Grossmann, Volker; Steger, Thomas M.

Working Paper

Optimal growth policy: The role of skill heterogeneity

Working Paper, Universität Leipzig, Wirtschaftswissenschaftliche Fakultät, No. 117

Provided in Cooperation with:
University of Leipzig, Faculty of Economics and Management Science

Suggested Citation: Grossmann, Volker; Steger, Thomas M. (2012) : Optimal growth policy: The role of skill heterogeneity, Working Paper, Universität Leipzig, Wirtschaftswissenschaftliche Fakultät, No. 117, Univ., Wirtschaftswissenschaftliche Fakultät, Leipzig

This Version is available at:
http://hdl.handle.net/10419/70918

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Volker Grossmann / Thomas M. Steger

Optimal Growth Policy: the Role of Skill Heterogeneity

März 2012

ISSN 1437-9384
Optimal Growth Policy: the Role of Skill Heterogeneity
forthcoming in: Journal of Economics and Control

Volker Grossmann* and Thomas M. Steger†

March 6, 2012

Abstract

A simple semi-endogenous growth model is employed to show that optimal subsidization of both R&D and capital costs is independent of the distribution of R&D skills in the workforce. This holds despite the empirically supported fact that a higher R&D subsidy rate raises wages of R&D workers.

Key words: Optimal growth policy; R&D skills; R&D subsidy; Semi-endogenous growth, Heterogeneity.

JEL classification: O30; O40; H20.

*University of Fribourg; CESifo, Munich; Institute for the Study of Labor (IZA), Bonn. Address: University of Fribourg, Department of Economics, Bd. de Pérolles 90, 1700 Fribourg, Switzerland. E-mail: volker.grossmann@unifr.ch.

†University of Leipzig; CESifo, Munich. Address: Institute for Theoretical Economics, Grimmaische Strasse 12, 04109 Leipzig, Germany, Email: steger@wifa.uni-leipzig.de.
1 Introduction

Empirical evidence suggests that the social return to R&D significantly exceeds the private return (e.g. Grilichis and Lichtenberg, 1984; Jones and Williams, 1998). Likewise, calibrated R&D-based growth models find a substantial R&D underinvestment gap (e.g. Jones and Williams, 2000). These results seem to call for large R&D subsidies (Grossmann, Steger and Trimborn, 2010a,b).

However, a frequent critique of raising R&D subsidies is that R&D skills are in limited supply and those with high R&D skills may already be allocated to R&D occupations. It has been argued that, therefore, stimulating demand for R&D workers primarily raises wages of R&D personnel rather than fostering innovation. In fact, Goolsbee (1998) shows that remuneration of R&D workers is positively affected by public policies to support R&D. It therefore seems that the distribution of R&D skills affects the optimal R&D policy: more limited R&D skills should imply lower optimal R&D subsidies.

We introduce R&D skill heterogeneity in a standard semi-endogenous growth model à la Jones (1995) and show analytically that, surprisingly, the optimal R&D policy is in fact independent of the distribution of R&D skills. The wedge between R&D investment in market equilibrium and social planning optimum is solely driven by positive R&D externalities. This holds despite a positive relationship between R&D subsidies and wages of R&D workers. Moreover, the optimal capital subsidy is also independent of the skill distribution.

2 The Model

Time is continuous and indexed by t. The time index is omitted whenever this does not lead to confusion. Homogenous final output is produced according to

$$Y = (L^Y)^{1-\alpha} \int_0^A x(i)^{\alpha} di,$$ \hspace{1cm} (1)
0 < \alpha < 1$, where L^Y denotes labor in manufacturing, A the “number” of intermediate goods and $x(i)$ the quantity of intermediate good i. The final goods sector is perfectly competitive and the output price is normalized to unity.

There is perfect competition in the R&D sector. The number of ideas evolves according to

$$\dot{A} = \nu A^\phi L^A,$$

(2)

where L^A is R&D labor input (in efficiency units), $\nu > 0$, $\phi < 1$. The price mark-up charged by each firm cannot exceed $\kappa \in (1, 1/\alpha]$, due to the existence of a competitive fringe (e.g. Aghion and Howitt, 2005). Parameter κ captures the degree of imperfection of goods market competition. The capital stock, $K = \int_0^A x(i)di$, depreciates at rate $\delta \geq 0$. Both the capital and labor market are perfect. Initial levels of state variables, K_0 and A_0, are given.

