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Abstract 

This paper analyzes the relationship between stock returns and exchange rate changes in 

international markets and examines how well exchange rate volatility explains movements in 

stock market returns. The model-based predictions are evaluated on several cost functions. 

Results from such analysis can be used to appraise the need for hedging. 

Of the three examined stock indexes, the FTSE was found to be the only robust index, while 

the S&P 500 and the Nikkei indexes reacted to the dollar/yen exchange rates. The dollar/yen 

rate also improved risk prediction for the Standard&Poor futures, while the gains in 

forecasting from using bivariate models remained small otherwise. 
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1 Introduction
Traditionally, investors with international portfolios rely on two approaches
to manage their assets. The …rst assumes that the bene…ts from asset di-
versi…cation in international markets cannot be enhanced by hedging the
exchange risk (see Akdogan 1996). Thus, investors are supposed to ignore
foreign exchange risk. This argument is also supported by Hauser et al.
(1994) who show that the presence of negative correlation between changes
in stock and currency prices produces decreased stock variability. The sec-
ond posits all assets to be hedged completely. This stems from the fact that
in an era of ‡oating exchange rates, exchange rate expectations and, hence,
exchange risk premiums di¤er across countries.

Although it may be true that currencies eventually return to equilibrium,
implying that returns from hedging foreign exchange exposures are slight
in the long run, the …rst option has been disproved (at least in the short to
medium term) by the impacts on asset prices of the recent currency crises and
the fall of the Euro since its inception at the beginning of 1999. The second
option can also be very expensive, as the cost of hedging certain currency
risk exposures often outweighs the gain in yield.

The stock market plays an important role in the whole process of …nancial
intermediation. Particularly, in most industrialized countries, the shattering
e¤ect of a market crash on an economy is immense because of the reac-
tion of foreign investors. Furthermore, globalization has a¤ected monetary
policy by changing the channel through which interest rates a¤ect demand.
Increasingly, changing exchange rate patterns signify changing investor sen-
timents. Thus, asset return volatility conceived as being induced by changes
in exchange rates may imply rebalancing of risks in portfolios. A better un-
derstanding as to how well exchange rate volatility explains movements in
stock market indexes could be helpful in identifying structural rigidities and
ine¢ciencies that discourage smooth arbitrage between di¤erent …nancial
markets.

This paper analyses the relationship between stock returns and exchange
rate changes in international markets and examines how well exchange rate
volatility explains movements in stock market returns. The relationship can
be interpreted as the measure of a stock market’s exposure to currency move-
ments.

Some recent related studies have used regression analysis based on stock
returns to estimate a …rm’s exposure to its various uncertainties (see, e.g.,
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Smith et al. 1989; Oxelheim and Wihlborg 1987; and Khoo 1994).
We provide empirical evidence on the dynamic e¤ects of the dollar exchange
rate (i.e., the Deutschmark-US Dollar (DM/$); the Sterling-US Dollar (£/$);
and the Yen-US Dollar (U/$)) volatility on several stock indexes (DAX,
FTSE, Nikkei, and Standard & Poor 500) traded on the corresponding stock
exchanges by means of multivariate GARCH models. These are, respectively,
the most actively traded and quoted foreign currencies and stock indexes in
the world. The model-based predictions are then evaluated on several cost
functions. Results from such analysis can be used to appraise the need for
hedging.

The plan of the paper is as follows. Section 2 outlines the econometric
techniques and provides a description of the data. Section 3 presents and
analyzes the results of the time-series model estimation. Section 4 focuses
on forecasting experiments. Section 5 concludes.

2 Methodology

2.1 Bivariate ARCH models
The investigation of autoregressive conditional heteroskedasticity (ARCH)
was motivated by the empirical observation of temporal clustering of volatil-
ity in …nancial time series that otherwise follow the theory-based martingale
property for prices in e¢cient markets. The original ARCH model by En-
gle (1982) makes a Gaussian assumption for the underlying distribution and
speci…es a lag polynomial for second-order dependence:

"t = ºt
p
ht ; ht = c +

pX

j=1

®j"2t¡j ; ºt » i.i.d. N (0; 1):

The GARCH model (‘general ARCH’) of Bollerslev (1986) generalizes
the lag polynomial form to a rational function. The most common GARCH
model is GARCH(1,1) with p = 1 and one lag of ht as a further explanatory
variable added to the r.h.s. Multivariate extensions are almost exclusively
restricted to this speci…cation. In the following, we use a notation simi-
lar to Gourieroux (1997). From his work, we also adopt the view that
ARCH models are descriptions of the conditional-moments structure of the
variables (‘weak ARCH’) and hence we will not explicitly specify distribu-
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tional assumptions. This also implies that estimation by Gaussian maximum-
likelihood (ML) methods is to be seen as ‘quasi–ML’.

