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Forecasting the risk of speculative assets by

means of copula distributions
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Abstract

The GARCH(1,1) model and its extensions have become a standard econo-

metric tool for modeling volatility dynamics of financial returns and port-

folio risk. In this paper, we propose an adjustment of GARCH implied

conditional value-at-risk and expected shortfall forecasts that exploits the

predictive content of uncorrelated, yet dependent model innovations. The

adjustment is motivated by non-Gaussian characteristics of model resid-

uals, and is implemented in a semiparametric fashion by means of condi-

tional moments of simulated bivariate standardized copula distributions.

We conduct in-sample forecasting comparisons for a set of 18 stock market

indices. In total, four competing copula-GARCH models are contrasted

against each other on the basis of their one-step ahead forecasting perfor-

mance. With regard to forecast unbiasedness and precision, especially the

Frank-GARCH models provide most conservative risk forecasts and out-

perform all rival models.
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1 Introduction

In 1996 the Basel Committee for Banking Supervision stipulated the calcula-

tion of a 1% value-at-risk (VaR) as the standard method for measuring market

risk in financial institutions (Basel Committee on Banking Supervision, 2005).

Moreover, to prevent financial institutions from underestimating market risks,

the Committee defined rules on backtesting methods for internal risk models and

implemented a system of multiplication factors for penalizing those models that

fail the backtesting criteria. Despite its prominent use in risk management, VaR

has been critized for several drawbacks. Owing to its failure in capturing the

entire tail risk beyond the nominal level, its procyclicality and the incentives it

provides for financial institutions to take on tail risks, the Basel Committee may

favor the expected shortfall (ES) as the new standard risk measure in the future

(Basel Committee on Banking Supervision, 2012). In particular, ES refines tail

risk evaluation. To cover a larger range of extreme events it is further discussed

to raise the nominal 1% benchmark risk level to some less conservative threshold.

In financial practice and particularly in portfolio risk management, GARCH

models have become a standard econometric tool for modeling the characteristic

volatility dynamics of financial returns and for ex-ante evaluation of risk mea-

sures such as VaR and ES (see Angelidis & Degiannakis (2007) for an overview

of GARCH VaR- and McNeil & Frey (2000) and Zhu & Galbraith (2011) for two

examples for GARCH ES forecast models). Since their introduction by Engle

(1982) and Bollerslev (1986), various GARCH extensions accounting for asym-

metries and/or non-linear behavior in the volatility process have been made, and

generally improved the understanding of the second order dynamics of financial

time series. Apart from specification issues, moreover, the assumption of con-

ditional normality in the models’ uncorrelated standardized residuals has been

questioned. As a consequence, fat-tailed, non-normal conditional distributions

have been proposed to improve both the GARCH implied approximation of em-

pirical returns (e.g. Bollerslev (1990)) and forecasts of volatility and other risk

measures (see Zhu & Galbraith (2011) for an overview on this literature). None of

these models incorporating non-normal disturbance distributions, however, have

considered the standardized residuals to exhibit a dependence structure beyond

zero linear correlation that can be exploited for forecasting purposes. If subse-

quent residuals extracted from estimated univariate GARCH processes – despite
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being uncorrelated – are dependent in higher moments, they may carry predictive

content that could be exploited to improve VaR and ES forecasts. As proposed

in Herwartz (2012), the standardized copula distributions introduced by Lee &

Long (2009) can be employed to model the dependence structure in GARCH

innovations in a flexible manner.

Against this background, this study translates the work of Lee & Long

(2009) to the univariate setting and closely follows Herwartz (2012) who advo-

cates copula-autoregressive models for the forecasting of macroeconomic data.

The aim of this study is to investigate the predictive content of uncorrelated

yet possibly autodependent, consecutive GARCH model residuals by means of

(standardized) copula distributions in order to improve risk forecasts of mod-

els assuming Gaussian or iid innovations. In particular, a copula that best

describes GARCH implied model innovations shall be selected. After estimat-

ing its conditional tail characteristics, the model implied (conditional) VaR and

ES predictions will be cast against their standard univariate Gaussian-GARCH

counterpart. These forecasts are evaluated for a set of 18 stock market indices.

The in-sample forecasting performance is assessed for four competing families of

copula-GARCH models, the Clayton, Gumbel and Frank copula and the Gaus-

sian copula for the purpose of benchmarking the empirical results. To allow a

flexible matching of residual sequences with copula innovations, alternative pa-

rameterizations and rotations are considered for each Archimedean copula family.

To preview some results, we find that consecutive standardized threshold

GARCH (TGARCH) innovations exhibit a dependence structure that differs from

both conditional normality or independence, and can generally be best described

by the standardized Frank copula distribution. Based on the standardized Frank

copula, VaR and ES predictions are more conservative and outperform risk fore-

casts from standard Gaussian-TGARCH models. Assuming a simple economic

loss function of a regulator, it is shown that losses can be markedly reduced when

relying on risk forecasts from Frank-TGARCH models.

The next section outlines the copula-TGARCH model. Subsequently, Sec-

tion 3 describes the VaR and ES forecasting in the framework of the proposed

model and the applied backtesting procedures. Section 4 provides empirical re-

sults. Section 5 concludes. Issues of evaluating standardized copula distributions

by means of simulations and the data driven selection of candidate copula models
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are described in the Appendix.

2 The copula-TGARCH model

In this section we first briefly introduce the TGARCH model to formalize time

variation in second order return properties. Then, with some empirical estimates

at hand, we will argue that TGARCH innovations show nontrivial higher order

dependence. Thirdly, we propose a semiparametric model class that allows the

embedding of such complicated dependence patterns.