There is mass one of identical households indexed by $j \in [0, 1]$. The size of each household grows with constant exponential rate, $n \geq 0$. Normalizing $N_0 = 1$, household size and population size at time t are both equal to $N_t = e^{nt}$. In contrast to standard R&D-based growth models, we allow for R&D skill heterogeneity. Each household j inelastically supplies either one unit of labor to the final goods sector or $h(j)$ efficiency units to the R&D sector. R&D skills are the same within each household. The probability density function of h is denoted by $f(h)$, which is continuous with support $[\underline{h}, \bar{h}]$, $0 \leq \underline{h} < \bar{h}$. In equilibrium, the workers with the highest R&D skills are allocated to the R&D sector. That is, there will be a threshold skill level \bar{h} at which workers are indifferent in which sector to work. R&D workers with $h > \bar{h}$ will earn a wage premium compared to workers in final good production. The amount of efficiency units of R&D labor is given by $L^A = N \int_0^{\bar{h}} h f(h)dh$. Consequently, the ratio of R&D workers in efficiency units to the size of the overall workforce $l^A \equiv \frac{L^A}{N}$ is

$$l^A = \int_{\underline{h}}^{\bar{h}} h f(h)dh.$$

(3)
The labor resource constraint reads $L^Y + N^A = N$, where $N^A \equiv N \int_{\tilde{h}}^h f(h) dh$ is the number of workers allocated to R&D.

The government may subsidize both R&D costs (R&D sector) and capital costs (intermediate goods sector), at time-invariant rates s_A and s_K. Subsidies are financed by a lump-sum tax (T) on households and the government budget is balanced each period.

Preferences of household $j \in [0, 1]$ are given by

$$ U(j) = \int_0^\infty (c_t(j))^\frac{1-\sigma}{1-\sigma} e^{-(\rho-n)t} dt, \quad (4) $$

$\sigma > 0$, where $c(j)$ is consumption per member of household j. Households take factor prices as given. Let w^A and w^Y denote wage rates per efficiency unit of R&D labor and for a worker in final production. Moreover, let $I(j)$ be the wage income of a member of household j. We will have

$$ I(j) = \begin{cases} w^A h(j) & \text{if } h(j) \geq \tilde{h}, \\ w^Y & \text{otherwise.} \end{cases} \quad (5) $$

Financial wealth of individual j, $a(j)$, accumulates according to

$$ \dot{a}(j) = (r - n) a(j) + I(j) - c(j) - T, \quad (6) $$

where r denotes the interest rate and $a_0(j) > 0$. For the transversality conditions to hold and the value of utility streams to be finite, we impose

$$ \rho - n + (\sigma - 1)g > 0 \text{ with } g \equiv \frac{n}{1 - \phi}. \quad (A1) $$

3 Analysis

We first analyze the decentralized equilibrium and then the social planner solution. This allows us to derive the optimal growth policy mix.
3.1 Market Equilibrium

As one unit of capital is required for one unit of output and capital costs are subsidized according to \(s_K \), producer \(i \) has profits

\[
\pi(i) = [p(i) - (1 - s_K)(r + \delta)] x(i),
\]

where \(p(i) \) is the price of good \(x(i) \). Given that the mark-up is constrained by \(\kappa \in (1, 1/\alpha] \), the optimal supply price of each firm \(i \) reads (see Grossmann et al., 2010b)

\[
p(i) = \kappa(1 - s_K)(r + \delta).
\]

According to (1), the inverse demand function for intermediate good \(i \) is given by \(p(i) = \alpha(Y/Y) \). Combining this inverse demand function with (8) and solving for \(x(i) \) we obtain

\[
x(i) = x = \left(\frac{\alpha}{\kappa(1 - s_K)(r + \delta)} \right)^{1/\alpha} L_Y.
\]

Using (9) in (7), we see that \(\pi(i) = \pi \forall i \). Using (1) for aggregate income and \(K = Ax \) for the capital stock, (9) also implies

\[
Y = A \left(\frac{\alpha}{\kappa(1 - s_K)(r + \delta)} \right)^{1/\alpha} L_Y,
\]

\[
\frac{K}{Y} = \frac{\alpha}{\kappa(1 - s_K)(r + \delta)}.
\]

For a given interest rate (which is policy-independent in the long run), an increase in \(s_K \) raises capital-output ratio \(K/Y \), whereas a higher mark-up (\(\kappa \)) reduces it.

Let \(P^A \) denote the value of an intermediate good firm. The usual capital market equilibrium condition reads

\[
\frac{\dot{P}^A}{P^A} + \frac{\pi}{P^A} = r.
\]
The representative R&D firm maximizes profits as given by
\[
\Pi \equiv \frac{P^A a^A L^A}{A} - (1 - s_A) w^A L^A. \tag{13}
\]