For scalar martingale-di¤erence "t, the GARCH(1,1) model reads

E("tjFt¡1) = 0 ;
E("2t jFt¡1) = ht = c + ®"2t¡1 + ¯ht¡1 :

The …ltration Ft is built from information sets that typically are generated
by the past of the process "t and hence include the past of ht if the model
is stable. Coe¢cients are subject to the admissibility restrictions c > 0; ® ¸
0; ¯ ¸ 0; (®; ¯) =2 f0g £ (0;1). The stability conditions are more involved
(see Nelson, 1990), and most researchers focus on the case where ®+ ¯ ·
1; ¯ < 1, which guarantees the existence of the unconditional second moment
E("2t ) if ® + ¯ < 1 and includes the interesting borderline ‘IGARCH’ case
with E(j"tj±) <1 for ± 2 (0;2) if ®+ ¯ = 1.

In principle, an extension of the GARCH(1,1) model to higher dimensions
is straightforward, as all scalar coe¢cients are simply replaced by matrix
coe¢cients

E("tjFt¡1) = 0 ;
E("t"

0
tjFt¡1) = Ht

vech(Ht) = vech(C) + ~Avech("t¡1"0t¡1) + ~Bvech(Ht¡1) ; (1)

where we use the notation "t = ("t1; : : : ; "tn)0 for the vector of white-noise
observations. Again, system stability depends on the properties of the fn(n+
1)=2g £ fn(n + 1)=2g–matrices ~A and ~B, though such conditions are now
becoming increasingly complicated.

The application of such multivariate GARCH models faces two main prob-
lems. First, the joint estimation of the matrix coe¢cients quickly exhausts
the degrees of freedom, particularly if the system dimension n becomes large.
Second, the imposition of the admissibility conditions during estimation is
extremely di¢cult. Therefore, various restricted models with simpli…ed ad-
missibility conditions have been considered in the literature, see, e.g., Baba
et al., Bollerslev (1990), or Holt and Aradhyula (1990).

Alternatively, we will focus on the case of the ARCH(1) model with
~B = 0. This restriction is supported by the fact that, in tentative estimation
for our data sets (unreported), the two GARCH parameters ® and ¯ turned
out to be poorly identi…ed even in the univariate models. In the following,
we also exclusively consider the case n = 2.
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We adopt a variant of the block-diagonal design of Gourieroux that
allows for heteroskedasticity in conditional covariances and was suggested by
Kunst and Saez (1994). Because returns show substantial serial correla-
tion, a …rst-order MA term is added to the speci…cation for the conditional
expectation. In detail, we use the MA-ARCH model

Xt = ¹ + "t +£"t¡1 ;
E("t"0t) = Ht ;

Ht = C +L diag("0t¡1A"t¡1;"0t¡1B"t¡1)L0 : (2)

The matrix L is a triangular matrix with a unit diagonal. Imposing symmetry
and de…niteness of the matrices A;B;C, the model has 16 parameters: 2
intercepts in ¹, 4 entries in the 2£2–matrix£, 1 o¤-diagonal entry in L, and
each 3 elements in the positive de…nite matrices A;B;C. The (2,1) element
of L will be denoted by ¿ . It can be viewed as ‘rotating’ the two factors
to the two components and hence we will also refer to it as the ‘rotation
parameter’.

In order to impose de…niteness restrictions in calculation, the matrices
A, B, C are re-parameterized in a Choleski form. For example, A = L0ALA,
where LA is a lower triangular matrix with a positive diagonal, i.e., LA =
(~a211,0j~a12,~a222). Hence, numerical optimization of the likelihood is conducted
for technical parameters ~a11; ~a12; ~a22;~b11; : : :, from which estimates of the el-
ements a11; : : : can be calculated by algebraic transformations.

