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A Noncausal Autoregressive Model with Time-Varying

Parameters: An Application to U.S. Inflation∗

by

Markku Lanne Jani Luoto

University of Helsinki University of Helsinki

Abstract

We propose a noncausal autoregressive model with time-varying parameters, and

apply it to U.S. postwar inflation. The model fits the data well, and the results

suggest that inflation persistence follows from future expectations. Persistence has

declined in the early 1980’s and slightly increased again in the late 1990’s. Estimates

of the new Keynesian Phillips curve indicate that current inflation also depends on

past inflation although future expectations dominate. The implied trend inflation

estimate evolves smoothly and is well aligned with survey expectations. There is

evidence in favor of the variation of trend inflation following from the underlying

marginal cost that drives inflation.
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1 Introduction

Different univariate time series models have been successfully applied to describe in-

flation dynamics and to forecast inflation. Recently the family of models considered

in this literature has been extended to noncausal autoregressive (AR) models that, in

contrast to conventional causal AR models, allow for explicit dependence on future

values. In particular, Lanne and Saikkonen (2011) introduced a new noncausal AR

model and applied it to U.S. consumer price inflation, while Lanne, Luoma, and Luoto

(2012) considered the Bayesian analysis of this model with an application to the same

inflation series. The general conclusion of these papers is that despite being highly

autocorrelated, inflation is dominated by future expectations, with past values hav-

ing a lesser effect. In addition to accurately describing inflation dynamics, noncausal

autogregressive models have also proved superior in forecasting. Lanne, Luoma, and

Luoto (2012), and Lanne, Luoto, and Saikkonen (2012) demonstrate significant im-

provement over conventional causal AR models in the accuracy of forecasts of U.S.

consumer price and GDP inflation, respectively, especially at longer forecast horizons.

In this paper, we extend the noncausal autoregressive model of Lanne and Saikko-

nen (2011) by allowing for time-varying parameters. While our extension may turn

out to be useful in modeling many economic time series, we primarily focus on in-

flation for two reasons. First, in view of the good performance of the noncausal

autoregressive models for inflation in the previous literature, it is interesting to see

whether anything can be gained by allowing for time-varying parameters. Second,

models with time-varying parameters are increasingly being employed in the empir-

ical literature on inflation. This is especially the case when the primary concern is

modeling trend inflation, usually interpreted as public’s perception of the inflation

goal of the central bank (see, e.g., Cogley and Sbordone (2008), and Cogley et al.

(2010)).

Because of its complexity, we estimate the new model by Bayesian methods, as

has typically been done also in the previous empirical literature on models with time-

varying parameters. The estimation method is built upon our previous work on

Bayesian analysis of noncausal AR models (see Lanne, Luoma, and Luoto (2012)). In
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particular, we propose a non-standard simulation algorithm for the joint estimation

of the time-varying parameters and future innovations. The non-standard features of

the algorithm are related to the future innovations required for the estimation, but

given the future innovations, the standard methods for state space models, including

Kalman filtering and simulation smoothing, can be used for all the parameters (see,

e.g., Cogley and Sargent (2005)).

In addition to estimation and forecasting in the unrestricted noncausal AR model

with time-varying parameters, we also consider the estimation of the new Keynesian

Phillips curve (NKPC) based on the new model, by placing additional restrictions

along the lines of Lanne and Luoto (2013), who used a noncausal AR model with

constant parameters to this end. A central problem in the estimation of the NKPC

is that the model depends on an unobserved marginal cost variable that is diffi cult

to measure, but estimation based on the noncausal AR model has the advantage

that no marginal cost proxy is needed, but the variable is latent. However, assuming

constancy of the parameters of the AR model, as in Lanne and Luoto (2013), leads

to ignoring the effect of structural breaks due to technological changes, among other

things, that may have taken place over time. Therefore, it is interesting to see, to

what extent having time-varying parameters in the AR model affects the general

conclusions.

Our empirical results concern postwar quarterly U.S. consumer price inflation.

A purely noncausal AR model is selected for this series, as was also the case with

the corresponding constant-parameter models in Lanne and Saikkonen (2011), and

Lanne, Luoma and Luoto (2012). In accordance with previous empirical results,

inflation persistence seems to have decreased considerably since the early 1980’s,

with a slight increase in persistence again since the late 1990’s. In forecasting, the

varying-parameter noncausal model turns out to be superior to both the correspond-

ing constant-parameter noncausal AR model and the varying-parameter causal AR

model by a relatively wide margin.

Even though the purely noncausal ARmodel is selected, in estimating the (hybrid)

NKPC, we allow for dependence on past inflation to facilitate gauging its importance

in the new Keynesian model. When more structure is imposed in the form of the
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NKPC restrictions, we find that both past inflation and the (implicit) marginal cost

also have a role in the determination of U.S. inflation, in accordance with the new

Keynesian theory. The NKPC estimates suggest that changes in persistence have

been inherited from the process driving inflation instead of following from changes in

the parameters of the NKPC, in contrast to some recent literature, including Cogley

and Sbordone (2008). Moreover, not allowing for time variation seems to exaggerate

the importance of inflation expectations in determining current inflation.

Our model also lends itself to estimating the evolution of trend inflation. As

recently pointed out by Chan et al. (2012), the common practice in the literature of

using a driftless random walk specification has the counter-intuitive implication that

trend inflation becomes unbounded. As a solution to this problem, Chan et al. (2012)

impose explicit bounds on the trend inflation; in the framwork of the noncausal AR

model, the NKPC restrictions seem to work in a way similar to such bounds. In

particular, while the trend inflation implied by the unrestricted noncausal AR model

turns out to follow observed inflation quite closely in the same way as many previous

estimates (including those based on the UC-SV model of Stock and Watson (2007)

and the Trend-SV model of Chan et al. (2012)), the evolution of trend inflation

implied by our model incorporating the NKPC restrictions is smooth and follows

survey expectations quite accurately.

The rest of the paper is structured as follows. In Section 2, we describe the

noncausal AR model with time-varying parameters and specify the priors of its para-

meters. In Section 3, the details of estimation and inference are presented, while in

Section 4, the estimation of the NKPC based on a noncausal AR model with time-

varying parameters is discussed. Section 5 contains the empirical results. Finally,

Section 6 concludes. The details on the estimation algorithm as well as discussion on

its effi ciency are deferred to the appendix.

2 Model

In this section, we first describe the noncausal AR model with time-varying para-

meters, which is a generalization of the constant-parameter noncausal AR model of
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Lanne and Saikkonen (2011). As the model will be estimated by Bayesian meth-

ods, after its description, we discuss the hierarchical prior distributions for the latent

time-varying parameters to be used in the subsequent empirical application to U.S.

inflation in Section 5. Hierarchical priors have typically been employed in the esti-

mation of latent-variable models, and the specific priors we use are common in the

macroeconomic literature on time-varying-parameter (TVP) models (see, e.g., Prim-

iceri (2005), Koop and Potter (2011), and Chan et al. (2012)). The popularity of the

Bayesian approach in the econometric analysis of such models follows from the fact

that it facilitates reducing the problem to a set of tractable sub problems.

2.1 Noncausal AR Model with Time-Varying Parameters

Let us assume that inflation yt (or some other stochastic process) is generated by

φt (B)ϕt
(
B−1

)
yt = ct + εt, t = 1, . . . , T, (1)

where φt (B) = 1 − φt1B − · · · − φtrBr, ϕt (B−1) = 1 − ϕt1B−1 − · · · − ϕtrB−s, B is

the usual backward shift operator, ct denotes the time varying intercept, and εt is a

white noise process with mean zero and time-varying scale parameter σ2
t .
1 We use the

abbreviation TVP-AR(r, s) for the varying-parameter model defined by (1). If ϕt1 =

· · · = ϕts = 0 for all t = 1, . . . , T , model (1) reduces to the causal TPV-AR(r, 0)

model with yt depending on its past but not future values. The more interesting cases

arise, when this restriction does not hold. If φt1 = · · · = φtr = 0 for all t = 1, . . . T ,

we have the purely noncausal TVP-AR(0, s) model with dependence on future values

only. In the mixed TVP-AR(r, s) case where neither restriction holds, yt depends on

its past as well as future values.