Definition 1. A market equilibrium consists of time paths for the quantities \(\{L^A_t, L^Y_t, \{c_t(j), a_t(j)\}_{j \in [0,1]}, \{x_t(i)\}_{i \in [0, A_t]}, Y_t, K_t, A_t\}_{t=0}^{\infty} \), threshold skill level \(\{\tilde{h}_t\}_{t=0}^{\infty} \), lump-sum tax \(\{T_t\}_{t=0}^{\infty} \) and prices \(\{P^A_t, \{p_t(i)\}_{i \in [0, A_t]}, w^A_t, w^Y_t, r_t\}_{t=0}^{\infty} \) such that final goods producers, intermediate goods producers and R&D firms maximize profits, each household \(j \) chooses the consumption path to maximize (4) s.t. (6) and supplies labor to the R&D sector if and only if \(w^A h(j) \geq w^Y \) (i.e. \(\tilde{h} = \frac{w^Y}{w^A} \)), the capital resource constraint \(\int_0^A x(i) \, di = K \) holds, the labor market clears,
\[
l^Y \equiv \frac{L^Y}{N} = 1 - \int_{\tilde{h}}^{\bar{h}} f(h) \, dh, \tag{14}
\]
the capital market equilibrium condition (12) holds, the goods markets clear, the financial market clears (i.e. \(\int_0^N a(j) \, dj = K + P^A A \)), and the lump-sum tax \(T \) balances the government budget each period.

Let us denote values of stationary variables in balanced growth equilibrium (BGE) with superscript (*) . Proofs are relegated to an online-appendix.

Proposition 1. There exists a unique BGE such that:

(i) The number of ideas \(A \) grows at rate \(g = \frac{n}{1 - \phi} \). Consumption and asset levels, \(c(j), a(j) \), also grow at rate \(g \) \(\forall \ j \). Aggregate final output, \(Y \), and the capital stock, \(K \), grow at rate \(g + n \). The value of an innovation, \(P^A \), grows at rate \(n \).

(ii) There is a unique stationary long-run threshold skill level, \(\tilde{h}^* \), which determines if a worker \(j \) is allocated to final goods production (for \(h(j) < \tilde{h} \)) or R&D (for \(h(j) \geq \tilde{h} \)); \(\tilde{h}^* \) is decreasing in the R&D subsidy rate, \(s_A \), and independent of the capital subsidy rate, \(s_K \).

Proposition 1 suggests that subsidizing physical capital does not affect the long run
allocation of labor, whereas an increase in the R&D subsidy rate stimulates the R&D activity of firms (i.e., l^A* increases and l^Y* decreases).

An important variable in the innovation literature is the fraction of workers allocated to R&D, $d \equiv \int_{\tilde{h}}^{h} f(h)dh$.

Corollary 1. The long run fraction of labor allocated to R&D, d^*, is (i) increasing in the R&D subsidy rate, s_A, and (ii) not systematically affected by the distribution of R&D skills.

Part (i) is straightforward since threshold level \tilde{h} in BGE is decreasing in s_A. The intuition for part (ii) is discussed below.

4 Social Planning Optimum and Optimal Policy

The social planner chooses a symmetric capital allocation across intermediate good production sites, i.e., $x(i) = K/A \forall i$. From (1) one then gets $Y = K^\alpha (AL^Y)^{1-\alpha}$. The aggregate capital stock evolves according to $\dot{K} = Y - Nc - \delta K$, where c denotes per capita consumption. Hence, in per capita terms we have

$$\dot{k} = k^\alpha (Al^Y)^{1-\alpha} - c - (\delta + n)k. \tag{15}$$

As preferences are homothetic, there exists a representative consumer (Mas-Colell, Whinston and Green, 1995). The social planner’s problem thus reads

$$\max_{\{c_t\}} \int_{0}^{\infty} \left(c_t \right)^{1-\sigma} - \frac{1}{1 - \sigma} e^{-(\rho - n)t} dt \quad \text{s.t. (2), (3), (14), (15), (16)}$$

and non-negativity constraints. c, \tilde{h} are control variables and k, A are state variables. We focus on the BGE when comparing the first best solution with the market outcome.

Proposition 2. In the long-run social planning optimum:

(i) The number of ideas A and per capita consumption c grow at rate g, whereas Y and K both grow at rate $g + n$.

6
(ii) There exists a unique socially optimal long-run threshold skill level, \tilde{h}^{opt}, which is stationary. For $s_A = 0$ (no R&D subsidy) and $\phi \geq 0$, we have $\tilde{h}^{opt} < \tilde{h}^*$, i.e., there is R&D underinvestment.

Proposition 3. The socially optimal, long-run R&D and capital cost subsidy rates are

$$s_{opt}^K = 1 - \frac{1}{\kappa},$$ \hspace{1cm} (17)\]
$$s_{opt}^{A} = 1 - \frac{1 - \frac{1}{\kappa} (\sigma - 1) g + \rho}{1/\alpha - 1} \frac{\sigma g + \rho - n}{1/\alpha - 1}$$, \hspace{1cm} (18)

which are independent of the distribution of R&D skills.