2.1 The TGARCH model

The TGARCH(1,1,1)1 model introduced by Glosten et al. (1993) accounts for

asymmetries in the volatility response. Conditional on the information available

at time t−1, denoted Ωt−1, first and second order return characteristics are given

as

rt = µt + σtξt, (1)

σ2
t = γ0 + γ1(rt−1 − µt−1)2 + γ−1 (rt−1 − µt−1)2I(rt−1 − µt−1 < 0) + β1σ

2
t−1,

(2)

where I() is an indicator function. Moreover, σ2
t is the time-dependent variance

of the daily log-return sequence rt, µt the conditional mean return and γ0, γ1, γ−1

and β1 denote the variance response parameters. Noting that we will empirically

analyse daily returns, we set µt = 0 and, thus, rt = σtξt. The TGARCH-model in-

novations ξt = rt/σt are typically assumed to follow an iid Gaussian distribution.

As an illustration of potential higher-order dependence, Figure 1 displays scatter

diagrams of model estimates ξ̂t and ξ̂t+1 for four stock market indices. It can be

seen that the assumptions of independence and a joint normal distribution are

questionable. Instead there seems to prevail a remaining dependence structure

characterized by a clustering of subsequently negative (positive for NIKKEI) in-

novations. Hence, empirical TGARCH residuals are characterized by joint lower

1For space considerations we focus on the TGARCH(1,1,1) model. For the GARCH(1,1) spec-
ification we generally find slightly stronger dependence patterns in model innovations. Quali-
tatively, the empirical performance of the copula-GARCH models is in full analogy to that of
copula-TGARCH specifications that will be discussed in this work.
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(upper) tail dependence.

With the diagnosis of higher order dependence at hand, one may ask for a

model framework suitable to exploit such autodependence patterns for practical

issues of return or return quantile prediction. While the dependence in higher

order moments might be easily diagnosed by means of tests for nonlinearity,

the respective test approaches are often not decisive in how to arrive at (para-

metric) conditional ex-ante forecasts. To allow for a flexible and data driven

evaluation of nonlinear relationships we propose a semiparametric model class

advocated in Herwartz (2012) that comprises standardized copula distributions.

As we argue below, this model class allows to evaluate the conditional character-

istics of TGARCH innovations ξt+1 given ξt. In consequence, even with Gaussian

marginals, ξt ∼ N(0, 1), the proposed model framework allows for nontrivial VaR

and ES forecasts.

2.2 Standardized copula implied dependence structures

A priori the space of potential autodependence patterns appears overly large to

define a rich parametric model class that may nest most promising nonlinear

model approaches. Instead, one may opt for a semiparametric device that allows

to flexibly translate empirical dependence structures into the two dimensional

space of (ξt, ξt+1). The standardized copulae as introduced by Lee & Long (2009)

provide a framework generating a rich dependence structure.

Below we follow Herwartz (2012) in adopting the approach of Lee & Long

(2009). First, a vector vt = (ξt, ξt+1)′ of standardized innovations is defined which

is drawn from a standardized bivariate copula distribution, as

vt = Σ−
1
2w

(1)
t , w

(1)
t ∼ Cδ(Φ(w1,t),Φ(w2,t)), E[w

(1)
t ] = 0, Cov[w

(1)
t ] = Σ,

(3)

where Φ(.) and Cδ(.) denote the Gaussian distribution function and a copula

function with parameter δ, respectively.2 Standardization is crucial, since the

elements of the random vectors w
(1)
t exhibit an a priori specified correlation, e.g.

measured by means of Kendall’s τ . This also implies a covariance structure devi-

ating from the identity matrix I. To be precise we set, Σ1/2 = ΓΛ1/2Γ′, where Λ is

2See Cherubini et al. (2004) or Nelsen (2006) for textbook treatments of copulae.

4



a diagonal matrix collecting the eigenvalues of Σ and Γ is the matrix of respective

eigenvectors. Formally, the assumptions on w
(1)
t imply E[vt] = 0 and E[vtv

′
t] = I.

Hence, standardization assures that the elements in TGARCH innovation tuples

(ξt, ξt+1)′ remain uncorrelated but the model now allows for non-normality and

for a higher order dependence structure (Lee & Long, 2009). Presuming Gaus-

sian marginals the diagonal elements of Σ are unity, whereas the off-diagonal

elements of Σ are determined by the (sample) covariance of the elements in w
(1)
t .

The model also covers joint normality and independence of ξt and ξt+1 if C(.) is

the Gaussian copula. While the unconditional first and second order moments of

elements in vt are identical over alternative copulae, their conditional moments

E[ξt+1|ξt] are model-specific, since each copula is characterized by a distinct CDF

and hence implies model-specific conditional quantiles (Herwartz, 2012).

The set of copulae employed in this study includes the three Archimedean

families Clayton (CCδ ), Gumbel (CGδ ) and Frank (CFδ ) and the Gaussian copula

(CΦ). With arguments u1 and u2 the former read, respectively, as

CCδ (u1, u2) = max
[
(u−δ1 + u−δ2 − 1)−

1
δ , 0
]
, (4)

CGδ (u1, u2) = exp
[
−[(− ln(u1))δ + (− ln(u2))δ]−

1
δ

]
and (5)

CFδ (u1, u2) = −1

δ
ln

(
1 +

(exp(−δu1)− 1)(exp(−δu2)− 1)

exp(−δ)− 1

)
. (6)

