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Abstract 

Epstein (1998) demonstrates that in the demographic Prisoner’s Dilemma game it is possible 

to sustain cooperation in a repeated game played on a finite grid, where agents are spatially 

distributed and of fixed strategy type (‘cooperate’ or ‘defect’). We introduce a methodology to 

formalize the dynamical equations for a population of agents distributed in space and in 

wealth, which form a system similar to the reaction-diffusion type. We determine conditions 

for stable zones of sustained cooperation in a one-dimensional version of the model. 

Defectors are forced out of cooperation zones due to a congestion effect, and accumulate at 

the boundaries. 
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1 Introduction

Computational economic modeling is often performed using the cellular automata ap-

proach (see e.g. von Neumann 1966, Wolfram 1994). Economic agents are placed in

a spatial grid at discrete nodes, and their behavior is influenced by the environment of

each agent, i.e. the surrounding neighborhood in the grid. Agents may traverse the

grid according to pre-defined rules, so the framework has the advantage of allowing re-

peated economic interaction to affect the entire population of agents. At the same time,

individual interaction is restricted to a limited area.

This approach has recently been used by Epstein (1998) to model the traditional

Prisoner’s Dilemma problem in a spatial, ‘demographic’ framework. Epstein demonstrates

that if the outcome of pairwise Prisoner’s Dilemma encounters without memory affects the

survivability and procreation of agents on a grid, then there may form spatial structures

(known as ‘zones of cooperation’) which persist over time. These zones of cooperation are

simply collections of agents who play the ‘cooperative’ strategy of the Prisoner’s Dilemma

game. This is a novel result, as previous literature on the repeated Prisoner’s Dilemma in

memoryless game environments predicts that agents who play the cooperative strategy will

die out over time, i.e. only those agents who play the ‘defecting’ strategy will survive.1 In

games with memory, however, such zones of cooperation may often exist (Lindgren 1996).

The cellular automata mechanism, combined with a probabilistic choice of the events

which occur at each ‘time step’ of the model, generates a spatial representation of an

evolutionary process (in this case, the evolution of strategy types of collections of agents).

In principle, this could allow one to calculate analytically the time dependence of mean

values of the population (e.g. the relative population shares of cooperators vs. defectors,

the level of wealth, birth rate, etc.). Unfortunately, the calculation of the probability

1See, for example, Weibull (1995) and Samuelson (1997) for classical evolutionary game theory, and
also Epstein (1998)’s discussion of evolutionary game theory and replicator dynamics.
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distribution functions of the underlying parameters, and hence of the mean values them-

selves, is notoriously difficult and requires extensive computational resources. Indeed,

Epstein’s analysis relies instead upon a set of numerical simulations, using many time

step iterations to demonstrate the existence of sustained zones of cooperation.

The purpose of this paper is to propose a formal framework for such spatial models,

based upon the dynamical equations governing the evolution of the probability density

functions for each type of agent. We apply this approach to the demographic Prisoner’s

Dilemma in order to arrive at analytical equations which govern the evolution of the

system. These equations, although continuous in nature, may be derived from the cellular

automata model as the spatial grid step and the payoff received (or lost) by an agent in

a single-game interaction become sufficiently small.

In order to derive these equations we presume a form of ‘statistical independence’ be-

tween agents. This independence, which captures the essential feature of local interaction

within the grid, allows us to obtain the equations for a single agent’s probability density

function. To help render the admittedly complicated dynamical equations in the simplest

light possible, we numerically solve a one-dimensional spatial model (in which agents are

placed along a line). This model still captures the local interaction-global interaction

dichotomy exemplified in Epstein’s two-dimensional spatial grid.

We demonstrate that the numerical solutions of the dynamical equations indicate

sustainable zones of cooperation, as Epstein showed in the discrete grid environment.

The space-time evolution of a given agent’s wealth distribution is also observed. We show

qualitatively that one reason for the existence of sustainable zones of cooperation is a

congestion effect, which is a type of competition for scarce resources (in this case, the

finite space of the grid). This competition is not only between existing agents for ‘living

space’, but is also between agents who seek locations to produce offspring (which are of

the same strategy type as the ’parent’ agent.)
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The qualitative analysis demonstrates that the congestion effect allows sustainable

zones of cooperation to persist, by displacing defectors from those locations with a high

density of cooperators. This effect is implicitly contained in Epstein’s discrete framework.