There are two sources of inefficiency of R&D investments. First, if $\phi > 0$, there is a standing on shoulders effect, not taken into account by R&D firms, which promotes underinvestment. Second, innovators can only appropriate part of the economic surplus from raising the knowledge stock. To see this, first note that $x(i) = \frac{K}{A} = \frac{K Y}{Y A}$, $\forall i$. Substituting this into (7) and using (8) and (11) reveals that $\pi = \alpha (1 - \frac{1}{\kappa}) \frac{Y}{A}$. According to (10), $\frac{\partial Y}{\partial A} = \frac{Y}{A}$. Since $\alpha (1 - \frac{1}{\kappa}) < 1$, the profit of an innovator π is lower than the contribution of an additional idea to output, $\frac{\partial Y}{\partial A}$. This “surplus appropriability problem” promotes underinvestment. Overall, decentralized R&D investment is suboptimally low, calling for $s_A > 0$, whenever $\phi \geq 0$.

Due to monopolistic competition, intermediate goods supply and therefore the demand for capital are inefficiently low as well. This implies suboptimally slow capital accumulation, which calls for a subsidy on capital costs.

The novel result is that both the R&D underinvestment gap and optimal growth policy are independent of the distribution of R&D skills. When raising demand for R&D workers by subsidizing R&D costs, more R&D workers enter R&D occupations. This is socially desirable although the additional R&D workers possess lower skills than the ones already active. All that matters for the R&D underinvestment gap are the market imperfections which bias the demand for R&D skills. The main assumptions which drive our "independence result" is the possibility of firms to discriminate wage payments according to skill and that all workers possess positive R&D skills in the
relevant upper end of the distribution of R&D skills. Less skilled R&D workers earn lower income than higher skilled ones. Thus, even if the additional R&D workers, which are employed after an increase in R&D subsidization, are of lower skill, the decision of firms to hire them is not affected by the skill distribution. The possibility of wage discrimination is also the reason why the distribution of skills does not systematically affect the allocation of labor (part (ii) of Corollary 1).

Our results are consistent with the finding of Goolsbee (1998) that R&D workers gain from higher R&D subsidies. To see this, note from $\hat{h} = \frac{w^Y}{w^A}$ (Definition 1) that long-run wage income of a R&D worker j with skill $h(j) \geq \hat{h}^*$, relative to a production worker, is equal to the ratio of his skill to the one of the marginal entrant into a R&D occupation:

$$\frac{w^A h(j)}{w^Y} = \frac{h(j)}{\hat{h}^*}. \quad (19)$$

According to part (i) of Proposition 1, even in the long run an increase in R&D subsidy rate s^A, by reducing threshold skill level \hat{h}^*, benefits those who would be R&D workers also without the subsidy. However, this does not mean that R&D subsidization is problematic. To the contrary, it is a possibility to lure additional workers into R&D occupations, which is socially desirable.

References

Proof of Proposition 1: The current-value Hamiltonian which corresponds to the intertemporal optimization problem of household j is given by

$$H(j) = \frac{c(j)^{1-\sigma} - 1}{1 - \sigma} + \lambda(j) [(r - n)a(j) + I(j) - c(j) - T],$$

(20)

where $\lambda(j)$ is the co-state-variable associated with constraint (6). Necessary optimality conditions are $\partial H(j) / \partial c(j) = 0$, $\dot{\lambda}(j) = (\rho - n)\lambda(j) - \partial H(j) / \partial a(j)$, and the corresponding transversality condition. Thus,

$$\lambda(j) = c(j)^{-\sigma}, \text{ i.e., } \frac{\dot{\lambda}(j)}{\lambda(j)} = -\sigma \frac{\dot{c}(j)}{c(j)},$$

(21)

$$\dot{\lambda}(j) = \rho - r,$$

(22)

$$\lim_{t \to \infty} \lambda_t(j) e^{-(\rho-n)t} a_t(j) = 0.$$

(23)

Combining (21) with (22), we obtain the standard Euler equation

$$\frac{\dot{c}(j)}{c(j)} = \frac{r - \rho}{\sigma}$$

(24)

Next, substitute (8) and (9) into (7) to obtain the following expression for the profit of each intermediate goods producer i:

$$\pi(i) = \pi = (\kappa - 1) \left(\frac{\alpha}{\kappa} \right)^{\frac{1}{1-\alpha}} [((1 - s_K)(r + \delta))^{-\frac{s}{1-\alpha}} L^Y.$$

(25)

Since final goods producers take the wage rate w^Y as given, it is equal to its marginal productivity of labor, $w^Y = (1 - \alpha)Y/L^Y$. Also recall from Definition 1 that $w^Y = \tilde{w}$.