Figure 2 illustrates by means of scatter diagrams the distributional form

of the standardized bivariate Gaussian and Archimedean copulae with an iden-

tical dependence parameter τ = 0.25 prior to standardization. Comparing the

scatter diagrams from the Archimedean copulae with the empirical distributions

of TGARCH innovations (Figure 1) motivates their use in exploiting the higher

order dependence structure of empirical TGARCH innovations for forecast adjust-

ments. Notice that the Clayton and Gumbel copula feature lower and upper tail

dependence, respectively. Figure 1, however, indicates that lower tail dependence

might be more characteristic for empirical TGARCH innovations. Therefore, in

addition to the specifications in (3) to (6), we consider three rotations of the

Clayton and Gumbel copula and one of the radially symmetric Frank copula.
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Random variables from rotated copulae are obtained as

w
(2)
t ∼ C•δ (1− Φ(w1,t),Φ(w2,t)), (7)

w
(3)
t ∼ C•δ (Φ(w1,t), 1− Φ(w2,t)) and (8)

w
(4)
t ∼ C•δ (1− Φ(w1,t), 1− Φ(w2,t)), (9)

where • ∈ {C,G, F}. With regard to fitting rotated copula innovations to empir-

ical residuals, it can consequently be argued that rotations 2 and 4 of Gumbel,

and similarly rotations 1 and 3 of Clayton might provide closest approximations

of real data, since these specifications are characterized by lower tail dependence.

Moreover, as illustrated in Figure 3 for medium dependence parameters, the ro-

tated symmetric Frank copula is characterized by slightly more mass in the joint

lower and upper quantiles, and, hence, might be expected to provide better ap-

proximations of empirical TGARCH innovations than its unrotated counterpart.

To improve the flexibility in matching residual sequences with copula in-

novations, we consider a set of parameters δ for each (rotated) copula. Here δ

is chosen such that, prior to standardization, for each family a set of copulae

is obtained that is uniquely characterized by a desired dependence level (mea-

sured by Kendall’s τ). The target values for τ are for Clayton, Gumbel and

Frank3, respectively, τC,G = {0.010, 0.015, ..., 0.075, 0.100, 0.150, ..., 0.250} and

τF = {0.010, 0.025, 0.050, ..., 0.100, 0.150, ..., 0.750}.

3 Copula adjusted risk forecasts

This section first describes risk forecasting by means of copula-adjusted TGARCH

models. Then, the criteria for risk forecast assessment are provided. The imple-

mentation of the semiparametric forecast adjustment, i.e. copula selection and

the estimation of conditional tail distributions is discussed in Appendix A in

detail.

3For the relation between δ and τ of the three copula families, see Cherubini et al. (2004,
Table 3.5). For the Clayton and Gumbel copulae, larger target values up to τ = 0.75 were
also tried but provided poorer fits to empirical data when applying the routine outlined in
Appendix A.1.
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3.1 Conditional VaR and ES forecasts

Conditional on the information set Ωt the VaR (cVaR) at level α is the (negative)

quantile qα for which the probability of the one period-ahead return being less

than qα is no larger than α. In this work we distinguish nominal coverage levels

α = (0.01, 0.025, 0.05)′ for empirical forecast assessments. Formally, the cVaR

reads as

cVaRα(rt+1|Ωt) = −qα(rt+1|Ωt) = −F−1(α|Ωt), (10)

where F−1(α|Ωt) denotes the inverse of the conditional CDF (cCDF) of returns

rt+1. Related to the VaR, ES is the expected loss, given that this loss exceeds

the VaR. Formally, the conditional ES (cES) of rt+1 is

cESα(rt+1|Ωt) = −E [rt+1| (rt+1 < −cVaRα(rt+1|Ωt))] . (11)

By construction, the cES is more conservative than the cVaR since cESα(rt+1) ≥
cVaRα(rt+1).

Determining either the cVaR or the cES requires an estimate of the cCDF

of returns F (rt+1|Ωt). Since rt+1 = σt+1ξt+1, this estimate depends on both, the

(one-period ahead) prediction of the conditional variance σt+1 and on the cCDF of

the innovation sequence F (ξt+1|ξt). While a one-period ahead volatility forecast

for the TGARCH(1,1,1) can be obtained immediately from (2) by means of QML

parameter estimates,

σ̂2
t+1 = γ̂0 + γ̂1r

2
t + γ̂−1 r

2
t I(rt < 0) + β̂1σ̂

2
t , (12)

the cCDF of the innovation sequence depends on the underlying copula distri-

bution. Hence, for both risk forecasts, it is crucial to obtain an estimate of

F •δ [ξt+1|ξt] for each (rotated) copula • ∈ {Φ, C, F,G} and parameter δ. In the

Gaussian model, • = Φ, this is trivial due to independence of the model inno-

vations. Under higher order dependence, however, the conditional distribution

involves a complex expression of mixed marginal distributions with a copula spe-

cific dependence structure. Therefore an analytical solution is hardly feasible. As

an alternative, one can rely on simulated innovations and estimate the cCDF for

each parameterized copula (Herwartz, 2012).
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With the cCDF of the innovations at hand, quantiles and expected quantile

“loss” for the distribution of ξt+1 given ξt can be obtained in a similar fashion to

(10) and (11). The copula-adjusted cVaR and cES forecasts for returns rt+1 read

as

cVaR•α(rt+1|Ωt) = −σ̂t+1q
•
α(ξt+1|ξt) and (13)

cES•α(rt+1|Ωt) = −σ̂t+1E[ξt+1|(ξt+1 < q•α(ξt+1|ξt))], (14)

respectively. The copula-based adjustment of cVaR and cES forecasts has to be

derived from the unknown conditional distribution of ξt+1 given ξt. To allow

for sufficient flexibility in describing this distribution, the model space in this

study includes a large set of differently parametrized and rotated copulae (see

Section 2.2). The approach to select the copula that best describes the distri-

bution of empirical standardized TGARCH innovations and to estimate its tail

distribution are detailed in Appendices A.1 and A.2, respectively.