1In the noncausal AR model with constant parameters, a non-Gaussian error distribution is

required for identification (see Lanne and Saikkonen (2011)). While no proof is given, our exper-

imentation with Gaussian errors indicate that this is not the case when (part of) the parameters

are time varying. Nevertheless, in Section 5, following Lanne and Saikkonen (2011), and Lanne,

Luoma, and Luoto (2012), a Student’s t distribution (instead of a Gaussian distribution typically

entertained in the previous literature) will be assumed for improved fit. This family of distributions

has also recently been introduced into macroeconomic models by Chib and Ramamurthy (2011) and

Cúrdia et al. (2012).
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We assume that the polynomials φt (z) and ϕt (z) have their zeros outside the unit

circle for t = 1, . . . , T , so that

φt (z) 6= 0 for |z| ≤ 1 and ϕt (z) 6= 0 for |z| ≤ 1. (2)

In what follows, it will sometimes be convenient to express the model in terms of the

processes ut = ϕt (B−1) yt and υt = φt (B) yt. The former condition in (2) quarantees

that the process ut has the following backward moving average presentation,

ut =
∞∑
j=0

αtjwt−j, (3)

where wt = ct + εt and αtj is the coeffi cient of zj in the power series expansion of

φt (B)−1. Similarly, by the condition that ϕt (z) has its zeros outside the unit circle,

the process υt has the forward moving average representation

υt =
∞∑
j=0

βtjwt+j, (4)

with βtj the coeffi cient of z
j in the power series expansion of ϕt (B−1)

−1.

For further interpretation, we may express yt in terms of past values and future

errors. By writing (1) as

φt (B)ϕt
(
B−1

) (
yt − [φt (B)]−1 [ϕt (B−1

)]−1
ct

)
= εt,

denoting the time-varying mean of yt as µt ≡ [φt (B)]−1 [ϕt (B−1)]
−1
ct and multiplying

the resulting equation by ϕt (B−1)
−1, we obtain

yt − µt = φt,1
(
yt−1 − µt−1

)
+ · · ·+ φt,r

(
yt−r − µt−r

)
+
∞∑
j=0

βtjεt+j, (5)

with βtj as in (4). This shows that, in the general case, (demeaned) yt depends on its

own lags and an infinite number of future errors. Because the errors are dependent on

past values of yt, the conditional expectation of the last term is, in general, different

from zero, and, hence, also the conditional expectation of yt depends on future errors.

Unfortunately, this also complicates the computation of forecasts, but to that end, we

suggest the following straightforward extension of the procedures that Lanne, Luoma,
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Luoto (2012), and Lanne, Luoto, and Saikkonen (2012) proposed for the constant-

parameter noncausal ARmodel. Multiplying (1) by ϕt (B−1)
−1, using (4), and leading

the resulting equation by h > 0 periods, we obtain

yT+h = φT+h,1yT+h−1 + · · ·+ φT+h,ryT+h−r +
∞∑
j=0

βT+h,jwT+h+j, (6)

which can be used to recursively compute the optimal (density) forecast of yT+h con-

ditional on information in period T , provided we are able to evaluate the conditional

density of υT+h =
∞∑
j=0

βT+h,jwT+h+j. In practice, the latter and, hence, the forecasts

are obtained as a by-product of the estimation algorithm (see Section 3 below). To

compute υT+h, following Lanne, Luoma, and Luoto (2012), and Lanne, Luoto, and

Saikkonen (2012), we approximate it by
M∑
j=0

βtjwt+j, where M is a positive integer.

The approximation error can be made negligible by setting M suffi ciently large.

As mentioned in the Introduction, the TVP-AR model also facilitates computing

trend inflation that we denote by yt. We define it by the moving endpoint con-

cept of Kozicki and Tinsley (1998) which is standard in the literature, i.e., yt =

limh→∞Etyt+h (this equals the Beveridge and Nelson (1981) decomposition if there

are no deterministic terms). Leading equation (5) by h periods and taking conditional

expectations conditional on information at period t, we obtain

Et
(
yt+h − µt+h

)
= φt+h,1Et

(
yt+h−1 − µt+h−1

)
+ · · ·+ φt+h,rEt

(
yt+h−r − µt+h−r

)
+Et

(
∞∑
j=0

βt+h,jεt+h+j

)
.

Because εt+h is virtually unpredictable by information at period t for h → ∞, the
last term converges to zero, and under the stationarity condition (2), this is the case

also for the other terms on the right-hand side. Thus, a close approximation for

yt = limh→∞Etyt+h is given by limh→∞Etµt+h, which, following Cogley and Sargent

(2005), we approximate by [φt (1)]−1 [ϕt (1)]−1 ct, calculated from the joint posterior

distribution of the intercept and AR coeffi cients for t = 1, . . . , T .
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2.2 Prior Distributions

As mentioned above, the model is estimated by Bayesian methods. To that end,

we first specify the hierarchical prior distributions to be used for the time-varying

parameters. All the priors are standard, and have previously been used in empirical

macroeconomics by, inter alia, Cogley and Sargent (2001, 2005), Primiceri (2005),

and Cogley and Sbordone (2008). Throughout, underlining a parameter refers to a

prior hyperparameter set by the researcher.

We assume that the error term εt follows Student’s t distribution with location

parameter zero, scale parameter σ2
t , and λ degrees of freedom. To make the model

operational, we employ the following parameterization (see Geweke (1993)):

εt = σth̃
−1/2
t ηt, (7)

where ηt is a standard normal random variable, and λh̃t is chi-square distributed with

λ degrees of freedom (χ2 (λ)). While a non-Gaussian error distribution may not be

necessary for the identification of the AR coeffi cients φt = (φt1, . . . , φtr)
′ and ϕt =

(ϕt1, . . . , ϕts)
′ in the TVP-AR model (unlike the noncausal AR model with constant

parameters, see footnote 1), a Student’s t error distribution is nevertheless useful for

improved fit. Under the chosen parameterization, yt following (1) is conditionally

Gaussian conditional on σ2
t and h̃t. As will be seen in Section 3, this property is

critical in building a decent posterior sampler (see also Lanne, Luoma, and Luoto

(2012)). Notice that the random vector h̃T =
(
h̃1, . . . , h̃T

)′
can also be interpreted as

a vector of parameters with hierarchical priors λh̃t ∼ χ2 (λ) and λ ∼ Exp (λ) , where

λ is a hyperparameter.

Our hierarchical prior density for σ̃t ≡ log σt can be defined through the random

walk process

σ̃t = σ̃t−1 + ξt, (8)

where ξt ∼ N (0, ω2), and for the innovation variance ω2 we assume an inverse-gamma

prior density with shape and rate parameters a and b, respectively, i.e., p (ω2) =

iGamma(ω2 |a, b). The obvious drawback of this commonly used prior is that, because

of its random walk structure, σ̃t hits any upper or lower bound with probability one.
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Nevertheless, the random walk model tends to work well for σ̃t in practice as our

results in Section 5 as well as those of Chan et al. (2012) and Primiceri (2005)

suggest. The random walk assumption (8) has also the advantage that it reduces the

number of estimated parameters (compared to the common AR(1) assumption; see,

e.g., Fernández-Villaverde and Rubio-Ramírez (2007)).