But the kinetic approach used in this paper provides a useful framework for both explicit

formalization and qualitative interpretation of the underlying dynamical equations, so

that effects like congestion may be rigorously treated.

The paper is organized as follows. Section 2 introduces both the original model of

Epstein and the formalization of this model in terms of the dynamical equations. Section

3 then introduces and qualitatively describes the continuous approximation of the model.

Section 4 provides a numerical solution of this system, and develops further qualitative

analysis of two simple versions of the general equations. Section 5 concludes and dis-

cusses future research, while the Appendix provides more detailed calculations for the

formalization and the continuous approximation.

2 The Model

2.1 The Demographic Prisoner’s Dilemma

We begin by introducing Epstein’s demographic Prisoner’s Dilemma model on a discrete

grid. Agents are assumed to be spatially distributed over an n-dimensional cube, which

is partitioned into discrete points.2 Each agent is located at one of several equidistant

nodes xi = (i1δ, i2δ, ..., inδ), where δ > 0 is the grid step and i1, i2 , ..., in take integer

values between 0 and N > 0.

An agent’s behavioral strategy consists of randomly selecting a nearby node and then

playing one round of a Prisoner’s Dilemma game if that node is occupied by another agent

2We generalize Epstein’s original two-dimensional model to n dimensions, as the formalization given
in the next section accommodates any spatial system of finite dimension.
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(see Table 1 for an example of the Prisoner’s Dilemma payoff matrix which is used in the

numerical solution.) The probability that an agent chooses a node during an infinitesimal

time interval dt is g dt, where the time rate g is assumed to be constant.

The agent’s fixed (pure) strategy, which is played for life, defines the type i of an

agent: i = c when an agent plays the strategy ‘cooperate’, while i = d if an agent plays

the strategy ‘defect’. Each agent is also endowed with a level of wealth w. Conditional

upon the types of the agent and his opponent, the game payoff after playing the game

is then the change in the agent’s current wealth level. We define the game payoff as

∆wij, i, j = c, d. This is the amount of wealth added to (or subtracted from) the current

agent’s wealth w when the agent’s type is i and the opponent’s type is j.

After playing a strategy, the agent moves to a new node. The agent randomly selects

a nearby node to move to with a constant time rate m. If the node chosen is empty, the

agent jumps there–otherwise, the agent remains in place.

An agent can produce an offspring if his wealth exceeds an exogenously determined

threshold level wb. This birth process is similar to the play and movement processes

discussed above. A random nearest node is chosen by an agent with the constant time

rate b and, if it is empty, an offspring is produced and placed there. The initial newborn’s

wealth, w0, is distributed according to an exogenous probability density function fb (w0).

The ‘parent’ agent loses a fixed amount of wealth ∆wb in the birth process. The strategy

of the offspring is identical to the strategy of the parent.

Finally, an agent dies in an interval dt with a probability d · dt, where the time rate d

is constant. In addition, an agent dies if his wealth w becomes negative. This model is

thus sensitive to a translation of the zero of the wealth scale.
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2.2 Formalization of the Model

To formalize the model it is very useful to consider an empty node as a special type of

agent. Each agent’s state is defined by the agent’s type i = c, d, e (cooperator, defector

or empty node), an n-dimensional spatial location at the grid x and the wealth w. For

brevity we let q := (w, x). The total number of agents is thus equal to the total number

of nodes Nn < ∞, and is a constant.

We define functions F
(s)
i1...is

(t, q1, ..., qs) , s ≤ Nn such that

F
(s)
i1...is

(t, q1, ..., qs) dw1dw2...dws (1)

is the probability to find s agents of types i1, ..., is in the state q1, ..., qs at the time t. The

function F
(s)
i1...is

is symmetric with respect to the permutation of arguments qi, qk, 1 ≤
i, k ≤ s. Since an empty node is considered formally as a special type of agent, all the

processes excluding death (i.e. movement, playing and reproduction) can be treated as

two-agent interactions. We also assume that the state variables q, q′ of any two agents

are pairwise independent, i.e.3

F
(2)
ij (t, q, q′) ≈ F

(1)
i (t, q) F

(1)
j (t, q′) . (2)