10
Thus,

\[w^A = \frac{(1-\alpha)Y}{\hat{h}L^Y} \]

\[= \frac{(1-\alpha)A}{\hat{h}} \left(\frac{\alpha}{\kappa(1-s_K)(r+\delta)} \right)^{\frac{\alpha}{1-\alpha}}, \tag{26} \]

where (27) follows by using (10). Moreover, the profit-maximizing choice of the R&D sector implies \(\Pi = 0 \); thus, \(P^A \nu A^{\phi} = (1-s_A)w^A \), according to (13). Substituting (26) into the latter equation implies

\[P^A = \frac{(1-s_A)(1-\alpha)}{\nu A^{\phi-1} \hat{h}} \left(\frac{\alpha}{\kappa(1-s_K)(r+\delta)} \right)^{\frac{\alpha}{1-\alpha}}, \tag{27} \]

We derive the steady state by assuming that part (i) of Proposition 1 holds and show that the implications of this assumption are consistent with the assumption. For later use, setting \(\dot{c}(j)/c(j) = g \) in (24) implies that the long run interest rate reads

\[r^* = \sigma g + \rho. \tag{29} \]

Substituting (25) into (12) and setting \(\dot{P}^A/P^A = n \) implies that

\[n + \frac{(\kappa - 1) \left(\frac{\alpha}{\sigma} \right)^{1-\alpha} L^Y}{[(1-s_K)(r+\delta)]^{1-\alpha} P^A} = r. \tag{30} \]

From (2), we find \(\dot{A}/A = \nu A^{\phi-1} L^A \). From this it becomes clear that setting \(\dot{A}/A = g \) is consistent with \(L^A \) growing at rate \(n \). Thus, in steady state,

\[\nu A^{\phi-1} = \frac{g}{N_lA}. \tag{31} \]

Using (31) in (28) and substituting the resulting expression as well as (29) in (30) implies that

\[1 - \frac{1}{\kappa} \left(\frac{\alpha}{\sigma} \right)^{1-\alpha} L^Y = \sigma g + \rho - n. \tag{32} \]
According to (3) and (14), we obtain

\[
\frac{t^Y}{t^A} = \frac{1 - \int_{h}^{H} f(h)dh}{\int_{h}^{H} h f(h)dh}.
\] (33)

Substituting (33) into (32) leads to

\[
\Gamma(\tilde{h}) \equiv \left(1 - \frac{1}{\int_{h}^{H} h f(h)dh}\right) \frac{\tilde{h}}{f(h)dh} = (1 - s_A) \frac{1 - \sigma g + \rho - n}{\kappa} \equiv \Omega(s_A).
\] (34)

As \(\Gamma'(\tilde{h}) > 0\), the solution of (34) for \(\tilde{h}^*\) is unique. Moreover, noting that \(\Omega'(s_A) < 0\) and the fact that \(s_K\) does not enter (34) confirms comparative-static results in part (ii) of Proposition 1.

That \(Y\) and \(K\) growth with rate \(n + g\) in the long run follows from (10) and (11).

Finally, we show that the transversality condition (23) holds under assumption (A1). First, use (21) and \(\dot{c}(j)/c(j) = g\) to find that \(\dot{\lambda}(j)/\lambda(j) = -\sigma g\). It remains to be shown that \(\dot{a}(j)\) grows with rate \(g\) in the long run. Rewriting (6) to

\[
\frac{\dot{a}(j)}{a(j)} = r - n + \frac{I(j)}{a(j)} - \frac{c(j)}{a(j)} - \frac{T}{a(j)}
\] (35)

reveals that \(\dot{a}(j)/a(j) = g\) indeed holds in steady state, if both the lump-sum tax per household \((T)\) and income level \(I(j)\) grow at rate \(g\). Recalling from (29) that the long run interest rate \(r\) is time-invariant, we see from (27) that wages rates \(w^A\) and \(w^Y = w^A\tilde{h}\), and therefore all income levels, grow in steady state at the same rate as \(A\) (namely at rate \(g\)). Moreover, defining \(k \equiv K/N\), the lump-sum tax reads

\[
T = s_K(r + \delta)k + s_Aw^At^A.
\] (36)

Use (36) together with the facts that \(w^A\) and \(k\) grow at rate \(g\) in the long run to see that \(\dot{T}/T = g\) holds in steady state. This concludes the proof.

Proof of Corollary 1: Part (i) is an immediate implication of the result that \(\tilde{h}^*\) is decreasing in \(s_A\) (part (ii) of Proposition 1). To illustrate part (ii), suppose that the
distribution of R&D skills is uniform, i.e., \(f(h) = (\bar{h} - h)^{-1} \). Thus, (34) becomes

\[
\frac{(\bar{h} - \bar{h})\bar{h}}{\bar{h}^2 - \bar{h}^2} = \Omega(s_A).
\]

(37)

Rewriting (37) reveals that there is only one positive root for the steady state value of threshold skill level \(\tilde{h} \), which is given by

\[
\tilde{h}^* = \frac{\bar{h}}{2(1 + \Omega)} \left(1 + \sqrt{1 + 4\Omega(s_A) [1 + \Omega(s_A)] \left(\frac{\bar{h}}{\bar{h}} \right)^2} \right).
\]

(38)

Hence, the fraction of labor in BGE allocated to R&D, \(d^* \equiv \int_{\bar{h}}^{\tilde{h}} f(h) \, dh \), reads

\[
d^* = \frac{\bar{h} - \tilde{h}^*}{\bar{h} - \bar{h}} = \frac{\bar{h} - \frac{\bar{h}}{2(1 + \Omega(s_A))} \left(1 + \sqrt{1 + 4\Omega(s_A) [1 + \Omega(s_A)] \left(\frac{\bar{h}}{\bar{h}} \right)^2} \right)}{\frac{\bar{h}}{2} - 1}.
\]

(39)

This reveals that, for a uniform skill distribution, \(d^* \) can be written as function of \(\bar{h}/\bar{h} \).

