could be identified as controlling shareholders of a large part of the Allianz
conglomerate. In one specification, we could also identify a zero-shareholder who
could, in theory, control large parts of the Allianz network.

4.1 A Motivating Example

One of the most intriguing facts about cross-ownership is that individuals holding
control rights (i.e. CEOs) in combination with low percentage or no holdings in
ownership might be impossible to unseat! They are able to control one or more
firms out of the cross-owned group of firms. In the following example we highlight
the case of three companies and two individuals, also called ultimate shareholders.
Each company holds 28% of the other and the remaining 44% of each firm are
owned by individual 1, who is also the CEO in each firm. To work with a more
compact form we summarize the ownership information in two matrices.

Σ =

 0 0.28 0.28
0.28 0 0.28
0.28 0.28 0

 Ξ =

(
0.44 0.44 0.44

0 0 0

)

We call Σ the cross ownership matrix and Ξ the ultimate owner matrix. Its
single entries σi,j with i, j = 1,2 or 3, denote the holdings of firm i in firm j.
Likewise, the entry ϑi,j in Ξ with i = 1 or 2 and j = 1, 2 or 3 denotes the
percentage of privately owned shares. Note that the columns of Σ and Ξ sum up
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to 1, i.e. 100% of the companies are owned. Note also that a firm cannot own its
own shares, so the main diagonal of Σ is zero!

In our example we assume that investor 1 (first row in Ξ) is the CEO and
controls all firms. In addition she owns the remaining shares, 44% in each firms.
We claim that this investor cannot be unseated. Whatever investor 2 is doing,
she cannot unseat the CEO (investor 1). This is a trivial equilibrium and close to
what one would expect in view of the high percentage shareholdings of investor
1.

However, let us assume now that investor 2, the person who owns nothing,
is the CEO in all three firms. Can investor 2 unseat the CEO if she is unhappy
with her performance? Person 2 will use the 28% from firms 2 and 3, where she
is also CEO, to block any attack on her position in firm 1. Since she controls 56%
in firm 1, she cannot be unseated as CEO in firm 1 by investor 1. Even though
investor 2 does not own a single share, she can use her power in the remaining
two firms to protect her control rights. This situation is again an equilibrium!

4.2 The Theoretical Foundations

(Ritzberger and Shorish, 2002) develop a completely new methodology for finding
the controlling individual of a company in the event of cross-ownership among
firms. Here we briefly introduce their main idea.

Let m be the number of firms and let n be the number of investors. In
addition, (Ritzberger and Shorish, 2002) specify an equation system that allows
for simultaneous consideration of all firms and investors. The solution to this
equation system is a matrix C of control coefficients cij for all i = 1, ..., n and all
j = 1, ...,m. These control coefficients are considered to be indicator functions
that are strictly positive if and only if investor i can control firm j. If a single
investor controls firm j, the according control coefficient equals 1. For all other
investors than i, the control coefficients for firm j are zero. This means that
investor i has full control over firm j. If, however, several investors, say k, are
able to control a firm, i.e. they all control the same amount of shares, their
control coefficients for firm j are all equal to 1/k and sum up to 1.

How strong is this control? Against how many other shareholders can control
be maintained? These questions are answered by introducing an embedded vector
τ , recording coalition sizes (the number of “opposing” investors) against which
control can be defended by investor i. In order to write this problem down,
we have to define the set of all such coalitions of length t ∈ T = {1, ..., n − 1}
that could team up against investor i. We denote this set as Nit. If investor
i wants to “win” against a coalition of size t, she has to control more votes in
that firm than any one of these coalitions N ∈ Nit where N ⊂ {1, ..., n}. Vector
τ = (t1, t2, ..., tj, ..., tm) records these coalition sizes for every firm j, where tj
records the coalition size for firm j.

Let us consider the case of a shareholder assembly. The incumbent CEO may
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be unseated if a coalition of shareholders votes against her. Since the incumbent
CEO is not voting against herself the size of this opposing coalition can maximally
be, tj ∈ T = 1, ..., n − 1. If the old CEO controls at least 50% of the votes, she
will be confirmed as CEO. In fact, it might not even be necessary to control that
many shares if not every shareholder joins the votings. If a shareholder considers
his costs to be higher than the utility he gains from voting, he will not join.

If a coalition of two investors is enough to unseat the old CEO, we speak
of control at relative majority. If a coalition formed of all (n − 1) investors
is not able to unseat investor i (the CEO in our example), we speak of control
at absolute majority. If a certain number, call it tj, of investors is necessary
to unseat the CEO of firm j, we speak of control at level (or coalition size) t,
which could be anything from 1 to n − 1. If, at a certain coalition size tj, the
CEO of firm j cannot be unseated, the system has reached an equilibrium for
this particular control coefficient cij.