The dynamic equations for the cooperator and defector functions Fi (t, x, w) := F
(1)
i (t, q),

i = c, d follow from Section 2 and have the form

3Intuitively, this assumption states that correlations between two agents occur at the distance of the
grid step δ, over which an agent’s probability density function remains (nearly) unchanged. Taking into
account the oscillatory nature of the pair correlation function, one may then expect that correlations will
vanish after averaging over a region of space much larger than a factor of δ.
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∂Fi(t,q)
∂t

= −dFi (t, x, w) + bne (t, x) n
(+)
i (t, x) fb (w)

+g
2

∑
j=c,d

∑
∆x=±1 [Fi (t, x, w −∆wij)− Fi (t, x, w)] nj (t, x + ∆x)

+ b
2

∑
∆x=±1 [θ (w + ∆wb − wb) Fi (t, x, w + ∆wb)

−θ (w − wb) Fi (t, x, w)] ne (t, x + ∆x)

+m
2

∑
∆x=±1 [Fi (t, x, w) ne (t, x + ∆x)− Fi (t, x + ∆x, w) ne (t, x)]

(3)

where the spatial densities of agent types are defined as

n
(+)
i (t, x) =

∫ ∞

wb

F
(1)
i (t, x, w) dw,

ne (t, x) = 1−
∑

k=c,d

nk (t, x) ,

ni (t, x) =

∫ ∞

0

F
(1)
i (t, x, w) dw,

the total agent density equals the (constant) grid node density and is normalized to 1,

and finally

θ (x) =





1 x > 0

0 otherwise
. (4)

Briefly, equation (3) describes the dynamics of a single agent’s probability density

function, which is a type of continuous time Markov equation. Each positive (negative)

term on the right-hand side of (3) defines the possible transition to (from) the current

state q = (x,w) and corresponds to one of the four basic processes in the system. These

processes are:
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1. an agent’s occasional death, occurring at a rate d,

2. the birth of a new agent at a rate b,

3. the inflow and outflow of agents due to a change in their wealth w, either as an

outcome of the Prisoner’s Dilemma game or due to the birth of a new agent (these

are terms proportional to g and b, respectively), and

4. the inflow and outflow of agents due to a change in their location x when moving

(terms proportional to m).

Note that the agents’ pairwise interactions make the transition probabilities depend

upon the agents’ spatial densities, so that equation (3) is nonlinear.

3 Continuous Approximation and Dynamics

Consider the continuous functions fi (t, x, w) which coincide with Fi (t, x, w) at the discrete

grid points x = iδ and satisfy equation (3) at any real (not just discrete) value of x. If

these functions change only a little after a small set of transitions (q1, q′1) → (q, q′), they

can be expanded in a Taylor series in ∆q = q′ − q, ∆q1 = q1 − q, ∆q′1 = q′1 − q.

Using the series expansion up to second order in ∆q, ∆q1 and ∆q′1, we obtain

∂fi

∂t
+ Vi (t, x)

∂fi

∂w
−Mi (t, x)

∂2fi

∂w2
−K (t, x) ∆Lfi = (5)

bne (t, x) n
(+)
i (t, x) fb (w)− [d + κ∆Lne (t, x)] fi,

where ∆L =
∑n

i=1
∂2

∂x2
i

is the Laplace operator, the coefficients Vi (t, x) , Mi (t, x) and

7



K (t, x) are nonlinear functions of the spatial densities of agents,

Vi (t, x) =
∑

k=c,d,e

viknk (t, x) , (6)

Mi (t, x) =
∑

k=c,d,e

µiknk (t, x) ,

K (t, x) = κne (t, x) ,

and finally the constants vik, µik and κ are functions of the rates of birth, movement and

playing:

vik =





g∆wik, k = c, d

−b∆wb, k = e
, µik =

1

2





g∆w2
ik, k = c, d

b∆w2
b , k = e

, κ =
m

2
∆x2.

Note that the coefficients vik depend upon both the payoff ∆wik of the game played

and the wealth ∆wb lost in the birth process. Coefficients vie < 0 correspond to the wealth

lost from a birth of a new agent (the rate of the process is proportional to the density of

empty nodes ne). Coefficients vdc > vcc > 0 and vcd < vdd < 0 are proportional to the

corresponding payoffs of the Prisoner’s Dilemma game.