We assume the following dynamics for the time-varying intercept and the AR

coeffi cients θt = (ct,φ
′
t)
′ and ϕt:

θt = θt−1 + ε1t (9)

and

ϕt = ϕt−1 + ε2t, (10)

where the innovation vectors ε1t and ε2t are assumed to be prior indenpendent. In

particular, ε1t and ε2t are multivariate normal with zero mean and covariance matrices

Q1 and Q2, respectively. Following the literature, we assume an inverse-Wishart

prior for the innovation variance, i.e., f (Qi) = iW
(
Qi

∣∣∣νi,Qi

)
, where the degrees

of freedom parameters νi, and the scale matrices Q
i
are the prior hyperparameters

assumed to be known by the researcher.

3 Simulation method

Lanne, Luoma, and Luoto (2012) considered Bayesian inference in the noncausal AR

model with constant parameters, and in this section we discuss how their simulation

method can be extended to estimate the parameters of the TVP-AR model. Unfor-

tunately, allowing for time variation brings about complications. In particular, even

though it is possible to write up the likelihood function of the TVP-AR model (1),

it is by construction complex and cannot be successfully used in posterior inference.

Therefore, we implement estimation by a Metropolis-Hastings Markov chain Monte

Carlo (MCMC) algorithm. Here we sketch the algorithm, whose details can be found

in Appendix A.

To simplify notation, we stack the row vectors θ′t and ϕ
′
t for t = 1, . . . , T into

the T × (r + 1) and T × s matrices θT and ϕT , respectively, and define the (T × 1)
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vector σT = (σ1, . . . , σT )′. The proposed sampler exploits the full conditional posterior

distributions of groups of unobservables, containing the latent variables θT , ϕT , σT ,

h̃T , yT+1, . . . , yT+s (five groups) as well as the prior hyper parameters ω, Qi (i = 1, 2),

and λ (four groups). Simulating in turn from the unrestricted conditional posterior

distributions of θT and ϕT is straightforward, and it can be done by a standard

simulation smoother for Gaussian state space models, such as those in Carter and

Kohn (1994) or Durbin and Koopman (2002), the latter of which is used in this

paper. This can be seen by expressing (1) in terms of ut or υt (see Lanne, Luoma, and

Luoto (2012)), which results in linear but non-Gaussian observation equations for the

AR parameters θt and ϕt. The Gaussian state space representation is then obtained

by substituting (7) into these observation equations and using (9) and (10) as the

state transition equations for θt and ϕt, respectively. We impose the stationarity

restrictions (2) by discarding the draws from the unresticted posterior distributions

of θT or ϕT that do not lie in the stationary region. This is similar to Cogley and

Sargent (2005); see also the discussion in Koop and Potter (2011).

We simulate from the conditional posterior distribution of σT using the method of

Kim et al. (1998), who propose a mixture of normals approximation of the logarithm

of the squared errors that are logχ2 (1) distributed. With this approximation, we can

transform the model into a Gaussian one, obtaining a Gaussian observation equation

for (8) using (7). Thus, the simulation smoother of Durbin and Koopman (2002) can

be used for the state space model defined by the resulting observation equation and

(8). The conditional posterior density of the vector of scale parameters h̃T can be

obtained by simulation in the usual way. In particular, its independent elements h̃t

(t = 1, . . . , T ) can be drawn using a chi-square distribution, as explained in Geweke

(2005).

The future observations yT+1, . . ., yT+s (or equivalently wT+1, . . ., wT+M) cannot

be drawn in a straightforward manner. To that end, we follow Chib and Greenberg

(1994) in using a component of the posterior density as a proposal density for a

Metropolis-Hastings (MH) step. In particular, we use the hierarchical prior distribu-

tion of wT+1, . . ., wT+M to draw proposals for yT+1, . . ., yT+s which are then accepted

with a probability based solely on (1). Thus, we do not need to evaluate the unknown
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joint density of (yT+1, . . ., yT+s), but we can simulate from it by a straighforward ex-

tension of the forecasting procedures of Lanne, Luoma, and Luoto (2012), and Lanne,

Luoto, and Saikkonen (2012) discussed in Section 2.1 above. In particular, a draw

from the proposal distribution of yT+1, . . ., yT+s (or equivalently wT+1, . . ., wT+M) is

obtained by simulating the random variables wT+1, . . ., wT+M in the last term of (6)

from their hierarchical prior distribution and using these simulated values to compute

yT+h recursively for h = 1, 2, ..., s using (6). A Student’s t distribution with location

parameter cT , scale parameter σ2
T , and λ degrees of freedom is used to simulate wT+1,

. . ., wT+M , and the AR coeffi cients φT+1, . . ., φT+s and ϕT+1, . . ., ϕT+s are simulated

from the random walk processes (9) and (10), respectively. This strategy seems to

work well in practice, with acceptance rates in the MH step typically exceeding 50%.

As far as the hyper parameters ω and Qi (i = 1, 2) are concerned, they can

be simulated directly using the inverse-Gamma and inverse-Wishart distributions,

respectively. Following Geweke (2005), we simulate from the conditional posterior of

the degree-of-freedom parameter λ using an independence-chain MH algorithm.

4 New Keynesian Phillips Curve

The TVP-AR model can be used to estimate the new Keynesian Phillips curve, which

is a central building block of modern macroeconomic models that can be derived from

several sets of microfoundations. According to its hybrid version often attributed to

Galí and Gertler (1999),

yt = γfEtyt+1 + γbyt−1 + γxt, (11)

inflation yt depends on expected future inflation, lagged inflation and a measure of

marginal cost xt. Lanne and Luoto (2013) showed how the NKPC can be estimated

based on a univariate noncausal constant-parameter AR model specified for inflation.

A great advantage of their procedure is that it requires no proxy for the marginal cost

that is diffi cult to measure. However, they implicitly assume a time series process with

constant parameters for the marginal cost variable, which may be restrictive in that,

among other things, it does not account for structural changes likely to have taken
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place over multiple decades. The estimation of the NKPC based on the TVP-AR

model (1), in contrast, facilitates taking such effects into account.

The relation of the parameters of the (hybrid) NKPC to those of the TVP-AR

model can be seen as follows. As pointed out in Lanne and Luoto (2013), the hybrid

NKPC has the following expression:

(1− φB)
(
1− ϕB−1

)
yt = zt, (12)

where

φ =
1

2

(
γ−1
f −

√
γ−2
f − 4γ−1

f γb

)
and ϕ−1 =

1

2

(
γ−1
f +

√
γ−2
f − 4γ−1

f γb

)
,

and zt is a linear combination of the expectation error and the marginal cost variable

xt. If zt were independently and identically distributed, (12) would be the time

invariant noncausal AR(1,1) model of Lanne and Saikkonen (2011). However, the

marginal cost is likely to be autocorrelated, which is supported by the persistence of

the theoretically implied variables driving inflation. To allow for autocorrelation in

zt, we assume that its dynamics can be successfully approximated by a (potentially

noncausal) TVP-AR(r − 1, s− 1) process:

at (B) bt
(
B−1

)
zt = ct + εt, (13)

where at (B) = 1− at1B− · · · − at,r−1B
r−1, bt (B−1) = 1− bt1B−1− · · · − bt,s−1B

−s+1,

and ct and εt are defined as in (1). Substituting (13) into (12) yields

at (B) bt
(
B−1

)
(1− φB)

(
1− ϕB−1

)
yt = ct + εt. (14)

Defining φt (B) ≡ at (B) (1− φB) and ϕt (B−1) ≡ bt (B−1) (1− ϕB−1), it can be seen

that (14) is the TVP-AR(r, s) process with the restriction that two of the parameters

are constant over time. Estimation of the TVP-AR model under these restrictions

thus yields estimates of the parameters of the NKPC.