We extend this definition to the whole system and say that if, at certain coali-
tion sizes, summarized in the vector τ , all CEOs of all firms cannot be unseated,
the system has reached an equilibrium for this particular set of control coefficients,
summarized in C. Here is another intuitive definition for this equilibrium:

An equilibrium is a control coefficient matrix C which can not be
changed at a shareholder meeting, given a maximum coalition size for
each firm. In addition, all firms have to be controlled.

If this is the case, no CEO can be unseated as long as in all companies the
coalition size tj in the election is not surpassed. If a firm is left uncontrolled it
might be possible that this firm will be used in the next election to unseat the
CEO, thus it would be no real equilibrium. To prevent such cases, all firms have
to be controlled, eC = e, that is, the sum of each column in C has to be 1.

To calculate control over a company, we define the space of shares in a given
firm that are potentially under the control of investors, as ∆ =

{
x ∈ Rn

+ | ex ≤ 1
}

,
with x ∈ ∆ and i = 1, ..., n being the number of ultimate owners. Therefore, x is
a column vector of positive values which sum up to a number smaller or equal 1.
These values represent the percent-shareholdings of the n investors in one specific
firm.

Now (Ritzberger and Shorish, 2002) define a step function fit(x) : ∆ → R+

which is applied to each i, resulting in a control coefficient for each investor in the
company. They prove that this function is necessary and sufficient to determine
the control coefficients. Next they extend this analysis to the whole system. The
matrix Xn×m = [x1 . . . xm] represents the control coefficients where each column
represents one firm. Now apply Fτ (X) : ∆m → ∆m:

Fτ (X) =
[
fτ(1)(x

1) . . . fτ(m)(x
m)
]

where ft is applied to each single entry of matrix X.
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The matrix of voting shares controlled by the different investors is given by
X = Ξ + CΣ, where C is a set of control coefficients in equilibrium fulfilling
Fτ (Ξ + CΣ) = C and eC = e, which is the control equilibrium together with a
maximized vector τ = [τ(1) . . . τ(m)] ∈ Tm.

This definition interprets the problem as a fixed point search. The function
Fτ (X) maps the actual set of control coefficients into a new such set. If none of
the CEOs can be unseated against their will, the resulting new set will be equal
to the old one and an equilibrium has been found. This equilibrium is called
maximally stable, if increasing the coalition size for any firm leads to unstable
companies. This means that the firm’s CEO can always be voted out. (Ritzberger
and Shorish, 2002) prove that such a maximally stable control equilibrium exists
for every pair of ownership matrices Ξ and Σ. It can also be the case that
multiple control equilibria exist, as was shown in the example at the beginning
of the chapter.

4.3 Data Description

The core of the data is from the Commerzbank CD-ROM of the year 2001. We
complete the data with data from the annual reports of Allianz AG, Deutsche
Bank AG, Münchener Rückversicherung, Dresdner Bank and Bayerische Hypo-
und Vereinsbank of the same year whenever applicable. The database includes
shareholdings of firms and private owners down to 0.1% holdings.

To account for missing data and dispersed ownership we generate two distinct
data pools for every data set. The first treats dispersed owners as one single
shareholder. That means that the data counts them as blocks. E.g.: The 31%
dispersed ownership of a company are treated as if those investors were one
person. The residual unknown holdings (i.e. if data is not complete there is a
residual percentage of unknown shareholders) are ignored. This dataset is called
FabFive.

In the second pool we augment the identified dispersed ownership block with
the unknown residual ownership percentage that is not included in our data.
Furthermore, we assume that the smallest single (dispersed) shareholder unit is
0.001%. Thus, in order to control 1% of the company one needs 1000 of such
units. This implies that the 31% dispersed shareholder block consists of 31000
single shareholders. This treatment will increase coalition lengths considerably
in later computations. This dataset is called FabFiveDisp.

Finally, we increase our dataset by adding firms which are typically not said
to be in the core of the Allianz-Group, but which own shares in at least one of the
five main firms. The resulting pools of data are called Network and NetworkDisp.
These datasets represent every direct and indirect ownership in one of the Allianz-
Group firms.
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4.4 The FabFive Results

The FabFive set includes data on the Allianz, the Deutsche Bank, the Münchener
Rückversicherung and the Bayerische Hypo- und Vereinsbank. This is the core
crossholding network. The data includes 16 ultimate shareholders and 5 firms.