To derive the boundary condition at w = 0, assume that in the region w < 0 the death

rate d = D is large and the birth rate b = 0. Then one can show using the boundary

conditions

lim
w→±∞

fi (t, x, w) = 0, fi (t, x, w)|w=+0
w=−0 = 0,

∂fi (t, x, w)

∂w

∣∣∣∣
w=+0

w=−0

= 0 (7)

that limD→∞ fi (t, 0, x) = 0 (see Appendix).

Thus the boundary conditions for system (5) for the interval w ∈ [0,∞) are

fi (t, x, 0) = 0, lim
w→∞

fi (t, x, w) = 0 (8)
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A further simplification of the system (5) arises from the observation that the solutions

of (5) demonstrate the same qualitative behavior when the coefficients Mi and K are

treated as constants, and the term κ∆Lne (t, x) is omitted (see the discussion below).

The number of parameters of (5) can thus be reduced by means of the following scale

transformations:

bt → t,
√

b
Mi

w → w,
√

b
K

x → x,
√

Mi

b
fi → fi,

d
b
→ d, Vi√

bMi
→ Vi,

√
Mi

b
fb

(√
Mi

b
w

)
→ fb (w)

Using this, the system (5) can be rewritten as

∂fi

∂t
+ Vi (t, x)

∂fi

∂w
− ∂2fi

∂w2
−∆Lfi = ne (t, x) n

(+)
i (t, x) fb (w)− dfi, (9)

for i = c, d, e.

We note that the integro-differential system (9) is quite similar to that of the reaction-

diffusion type (see e.g. Kerner and Osipov 1994). However, the nonlinear item Vi (t, x) ∂fi

∂w

and the non-local dependence of the right-hand side of the system on fi are markedly

different from a standard system of the reaction-diffusion type.

3.1 Interpretation of the Simplified System (9)

It is possible to give a straightforward interpretation of the system (9) by considering

the overall effect of each term on the dynamical evolution of agent types. First, the

term Vi (t, x) ∂fi

∂w
is responsible for the permanent shift of the function fi (t, x, w) along

the wealth coordinate w, with the speed Vi (t, x). Taking the first two terms together,

we can write the solution of the equation ∂f
∂t

+ V ∂f
∂w

= 0 as f = f (w − V t), which shows

this propagation of the density function in the wealth coordinate over time. Note that

according to (6) the nonlinear speed Vi depends upon both the mean payoff of the game

9



played and the mean wealth lost in the birth process.

In addition, the terms ∂2fi

∂w2 and ∆Lfi result in the diffusion of fi (t, x, w) along the

wealth and spatial coordinates, respectively. The typical solution of the equation ∂f
∂t
−

∂2f
∂w2 = 0 is f = n

2
√

πt
exp

(
−w2

4t

)
and presents a gradually “dissolving” function, the maxi-

mal value of which decreases in time as 1√
t

while the width increases as
√

t. This implies

that n =
∫

fdw remains constant. The diffusion along the spatial coordinate results from

the Brownian-motion-like spatial movement of the agents. The diffusion in wealth follows

from the fact that the wealth of an agent after playing a game changes by a small but

finite discrete step (the game’s payoff). These effects are known in the computational

physics literature as a “grid diffusion” (see e.g. R. P. Fedorenko, 1994).

The terms on the right-hand side of (9) show the change in the number of agents for a

given type. The term ne (t, x) n
(+)
i (t, x) fb (w) leads to the birth of new agents with initial

wealth distributed as fb (w). The birth rate, ne (t, x) n
(+)
i (t, x), is proportional to both

the mean spatial density of “adult” agents (whose wealth is greater than the threshold

wb), n
(+)
i (t, x), and the density of free cells, ne (t, x). This dependence upon the density

of free cells represents a congestion effect, which we identify as one of main contributing

factors to the zones of cooperation which arise in the demographic Prisoner’s Dilemma

(see the following Section). Lastly, the term −dfi is responsible for the decrease in the

population of agents of type i due to the death process.4

The balance equations for 1) the population share of each type of agent, Ni(t), and 2)

the mean wealth levels of each type of agent, Wi(t), are located in the Appendix.