3.2 Forecast evaluation

While the evaluation of VaR models has seen numerous applications, tests on ES

forecast accuracy have been conducted only recently (see McNeil & Frey (2000),

Angelidis & Degiannakis (2007), Diks et al. (2011) and Zhu & Galbraith (2011)).

The competing copula-specific cVaR and cES forecasts obtained by (13) and

(14) can be compared with regard to unbiasedness and accuracy to discriminate

against misspecified models.

Generally, the backtesting of VaR forecasts relies on the series of so-called

VaR hits, i.e.

hit•t+1,α = I(rt+1 ≤ −ĉVaR
•
α(rt+1|Ωt)). (15)

Since the cES is only defined for rt+1 ≤ −ĉVaR
•
α(rt+1|Ωt), a correct specification

of the hit series is required prior to cES forecast evaluation. Thus, in principle

tests on cVaR forecasts can be carried out based on the entire length of the

hit sequence, while cES tests potentially suffer from data scarcity since they

depend on the condition of observing a cVaR hit first.4 For this reason, we put

4To deal with this problem Zhu & Galbraith (2011) define a hit as a return below a certain
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particular emphasis on the evaluation of cES forecasts by means of both common

statistical loss functions and a more economic criterion that is motivated from

the perspective of a representative regulator. Next, we outline a prominent VaR

diagnostic and turn to alternative tools for cES evaluation.

3.2.1 Value-at-risk diagnosis

For the evaluation of cVaR estimates we apply the dynamic quantile test by

Engle & Manganelli (2004) formalizing a correct unconditional and conditional

VaR specification under the null hypothesis. Let ’•’ indicate a particular model

employed for risk assessment. In this framework it is tested, if the centered

hit sequence h̃it
•
t+1,α = hit•t+1,α − α follows a martingale difference sequence.

We restrict our analysis to the following regression model including five lags of

centered hits

h̃it
•
t+1,α = β0 +

5∑
k=1

βkh̃it
•
t−k+1,α + ut+1. (16)

The null hypothesis of correct conditional and unconditional coverage of the

model, hence, reads as H0 : βk = 0, ∀ k = 0, . . . , 5.

3.2.2 Expected shortfall diagnosis

We employ the following criteria to evaluate cES forecasts:

• Standardized cES errors

McNeil & Frey (2000) suggest to assess the correct specification of cES

forecasts by means of standardized cES forecast errors

êt+1 =
rt+1 − (−ĉES

•
α(rt+1|Ωt))

σ̂t+1

,∀ rt+1 ≤ −ĉVaR
•
α(rt+1|Ωt), (17)

where σ̂t+1 is the GARCH standard deviation forecast. If the model is

correctly specified, the exceedance residuals êt+1 should be iid with mean

zero. We follow the approach in Diks et al. (2011) and conduct a two-sided

t-test of the null hypothesis H0 : E[et] = 0 with a HAC variance estimator.

threshold loss of -1.2% to -0.6% and thereby differentiate the cES forecast evaluation from the
cVaR diagnosis. These threshold levels are, however, not sufficiently conservative for practical
applications.
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• Mean-squared error

Similar to Angelidis & Degiannakis (2007) and Zhu & Galbraith (2011),

we also employ the mean squared error (MSE) to compare overall cES

forecasting accuracy. The MSE is defined as

MSE •α =
1

T̃ •

T∑
t=1

l2,•t+1,α,

with T̃ • denoting the model-specific number of cVaR hits and

l2,•t+1,α =

{
(|rt+1| − ĉES

•
α(rt+1|Ωt))

2 if rt+1 ≤ −ĉVaR
•
α(rt+1|Ωt)

0 otherwise.
(18)

• Regulator’s loss

As Granger & Pesaran (2000) point out, the choice of a loss functional

should reflect the objectives of the forecast user. Therefore, we follow Sarma

et al. (2003) and consider additionally a potential loss function of a regu-

lating institution. Employing the ES as a regulation criterion, a regulator’s

loss may read as

RL•α =
1

T̆ •

T∑
t=1

lr,•t+1,α, (19)

with T̆ • denoting the model-specific number of cES hits, and

lr,•t+1,α =

{
(|rt+1| − ĉES

•
α(rt+1|Ωt))

2 if rt+1 ≤ −ĉES
•
α(rt+1|Ωt)

0 otherwise.
(20)

The intuition behind this loss function is that the regulating authority is

mainly interested in negative ES shocks, i.e. situations where a loss exceeds

the predicted cES.

In order to test if two models differ significantly in their forecasting accuracy we

employ the finite-sample sign test as proposed by Diebold & Mariano (1995).5

5The asymptotic Diebold-Mariano test (Diebold & Mariano (1995)) is hardly applicable in our
setting for two reasons. First, it is generally not suitable for the comparison of cES forecasts
due to the rare occurrence of hits. Second, since the cES is not defined in most time-periods,
autocovariances at different time lags are ill defined. A potentially more powerful finite-sample
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The test refers to the null hypothesis that two competing forecasts do not differ

in terms of accuracy. For this purpose, the loss differential dt = l•t − l�t between

competing models, indicated by • and �, is constructed and the null hypothesis

reads as H0 : median(dt) = 0. For the application of the sign test in our setting,

it is decisive to specify the set of hits under consideration as these usually differ

across competing cES forecasts ĉES
•
α and ĉES

�
α. Here, we employ the union set of

hits and, thus, consider all periods when returns hit the least conservative cVaR

(for MSE •α) or cES (for RL•α) forecast. Then, in case that only one model features

a hit as defined in (18) or (20), this model’s forecast loss will be positive, while the

other forecast loss is zero. The loss differential will, hence, indicate a superiority

of the model that has not been hit. If two forecasts generally differ in their level

(implying possibly distinct unconditional VaR-coverage rates), such a choice will

implicitly punish the less conservative cVaR or cES forecast for the larger number

of hits. This is particularly important for the MSE criterion, as this punishment

partially offsets a bias resulting from the specification of forecast errors. In detail,

if the period loss exceeds both cVaR forecasts but not the less conservative cES

forecast, the squared error would be larger for the more conservative cES forecast

by construction (see (18)). Since most losses left of the cVaR forecast can be

expected to be close to this forecast value rather than deep in the tail, a more

conservative cES may obtain a larger MSE than a less conservative cES. For

regulator’s losses this is irrelevant, since the more conservative forecast always

yields a smaller loss by construction.