The system model has its ‘normal’ form when L = I and C is diagonal.
Then, covariances are 0 and the ARCH e¤ects decompose into two indepen-
dent variates. Another interesting case occurs if, e.g.,B = 0 and the variation
of volatility in both variates is explained by a single factor. The latter case
and similar events of degeneration deserve special attention, as they cause
non-identi…ability of some parameters and, in practice, numerical problems.
A third case of special interest is A = diag(a11; 0), B = diag(0; b22). Then,
conditional heteroskedasticity is fully described by squared past errors. Oth-
erwise, more general quadratic forms are needed. A slight generalization of
this special case occurs if A or B are singular. If A has rank one, it can be
represented as (a1; a2)

0 (a1; a2) and conditional variance in the …rst error is
explained by a single lagged ‘factor’ (a1"t¡1;1 + a2"t¡1;2)2.

If both A and B have full rank, volatility in the system is described by
four di¤erent combinations of past errors. It follows that the model can be
poorly identi…ed for many parameter values. We have experimented with
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some general-to-speci…c backward elimination of insigni…cant parameters. In
most cases, point estimates turned out very similar to those reported for the
unrestricted variants. Unfortunately, t–values are usually strongly in‡ated
for these pre-test estimates and can become unreliable for further inference.

2.2 Causality
The investigated AR-ARCH models involve dynamic relationships among
variables that indicate causal structures in the sense of Granger causation.
The concept of Granger causality (Granger 1969) was originally developed
in a linear framework. Several extensions to non-linear models have been
suggested.

In the original de…nition, a variable X is de…ned as causing a variable
Y if the linear prediction P(Y jX¡; Y¡; Z¡) di¤ers from the linear prediction
P(Y jY¡; Z¡) that involves only the past of Y , denoted by Y¡, and the past
of some other variables of potential relevance Z¡, assuming that Z does
not contain X. In some non-linear models, linear prediction and optimum
prediction di¤er and it may well be that X does not cause Y in the linear
Granger sense whereas there may be causation if the linear prediction oper-
ator P(:j:) is replaced by conditional expectation E(:j:). This is a non-linear
extension that was suggested by some authors, see also Granger (1988).
The most general and obvious extension would be to replace prediction and
expectation by the conditional distribution. This de…nition is too general for
empirical usage, hence workable de…nitions are based on conditional moment
characteristics.

In the AR-ARCH model, mean prediction is linear and the linear pre-
diction and conditional expectation operator coincide, as do linear and non-
linear Granger causality in the above sense. However, variance prediction
may be a¤ected by a source variable even when there is no Granger causal-
ity. A special feature of ARCH models is that all potential dynamic in‡uences
of this sort are re‡ected in linear variance prediction in the sense of Comte
and Lieberman (2000) who de…ne linear causality in variance by

P
¡
fY ¡ P (Y jX¡; Y¡;Z¡)g2 jX2

¡; Y
2
¡; Z

2
¡
¢

6= P
¡
fY ¡ P (Y jY¡; Z¡)g2 jY 2

¡; Z
2
¡
¢

where the conditioning set X2
¡ is de…ned as the linear space containing

squares and cross-products of X¡. Evaluation of this feature requires a com-
parison between two models. In contrast, multivariate AR-ARCH models
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and some other non-linear models permit a direct assessment of the alterna-
tive de…nition of linear second-order causality, i.e.,

P
¡
fY ¡ P (Y jX¡; Y¡; Z¡)g2 jX2

¡; Y
2
¡ ;Z

2
¡
¢

6= P
¡
fY ¡ P (Y jX¡; Y¡;Z¡)g2 jY 2

¡; Z
2
¡
¢
: (3)

Here, both variances are calculated conditional on the full multivariate his-
tory. Events of causality and non-causality can be read o¤ the Ht matrices
of the ARCH model. Comte and Lieberman (2000) show that linear
causality in variance is essentially equivalent to either linear Granger causal-
ity or to linear second-order causality (or both). In the present application,
second-order causality can be given a natural interpretation as the spill-over
of volatility from X to Y .