4Note that the balance equation for the population size N , which takes the form dN
dt = (1− CN)N ,

is known in theoretical ecology as the logistic equation and describes ecological systems with inter- and
intra-species competition for resources (e.g. free space). See Svirezhev (1987).
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4 Numerical Solution and Qualitative Analysis

The numerical solution of system (9) with boundary conditions (8) for a one-dimensional

version of the model (i.e. n = 1) is shown in Figure 1, and demonstrates the formation

of a cooperator “colony” surrounded by a layer of defectors. The payoff matrix for the

Prisoner’s Dilemma game used in the solution is shown in Table 1. The density of defectors

is maximal at the border of the cooperator colony and decreases both to the center of

colony and outward. Unlike Epstein’s discrete model, the density of defectors does not

vanish, but only decreases over time.

c d

c 3.0,3.0 -18.0,6.0
d 6.0,-18.0 -17.4,-17.4

Table 1: Payoff matrix for the Prisoner’s Dilemma game
used in numerical solution. (c) = cooperate, (d) = defect

The persistence of the cooperator colony lies in the fact that the density of cooperators

is so high in the center of the colony that defectors are ‘locked out’, i.e. they cannot

exploit the wealth of cooperators in the center of the zone. In addition, the cooperator

colony cannot disperse, or diffuse throughout the spatial grid, as the defector population

surrounds the cooperator colony and prevents its diffusion. This again keeps the internal

density of cooperators within the zone high enough to prevent defectors from entering.

The inability of defectors to create their own colony follows from the negative payoff

of the defector-defector game (Epstein 1998). Their survival is solely due to the existence

of the cooperator colony. As mentioned before, the high density of cooperators in the

central part of the colony prevents defectors from excessive reproduction. This is due to

a congestion effect–there is simply not enough room with adequate contact with the co-
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operator colony for many defectors to survive. In addition, the low density of cooperators

outside of the zone prevents defectors from acquiring enough wealth to reproduce and fill

the rest of the ‘empty’ areas.

Thus, the combined effects of congestion and limited reproduction is the reason for

the spatial dependence of the population densities of both defectors and cooperators upon

the spatial grid. This dependence is evident in the numerical solutions for the population

densities, which are presented in Figures 1 - 3. Figure 1 presents the probability density

functions of cooperators and defectors, averaged over wealth. The zone of cooperation is

clearly evident here, as is the accumulation of defectors on the ‘edge’ of the zone. Figures

2 and 3 show the full dependence of the probability density functions on both the spatial

coordinate and the wealth level, for cooperators and defectors, respectively.

4.1 The Qualitative Structure of Two Simple Systems

In this section we consider some special and simplified cases of one-dimensional version of

system (9) to get an improved qualitative picture of the process. In particular, we assume

that the new-born wealth is a constant w0, so that fb (w) = δ (w − w0), where δ (x) is the

Dirac delta function. We also set the birth threshold wb = w0. Then system (9) may be

rewritten as

∂fi

∂t
+ Vi (t, x) ∂fi

∂w
− ∂2fi

∂w2 − ∂2fi

∂x2 + dfi = 0

fi (t, x, w)|w0+0
w0−0 = 0, ∂fi(t,x,w)

∂w

∣∣∣
w0+0

w0−0
= −ne (t, x) n

(+)
i (t, x) ,

(10)

for each i = c, d, e.

4.1.1 Homogeneous Steady-State Solutions and Stability

The stability of the trivial steady-state solution fc,d (x,w) = 0 is treated as follows. The

linearization of (10) fi = Ai (w) exp (pt− ikx) yields
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fi = C





[exp (µ1w0)− exp (µ2w0)] exp [µ2 (w − w0)] w > w0

exp (µ1w)− exp (µ2w) w ≤ w0

where C is an arbitrary constant, the parameters µ1,2 are

µ1,2 =
|vb|
2

[
−1±

√
1 +

4 (p + k2 + d)

v2
b

]
,

p is defined by the formula

p =
v2

b

4

(
s2 − 1

)− k2 − d, (11)

and finally s is a root of the equation

v2
b

2
s (1 + s) = 1− exp (−w0s) , (12)

with Re (s) > 0.