4 Empirical results

In this section we discuss the copula-specific cVaR and cES forecasting perfor-

mance. In the first place, however, we introduce the data and discuss a few

results on the in-sample features of the estimated TGARCH innovations and the

subsequent copula selection outlined in Appendix A.1.

alternative to the sign test is Wilcoxon’s signed-rank test which partially accounts for the
size of the loss differential. However, the symmetry condition required for the loss differential
distribution is found to be violated here.
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4.1 Data

We use financial data from a set of 18 market indices to analyze the cVaR and

cES forecasting performance of selected copula-TGARCH models. For these in-

dices about 2300 daily observations cover the time period from 1 May 2003 un-

til 30 April 2012.6 The set of indices and respective parameter estimates for

the TGARCH(1,1,1) model are shown in Table 1. Significant leverage effects

(γ−1 > 0) can be diagnosed for all markets.

4.2 Copula selection

As motivated in Section 2.2, the applied matching procedure finds strong evidence

against the assumption of conditionally Gaussian TGARCH innovations. Esti-

mation results documented in Table 2 indicate that the Gaussian copula never

achieves the best fit. Instead, the Frank copula provides a better approxima-

tion for all series and the best fit across all copula specifications for 15 of the 18

TGARCH innovations series. Also the implied dependence parameters (Kendall’s

τ) are sizeable in general. While the Clayton copula also outperforms the Gaus-

sian copula in 17 cases, it only provides best empirical approximations for three

markets. Also the gains in approximation accuracy are less pronounced than for

the Frank copula and the implied dependence parameters are generally smaller

for the Clayton family. The Gumbel copula typically performs worse than the

Gaussian and the implied dependence parameters are in most cases close to zero.

For all Archimedean copulae, the best fitting rotations match with our remarks

on tail dependence in Section 2.2. In order to assess the robustness of these find-

ings, Figure 4 (Figure 5) shows distance measures between the Clayton (Frank)

copula and TGARCH(1,1,1) innovations for four indices.7 In summary, we con-

clude that the (rotated) Frank copula obtains most accurate approximations of

the autodependence structure that underlies consecutive TGARCH innovations.

6Most data is obtained from Yahoo!Finance (finance.yahoo.com) except for the DJIA 30
which has been drawn from the Federal Reserve Bank of St. Louis, Economic Research
(http://research.stlouisfed.org/fred2/).

7The empirical findings are robust for all stock markets and the four indices have been selected
for illustrative purposes only. The results for the Gumbel copula look similar to those for
Clayton, except that rotations 2 and 4 provide smallest distance estimates that are, however,
larger than respective statistics determined for the Gaussian copula.
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4.3 Empirical forecast comparisons

With the above results in mind, it is of particular interest if cVaR or cES forecast

adjustments by means of the standardized Frank copula can improve upon the

forecast accuracy of Gaussian-TGARCH models. In the following, we first com-

ment on cVaR estimates and, second, provide a more detailed discussion of cES

forecast diagnostics. Related to the ongoing discussion in the Basel framework

it is worthwhile to mention that we put particular emphasis on results for the

more conservative coverage levels α = 0.01 for the cVaR and the less conservative

α ≥ 0.025 for the cES. If not stated explicitly our discussion of inferential results

refers to the 5% significance level.

4.3.1 cVaR forecasting

To see if the copula-adjusted cVaR forecasts outperform standard (Gaussian)

forecasts in terms of unconditional VaR coverage, we first report empirical cov-

erage estimates for alternative nominal levels α in Table 3. With regard to the

Basel relevant nominal 1% coverage level, we find a clear improvement of cVaR

forecasts after adjustment by means of the standardized Frank copula. In spe-

cific, the Frank model obtains empirical coverage statistics closest to 1% for 17

out of 18 indices. This finding is robust for α = 0.025 with regard to 15 markets.

Also for α = 0.05, the Frank cVaR empirical coverage is closest to the nominal

level for the majority of markets. We conclude that adjusting cVaR forecasts by

means of the Frank copula obtains most conservative risk measures for α = 0.01

and α = 0.025. In contrast, adjustments based on the standardized Clayton

or Gumbel copula do not improve standard cVaR forecasts that are determined

under the assumption of independent TGARCH innovations. Yet, for both con-

servative nominal levels, α = 0.01 and α = 0.025, all risk models appear overly

liberal as implied by positive coverage errors, α̂− α > 0.

To test if the misspecification can be mitigated by employing the Frank

copula, p−values for DQ-statistics are documented in Table 4. Overall, misspec-

ification is commonly diagnosed for α = 0.01, while cVaR forecasts for α = 0.05

are characterized by incorrect unconditional or conditional coverage only for the

DJIA 30 and S&P 500. In most cases, rejection or acceptance decisions for the

null hypothesis are identical across alternative copula based forecast adjustments.