In the present paper, we are interested in investigating linear Granger
causality as well as linear causality in variance. Granger causality corre-
sponds to the aim of mean prediction and causality in variance to risk predic-
tion. Estimated parametric models convey information on Granger causality
and on second-order causality. Forecasting experiments admit a direct eval-
uation of Granger causality as well as of variance causality. The sampling
variation of parameter estimates often implies an apparent contradiction be-
tween the theoretical evaluation and the prediction evaluation, as we will
show in the empirical part.

2.3 Data characteristics
The …rst set of data consists of index futures for the DAX, FTSE, Nikkei, and
Standard & Poor 500 index series. These series are available from November
1990 to May 2000 on a daily basis. Continuous series have been constructed
o¢cially in the following form. In March, June, September, and December
3-months futures were used for contracts ending three months later. In April,
July, October, and January 2-months futures are used, and in the remaining
months 1-month futures are compiled.

The second set of data consists of exchange rate futures for four main
currencies: the rate of US dollars per pound sterling, the rate of US dollars
per German mark, and the rate of Japanese yen per US dollar. While the
…rst two rates are available on a daily basis for the whole time span that
was de…ned by the availability of the index futures, i.e., November 1990
to May 2000, the yen/dollar rate is only available from the beginning of
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1997. In order to obtain comparable futures series for exchange rates, where
only 1-month and 3-months futures were available on a daily basis, we used
3-months exchange rate futures for the contract months of March, June,
September, December. For the months preceding these months we used
the 1-month exchange rate futures. For the intermediate months, we used
simple arithmetic averages of the 1-month and 2-months series in order to
approximate the unavailable 2-months futures variable.

3 The results

3.1 Univariate ARCH models
We estimate univariate ARCH models for the four stock futures series and
report the result in Table 1. We estimate univariate ARCH models for the
three exchange rate futures series and report the results in Table 2. All vari-
ables have been transformed into logarithmic di¤erences in order to obtain
return series.

Note that the exchange rate futures pass the e¢cient-markets criterion,
as their MA coe¢cients are insigni…cant, whereas the futures returns show
signi…cant serial correlation. All series show signi…cant ARCH e¤ects. It
appears that the t–values are in‡ated, due to a downward bias in variance
estimates that is often observed in nonlinear time-series models. However,
the importance of ARCH e¤ects is con…rmed by visual inspection of second-
order correlograms (cf. Weiss, 1986). In spite of the statistical signi…cance
of conditional heteroskedasticity, we note that the coe¢cients ®1 are com-
paratively small and that hence the implied data-generating processes have
…nite variance and kurtosis.

3.2 Bivariate ARCH models
As outlined in Section 2.1, the formal model with all its parameters is given
as

Xt =
·
¹1
¹2

¸
+ "t +

·
µ11 µ12
µ21 µ22

¸
"t¡1 ;

E("t"0t) = Ht ;

Ht =
·
c11 c12
c12 c22

¸
+

·
1 0
¿ 1

¸
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£diag ("0t¡1

·
a11 a12
a12 a22

¸
"t¡1;"0t¡1

·
b11 b12
b12 b22

¸
"t¡1)

·
1 ¿
0 1

¸
;(4)

in which the matrices C, A, B are estimated in their Choleski form in order
to guarantee their positive de…niteness. Estimates for the ‘model parameters’
c11; c12; c22 can be retrieved from estimates for the ‘technical parameters’ ~c11,
~c22, ~c12 in a second step. Estimation in the technical parameterization is
conducted by a quasi–ML algorithm that imposes normality on the errors
"t. Optimization of the likelihood function uses the BFGS algorithm of
GAUSS that also calculates numerical standard errors and t–values. Due
to near-singularities of some matrices, many of these standard errors appear
fragile. Hence, we refrain from calculating t–values for the transformed model
parameter estimates. Therefore, whereas we give point estimates of both
model and technical parameters, t–values are shown for technical parameters
only.