Standard analysis using the Argument Principle (see Appendix) leads to the conclusion

that the unstable solution (11) is non-oscillatory, i.e. that p is a positive real number, if

the following conditions hold:

w0 >
1

s0

ln
1

1− v2
b

2
s0 (1 + s0)

, s0 =

√
1 +

4d

v2
b

(13)

The inequality shows that the population will definitely grow from the zero level, if

the cost of birth is not too high and the initial wealth endowment of newborns is large

enough. Another consequence of (11) is that the maximal growth rate corresponds to the

homogeneous mode with k = 0. (This does not mean, however, that this property will

hold at the nonlinear stage of the evolution.)
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4.1.2 A Linear System

We now turn to another simplification of the model, in which a linear version of system

(10) is derived. This provides, as before, a method of analyzing this complicated system

from a qualitative viewpoint, given the additional restrictions required. The linear version

is obtained by considering system (10) for constant Vi and ne. We derive the solution

with the initial condition at t = 0:

fi (0, x, w) =





βn0 (x) exp [−β (w − w0)] w > w0,

0 otherwise
(14)

In the asymptotic case V 2 À ne + L−2 + d and t À V −2, the approximate solution of

(10) (when V > 0) for the Fourier component

fik (t, w) =
1

2π

∫ ∞

−∞
fi (t, x, w) exp (−ikx) dx (15)

is (see Appendix):

fik ' K





exp
[−ne

V
(w − w0)

]
if w > w0,

exp [V (w − w0)]− exp
(−V w0 − ne

V
w

)
otherwise

(16)

where

K = n0k
ne

V
exp

[(
ne − k2 − d

)
t
]
. (17)

In the periodic case k takes discrete values ±2πl
L

, l = 1, 2, 3, ... and otherwise is a contin-

uous variable.

Note that if V < 0, the solution decreases in time ∼ exp
(
−V 2

4
t
)

and the population

actually vanishes when t > 4
V 2 .

The dependence on t explains the time dynamics of the colony formation. The time

rate ne − k2 − d contains terms responsible for birth, ne, diffusion, −k2 and death, −d.
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If the birth rate ne exceeds the death rate d and the spatial size of the perturbation

L ∼ k−1 is not too small, the population increases in time until the density of free

cells ne = 1 − nc − nd decreases and the time rate vanishes. If the initial population

of cooperators is significantly greater than that of defectors, then the cooperators will

dominate in a “demographic explosion”.

However, in the regions with a lower density of cooperators, the population of defectors

will grow faster. This results in a decrease in the cooperator’s wealth growth rate Vc,

leading to a decrease in the reproductive population share of cooperators with w > w0.

The cooperator’s population then declines, and in fact this process leads to the total death

of cooperators in the region where their population share is simply not high enough to

sustain survival.

The factor fi, which depends upon the wealth of the agent’s type, is presented in

Figure 4 for two values of V . This graph demonstrates that the share of reproductive

agents decreases if V decreases, for levels of wealth larger than some critical value.

5 Conclusions and Future Research

The formalization of Epstein’s demographic Prisoner’s Dilemma introduced here has

demonstrated that it is possible to both formulate and approximate the underlying dy-

namical equations for spatial models of this type. Using the kinetic equation method

under the assumption of statistical independence of agents, the continuous approxima-

tion of the dynamical equations allows us to derive a relatively simple system of equations

for the model. In addition, the derived system is similar to a reaction-diffusion process,

and techniques which have been developed for analysis of such systems have been applied

here.

The numerical solution shows that agent interaction in the demographic Prisoner’s

15



Dilemma results in the formation of sustained spatial zones of cooperation, as in Epstein’s

original spatial model. The qualitative analysis of the kinetic equations indicates the

influence of different factors of the model on this process. In particular, the congestion

effect plays an important role in the formation of the zone, and can be interpreted as a

form of implicit competition between agents for scarce resources (in this case, free space).

We wish to note that what has been done in this formalization is to approximate a

cellular automata system by a kinetic system. This allows one to immediately calculate

the spatial distribution of statistical means, independently of the size of the system. By

contrast, the cellular automata approach yields the solution for the current realization,

and the statistical analysis can then be performed by means of repeated calculations.

These repeated calculations may become computationally costly as the dimension of the

model (e.g. grid size, population size, etc.) becomes very large.