These numbers represent ownership data between the 97% to 100% range
for each of the big five firms. The only outlier is the Bayerische Hypo- und
Vereinsbank for which only 88.16% of the ownership data are available at this
point.8 Figure 2 represents this firm conglomerate graphically.

4.4.1 Dispersed Shareholders Treated as One Single Voter

Table 1 summarizes the results for the FabFive dataset. ZS is the abbreviation
for zero-shareholder, a person owning nothing, but controlling everything

Table 1: FabFive – Dispersed Shareholders Treated as One Single Blockholder

mutation
rate

iterations popSize including a ZS in Ξ

0.4 30 16 τmax (15,2,15,15,1)
Ξ 16 × 5
Σ 5 × 5
Cs for τmax 1
use specific Cs to check for the ZS
ZS no

0.3 100 16 τmax for ZS no
use found Cs as candidate

0.4 100 16 τmax for C (15,2,15,15,1)

The control coefficient matrix C the algorithm found for the τmax = (15, 2, 15, 15, 1)
is:9

C16×5 =



1 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 0
...

...
...

...
...


(9)

8Later we can increase this percentage to 94.76% in the Network dataset.
9The bold entries in τ are fixed entries of maximum coalition size, n-1. A specific ultimate

shareholder holds more than 50% in these firms and therefore controls them from the start at
majority level.
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The first ultimate shareholder – this is the dispersed owners block holding 57%
called Disp in Figure 2 – controls firm 1 (Allianz AG) at absolute majority. The
maximum coalition length possible in this case is 15, given the dimension of
the Ξ matrix indicating a total number of 16 ultimate shareholders. The same
shareholder-block also controls firm 4 (Dresdner Bank) through her control over
firm 1 (Allianz AG). This control is again maintained at the absolute majority
level, since firm 1 (Allianz AG) owns 57.68% in firm 4 (Dresdner Bank). This
already covers control for firm 1 and firm 4.

The second ultimate shareholder – the dispersed owners block holding 44.9%
in firm 2 (M”unchener R”uckversicherung) – is again denoted as Disp in Figure
2. This block controls firm 2 (M”unchener R”uckversicherung) at a coalition
length of two. This means that at least a coalition of three other shareholders is
necessary to oust ultimate holder 2 from control.

Firm 3 (Deutsche Bank) is controlled at absolute majority by the 89% block
of dispersed owners and firm 5 (Bayerische Hypo- und Vereinsbank) is controlled
by the dispersed block holding 31.84% at the relative majority level.10

Using a pre-specified control coefficient matrix representing the zero-shareholder
who controls the entire group and using it as input for the two-step optimiza-
tion routine does not indicate the existence of such a shareholder. The values
given in Table 1 are those found by the GASA-algorithm. The improvement al-
gorithm does not find any higher values here, leading to the conclusion that for
this small example, the GASA-algorithm was good enough to find the precise
global optimum.

4.4.2 Dispersed Shareholders treated as Single Voters

Table 2 reports the result for the FabFiveDisp dataset which treats the dispersed
shareholder blocks from the last section plus the remaining (missing) ownership
percentage as many single dispersed shareholders each holding 0.001% of the re-
spective firm’s shares. The values of τmax are those found by the GASA-algorithm,
while those called τmax are global optima, found by the improvement algorithm
using τmax as starting value.

The resulting candidate matrices for τmax = (3, 12274, 440, 4, 864) are of di-
mension 238722× 5:

10Relative majority level is coalition length of one in the τmax vector. That means that a
coalition of two other shareholders is already able to unseat the controlling shareholder.
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Table 2: FabFiveDisp – Dispersed Shareholders Treated as Single Persons

mutation
rate

iterations popSize including a ZS in Ξ

0.4 30 16 τmax (3,12274,440,4,864)
Ξ 238722 × 5
Σ 5 × 5
Cs for τmax 1
use specific Cs to check for a ZS
ZS yes

0.3 1000 16 τmax for ZS (42317,23555,2172,11,1)
use found Cs as candidate

0.3 2000 16 τmax for C1 (42342,23560,2192,11,29271)
0.3 2000 16 τmax for C2 (42317,23564,2172,11,11665)
maximally stable τ τmax for C1 (42369,23602,2201,11,29282)

τmax for C2 (42369,23602,2201,11,11681)

C1 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 1 1 1
0 0 0 0 0
...

...
...

...
...

0 0 0 0 0


, C2 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 1 1 1
0 0 0 0 0
...

...
...

...
...