Table 3 gives the results for a bivariate model that contains the FTSE
index returns and the sterling/dollar exchange rate. The insigni…cant value
of ¹2 indicates that the sterling has been on a par against the dollar in the
longer run, whereas the positive ¹1 represents the positive long-run return for
the FTSE index. The moving-average coe¢cients matrix £ contains insignif-
icant values only, which supports market e¢ciency. Only the (1,2) entry is
marginally signi…cant, hence there is weak evidence on Granger causal e¤ects
from the exchange rate to the FTSE returns. Two ARCH factors govern the
series. The …rst factor is rooted primarily in the FTSE index series, though
it also contains a small weight from the exchange rate. The second factor
depends on the exchange rate only. The insigni…cant rotation parameter ¿
indicates that either ARCH factor just causes the volatility in its own series
and that the covariance is time-constant. In short, the amount of second-
order causality from the exchange rate to the FTSE is small. Curiously, the
e¤ect from the dollar/mark exchange rate is slightly stronger, as we learned
from a further unreported experiment.

Table 4 gives parallel results for the DAX index and the dollar/mark
exchange rate. The structure of the estimated model is similar, although
now there is signi…cant Granger causality from exchange rate shocks to the
DAX index, thus violating market e¢ciency in the DAX futures, in slight
con‡ict with the univariate evidence. Again, the evidence on second-order
causality is very small.

Tables 5 to 7 consider the Standard & Poor 500 index and all three
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di¤erent exchange rates versus the US dollar. There appears to be little spill-
over from the German mark. In contrast, the British pound and the Japanese
yen are statistically signi…cant carriers of information for the S&P futures.
For both of these cases, the rotation parameter ¿ is also signi…cant, which
implies that volatility in the exchange rates not only a¤ects the S&P volatility
via the …rst factor but also via the second factor. For the dollar/sterling rate,
the …rst factor is dominated by the S&P volatility and the parameter ¿ is
still small, although statistically signi…cant. For the dollar/yen rate, the
…rst factor mixes squared shocks in both series with similar weights and the
rotation parameter ¿ opens a second strong channel for the volatility spill-
over. We note, however, that the dollar/yen results were obtained from a
shortened time range and are therefore more likely to re‡ect the patterns
of a particular episode than the other experiments. There is also strong
evidence against market e¢ciency in the dollar/yen rate, which corroborates
the univariate results. In the remaining cases, direct evidence on ine¢ciency
remains weak, thus also enhancing the univariate models (see Tables 1 and
2).

Table 8 shows that the bilateral yen/dollar exchange rate also incurs a
signi…cant volatility spill-over to the Japanese Nikkei index. The Nikkei
returns are signi…cantly autocorrelated and thus do not conform to market
e¢ciency. The rotation parameter ¿ is only marginally signi…cant. The main
spill-over e¤ect to the Nikkei futures stems from the …rst ARCH factor that
re‡ects a weighted average of the innovations from both series. Conditional
heteroskedasticity in the covariance across both types of shocks is weaker
than in the S&P experiment.

4 Forecasting experiments
As is well known, the predictive quality of an econometric model is an issue
that is largely separate from other checks on its validity. Slightly misspeci…ed
models can prove to be good workhorses for forecasting, whereas otherwise
acceptable speci…cations can fail completely with regard to predictive accu-
racy. The latter feature has been often reported for models of the ARCH
type (see, e.g. Jorion, 1995). It is possible that the predictive quality is
of more concern to an investor than other statistical properties of the en-
tertained model, hence we consider forecasting experiments to be of major
relevance.
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We assess the relative predictive accuracy of the reported models as fol-
lows. We estimate the univariate and bivariate models iteratively from the
starting point of the available sample to a …xed end point T0 = T¡s and then
predict the next observation at time T0 + 1. We then update the parameter
estimates of the models and predict the observation at time T0 + 2. Thus,
s one-step forecasts are generated that can be gauged against the known re-
alizations. Because the procedure of updating the complex non-linear struc-
tures is computationally intensive, we restrict ourselves to predicting the last
s = 22 observations in the available sample. We note that the value of s = 22
was chosen to represent one business month.