More research is necessary to fully understand the parallels between the cellular au-

tomata and the kinetic approaches, in order to better assess the strengths and weaknesses

of each approach. This paper has been one step in this direction, in which a spatial

system’s underlying dynamical equations have been formally stated, approximated, and

solved (either numerically for the full model, or explicitly for simpler versions of the

model). The results presented here at least show that the sustained zones of cooper-

ation discovered by Epstein may be faithfully reproduced by the underlying dynamical

equations, and are indeed a consequence of them.
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6 Appendix

6.1 Balance Equations

The balance equations for the agent share Ni (t) =
∫ L/2

−L/2
dx

∫∞
0

fidw and the mean wealth

of an agent Wi (t) = N−1
i (t)

∫ L/2

−L/2
dx

∫∞
0

wfidw follow from (9) and have the form

dNi

dt
=

∫ L/2

−L/2

ne (t, x) n
(+)
i (t, x) dx− dNi −

∫ L/2

−L/2

∂f

∂w

∣∣∣∣
w=0

dx, (18)

d

dt
(NiWi) =

∫ L/2

−L/2

n (t, x) Vi (t, x) dx + Wb

∫ L/2

−L/2

ne (t, x) n
(+)
i (t, x) dx− dNiWi,

where Wb =
∫∞
0

wfb (w) dw is the mean wealth endowment of a new agent, and
∫ L/2

−L/2
(...) dx

denotes an integration over the n-dimensional spatial cube.

The negative term − ∫ L/2

−L/2
∂f
∂w

∣∣
w=0

dx represents the agent’s death at the border w = 0,

when the agent’s wealth runs out. The interpretation of other terms is clear.

6.2 Boundary Condition at w = 0

The equations for the functions fi (t, x, w) if w < 0 are

∂fi

∂t
+ Vi

∂fi

∂w
− ∂2fi

∂w2
−∆Lfi + Dfi = 0. (19)

The asymptotic solution of (19) satisfying the boundary condition fi (t, x, w)|w→−∞ =

0 if D À 1 is

fi (t, x, w) = hi (t, x, w) exp
(
D1/2w

)
, (20)

where hi (t, x, w) satisfies the equation

17



∂hi

∂w
− 1

2
hi − 1

2D1/2

(
∂hi

∂t
+ Vi

∂hi

∂w
− ∂2hi

∂w2
−∆Lhi

)
= 0

and can be expanded in an asymptotic series in D−1/2. The substitution of (20) into

boundary conditions (7) yields

fi (t, x, w)|w=+0 = hi (t, x, 0) ,
∂fi (t, x, w)

∂w

∣∣∣∣
w=+0

=
∂hi (t, x, w)

∂w

∣∣∣∣
w=0

+ D1/2hi (t, x, 0) ,

or

fi (t, x, w)|w=+0 = D−1/2

(
∂fi (t, x, w)

∂w

∣∣∣∣
w=+0

− ∂hi (t, x, w)

∂w

∣∣∣∣
w=0

)
.

Taking the limit D →∞, we obtain fi (t, x, w)|w=+0 = 0.

6.3 Solution with Constant Coefficients

Consider equation (10), assuming Vi and ne to be exogenous constants. The Laplace

transformation on t and the Fourier transformation on x

f̃i (p, k, w) =
1

2π

∫ ∞

0

exp (−pt)

∫ ∞

−∞
exp (−ikx) fi (t, x, w) dxdt

yield the ordinary differential equation

d2f̃i

dw2
− Vi

df̃i

dw
− (

p + k2 + d
)
f̃i = −fik (0, w) , (21)

with boundary conditions

f̃i (p, k, 0) = 0, f̃i (p, k, w)
∣∣∣
w→∞

= 0, (22)
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f̃i (p, k, w)
∣∣∣
w0+0

w0−0
= 0,

∂f̃i (p, k, w)

∂w

∣∣∣∣∣

w0+0

w0−0

= −ne

∫ ∞

w0

f̃i (p, k, w) dw, (23)

where fik (0, w) = 1
2π

∫∞
−∞ exp (−ikx) fi (0, x, w) dx.