0 0 0 0 0



, CZS =


0 0 0 0 0
...

...
...

...
...

0 0 0 0 0
1 1 1 1 1



These matrices indicate that either firm 9 (AB holding 12.5% in the Bayerische
Hypo- und Vereinsbank) or firm 11 (BA holding 21.3% in the Bayerische Hypo-
und Vereinsbank) can control the conglomerate at coalition lengths represented in
τmax.

11 In addition, we are able to identify a zero-shareholder who can control the
entire conglomerate at considerable coalition lengths τmax = (42317, 23555, 2172, 11, 1).

After using the two candidate matrices C1 and C2 in the faster tow-step op-
timization, we can show that much higher coalition lengths for the candidate
control coefficient matrices can be sustained. After the first step (using the GA
on the fixed C), the initial τmax = (3, 12274, 440, 4, 864) is increased to τmax =
(42342, 23560, 2192, 11, 29271) for C1 and to τmax = (42317, 23564, 2172, 11, 11665)
for C2. Here we get a first indication of how effective the faster algorithm works.

11For details compare Figure 2.
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The second part (stepwise increasing every entry in τmax) finds the control
equilibrium (C, τmax), which is maximally stable. If we would increase any entry
by 1, we would immediately destroy the equilibrium and C would not be a fixed-
point anymore. Comparing the resulting entries in τmax with the entries in τmax
we clearly see that the GA-algorithm produces very good approximations after
about 2000 iterations. The stepwise increase makes only sense with good starting
values, since it may take very long otherwise. Had we used it from the start
onwards, we would have run into combinatorial problems and could not have
solved the maximization in due time. Figure 3 gives an idea of the convergence
process for C1 and its corresponding τmax = (42342, 23560, 2192, 11, 29271). The
y-axes depicts |τmax|2, the fitness value of τmax.

We see that after about 1200 iterations the fitness value is not changing much
anymore. A maximum iteration of 2000 seems to give a good convergence re-
sult. In Figure 4 we plot the convergence process for C2 and its corresponding
τmax = (42317, 23564, 2172, 11, 11665). Figure 4 seems to indicate that maybe
more iterations would be needed to get more exact results. However, big jumps
are not to be expected after about iteration 1200, as in the earlier case.

4.5 The Network Results

In this section we add some firms and thus also some ultimate shareholders.
Figure 5 describes the new situation graphically. The additional firms are E.ON
Energie AG, E.ON AG and EAM, plus their ultimate shareholders. The rest of
the data are the same as in the previous section. The data now includes now
29 ultimate shareholders and 8 firms. Note that no other firms and persons
reported in the dataset have direct or indirect holdings in any of the companies
in the Network.

4.5.1 Dispersed Shareholders Treated as One Block

Table 3 contains the results in their usual form.
The candidate matrix for τmax = (33, 2, 33, 28, 1, 1, 1, 32) is:

sparse(C) =



(1, 1) 1

(2, 2) 1

(3, 3) 1

(1, 4) 1

(4, 5) 1

(17, 6) 1

(32, 7) 1

(17, 8) 1

(10)
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Table 3: Network – Dispersed Shareholders Treated as One Block

mutation
rate

iterations popSize including a ZS in Ξ

0.4 30 16 τmax (33,2,33,28,1,1,1,32)
Ξ 34 × 8
Σ 8 × 8
Cs for τmax 1
use specific Cs to check for a ZS
ZS no

0.3 500 16 τmax for ZS no
use found Cs as candidate

0.3 500 16 τmax for C (33,2,33,33,1,3,1,33)

This matrix is in its sparse-form. This is a Matlab command that allows for
easy representation of matrices mainly containing zero entries. The numbers in
parenthesis indicate the position inside the matrix, read as (row,column), and
the number to the right of it is the according value of the matrix at that position.
So at eight positions the matrix has value one and everywhere else the entries are
zero.

The first five rows in (10) are the same as in (9) on page 13. That means
that we find the same controlling shareholders – as identified for the FabFive
dataset – control firms 1 to 5 in the enlarged Network dataset. The additional
companies, firm 6 (E.ON AG) and firm 8 (E.ON Energie AG) are controlled by
ultimate shareholder 17, which is the 23% shareholder denoted Priv. in Figure
5. Firm 7 (EAM – Energie Aktiengesellschaft Mitteldeutschland) is controlled by
shareholder 32 (Stadt Göttingen) which holds 7.7% in EAM shares. There is no
indication of a zero-shareholder controlling the entire group.