In a few cases test decisions differ across model families. For instance, distinct
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decisions are made for α = 0.01, where the null hypothesis for Frank adjusted

forecasts is not rejected in three cases, compared with all other copula specifi-

cations. Likewise a uniquely not rejected model is found only for 3 or 2 indices

for coverage levels of 0.01 and 0.025, respectively. However, the p-values of the

DQ-statistic indicate a predominance of the Frank model at the Basel-relevant

1% level and at the 2.5% level. The p-values obtained from the Frank model are

higher than for other copulae for 11 indices at the 1% level and for 13 indices at

the 2.5% level, thus indicating a better fit of the model. With regard to the more

liberal 5% coverage level, a dominance of the Frank model cannot be concluded.

Summarizing the performance of rival cVaR estimates, we note that the

semiparametric forecast adjustments show potential to improve common risk

measures. The diagnostic tests, however, indicate some remaining misspecifi-

cation. As a consequence, the following discussion of cES estimates does not

condition on pretest survival models but sheds light on the performance of all

alternative approaches to risk assessment.

4.3.2 cES forecasting

As documented in Table 5, not surprisingly, Frank-adjusted cES forecasts are

most conservative almost throughout, and especially so for the most conservative

coverage level α = 0.01. In contrast, forecasts adjusted by means of the stan-

dardized Gumbel or Clayton copula are similar to respective statistics obtained

from the common Gaussian model.

Applying the MF test for unbiasedness of the cES forecasts, we find that all

models are correctly specified with respect to their cES forecasting performance.

However, it must be noted that the exceedance residuals defined in (17) are only

determined conditional on observing a cVaR hit first. Hence, the power of the

test is likely to suffer from data scarcity.

As documented in Table 6 the mean cES forecast errors indicate that cES

forecasts are insufficiently conservative, since all mean errors are negative and,

thus, indicate an underestimation of the cES. Yet, in absolute values, the Frank-

adjusted forecasts show the smallest mean errors for α = 0.025 and α = 0.05 for

15 and 17 indices respectively. With regard to α = 0.01, the Frank performs best

for only about half of the indices, however, it also generates the fewest hits (as

seen in Table 3), and, hence, it is most prone to outliers.
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To compare forecast accuracy we report the copula-specific forecast MSE

estimates relative to respective statistics from Gaussian forecasts in Table 7.

For α = 0.025 and α = 0.05 the Frank-adjusted forecasts outperform Gaussian

forecasts for 10 and 11 markets, respectively. However, results are generally

inconclusive when comparing the accuracy of Frank-adjusted forecasts with the

one from the Gaussian model, especially for smaller nominal coverage levels. For

α = 0.01, the Frank achieves a lower MSE for only 7 indices, yet relative MSE

statistics vary between 38.7% and 141.3%. Recalling that the Frank adjusted

cVaR forecasts obtain strictly fewer hits, this may partially be explained by the

small sample size for which the cES is determined and, by implication, the strong

effect of outliers. This is further supported by a decrease in the variation of

relative MSE statistics documented for α = 0.025 and α = 0.05. In line with the

previous results, the Clayton and Gumbel-adjusted forecasts are generally very

similar in terms of forecast accuracy to those obtained from the Gaussian model.

To test for significant differences in the forecast accuracy based on the MSE

criterion, we applied the sign test. Our results show that the sign test cannot

identify superior forecasts in terms of MSE prediction accuracy. However, as

outlined in Section 3.2.2, the sign test may be potentially biased, although we

account for a punishment effect if two forecasts differ in cVaR coverage rates.

Therefore, respective test results must be viewed with caution.

So far, we have shown that forecast adjustments by the Frank copula gen-

erally provide the most conservative (cVaR and) cES forecasts. With regards to

forecast accuracy, however, the results are mixed. To assess if copula forecast

adjustments can help to reduce economic losses we next consider losses of a reg-

ulator who relies on the economic criterion in (19). We document regulator’s

losses in Table 8 for the three Archimedean copula forecast adjustments relative

to the losses of the Gaussian forecast. Along the lines of the previous findings,

the Clayton and Gumbel-adjusted forecasts typically feature regulator’s losses

close to, yet generally slightly larger than the ones obtained from the Gaussian

model framework. The sign test indicates a superiority of the Gaussian forecasts

compared with the Clayton- or Gumbel-adjusted forecasts.

In contrast to these copulae, the Frank adjusted forecasts reduce regulator’s

losses throughout. Since a forecasting error is here defined as a loss exceeding

the copula-specific cES forecast, the Frank copula generally not only features the
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fewest losses but also, in case of a loss, the exceedance is the smallest. Hence,

these gains for the Frank copula are substantial for all nominal coverage levels α.

For the larger nominal levels, economic gains are evident for all but three markets

and losses are typically reduced by 10% to 20%. The statistical significance

of these results is supported by means of the sign test according to which the

hypothesis of equal predictive ability between the copula-adjusted cES forecasts

and the benchmark Gaussian cES forecast is strongly rejected. For the Frank-

Gaussian comparison this rejection is uniquely in favor of the Frank and most

frequently observed for α = 0.025 and α = 0.05. This can be partially credited

to the limited sample size for α = 0.01. For a regulator with a loss function

as specified in (19), we conclude that losses may be reduced significantly when

adjusting cES forecasts by means of the standardized (rotated) Frank copula.