We use the abbreviation TVP-NKPC(r, s) for the restricted varying-parameter

model defined by (14), which is more general than that used by Lanne and Luoto

(2013) in that it allows for a time-varying error process. The prominent source of
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such variation are potential structural breaks in the marginal cost variable caused by

technological changes and shifts in policy regimes that we assume to be captured by

the time-varying parameters of (13). Alternatively, or in addition to this, the effect

of marginal cost on inflation may vary over time, i.e., γ in (11) may be time varying,

giving rise to time variation in (13). The MCMC algorithm for the TVP-NKPCmodel

is a straightforward modification of the algorithm discussed in Section 3 above; the

details of the modifications required are given in Appendix B.

One advantage of our approach in the TVP framework is that it can capture the

effect of potentially nonzero steady-state inflation. As recently pointed out by Sahuc

(2006), if steady-state inflation is different from zero (in contrast to what is assumed

in deriving (11)), the true NKPC contains an additional forward-looking term, which

is then included in zt and, thus, does not affect the estimation of coeffi cients γf and

γb. As steady-state inflation very likely differs from zero, this is an obvious advantage

although Sahuc (2006) also shows that the effect of assuming a zero-inflation steady

state on the coeffi cients of the NKPC is minor when prices are highly indexed.

The shifting trend involved in (14) can be interpreted as evolving trend inflation

in the same way as in the unrestricted TVP-AR model, and in this case the time vari-

ation in trend inflation can be thought of as being inherited from the (unobserved)

marginal cost variable xt. This is different from Cogley and Sbordone (2008) in that

we assume a constant (potentially nonzero) steady state, while their approach is based

on a shifting steady state of the Calvo pricing model with time-invariant structural

parameters, leading to a NKPC with time-varying coeffi cients. It can be shown that

replacing φ and ϕ in (14) with time-varying coeffi cients yields a TVP-AR(r,s) rep-

resentation of Cogley and Sbordone’s (2008) NKPC, and hence, comparison of the

unrestricted TVP-AR model (1) and the restricted TVP-NKPC model (14) provides

information on the source of time variation in trend inflation. Specifically, the signif-

icance of the restrictions underlying (14) can be interpreted in favor of the marginal

cost variable xt (potentially undergoing structural changes) as the major factor ex-

plaining the shifting trend inflation instead of an evolving steady state.
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5 Empirical Results

We estimate models (1) and (14) for U.S. inflation computed as yt = 400×log (Pt/Pt−1),

where Pt is the consumer price index (CPI) for all consumers. Our quarterly data

set covers the period from 1947:1 to 2012:2, and the source of the data is the FRED

database of the Federal Reserve Bank of St. Louis.

In estimation, we use the priors discussed in Section 2.2 above. The values of the

prior hyperparameters of the TVP-AR(r, s) models are mainly taken from Chan et

al. (2012), who also considered a similar quarterly inflation series. The prior mean

λ is set at 5. The starting values of the time-varying parameters are set at zero

and the variances associated with the logarithmic scale and intercept parameters and

the AR coeffi cients at 5 and 1, respectively. The AR coeffi cients are assumed prior

independent, and the roots of the polynomials with the initial AR coeffi cients ϕ0 (z)

and φ0 (z) are assumed to lie outside the unit circle. We assume that ν1 = ν2 =

10 and that the scale matrices Q
1
and Q

2
are diagonal. In particular, their diagonal

elements are set such that the prior means of the innovation variances of the time-

varying intercept and AR coeffi cients equal 0.1412 and 0.03162, respectively. For ω2,

the shape and rate parameters a and b are set in such a way that the prior inverse

Gamma density has 10 degrees of freedom, and the prior mean of the innovation

variance ω2 is 0.2242. For a detailed motivation of the values of these hyperparameters

we refer to Chan et al. (2012). Our results also suggest that the estimates based on

the chosen prior distribution of the degree-of-freedom parameter are identical to those

based on less informative priors, indicating that estimation is not driven by the priors.

However, it is our experience that faster convergence is achieved when the priors are

not flat.

5.1 Unrestricted TVP-AR Model

Following Lanne and Saikkonen (2011), we start by specifying a Gaussian TVP-AR(l,

0) model and check whether the residuals are serially uncorrelated and normally dis-

tributed. To that end, we calculate the Bayes p values P
(
T
(
yT ,Θ

)
≤ T

(
ypred,Θ

) ∣∣yT )
based on the Ljung-Box autocorrelation and Jarque-Bera normality tests (see, e.g.,
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Lancaster (2004, 95)). Here ypred denotes the predicted data,Θ the matrix containing

all the parameters of the TVP-AR(l) model, and T (·) the test statistic of interest.
Small Bayes p values are interpreted in favor of autocorrelation or non-normality.

Given the priors defined above, the Gaussian TVP-AR(4,0) model adequately cap-

tures the autocorrelation in the inflation series (for the Ljung-Box test statistic with

five lags, the Bayes p values range from 16.5% to 30.9% with l less than four, in-

creasing sharply to 59.2% when l = 4). The Bayes p values based on the Jarque-Bera

test hover around 10%, giving strong evidence against the hypothesis of normally

distributed errors. In particular, the residuals are leptokurtic, suggesting that a fat-

tailed error distribution, such as a Student’s t distribution with a small value of the

degree-of-freedom parameter λ might be suitable.2

After specifying the adequate autoregressive order, the next step is determining

the correct orders of the causal and noncausal lag polynomials, r and s, respectively.

To that end, we compute the sum of the one-step-ahead log predictive likelihoods (PL)

evaluated at the observed values over the period from 1960:1 to 2012:2, and select the

model producing the greatest value. The one-step-ahead forecasts are computed as

recursive pseudo out-of-sample forecasts based on reestimated models at each step,

with the estimation sample always starting from 1947:1. Following Bauwens et al.

(2011) and Clark and Doh (2011), we then compute the predictive likelihoods using

kernel density estimation of the forecasted densities of the TVP-AR(r, s) models. We

use the PL because it is straightforward to evaluate unlike the marginal likelihood. PL

was also used by Geweke and Amisano (2010) and Chan et al. (2012), among others,

and as emphasized by Geweke (1999, 2001) there is a very close connection between

it and the log of the marginal likelihood. In particular, when the log predictive

likelihoods are evaluated at the observed values over the entire sample period (1947:1-

2012:2 here) these two measures are equivalent. Based on the values reported in Table

1, the TVP-AR(0,4) model is selected by a wide margin to all other fourth-order

TVP-AR models, with the TVP-AR(1,3) model being the next-best alternative. The

posterior mean of the degree-of-freedom parameter λ equals 5.038 (with standard

2The detailed results are not reported, but they are available upon request.
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deviation 2.508), lending support to a fat-tailed error distribution.

The evolution of the posterior estimates of the time-varying parameters and trend

inflation involved in the selected TVP-AR(0,4) model is depicted in Figure 1. In

addition to the posterior median, the 16 and 84 per cent quantiles of the posterior

densities are reported. There are substantial changes in the estimated values of the

parameters over time. The estimates of ϕt1 and ϕt3 increase gradually from the mid-

1960’s until the mid-1970’s and start decreasing again in the early 1980’s. The value

of ϕt4, on the other hand, stays fairly constant at a small value, while there is a

gradual shift to a lower level of ϕt2 between the mid-1960’s and the early 1980’s.