In the special case

fik (0, w) =





βni0 (k) exp [−β (w − w0)] w > w0,

0 otherwise,
(24)

the solution of equation (21) satisfying zero boundary conditions at w = 0 and w → ∞
(22) is

f̃i (p, k, w) =





Ai exp [λ2 (w − w0)] + βni0(k) exp[−β(w−w0)]
p+k2+d+βVi−β2 w > w0,

Bi [exp (λ1w)− exp (λ2w)] w < w0,

(25)

where λ1,2 = Vi

2
±

√
V 2

i

4
+ p + k2 + d, and Ai and Bi are constants. To define Ai and Bi,

substitute (25) into (23) and solve the resulting linear system:

Bi =
βni0 (k)

p + k2 + d + βVi − β2
· (ne/β − λ2) (β + λ2)

ne [exp (λ1w0)− exp (λ2w0)] + λ2 exp (λ1w0) (λ1 − λ2)
,

Ai = [exp (λ1w0)− exp (λ2w0)] Bi − βni0 (k)

p + k2 + d + βVi − β2
.

The inverse Laplace transformation defines the Fourier component fik (t, w) of the

function f̃i (p, k, w)

fik (t, w) =
1

2πi

∫ σ+i∞

σ−i∞
f̃i (p, k, w) exp (pt) dp,

19



where the integration path in the complex plane for p, Re(p) = σ, is chosen to the right

from all singularities of the function f̃i (p, k, w).

According to the Residue Theorem, the last integral equals the sum of residues of

f̃i (p, k, w) exp (pt), which are calculated at the poles of f̃i (p, k, w):

ne [exp (λ1w0)− exp (λ2w0)] + λ2 exp (λ1w0) (λ1 − λ2) = 0, (26)

p + k2 + d + βVi − β2 = 0, (27)

and the integral along the both sides of the branch cut of f̃i (p, k, w):

V 2
i

4
+ p + k2 + d ≤ 0, Im(p) = 0. (28)

For simplicity we restrict our study to the case where V 2
i À 1, β ∼ 1. Then the

terms defined by (27) and (28) decrease rapidly in time as exp (−βVit) and exp
(
−V 2

i

4
t
)
,

respectively, and can be omitted. The equation (26) has the approximate root

p ≈ ne − k2 − d,

and the calculation of the residue at this point leads to equation (16).

6.4 The Argument Principle

This principle is usually given in a standard course in Complex Analysis. We reproduce

it here simply for accessibility and because the term ‘Argument Principle’ is not widely

used in Economics. For details and additional definitions see a standard textbook on this

subject, e.g. Ahlfors (1979).

The Argument Principle. Let a complex function f (z) be meromorphic in a region R

20



enclosed by a contour γ, let N be the number of complex roots of f (z) in R, and let P be

the number of poles in R. Then

N − P =
∆ arg(f (z))|γ

2π
,

where ∆ arg(f (z))|γ denotes the change in the phase of f (z) when moving (counterclock-

wise) along the contour γ around the region R.
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7 Figures
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Figure 1: The spatial probability densities of cooperators and defectors. solid line =
cooperators, dashed line = defectors
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Figure 2: The probability density function of cooperators in the (x,w) plane
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Figure 3: The probability density function of defectors in the (x,w) plane
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Figure 4: Density of agents as a function of wealth in a simple linear system

25



 

 

Authors:  Victor Dorofeenko, Jamsheed Shorish 
 
Title: Dynamical Modeling of the Demographic Prisoner's Dilemma 
 
Reihe Ökonomie / Economics Series 124 
 
Editor: Robert M. Kunst (Econometrics) 

Associate Editors: Walter Fisher (Macroeconomics), Klaus Ritzberger (Microeconomics)  
 
ISSN: 1605-7996 
© 2002 by the Department of Economics and Finance, Institute for Advanced Studies (IHS), 
Stumpergasse 56, A-1060 Vienna • ( +43 1 59991-0 • Fax +43 1 59991-555 • http://www.ihs.ac.at  

 



 

ISSN: 1605-7996 

 


	Abstract
	Contents
	1 Introduction
	2 The Model
	2.1 The Demographic Prisoner’s Dilemma
	2.2 Formalization of the Model
	3 Continuous Approximation and Dynamics
	3.1 Interpretation of the Simplified System (9)
	4 Numerical Solution and Qualitative Analysis
	4.1 The Qualitative Structure of Two Simple Systems
	4.1.1 Homogeneous Steady-State Solutions and Stability
	4.1.2 A Linear Sytem
	5 Conclusions and Future Research
	6 Appendix
	6.1 Balance Equations
	6.2 Boundary Condition at w = 0
	6.3 Solution with Constant Coe±cients
	6.4 The Argument Principle
	References
	7 Figures