5 Conclusions

Based on the class of standardized copula distributions introduced by Lee &

Long (2009) we propose a semiparametric framework to capture higher order de-

pendence structures in standardized threshold GARCH innovations. The model

framework is motivated from empirical autodependence patterns as identified

within a large cross section of stock market processes. Although it relies on un-

conditionally (marginally) Gaussian innovations, the proposed model allows for

the ex-ante determination of nontrivial return quantiles, and, thus, is of potential

interest for purposes of risk management. We apply the new model to derive con-

ditional estimates of both value-at-risk and expected shortfall. As it turns out, in

particular mimicking empirical dependence structures by means of the standard-

ized Frank copula leads to an improvement of standard dynamic risk measures

that have been previously build under the assumption of bivariate Gaussian in-

novation tuples. Frank-adjusted forecasts for the conditional VaR and ES are

generally more conservative and may reduce extreme losses to economic agents

significantly. In particular, when taking the perspective of a regulating authority

the Frank based cES adjustments are valuable in economic terms.

With regard to future research we notice that the set of applied copula

distributions in this work has been limited to the Clayton, Gumbel and Frank

families. Similarly, marginal distributions have been presumed to be Gaussian.
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Hence, further improvements in forecast adjustments could be expected from

increasing the set of copulae or presuming heavy-tailed marginal distributions.

Moreover, instead of matching a discrete set of parameterized copula distributions

to the empirical counterparts, a finer tuning of the parameters that characterize

the best-fitting might be obtained by moment based estimation techniques. Fur-

thermore, we throughout tried to approximate the entire conditional distribution

of innovations underlying GARCH processes. With regard to conditional risk

assessment, one may opt to concentrate more on conditional tail characteristics.

In this respect it is worthwhile to mention that the considered class of standard-

ized bivariate copula allows to focus on tail dependence in a semiparametric and

flexible manner.
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A Matching and density estimation

A.1 Copula matching

In order to determine the closest approximation of the estimated model inno-

vations by means of a copula distribution, we contrast a discretized empirical

distribution of the estimated innovations against simulated copula counterparts

by means of a common goodness-of-fit statistic. Next, we briefly provide the em-

ployed discretization of bivariate distributions and then outline how particular

copula models are selected in a data driven manner.

A.1.1 Estimation of discretized frequencies

While an arbitrarily precise approximation of the continuous distribution of sim-

ulated copula data could be obtained by means of simulations, the restricted

length of available financial time series data calls for employing a rough grid for

discretization (Herwartz, 2012). With about 2200 observations for most empir-

ical time series used in this study (see Section 4.1) we employ a bivariate grid

consisting of 8× 8 = 64 cells.

In order to obtain a reliable approximation of the distribution of selected

copulae, R = 10000 samples of length S = 2000 are drawn from each parameter-

ized (rotated) copula obtaining a set of bivariate random variables (vr1,v
r
2, . . . ,v

r
S),

(r = 1, . . . , R), where vrs = Σ−
1
2wr

s. The joint density of each sample {vrs}Ss=1 is

then approximated by means of the following empirical frequencies:

hr(m,n) =
1

S

S∑
s=1

I((am ≤ vr1s < am+1)(an ≤ vr2s < an+1)), (21)

where am, an, with m,n = 1, . . . , 8, are taken from the grid vector

a = (−1000,−1.5,−1.0,−0.5, 0, 0.5, 1.0, 1.5, 1000)′. An estimate of the discretized

distribution for each copula is then

H(m,n) =
1

R

R∑
r=1

hr(m,n). (22)

where H(m,n) is the m,n element in the discretized distribution H. By this pro-

cedure a set comprising the Gaussian, 72 Clayton and Gumbel and 36 Frank
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distributions is obtained and denoted as HΦ, HC
j , H

G
j , j = 1, . . . , 72 and HF

j ,

j = 1, . . . , 36, respectively.

The empirical counterpart of the model specific distribution H(m,n) reads as

ĥ(m,n) =
1

T − 1

T−1∑
t=1

I((am ≤ ξ̂t < am+1)(an ≤ ξ̂t+1 < an+1)). (23)

where ξ̂t are the standardized TGARCH innovations, ξ̂t = rt/σ̂t.

A.1.2 Copula selection

The selection of the best copula from each family is implemented according to

a distance measure between the approximated empirical distribution and the

simulated counterparts. The distance function follows Herwartz (2012) and reads

as

D•j =
∑
m

∑
n

(H•j,(m,n) − ĥ(m,n))
2

H•j,(m,n)

. (24)

To find target distributions H•j∗ , this distance measure is minimized for each

family of copula distributions, i.e. j∗ = arg min
j
D•,j for • ∈ {C,F,G}. Owing

to the implied independence the Gaussian model is unique and always evaluated

for the purpose of benchmarking. These target distributions j∗ for each of the

three Archimedean copula families are then employed for cVaR and cES forecast

adjustments based on the previously estimated TGARCH processes described in

Section 3.1.

A.2 Copula density and quantile estimation

As the forecasting approach outlined in Section 3.1 requires the inversion of the

model innovations’ cCDF, we employ a Nadaraya-Watson (NW) estimator8 to

approximate the distribution of ξt+1 given ξt. The cCDF estimate is obtained

8Hall et al. (1999) develop a weighted Nadaraya-Watson (WNW) estimator that preserves the
property of the NW estimator to always obtain proper CDFs and also inherits the unbiasedness
property of the local linear estimator proposed by Yu & Jones (1998). See also Cai (2001) and
Cai (2002). In this application, the weights assigned by the WNW estimator are, however, found
to be identical for all realizations. Hence, the WNW cannot be distinguished in statistical terms
from the NW estimator here.
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from the respective simulated innovations vrs, s = 1, . . . , S along grid vectors x =

y = [−4.0,−3.9, . . . , 4] where x and y represent the conditioning and dependent

variable respectively. The cCDF estimate at grid point y given x reads as

F̂ (y|x) =

∑S
s=1Kh(x− v1,s)I(v2,s ≤ y)∑S

s=1Kh(x− v1,s)
, (25)

where Kh(.) = 1
h
K( .