Hence, in total, the dependence in the inflation process seems to have decreased

considerably since the early 1980’s. The logarithmic scale parameter σ̃t is very volatile

with peaks in the early 1950’s, the early 1980’s and the late 2000’s. In general, our

findings are similar to those in the previous literature, including Cogley and Sbordone

(2008), Clark and Doh (2011) and Chan et al. (2012). While in their causal (vector)

AR models, decreasing dependence, measured by autocorrelation, necessarily implies

smaller persistence, that need not be the case in the noncausal model, where the

degree of persistence can depend on the initial level of inflation at each time point

as well as the size of the shock being considered. However, according to the measure

of persistence based on predictability recently suggested by Cogley et al. (2010), the

changes in dependence implied by the TVP-AR model indeed seem to translate into

changes in persistence.3 The trend inflation yt is accurately estimated, but without

further restrictions, there are occasionally very high values and rapid changes, in line

with the UC-SV model of Stock and Watson (2007) and the Trend-SV model of Chan

et al. (2012).

5.2 New Keynesian Phillips Curve

As pointed out in Section 4, the NKPC can be estimated in the framework of the

TVP-AR model by constraining two of the autoregressive parameters constant in

time. However, the AR(0,4) model selected above is not suitable for this purpose,

3The results are not reported but they are available upon request.
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as the lag polynomial φt (B) must be of order one or higher to facilitate the estima-

tion of the coeffi cient of lagged inflation in the hybrid NKPC (11). Taken at face

value, the purely noncausal TVP-AR model implies that inflation only depends on

future expected inflation and the marginal cost, with no role left to past inflation.

Therefore, we take the TVP-AR(1,3) model deemed the second best by the PL cri-

terion as the starting point. This entails assuming that past inflation may play a

role in the determination of current inflation. If this is not the case, it should be

reflected by the estimates of the NKPC. We set the prior means ϕ and φ of the

time-invariant AR coeffi cients in (14) at 0.993 and 0.427, respectively. These values

imply a relatively forward-looking NKPC, corresponding to prior means of γf and

γb equal to 0.697 and 0.300, respectively. Our chosen value of ϕ reflects the as-

sumption that the sum of γf and γb is close to unity, which, in terms of the deep

parameters of the NKPC, corresponds to setting the discount factor in the new Key-

nesian model underlying the NKPC close but not equal to unity (for which reason

we set γf at 0.697, slightly below 0.7). In order to give suffi cient weight to data

information, we specify relatively uninformative priors for the parameters ϕ and

φ by setting the prior precision parameters hϕ and hφ at 1. In other words, these

priors are virtually flat in the region of the parameter space considered: 0 ≤ ϕ < 1

and 0 ≤ φ < 1.4 The priors for the time-varying parameters are the same as in

estimating the unrestricted TVP-AR model above.

The constancy of ϕt and φt, or equivalently of γf and γb, assumed in our approach

to estimating the NKPC, is indeed strongly supported by the data, as discussed in

detail at the end of Subsection 5.3. The posterior mean of the degree-of-freedom para-

meter equals 6.952 with standard deviation 3.470, again indicating a fat-tailed error

distribution. The corresponding point estimates of the time-invariant coeffi cients ϕ

and φ equal 0.709 and 0.339 with standard deviations 0.093 and 0.111, respectively.

Figure 2 shows the evolution of the posterior estimates of the time-varying parameters

4The results are checked using hϕ = 10
2. This implies a relatively diffuse and uninformative joint

prior for γf and γb, except that it is informative with respect to the restriction γf + γb ≈ 1. With
this prior, the posterior means (standard deviations) of γf and γb are estimated to be 0.646 (0.056)

and 0.237 (0.065), respectively. Hence, the results seem quite robust with respect to the priors.
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and trend inflation. As in the case of the unrestricted AR(0,4) model above, the esti-

mates imply declining persistence in the inflation process since the early 1980’s. How-

ever, in contrast to those results, persistence seems to have been increasing slightly

again since the late 1990’s. The likeliest interpretation of the diminishing persistence

is a decline in the persistence of the variable driving inflation. This can be seen by

noticing that in the TVP-NKPC model, the time-varying AR parameters are related

to the process of the linear combination of the expectation error and the marginal

cost variable xt (multiplied by its effect on inflation, γ, that may also be time vary-

ing, γt), presumably dominated by the latter. Following Lanne and Luoto (2013),

we estimated the γtxt series implied by the TVP-NKPC model (not shown), and it

indeed seems to exhibit less serial correlation in the 1980’s and 1990’s. Thus, taking

the new Keynesian model at face value, the diminishing autocorrelation of inflation

suggested by the results of the TVP-AR model above (and also reported in the pre-

vious literature, see e.g. Stock and Watson (2007)) seems mostly inherited from the

driving variable. The evolution of the logarithmic scale parameter σ̃t is similar to that

in the unrestricted model. Under the theory-induced restrictions, the trend inflation

yt is very accurately estimated. Moreover, it evolves fairly smoothly, and the spikes

implied by the unrestricted model are absent.

The joint posterior density of the NKPC parameters is depicted in Figure 3. The

perspective plot shows that the distribution of γf and γb is unimodal with the mode at

approximately γf = 0.6 and γb = 0.25. However, the probability of the region of the

parameter space where γf is smaller and γb is relatively large, is also non-negligible,

indicating the relative importance of past inflation. The posterior means of γf and γb

equal 0.579 and 0.269 with standard deviations 0.083 and 0.077, respectively. Hence,

the results are qualitatively well aligned with the previous literature in that expected

future inflation is found more important in determining current inflation, but past

inflation is also important. However, compared to Lanne and Luoto (2013), the

estimate of γf is smaller in relation to that of γb. This suggests that not allowing for

structural changes in the marginal cost or its effect on inflation tends to somewhat

exaggerate the importance of inflation expectations. Nevertheless, the differences are

minor.
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5.3 Trend Inflation

To facilitate convenient comparison, the trend inflation estimates implied by the TVP-

AR and TVP-NKPC models are reproduced in Figure 4. In the the upper panel also

the observed inflation series is included, while, for more detailed inspection, in the

middle panel, only the two estimated trend inflation series are depicted. It is clear that

while the trend inflation estimate implied by the unrestricted AR(0,4) model tends

to follow the observed inflation quite closely at times, the estimate based on the

AR(1,3) model with the NKPC restrictions exhibits no such tendency. Moreover, as

seen from the bottom panel of Figure 4, the estimates of the 16% and 84% posterior

quantiles capture the mean of long-run survey expectations of inflation very well,

which indeed should be the case if trend inflation is to be interpreted as the public’s

perception of the inflation target.5 This is in contrast to the recent results of Chan et

al. (2012) based on a bounded time-varying-parameter model in which trend inflation

is constrained to lie in an interval. At times, their posterior mean estimate tends to

be much lower than the mean of survey expectations, hovering between two and three

per cent. This discrepancy is particularly pronounced in the early 1980’s. To a lesser

extent, a similar remark applies to Cogley and Sbordone (2008) albeit they consider

inflation measured by the GDP deflator instead of consumer price inflation.

As discussed at the end of Section 4, comparison of the unrestricted TVP-AR and

the restricted TVP-NKPC models yields information on the source of time variation

in trend inflation. To facilitate such a comparison, we estimated a TVP-AR(1,3)

model corresponding to the TVP-NKPC(1,3) model reported above. The sums of

log predictive likelihoods of these models equal —423.821 and —414.497, respectively,

lending decisive support (see Jeffreys (1961)) to γf and γb being time invariant in

the NKPC (or equivalently to the restrictions ϕt = ϕ and φt = φ in (14)) and,

thus, to variation in trend inflation being inherited from the marginal cost variable

instead of being caused by time-varying steady state inflation, as assumed by Cogley

5We use the medians of the Blue Chip forecasts and the 10-year-ahead annual average infla-

tion from the Survey of Professional Forecasters for the periods 1979:4—1991:4 and 1992:1—2012,

respectively. The source of the data is the Federal Reserve Bank of Philadelphia.
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and Sbordone (2008). The fact that their median estimate of trend inflation based

on a shifting steady state is flat and at times much lower than the mean of survey

expetations, reinforces this conclusion.