However, the relationship is ambiguous. ■

Proof of Proposition 2: The current-value Hamiltonian which corresponds to the social planning problem (16) is given by

\[
\mathcal{H} = \frac{c^{1-\sigma} - 1}{1 - \sigma} + \lambda_k [A^{1-\alpha}k^\alpha \left(1 - \int_{\bar{h}}^{\tilde{h}} f(h) \, dh \right) - (\delta + n)k - c] + \lambda_A \varphi A^\phi N \int_{\bar{h}}^{\tilde{h}} h f(h) \, dh,
\]

(40)

where \(\lambda_k \) and \(\lambda_A \) are co-state variables associated with constraints (15) and (2), respectively. Necessary optimality conditions are \(\partial \mathcal{H}/\partial c = \partial \mathcal{H}/\partial \bar{h} = 0 \) (control variables), \(\dot{\lambda}_z = (\rho - n)\lambda_z - \partial \mathcal{H}/\partial z \) for \(z \in \{k, A\} \) (state variables), and the corresponding transversality conditions. Thus,

\[
\dot{\lambda}_k = c^{-\sigma}, \text{ i.e., } \frac{\dot{\lambda}_k}{\lambda_k} = -\frac{\dot{c}}{c}.
\]

(41)
\[(1 - \alpha) \left(\frac{k}{A_l^Y} \right)^\alpha = \frac{\lambda_A}{\lambda_k} \nu A^{\phi - 1} N \tilde{h}, \]

(42)

\[\frac{\dot{\lambda}_k}{\lambda_k} = \rho - \alpha \left(\frac{A_l^Y}{k} \right)^{1 - \alpha} \left(\frac{\lambda_k}{\lambda_A} \right) + \delta, \]

(43)

\[\frac{\dot{\lambda}_A}{\lambda_A} = \rho - n - \frac{\lambda_k}{\lambda_A} (1 - \alpha) \left(\frac{k}{A} \right)^\alpha (l_l^Y)^{1 - \alpha} - \phi \frac{\dot{A}}{A}, \]

(44)

\[\lim_{t \to \infty} \lambda_{z,t} e^{-(\rho - n)t} z_t = 0, \quad z \in \{k, A\}. \]

(45)

(\(\lambda_{z,t} \) denotes the co-state variable associated with state variable \(z \) at time \(t \).)

Solving (42) for \(\lambda_k/\lambda_A \) and using (31) implies

\[\frac{\lambda_k}{\lambda_A} = \frac{\dot{\lambda}_A}{\lambda_A} = \frac{\dot{\lambda}_k}{\lambda_k} = -\sigma g. \]

(46)

Suppose that \(A \) and \(k \) grow at rate \(n \) in the long run, whereas \(\tilde{h} \) and thus also \(l_l^Y \) and \(l_l^A \) are stationary. These properties are easily confirmed, as are transversality conditions. From (46), we then find \(\dot{\lambda}_k/\lambda_k = \dot{\lambda}_A/\lambda_A \). Moreover, using \(\dot{c}/c = g \) in (41) implies that

\[\dot{\lambda}_k \lambda_k = \dot{\lambda}_A \lambda_A = -\sigma g. \]

(47)

Using \(\dot{\lambda}_A/\lambda_A = -\sigma g \), \(\dot{A}/A = g = \frac{n}{1 - \phi} \) and (46) in (44), we obtain

\[\frac{\dot{\tilde{h}}}{l_l^A} = \frac{\rho + (\sigma - 1)g}{g}. \]

(48)

Using (33) and the definition of function \(\Gamma(\cdot) \), we find that the optimal threshold skill level, \(\tilde{h}_{opt} \), is uniquely given by

\[\Gamma(\tilde{h}_{opt}) = \frac{\rho + (\sigma - 1)g}{g}. \]

(49)

Recall that \(\Gamma' > 0 \). Thus, according to (34) and (49), for \(s_A = 0 \) we find that
\(h^* > \tilde{h}^{opt} \) if and only if
\[
\frac{1}{\alpha} - 1 > \frac{1 - 1}{\kappa} (\sigma g + \rho - n) > \rho + (\sigma - 1)g.
\]

Since \(1 < \kappa < 1/\alpha \), we have \(1/\alpha - 1 > 1 - 1/\kappa \). Moreover, using \(g = \frac{n}{1 - \sigma} \), we find that \(\sigma g + \rho - n \geq \rho + (\sigma - 1)g \) holds if and only if \(\phi \geq 0 \). This confirms that \(h^* > \tilde{h}^{opt} \) if \(s_A = 0 \) and \(\phi \geq 0 \). Finally, use (10) and (11) to see that \(Y \) and \(K \) growth with rate \(n + g \) in the long run. This concludes the proof.