h
) is the kernel function and h > 0 is the bandwidth param-

eter.9

From this discretized estimate of the conditional CDF, cVaR and cES estimates

can be obtained. In the general form, the estimate for the conditional quantile is

q̂α(y|x) = −F̂−1[α|x] (26)

where the approximation is along the grid vector x = (−4.0,−3.9, . . . , 4.0)′ and

linear interpolation is applied to determine q̂α. With q̂α at hand, the cES can

subsequently be estimated by means of the plugging-in method Cai & Wang

(2008) as:

ĉESα(y|x) = − 1

α

∫ q̂α(y|x)

−∞
yf̂(y|x)dy. (27)

As the estimated conditional CDF is discrete, an approximation of (27) is

ĉESα(y|x) = − 1

α

∑
yi≤q̂α(y|x)

(
yi −

yi − yi−1

2

)
[F̂ (yi|x)− F̂ (yi−1|x)], (28)

where yi is the i’th element of the grid vector y = (−4.0,−3.9, . . . , 4.0)′ and
yi−yi−1

2
accounts for the discreteness of estimates.

9In this study, the Gaussian kernel defined as K(.) = 1√
2π

exp(− 1
2 (x − xs)2) and a bandwidth

h = 1.06(S − 1)−0.2 are used throughout and yield satisfactory results. An optimal bandwidth
rule for conditional quantile estimation can be found in Cai (2002).

22



B Figures

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

DAX

ξt

ξ  t+
1

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

DJIA

ξt

ξ  t+
1

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

FTSE

ξt

ξ  t+
1

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

NIKKEI

ξt

ξ  t+
1

Figure 1: Standardized TGARCH(1,1,1) residuals (ξt vs. ξt+1) for four indices from
QML estimation. Solid lines indicate the absolute unit levels.

23



−2 0 2

−3

−2

−1

0

1

2

3

Gaussian copula

v 2

v1

−2 0 2

−3

−2

−1

0

1

2

3

Clayton copula

v 2

v1

−2 0 2

−3

−2

−1

0

1

2

3

Gumbel copula

v 2

v1

−2 0 2

−3

−2

−1

0

1

2

3

Frank copula

v 2

v1

Figure 2: Scatter plots for samples from standardized Gaussian and Archimedean cop-
ulae with τ = 0.250 prior to standardization. For further notes see Figure 1.
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τ = 0.25, 0.50 prior to standardization. For further notes see Figure 1.

25



0 0.05 0.1 0.15 0.2 0.25
0.08

0.1

0.12

0.14

0.16

0.18
DAX

τ

D
is

ta
nc

e

 

 
Rotation 1
Rotation 2
Rotation 3
Rotation 4

0 0.05 0.1 0.15 0.2 0.25
0.06

0.08

0.1

0.12

0.14

0.16
DJIA

τ

D
is

ta
nc

e

 

 
Rotation 1
Rotation 2
Rotation 3
Rotation 4

0 0.05 0.1 0.15 0.2 0.25
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11
FTSE

τ

D
is

ta
nc

e

 

 
Rotation 1
Rotation 2
Rotation 3
Rotation 4

0 0.05 0.1 0.15 0.2 0.25
0.08

0.1

0.12

0.14

0.16

0.18
NIKKEI

τ

D
is

ta
nc

e

 

 
Rotation 1
Rotation 2
Rotation 3
Rotation 4

Figure 4: Distance between samples from standardized (rotated) Clayton copulae and
TGARCH(1,1,1) residuals derived from four stock indices (solid horizontal line indicates
distance of the Gaussian). The x-axis corresponds to the dependence parameter τ prior
to copula standardization.
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TGARCH(1,1,1) residuals. For further notes see Figure 4.
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C Tables

Table 1: Data set and TGARCH parameter estimates

Index Country T γ0 γ1 γ−1 β1 Log-Lik
BSE Sensex 30 India 2229 7.14E-06 .050 .144 .858 6305.17
CAC 40 France 2308 2.48E-06 -.024 .183 .919 6992.90
DAX 30 Germany 2300 2.84E-06 -.015† .163 .918 6929.51
DJIA 30 USA 2266 1.61E-06 -.028 .174 .924 7443.02
Euro Stoxx 50 Eurozone 2317 2.05E-06 -.028 .182 .926 7007.46
FTSE 100 UK 2274 1.43E-06 -.010† .156 .920 7335.50
IBEX 35 Spain 2287 2.52E-06 -.007† .169 .909 6941.38
IBRX 50 Brazil 2215 8.48E-06 .019† .102 .901 6034.37
IPC 35 Mexico 2267 3.83E-06 .009† .148 .897 6879.95
JKSE Indonesia 2202 1.45E-05 .044 .192 .800 6405.46
KOSPI South Korea 2230 6.79E-06 -.005† .173 .883 6542.92
MIB 40 Italy 2313 1.41E-06 -.005† .132 .927 7087.52
Nasdaq 100 USA 2267 3.32E-06 -.009† .138 .922 6741.03
Nikkei 225 Japan 2207 5.83E-06 .026 .151 .870 6454.65
RTSI 50 Russia 2287 1.45E-05 .047 .114 .861 5899.33
S&P 500 USA 2267 1.54E-06 -.029 .161 .934 7294.96
S&P TSX Canada 2234 1.88E-06 .009† .115 .913 7285.75
SSEC China 2274 2.60E-06 .042 .015 .942 6267.05

Own calculations using EViews (version 5.1) and the ML-ARCH (Marquardt) algorithm
Parameters indicated with † are zero with 5% significance.
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