5.4 Inflation Forecasts

As discussed in Section 2.1, the estimation of the noncausal ARmodel yields predictive

densities as a by-product. In order to gauge the forecast performance, we compute

pseudo out-of-sample forecasts from a number of models for the period 1960:1 to

2012:2. The forecasts are computed recursively, at each step reestimating the models

using an expanding data window starting at 1947:1. However, model selection is

not performed recursively, but the models are kept fixed throughout. We consider

the forecast horizons of one, four, and eight quarters, as is common in the inflation

forecasting literature. Two evaluation criteria, the root mean squared forecast error

(RMSFE) and the sum of log predictive likelihoods (PL) computed over the forecast

period are reported. While the RMSFE summarizes the accuracy of point forecasts,

the PL yields information on the forecasting performance of the entire predictive

density. Geweke (1999, 2001), Geweke and Amisano (2010), and Chan et al. (2012),

among others have also used the latter metric to evaluate the accuracy of density

forecasts. We calculate the h-step-ahead PLs evaluated at the observed values from

draws of forecasts, using kernel density estimation in the same way as described in

Section 5.1.

The RMSFEs of the TVP-AR(0,4) model are reported in Table 2 along with the

relative MSFE’s of a number of alternative models, computed by dividing the respec-

tive MSFE by that of the benchmark TVP-AR(0,4) model. Thus, values greater than

unity indicate superiority of the benchmark. Because of some previous results suggest-

ing that inflation has become easier to forecast since the mid-1980’s (see, e.g., Lanne

and Luoto (2012) and the references therein), we also report results for two subsam-

ple periods, 1960:1—1983:4, and 1984:1—2012:2. The RMSFEs of the TVP-AR(0,4)

model are indeed considerably lower in the latter subsample period, reconfirming

those previous findings based on constant-parameter models. However, in all fore-
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casting periods considered, the TVP-AR(0,4) model is superior to the corresponding

constant-parameter noncausal and time-varying causal AR models (with the single

exception of the two-year forecast of the AR(0,4) model in the latter subsample pe-

riod). It also always beats the random walk forecast. In most cases, these differences

in forecast accuracy are significant according to the test of Diebold and Mariano

(1995) and West (1996). As far as the varying-parameter noncausal model incorpo-

rating the NKPC restrictions (TVP-NKPC) is concerned, the differences compared to

the unrestricted model are minor, suggesting that for point forecasts, the restrictions

are inconsequential.

In Table 3, we report the sums of the log predictive likelihoods of four different

fourth-order AR models. Also by this criterion, the TVP-AR model is clearly supe-

rior to its constant-parameter counterpart, by even a wider margin than in terms of

point forecasts. Among the TVP models, the unrestricted TVP-AR(0,4) model yields

the greatest value at each forecast horizon, indicating its superiority over both the

corresponding causal model as well as the noncausal model incorporating the NKPC

restrictions. Somewhat surprisingly in view of the relative MSFEs in Table 2, in two

out of three cases (h = 4, 8), the causal model slightly beats the TVP-NKPC model.

Hence, for density forecasting, the NKPC restrictions seem to have an adverse effect

despite not being important for point forecasts.

6 Conclusion

In this paper, we extend the noncausal AR model of Lanne and Saikkonen (2011)

by allowing for time-varying parameters and apply the extended model to postwar

U.S. consumer price inflation. Because of its complexity, the model is estimated by

Bayesian methods, whose description may also be useful in potential future applictions

to other economic time series.

The new model turns out to be useful in modeling the U.S. inflation process.

In accordance with the previous literature, there is strong evidence in favor of non-

causality. As a matter of fact, our results based on the unrestricted time series model

suggest that the observed autocorrelation in inflation follows from future inflation
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expectations rather than dependence on past inflation. Moreover, inflation persis-

tence seems to have varied over time, exhibiting a clear decline since the early 1980’s

and a slight increase again in the late 1990’s. The proposed model also beats its

constant-parameter and causal counterparts in forecast accuracy.

When imposing more structure in the form of the restrictions implied by the

new Keynesian Phillips curve, we find that also past inflation has a role to play

in the determination of U.S. inflation in addition to expectatios. Specifically, our

estimates of the new Keynesian Phillips curve reconfirm the previous findings that the

determination of inflation is dominated by inflation expectations, while past inflation

plays a minor but still important role. However, comparison to results based on the

constant-parameter noncausal AR model reveals that not allowing for time variation

slightly undermines the importance of past inflation. The trend inflation implied

by the estimated NKPC evolves smoothly, unlike most estimates presented in the

previous literature, and it is well aligned with survey expectations, as should indeed

be the case if trend inflation is to be interpreted as the public’s perception of the

inflation target. There is also evidence in favor of the time variation in trend inflation

following from the underlying marginal cost variable driving inflation rather than

time-varying NKPC parameters.

Our analysis of the NKPC is based on the assumption of constant steady state

inflation, and shifts in trend inflation are thought to be inherited from the marginal

cost variable, which is also supported by the data. This is consistent with the idea

that the public’s perception of the inflation target is influenced by structural breaks

in the marginal cost variable. However, the model put forth in this paper does not

facilitate a detailed exploration of the origins of shifts in trend inflation. Therefore,

in future work, it would be interesting to extend the noncausal TVP-AR model in

this direction. One viable alternative would be the development of an algorithm for

the joint estimation of the noncausal AR coeffi cients and trend inflation.
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Appendix A: MCMC Algorithm

In this appendix, we describe the MCMC algorithm used for the estimation of the

parameters of (1) and (14). The sampler involves sequential drawings from the full

conditional posteriors given below. Our experience is that convergence occurs rapidly

when the zeros of the polynomials φt (z) = 0 and ϕt (B−1) = 0 are not too close

to the unit circle. In this case, further tuning of the sampler is not needed, and

according to the results of Koop and Potter (2011), the sampler also provides an

accurate approximation for the restricted posteriors of θT and ϕT .

Sampling AR parameters θT and ϕT . Let us first consider the conditional poste-

rior densities of the AR parameters. Following Cogley and Sargent (2005), we impose

stationarity restrictions by discarding the draws from the unresticted posterior of θT

(or ϕT ) that do not lie in the stationary region. First, take ϕT as given to express (1)

in terms of ut = ϕt (B−1) yt. Then, given σT = (σ1, . . . , σT )′ and h̃T =
(
h̃1, . . . , h̃T

)′
,

the observables ut for t = 1, . . . , T , are normally distributed:{
ut

∣∣∣Ut,θt,y
+,ϕT ,σT , h̃T

}
∼ N

(
Utθt, σ

2
t h̃
−1
t

)
, (15)

where Ut = (1, ϕt (B−1) yt−1, . . . , ϕt (B−1) yt−r) and y+ = (yT+1, . . . , yT+s)
′. From (3)

it can be seen that the errors εt are independent of ut−1, . . . , ut−r. This, however, does

not necessarily mean that they are independent of ϕt (B−1) yt−1, . . . , ϕt (B−1) yt−r.

Thus, unfortunately, it cannot be quaranteed that the elements of Ut in (15) are

independent of εt. However, as long as the vector ϕt evolves smoothly, as is assumed

(cf., (10)), the potential problems should be minor. If this is the case, locally we are

close to the time-invariant case in which the errors εt are independent of ϕ (B−1) yt−1 =

ut−1, . . . , ϕ (B−1) yt−r = ut−r.

Based on (9), the parameter vector θt evolves according to

{θt |θt−1,Q1} ∼ N (θt−1,Q1) . (16)

Equations (15) and (16) define a conditionally linear and Gaussian state-space model.