\textbf{Proof of Proposition 3:} First, substitute (29) into (11) to see that the capital-output ratio in decentralized BGE is given by
\[
\left(\frac{K}{Y} \right)^* = \frac{\alpha}{\kappa (1 - s_K) (\sigma g + \rho + \delta)}.
\]

Second, substitute \(\dot{\lambda}_K / \lambda_K = -\sigma g \) from (47) into (43) to find
\[
\alpha \left(\frac{A^iY}{k} \right)^{1-\alpha} = \sigma g + \rho + \delta.
\]
(51)

Since \((A^iY/k)^{1-\alpha} = Y/K \), the socially optimal capital-output ratio is given by
\[
\left(\frac{K}{Y} \right)^{opt} = \frac{\alpha}{\sigma g + \rho + \delta}.
\]
(52)

The optimal capital subsidy, \(s_A^{opt} \), follows from setting \((K/Y)^* = (K/Y)^{opt} \). To find the optimal R&D subsidy, \(s_A^{opt} \), set the right-hand sides of (34) and (49) equal to each other.
Nr. 1 Wolfgang Bernhardt
Stock Options wegen oder gegen Shareholder Value?
Vergütungsmodelle für Vorstände und Führungskräfte
04/1998

Nr. 2 Thomas Lenk / Volkmann Teichmann
Bei der Reform der Finanzverfassung die neuen Bundesländer nicht vergessen!
10/1998

Nr. 3 Wolfgang Bernhardt
Gedanken über Führen – Dienen – Verantworten
11/1998

Nr. 4 Kristin Wellner
Möglichkeiten und Grenzen kooperativer Standortgestaltung zur Revitalisierung von Innenstädten
12/1998

Nr. 5 Gerhardt Wolff
Brauchen wir eine weitere Internationalisierung der Betriebswirtschaftslehre?
01/1999

Nr. 6 Thomas Lenk / Friedrich Schneider
Zurück zu mehr Föderalismus: Ein Vorschlag zur Neugestaltung des Finanzausgleichs in der Bundesrepublik Deutschland unter besonderer Berücksichtigung der neuen Bundesländer
12/1998

Nr. 7 Thomas Lenk
Kooperativer Förderalsmus – Wettbewerbsorientierter Förderalsmus
03/1999

Nr. 8 Thomas Lenk / Andreas Mathes
EU – Österreichung – Finanzierbar?
03/1999

Nr. 9 Thomas Lenk / Volkmann Teichmann
Die fiskalischen Wirkungen verschiedener Forderungen zur Neugestaltung des Länderfinanzausgleichs in der Bundesrepublik Deutschland:
Eine empirische Analyse unter Einbeziehung der Normenkontrollkriterien der Länder Baden-Württemberg, Bayern und Hessen sowie der Stellungnahmen verschiedener Bundesländer
09/1999

Nr. 10 Kai-Uwe Graw
Gedanken zur Entwicklung der Strukturen im Bereich der Wasserversorgung unter besonderer Berücksichtigung kleiner und mittlerer Unternehmen
10/1999

Nr. 11 Adolf Wagner
Materialien zur Konjunkturforschung
12/1999

Nr. 12 Anja Birke
Die Übertragung westdeutscher Institutionen auf die ostdeutsche Wirklichkeit – ein erfolgversprechendes Zusammenspiel oder Aufdeckung systematischer Mängel?
Ein empirischer Bericht für den kommunalen Finanzausgleich am Beispiel Sachsen
02/2000

Nr. 13 Rolf H. Hasse
Internationaler Kapitalverkehr in den letzten 40 Jahren – Wohlstandsmaotor oder Krisenursache?
03/2000

Nr. 14 Wolfgang Bernhardt
Unternehmensführung (Corporate Governance) und Hauptversammlung
04/2000

Nr. 15 Adolf Wagner
Materialien zur Wachstumsforschung
03/2000

Nr. 16 Thomas Lenk / Anja Birke
Determinanten des kommunalen Gebührenaufkommens unter besonderer Berücksichtigung der neuen Bundesländer
04/2000

Nr. 17 Thomas Lenk
Finanzwirtschaftliche Auswirkungen des Bundesverfassungsgerichtsurteils zum Länderfinanzausgleich vom 11.11.1999
04/2000

Nr. 18 Dirk Böhle
Continuous linear utility for preferences on convex sets in normal real vector spaces
05/2000

Nr. 19 Stefan Dierkes / Stephanie Hannah
Steuerung dezentraler Investitionsentscheidungen bei nutzungsabhängigem und nutzungsunabhängigem Verschleiß des Anlagenvermögens
06/2000

Nr. 20 Thomas Lenk / Andreas Mathes / Olaf Hirschfeld
Zur Trennung von Bundes- und Landeskompetenzen in der Finanzverfassung Deutschlands
07/2000