Again, using the first step of the optimization routine, we get a slightly higher
τmax than the original one. From this vector we conclude that firms 1,3,4 and
8 are controlled at absolute majority. The rest is controlled at lower coalition
lengths. Once we compare the respective τmax vectors in Table 1 for the FabFive
dataset and Table 3 for the Network dataset we see that the first five firms are
controlled at exactly the same coalition sizes.12

Firm 8 (E.ON Energie AG) is controlled at absolute majority by firm 6 (E.ON
AG) which is controlled by ultimate shareholder 17 (Priv.) at coalition size 3.
Firm 7 (EAM) is only controlled at relative majority (coalition size equal to one)
by ultimate shareholder 32 (Stadt Göttingen).

12Compare τmax = (15, 2, 15, 15, 1) and the second τmax = (33, 2, 33, 33, 1, 3, 1, 33). Since
we are dealing with 34 ultimate shareholders in the second case, 33 represents the maximum
coalition length in the second case, which corresponds to the 15 maximum coalition size in the
first case.
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In this case, the GASA-algorithm does not result in the global optimum, but
the first step of the optimization function is enough to find τmax since stepwise
increasing the entries does not lead to higher stable coalition sizes.

4.5.2 Dispersed Shareholders treated as Single Voters

Similar as in Section 4.4.2, Table 4 reports the result for the NetworkDisp dataset
which treats the dispersed shareholder block from the last section plus the re-
maining (missing) ownership percentage as many single dispersed shareholders
each holding 0.001% of the respective firm’s shares.

Table 4: Network – Dispersed Shareholders Treated as Single Shareholders

mutation
rate

iterations popSize including a ZS in Ξ

0.3 50 16 τmax (11797,1,1,2,2,1,1,1)
Ξ 328739 × 8
Σ 8 × 8
Cs for τmax 2
use specific Cs to check for a ZS
ZS no

0.3 500 16 τmax for ZS no
use found Cs as candidate

0.3 500 16 τmax for C1 (42052,22627,1386,28,22529,1099,1,16)
0.3 500 16 τmax for C2 (41437,23440,1832,28,4941,1071,1,26)
maximally stable τ τmax for C1 (42369,23602,2201,28,22683,1104,1,27)

τmax for C2 (42369,23602,2201,28,5082,1104,1,27)

The resulting candidate matrices for τmax = (11797, 1, 1, 2, 2, 1, 1, 1) are again
given in spares-notation and of dimension 328739× 8:

sparse(C1) =



(9, 1) 1

(9, 2) 1

(9, 3) 1

(9, 4) 1

(9, 5) 1

(17, 6) 1

(32, 7) 1

(17, 8) 1

sparse(C2) =



(11, 1) 1

(11, 2) 1

(11, 3) 1

(11, 4) 1

(11, 5) 1

(17, 6) 1

(32, 7) 1

(17, 8) 1

From C1 we see that ultimate shareholder 9 (Bank Austria) is able to control
firm 1 to 5 at various coalition sizes. Firm 6 (E.ON AG) and firm 8 (E.ON
Energie AG) are still controlled by ultimate shareholder 17 (Priv.) as in the
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Network dataset. Firm 7 (EAM – Energie Aktiengesellschaft Mitteldeutschland)
is controlled by ultimate shareholder 32 (Stadt Göttingen).

The matrix C2 indicates that ultimate shareholder 11 (AB Industriebesitz
und Beteiligungen AG & Co. KG) controls firm 1 to 5. Firm 6 to 8 are con-
trolled by the same shareholders as before. In addition, we could not find a
zero-shareholder controlling the whole structure. Running the first part of the
optimization-routine considerably increases the coalition sizes for the two con-
trol coefficient matrices C1 and C2. Comparing these results with the absolutely
highest coalitions sizes possible, τmax, indicates again at very strong convergence
results after 2000 iterations.

5 Conclusion

We have shown that using a numerical technique, combining Genetic Algorithms
with Simulated Annealing routines, allows us to overcome traditional computa-
tional pitfalls in maximizing a multi-objective step function. We demonstrate
results that are good approximations to the true values that theory predicts for
small sample cases. Furthermore, we extend our analysis to real world data on
firm ownership in Germany. We solve a particular model by (Ritzberger and
Shorish, 2002) and present evidence of two very powerful shareholders within the
Allianz group. These findings are based on data of the year 2001 and underly the
assumptions of the model in (Ritzberger and Shorish, 2002).
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Figure 1: The GASA Algorithm
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Figure 2: FabFive
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Figure 4: FabFiveDisp – Convergence for τmax of C2
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Figure 5: Network
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