We consider mean predictions as well as risk predictions. Because of
the speculative nature of the data and the closeness of the market structure
to theoretical assumptions of e¢ciency—which were not too hardly rejected
in the reported estimations—we expected that the relative results of risk
predictions would be more interesting. The known di¢culty of evaluating
risk predictions is that the true volatility is unknown, hence one must be
satis…ed with the poor approximation of forecasting squared mean-corrected
observations instead. We note that the indispensable mean correction is
the main problem, as a poor forecast of the local mean may ruin a correct
prediction of local volatility.

The following evaluation criteria will be used: …rstly, the mean squared
error as the traditional measure of prediction accuracy; secondly, the more
robust mean absolute error; thirdly, the even more robust median absolute
error. The latter criterion successfully mitigates the role of local outliers that
otherwise dominate the relative evaluation. All three criteria are applied to
the two cases of mean and of risk prediction, hence we report six numbers
for each experiment.

The results for index futures predictions based on univariate and bivariate
ARCH models—in all cases for the stock futures indexes and not for the ex-
change rates—are summarized in Table 9. The comparison is disappointing.
Most of the bivariate forecasts are dominated by the corresponding univariate
forecast. On the whole, the bivariate predictions appear to be slightly worse,
with the noteworthy exceptions of the risk forecast for the Nikkei index and of
the risk forecast for the US S&P index on the basis of the dollar/yen exchange
rate. These two experiments share the common feature that they are based
on a shorter sample that is dictated by the range of available yen futures. A
small overall improvement relative to the univariate prediction points to the
possibility that the time-series structure may have been subjected to longer-
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run changes. Therefore, we re-ran all other prediction experiments basing all
estimates of model parameters on the same shortened time range that was
dictated by availability in the yen case. These results are marked by asterisks
in Table 9. Indeed, the quality of the Standard&Poor forecasts generally in-
creases for the shortened estimation range but this e¤ect is more pronounced
for the mean prediction. For risk prediction, the model that uses the dol-
lar/yen exchange rate still dominates and that based on the dollar/sterling
rate even deteriorates by shortening the estimation range. This e¤ect is sim-
ilar for the DAX and FTSE predictions. While mean prediction is slightly
improved by shortening the estimation range, no such improvement is felt
for predicting the risk.

5 Summary and conclusion
We have analyzed the relationship between stock returns and exchange rate
changes in international markets and examined how well exchange rate volatil-
ity explains movements in stock market returns. The model-based predictions
were evaluated on several cost functions.

Results from time-series model estimation vary considerably across coun-
tries. Whereas, in a bivariate model for the FTSE index returns and the
sterling/dollar exchange rate, market e¢ciency is supported, strong evidence
on violation of market e¢ciency was found for most other series. For the
FTSE index and the sterling/dollar case, two ARCH factors govern the se-
ries. The rotation parameter remains insigni…cant, hence either ARCH factor
just causes the volatility in its own series and the covariance is time-constant.
In short, the amount of second-order causality from the exchange rate to the
FTSE is small. This also turned out to be true for the DAX index and the
dollar/mark exchange rate. We also considered joint models of the Standard
& Poor 500 index and the three di¤erent exchange rates versus the US dol-
lar. Whereas there appears to be little spill-over from the German mark, the
British pound and the Japanese yen are statistically signi…cant carriers of
information for the S&P futures. For both of these cases, volatility in the
exchange rates a¤ects the S&P volatility via several channels. Finally, the
bilateral yen/dollar exchange rate also incurs a signi…cant volatility spill-over
to the Japanese Nikkei index.

With regard to the prediction experiments, we can summarize that the
di¤erences in performance are too small and fragile to allow any general
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recommendation. For the case of the Standard&Poor futures, it seems that
only the dollar/yen rate improves risk prediction. This e¤ect cannot be
explained by the shorter estimation time range that was dictated by the
availability of the dollar/yen rate. For all other cases, it was found that
risk prediction and mean prediction do not necessarily coincide with regard
to suggesting a speci…c optimum prediction model and that signi…cant in-
sample dynamic structures do not necessarily imply links that can be used
systematically for forecasting.
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Tables and Figures

Table 1: Univariate MA–ARCH models for the stock futures series
23/11/1990-15/5/00.