Thus, a standard algorithm such as that in Carter and Kohn (1994) or Durbin and

Koopman (2002), can be readily used to draw θT . Furthermore, in the purely causal
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case, Ut in (15) reduces to (1, yt−1, . . . , yt−r) and θ
T can be drawn in the same way as

explained above (recall also that θt = (ct,φ
′
t)
′). The prior distribution of the initial

state θ0 is assumed to be multivariate normal N
(
θ0|0 ,P0|0

)
(see, e.g., Durbin and

Koopman (2002)).

Turning to ϕT , we take θT as given to express (1) in terms of υt = φt (B) yt. Thus,

the observables υt = υt − ct for t = 1, . . . , T are conditionally Gaussian:{
υt

∣∣∣Vt,ϕt,y
+,θT ,σT , h̃T

}
∼ N

(
Vtϕt, σ

2
t h̃
−1
t

)
, (17)

where Vt = (φt (B) yt+1, . . . , φt (B) yt+s). Again, it cannot be quaranteed that the

elements of Vt are independent of εt, even though υt+1, . . . , υt+s clearly are (cf., (4)).

In practice, however, as long as the vector θt evolves smoothly (cf., 9), we expect the

estimates of ϕT to be unbiased.

From (10) it can be seen that the evolution of the states ϕt for t = 1, . . . , T , is

defined by {
ϕt
∣∣ϕt−1,Q2

}
∼ N

(
ϕt−1,Q2

)
. (18)

Again, exactly like in the case of θT , (17) and (18) define a conditionally linear and

Gaussian state-space model, and the method of Durbin and Koopman (2002) is used

to simulate random matrices from the full conditional posterior distribution of ϕT .

In the purely noncausal TVP-AR(0, s) case, the method can be used by replacing ϕt

with (ct,ϕ
′
t)
′, and using υt = υt and Vt = (1, υt+1, . . . , υt+s) in (17). Obviously, (18)

has to be modified accordingly. Finally, the prior distribution of the initial state ϕ0

is assumed to be multivariate normal N
(
ϕ0|0 ,R0|0

)
.

Sampling stochastic volatilities σT . The stochastic volatilities are drawn using

the method proposed by Kim at al. (1998). By squaring and taking logs of (7) we

obtain

ε∗t = 2σ̃t + η∗t , (19)

where ε∗t = log
(
ε2t h̃t + 0.001

)
and the innovations η∗t = log η2

t are distributed as

logχ2 (1). The offset constant (0.001) is used to ensure the robustness of the esti-

mation procedure. Conditional on θT and ϕT , the errors εt in (1) are observable.

Therefore, (8) and (19) form a linear but non-Gaussian (because the innovations η∗t
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are distributed as logχ2 (1)) state-space model. To be able to use the standard state

space methods, we transform the model into a Gaussian one. In particular, we follow

Kim et al. (1998) and approximate the logχ2 (1) distribution by a mixture of seven

normal distributions, i.e., {η∗t |st = j } ∼ N
(
mj − 1.2704, ν2

j

)
, Pr (st = j) = qj, j =

1, . . . , 7, where the parameters qj, mj, and νj are chosen to optimize the approxi-

mation, and are given in Kim et al. (1998). Notice that these parameter values are

independent of the application.

Given the above approximation, we generate draws of σT using the simulation

smoothing algorithm of Durbin and Koopman (2002), by setting (19) and (8) as the

measurement and transition equations, respectively. The indicator variables sT =

(s1, . . . , sT ), needed to calculate the mixture of normals, are drawn independently

from the discrete distribution

Pr
(
st = j

∣∣∣yT ,y+,θT ,ϕT ,σT , h̃T
)
∝ qjν

−1
j exp

[
− 1

2ν2
j

(ε∗t − 2σ̃t −mj + 1.2704)2

]
.

The prior distribution for initial state is assumed normal N
(
σ̃0|0 , ω

2
0|0

)
.

Sampling Precision Parameters h̃T . Following Geweke (1993), we obtain the

kernel of the conditional density of h̃T , p
(
h̃T
∣∣yT ,y+́, δT ,σT , λ

)
, by presenting (1)

in terms of (7) and multiplying the resulting density by the prior density p
(
h̃T |λ

)
introduced in the in the Section 2.2. The kernel has the following expression:

p
(
h̃t
∣∣yT ,y+,θT ,ϕT ,σT , λ

)
∝ h̃

(λ−1)/2
t exp

[
−1

2

[
λ+ σ−2

t ε2t
]
h̃t

]
,

where, conditional on θT and ϕT , εt is observable, and the precision parameters

h̃1, . . . , h̃T are conditionally independent. Thus, by the properties of the chi-squared

density, h̃1, . . . , h̃T can be sampled directly using{[
λ+ σ−2

t ε2t
]
h̃t
∣∣yT ,y+,θT ,ϕT ,σT , λ

}
∼ χ2 (λ+ 1) . (20)

Sampling Post Sample Observations yT+1, . . . , yT+s. This step is based on the

approximation φT+h (B) yT+h ≈
M−h∑
j=0

βT+h,jwT+h+j, discussed in (6), which is used

recursively to map from wT+1, . . . , wT+M into yT+1, . . . , yT+s. In what follows, we
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use these two parameterizations interchangeably and assume a Student-t hierarchical

prior density for wT+j (j = 1, . . . ,M): t (wT+j |cT , σT ;λ), where cT is a location

parameter, σ2
T is a scale parameter, and λ is a degrees of freedom parameter. Then,

based on equations (1) and (7), the conditional posterior density of the post-sample

observations y+ ≡ (yT+1, . . . , yT+s) can be expressed as

p
(
y+
∣∣yT ,θT ,ϕT ,σT , λ) ∝ T∏

t=T−s+1

N
(
ϕt
(
B−1

)
φt (B) yt

∣∣∣ct, σ2
t h̃
−1
t

)
×

T+M∏
t=T+1

t (wt |cT , σT ;λ) . (21)

Since this distribution is non-standard, we follow Chib and Greenberg (1994), and

augment the algortihm with a Metropolis-Hastings (MH) step. In other words, the

prior density
T+M∏
t=T+1

t (wt |cT , σT ;λ) is used to draw proposals for yT+1, . . . , yT+s, which

are then accepted with probability

min

1,

T∏
t=T−s+1

N
(
ϕt (B−1)φt (B) y∗t

∣∣∣ct, σ2
t h̃
−1
t

)
T∏

t=T−s+1

N
(
ϕt (B−1)φt (B) yj−1

t

∣∣∣ct, σ2
t h̃
−1
t

)
 ,

where y∗T+1, . . . , y
∗
T+s denote a candidate draw and y

j−1
T+1, . . . , y

j−1
T+s the current draw

(j = 1, . . . , N , where N is the number of simulation rounds). As discussed above,

φT+1, . . . , φT+s and ϕT+1, . . . , ϕT+s, needed to mapwT+1, . . . , wT+M into yT+1, . . . , yT+s,

are simulated from the random walk models ((9) and (10)), respectively.

Sampling Prior Hyperparameters Qi, ω, and λ. Because of the hierarchical

prior structure in which Qi (i = 1, 2) affects the data only through θT or ϕT , the

conditional posterior density of Qi has the expression

f
(
Qi

∣∣yT ,θT ,ϕT ) ∝ iW
(
Qi

∣∣νi,Qi

)
, (22)

where νi = T + νi, and

Q1 = Q
1

+
T∑
t=1

(θt − θt−1) (θt − θt−1)′ ,

Q2 = Q
2

+
T∑
t=1

(
ϕt −ϕt−1

) (
ϕt −ϕt−1

)′
,
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(see Cogley and Sargent (2005)). Thus, Qi can be drawn from the inverse-Wishart

distribution: Qi ∼ iW
(
νi,Qi

)
.