parameter DAX FTSE Nikkei S&P 500
¹ 0.080 0.053 -0.005 0.064

[3.60] [3.45] [0.81] [3.61]
µ -0.038 -0.016 0.049 0.022

[1.98] [1.04] [2.80] [1.29]
®0 1.384 0.912 1.702 0.773

[58.03] [58.53] [73.57] [49.55]
® 0.176 0.174 0.161 0.189

[13.31] [12.55] [22.60] [24.53]

Note: Fitted models are of the form xt = ¹ + "t + µ"t¡1 with conditional
variance equation ht = ®0 + ®"2t¡1. Figures in squared brackets are t–values.
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Table 2: Univariate MA–ARCH models for the exchange rate futures series.
Time range is 23/11/1990–15/5/00, except for the Yen series with the range
1/1/1997–15/5/00.

parameter UK£ to US$ US$ to G.Mark Yen to US$
¹ 0.004 -0.019 0.017

[0.28] [1.42] [0.59]
µ 0.003 0.026 -0.103

[0.10] [1.26] [2.65]
®0 0.350 0.426 0.594

[57.98] [56.40] [33.03]
® 0.179 0.122 0.276

[12.08] [9.35] [10.24]

Note: see Table 1
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Table 3: Bivariate model for the FTSE index and the US dollar / sterling
exchange rate. Time range is 23/11/1990–15/5/2000.

technical estimated t–value model estimated
parameter parameter
¹1 0.053 2.68
¹2 0.005 0.39
µ11 -0.006 0.22
µ12 -0.049 1.62
µ21 0.000 0.02
µ22 0.003 0.13
~c11 0.976 109.20 c11 0.906
~c21 0.097 6.34 c21 0.092
~c22 0.763 114.74 c22 0.348
~a11 0.645 23.64 a11 0.173
~a21 0.073 1.36 a21 0.030
~a22 0.020 0.99 a22 0.005
~b11 0.070 0.24 b11 0.000
~b21 0.425 13.42 b21 0.002
~b22 0.025 1.24 b22 0.181
¿ 0.043 1.02

Note: The (unsigned) t–values in the third column correspond to the para-
meters and their point estimates in the …rst and second column. In those
cases where model parameters are transforms of technical parameters, these
are indicated in the fourth column and point estimates are given without
t–values in the …fth column.
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Table 4: Bivariate model for the DAX index and the US dollar / German
mark exchange rate. Time range is 23/11/1990–15/5/2000.

technical estimated t–value model estimated
parameter parameter
¹1 0.081 3.42
¹2 -0.018 1.28
µ11 -0.029 1.30
µ12 0.099 2.76
µ21 -0.004 0.36
µ22 0.028 1.21
~c11 1.085 110.12 c11 1.383
~c21 -0.108 6.94 c21 -0.128
~c22 0.801 113.75 c22 0.424
~a11 0.649 24.28 a11 0.178
~a21 0.041 0.54 a21 0.017
~a22 0.020 1.19 a22 0.002
~b11 0.109 1.04 b11 0.000
~b21 0.361 9.47 b21 0.004
~b22 0.025 1.51 b22 0.130
¿ -0.045 1.10

Note: See Table 3.
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Table 5: Bivariate model for the S&P 500 index and the US dollar / German
mark exchange rate. Time range is 23/11/1990–15/5/1990.

technical estimated t–value model estimated
parameter parameter
¹1 0.068 3.45
¹2 0.009 0.84
µ11 0.031 1.33
µ12 0.014 0.70
µ21 0.009 0.87
µ22 0.001 0.03
~c11 0.932 105.90 c11 0.754
~c21 0.042 2.90 c21 0.037
~c22 0.767 112.41 c22 0.347
~a11 0.641 21.72 a11 0.169
~a21 0.254 6.95 a21 0.104
~a22 0.020 0.99 a22 0.064
~b11 0.099 0.97 b11 0.000
~b21 -0.432 12.35 b21 -0.004
~b22 -0.025 1.22 b22 0.186
¿ -0.045 1.34

Note: See Table 3.
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Table 6: Bivariate model for the S&P 500 index and the US dollar / pound
sterling exchange rate. Time range is 23/11/1990–15/5/2000.

technical estimated t–value model estimated
parameter parameter
¹1 0.064 3.19
¹2 -0.022 1.08
µ11 0.026 1.30
µ12 -0.020 1.01
µ21 -0.019 0.94
µ22 0.024 1.20
~c11 0.935 46.46 c11 0.763
~c21 -0.087 4.32 c21 -0.076
~c22 0.803 39.92 c22 0.424
~a11 0.650 32.32 a11 0.179
~a21 -0.133 6.59 a21 -0.056
~a22 0.020 0.97 a22 0.018
~b11 0.000 0.02 b11 0.000
~b21 0.359 17.85 b21 0.000
~b22 0.025 1.22 b22 0.129
¿ -0.045 2.22

Note: See Table 3.
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Table 7: Bivariate model for the S&P 500 index and the US dollar / Japanese
yen exchange rate. Time range is 1/1/1997–15/5/2000

technical estimated t–value model estimated
parameter parameter
¹1 0.080 2.16
¹2 0.039 1.50
µ11 0.009 0.56
µ12 0.024 0.60
µ21 0.020 1.11
µ22 -0.086 2.31
~c11 1.117 70.54 c11 1.557
~c21 0.141 4.80 c21 0.176
~c22 0.854 63.25 c22 0.551
~a11 0.500 10.83 a11 0.060
~a21 0.292 2.89 a21 0.072
~a22 0.020 0.75 a22 0.085
~b11 0.179 1.60 b11 0.001
~b21 0.486 8.75 b21 0.016
~b22 0.026 0.99 b22 0.237
¿ -0.584 3.88

Note: See Table 3.
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Table 8: Bivariate model for the Nikkei index and the US dollar / Japanese
yen exchange rate. Time range is 1/1/1997–15/5/2000

technical estimated t–value model estimated
parameter parameter
¹1 -0.013 2.16
¹2 0.014 1.50
µ11 0.120 3.24
µ12 0.038 0.52
µ21 0.010 0.63
µ22 -0.111 2.92
~c11 1.208 65.64 c11 2.128
~c21 -0.096 2.78 c21 -0.141
~c22 0.871 67.30 c22 0.585
~a11 0.459 6.80 a11 0.044
~a21 -0.647 4.90 a21 -0.136
~a22 0.020 0.82 a22 0.418
~b11 0.000 0.00 b11 0.000
~b21 -0.519 10.62 b21 -0.000
~b22 0.025 1.02 b22 0.269
¿ -0.188 1.94

Note: See Table 3.
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Table 9: Prediction from univariate and bivariate ARCH models.

variable mean prediction risk prediction
predicted explanatory MSE MAE medAE MSE MAE medAE
DAX - 6.354 1.954 1.413 13.605 2.598 1.538
DAX US-$/mark 6.414 1.962 1.414 13.698 2.612 1.528
DAX US-$/mark ¤ 6.341 1.963 1.330 13.274 2.834 2.150
FTSE - 4.547 1.648 1.167 17.086 2.519 0.998
FTSE US-$/Sterling 4.591 1.657 1.168 17.149 2.526 1.003
FTSE US-$/Sterling ¤ 4.563 1.654 1.184 16.094 2.657 1.186
Nikkei - 10.900 2.230 1.684 181.239 5.865 1.886
Nikkei US-$/yen ¤ 11.759 2.326 1.713 176.745 5.480 2.123
S&P - 9.751 2.175 1.444 78.716 3.905 1.536
S&P US-$/Sterling 9.829 2.183 1.443 78.920 3.849 1.547
S&P US-$/Sterling ¤ 9.591 2.151 1.435 77.600 4.014 1.552
S&P US-$/mark 9.802 2.177 1.434 79.647 3.944 1.752
S&P US-$/mark ¤ 9.564 2.161 1.413 77.488 4.146 1.716
S&P US-$/yen ¤ 9.663 2.166 1.400 76.157 3.923 1.704

* estimated for the shorter time range 1997–2000.
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Figure 1: DAX futures series.

Figure 2: FTSE futures series.
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Figure 3: Nikkei futures series.

Figure 4: Standard & Poor 500 futures series.
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Figure 5: Continuous forward exchange rate pound sterling per US dollar.

Figure 6: Continuous forward exchange rate US dollars per German mark.
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Figure 7: Continuous forward exchange rate Japanese yen per US dollar.
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