Based on the assumptions concerning the error term of (8), ω2 can be sampled

directly from the inverse-gamma distribution:

ω2
∣∣yT ,σT ∼ iGamma

(
a, b
)
, (23)

where

a = T/2 + a, and b =
1

2

T∑
t=1

(σ̃t − σ̃t−1)2 + b.

Again, exactly like in the case of Qi (or ω2), because of the hierarchical prior

structure in which λ affects the data only through h̃T , the conditional posterior density

of λ has the following expression:

p
(
λ
∣∣∣yT , h̃T ,y+

)
∝

[
2λ/2Γ (λ/2)

]−T
λλT/2

(
T∏
t=1

h̃
(λ−2)/2
t

)
exp

[
−
(

1

λ
+

1

2

T∑
t=1

h̃t

)
λ

]
T+M∏
t=T+1

f (wt |cT , σT ;λ) , (24)

(see Geweke (2005) and Lanne, Luoma, and Luoto (2012)). As a candidate distribu-

tion for λ we use a univariate normal distribution, with mean equal to the mode of

(24) and precision parameter equal to the negative of the second derivative of the log

posterior density, evaluated at the mode. The acceptance probability is calculated

using (24) (see Geweke, 2005).

Appendix B: Sampling parameters φ and ϕ for the NKPC

In this appendix, we describe the estimation of the parameters of (14), which is done

using the algorithm of Lanne, Luoma, and Luoto (2012) for y∗t = at (B) bt (B−1) yt.

In particular, we let u∗t = (1− ϕB−1) y∗t = at (B) bt (B−1)ut and υ∗t = (1− φB) y∗t =

at (B) bt (B−1) υt, and express (14) as (1− φB)u∗t = (1− ϕB−1) υ∗t = ct + εt. This

suggests that, assuming the truncated normal prior densities TN
(
φ, h−1

φ ; 0 ≤ φ < 1
)

and TN
(
ϕ, h−1

ϕ ; 0 ≤ ϕ < 1
)
for φ and ϕ, respectively, their conditional posterior den-

sities can be succesfully approximated (see Lanne, Luoma, and Luoto (2012)) by{
φ
∣∣∣yT , ϕ, aT ,bT ,y+,σT , h̃T

}
∼ TN

(
φ, h

−1

φ ; 0 ≤ φ < 1
)
,
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and {
ϕ
∣∣∣yT , φ, aT ,bT ,y+,σT , h̃T

}
∼ TN

(
ϕ, h

−1

ϕ ; 0 ≤ ϕ < 1
)
,

where

φ = h
−1

φ

[
hφφ+

T∑
t=1

σ−2
t h̃t

[
at (B) bt

(
B−1

)
ut−1

]
(u∗t − ct)

]
,

ϕ = h
−1

ϕ

[
hϕϕ+

T∑
t=1

σ−2
t h̃t

[
at (B) bt

(
B−1

)
υt+1

]
(υ∗t − ct)

]
,

hφ =

[
hφ +

T∑
t=1

σ−2
t h̃t

[
at (B) bt

(
B−1

)
ut−1

]2]
,

and

hϕ =

[
hϕ +

T∑
t=1

σ−2
t h̃t

[
at (B) bt

(
B−1

)
υt+1

]2]
.

As far as the time-varying parameters ct, at,1, . . . , at,r−1 and bt,1, . . . , bt,s−1 are con-

cerned, they can be simulated using the above algorithm for the quantity y∗∗t =

(1− φB) (1− ϕB−1) yt. Using at,1, . . . , at,r−1, bt,1, . . . , bt,s−1, φ , and ϕ, we can then

calculate the products φt (B) = at (B) (1− φB) and ϕt (B−1) = bt (B−1) (1− ϕB−1)

to express (14) in terms of (1): φt (B)ϕt (B−1) yt = ct + εt. Thus, the predictive

density of yT+1, . . . , yT+h (h ≥ s) can be evaluated using the algorithm described in

the Appendix A.

Appendix C: Effi ciency of MCMC Algorithm

Following Primiceri (2005) and Chan et al. (2012), we use the ineffi ciency factors (IF)

to monitor the effi ciency of the MCMC algorithm. The IF is defined as 1+2
∑K

k=1 ρk,

where ρk is the kth sample autocorrelation of the chain, andK is set in such a way that

the autocorrelation tapers off (we follow Primiceri (2005) and use 4 percent tapered

windows). Almost independent draws from the posterior suggest that an algorithm

is effi cient. In this case the IF are around 1. Because of the very high dimension of

the TVP models, the IF are typically reported to be much higher (see, e.g., Primiceri

(2005), Chan and Strachan (2012), and Chan et al. (2012)), the averages of IF

ranging from 2 to more than 100. We follow Chan et al. (2012) and report the 50th,

25th, and 75th percentiles of the IF for the parameters of the TVP-AR(0,4) and

TVP-AR(1,3) models discussed in the text. In particular, the summary statistics are
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provided for three sets of parameters, consisting of the intercepts and AR coeffi cients,

the stochastic volatilities, and all the time-invariant parameters.

In the case of the TVP-AR(0,4) model, the median (and the 25th and 75th per-

centiles) of the IF is 21.6 (8.9, 41.1) for the intercepts and AR coeffi cients, 22.7 (18.6,

28.7) for the stochastic volatilities, and 81.6 (62.9, 117.2) for the time-invariant para-

meters. The corresponding statistics for the parameters of the TVP-AR(1,3) model

incorporating the NKPC restrictions are 10.16 (5.4, 40.8), 6.7 (4.4, 9.9), and 45.4

(30.8, 66.2), respectively. Thus, the NKPC restrictions seem to improve the perfor-

mance of the sampler.
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Table 1: The sums of log predictive likelihoods (PL) of the fourth-order TVP-AR

models.

r 4 3 2 1 0

s 0 1 2 3 4

PL —444.037 —436.177 —432.704 —423.821 —396.208

The entries are the sums over 1960:1 to 2012:2 of one-step

ahead predictive likelihoods of the different AR-TVP(r, s)

models.They are estimated from the simulated predictive

densities using a kernel smoother.
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Table 3: The sums of log predictive likelihoods of fourth-order AR models.

Model h = 1 h = 4 h = 8

TVP-AR(0,4) —396.21 —456.51 —479.71

TVP-NKPC —414.52 —468.68 —494.50

TVP-AR(4,0) —444.04 —461.15 —489.05

AR(0,4) —445.26 —498.58 —520.73

The entries are the sums over 1960:1

to 2012:2 of predictive likelihoods a quarter

(h = 1), a year (h = 4), and two years

(h = 8) ahead. They are estimated from the

simulated predictive densities using a kernel

smoother.
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Figure 1: The evolution of the autoregressive (ϕt1, ϕt2, ϕt3, ϕt4) and scale (σ̃t) pa-

rameters of the TVP-AR(0,4) model, and the implied trend inflation (yt). In each

panel, the solid line is the posterior median, and the dashed lines depict the 16% and

84% quantiles of the posterior distribution.
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Figure 2: The evolution of the time-varying autoregressive (bt1, bt2) and scale (σ̃t)

parameters of the TVP-AR(1,3) model, and the implied trend inflation (yt). In each

panel, the solid line is the posterior median, and the dashed lines depict the 16% and

84% quantiles of the posterior distribution.
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Figure 3: The joint posterior density of the parameters γf and γb of the new Keynesian

Phillips curve (11) based on the TVP-NKPC(1,3) model.
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Figure 4: Trend inflation estimates. The upper and middle panels depict the trend

inflation implied by the TVP-AR(0,4) (long dashes) and TVP-NKPC(1,3) (solid line)

models, with observed inflation (dashes) included in the upper panel. The bottom

panel shows the evolution of survey inflation expectations (solid line) and the 16% and

84% quantiles of the trend inflation implied by the TVP-NKPC(1,3) model (dashes).
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