Nr. 21 Stefan Dierkes
Marktwerte, Kapitalkosten und Betafaktoren bei wertabhängig der Finanzierung
10/2000

Nr. 22 Thomas Lenk
Intergovernmental Fiscal Relationships in Germany: Requirement for New Regulations?
03/2001

Nr. 23 Wolfgang Bernhardt
Stock Options – Aktuelle Fragen Besteuerung, Bewertung, Offenlegung
03/2001
Nr. 24 Thomas Lenk Die „kleine Reform“ des Länderfinanzausgleichs als Nukleus für die „große Finanzverfassungs-reform“?
10/2001

Nr. 25 Wolfgang Bernhardt Biotechnologie im Spannungsfeld von Menschenwürde, Forschung, Markt und Moral
Wirtschaftsethik zwischen Beradsamkeit und Schweigen
11/2001

Nr. 26 Thomas Lenk Finanzwirtschaftliche Bedeutung der Neuregelung des bundesstaatlichen Finanzausgleichs –
Eine allkoative und distributive Wirkungsanalyse für das Jahr 2005
11/2001

Nr. 27 Sören Bär Grundzüge eines Tourismusmarketing, untersucht für den Südraum Leipzig
05/2002

Nr. 28 Wolfgang Bernhardt Der Deutsche Corporate Governance Kodex: Zuwahl (comply) oder Abwahl (explain)?
06/2002

Nr. 29 Adolf Wagner Konjunkturtheorie, Globalisierung und Evolutionsökonomik
08/2002

Nr. 30 Adolf Wagner Zur Profilbildung der Universitäten
08/2002

Nr. 31 Sabine Klinger / Jens Ulrich / Hans-Joachim Rudolph Konjunktur als Determinante des Erdgasverbrauchs in der ostdeutschen Industrie?
10/2002

Nr. 32 Thomas Lenk / Anja Birke The Measurement of Expenditure Needs in the Fiscal Equalization at the Local Level Empirical Evidence from German Municipalities
10/2002

Nr. 33 Wolfgang Bernhardt Die Lust am Fliegen
Eine Parabel auf viel Corporate Governance und wenig Unternehmensführung
11/2002

Nr. 34 Udo Hielscher Wie reich waren die reichsten Amerikaner wirklich?
(US-Vermögensbewertungsindex 1800 – 2000)
12/2002

Nr. 35 Uwe Haubold / Michael Nowak Risikoanalyse für Langfristinvestments
Eine simulationsbasierte Studie
12/2002

Nr. 36 Thomas Lenk Die Neuregelung des bundesstaatlichen Finanzausgleichs auf Basis der Steuerschätzung Mai 2002 und einer aktualisierten Bevölkerungsstatistik
12/2002

Nr. 37 Uwe Haubold / Michael Nowak Auswirkungen der Renditeverteilungsannahme auf Anlageentscheidungen
Eine simulationsbasierte Studie
02/2003

Nr. 38 Wolfgang Bernhardt Corporate Governance Kodex für den Mittelstand?
06/2003

Nr. 39 Hermut Kormann Familienunternehmen: Grundfragen mit finanzwirtschaftlichen Bezug
10/2003

Nr. 40 Matthias Folk Launhardtse Trichter
11/2003

Nr. 41 Wolfgang Bernhardt Corporate Governance statt Unternehmensführung
11/2003

Nr. 42 Thomas Lenk / Karolina Kaiser Das Prämienmodell im Länderfinanzausgleich – Anreiz- und Verteilungswirkungen
11/2003

Nr. 43 Sabine Klinger Die Volkswirtschaftliche Gesamtrechnung des Haushaltssektors in einer Matrix
03/2004

Nr. 44 Thomas Lenk / Heide Köpping Strategien zur Armutsbekämpfung und –vermeidung in Ostdeutschland:
05/2004

Nr. 45 Wolfgang Bernhardt Sommernachtsphantasien
Corporate Governance im Land der Träume.
07/2004

Nr. 46 Thomas Lenk / Karolina Kaiser The Premium Model in the German Fiscal Equalization System
12/2004

Nr. 47 Thomas Lenk / Christine Falken Komparative Analyse ausgewählter Indikatoren des Kommunalwirtschaftlichen Gesamtergebnisses
05/2005

Nr. 48 Michael Nowak / Stephan Barth Immobilienanlagen im Portfolio institutioneller Investoren am Beispiel von Versicherungsunternehmen
Auswirkungen auf die Risikosituation
08/2005
Nr. 49 Wolfgang Bernhardt
Familiengesellschaften – Quo Vadis?
Vorsicht vor zu viel „Professionalisierung“ und Ver-Fremdung
11/2005

Nr. 50 Christian Milow
Der Griff des Staates nach dem Währungsgold
12/2005

Nr. 51 Anja Eichhorst / Karolina Kaiser
The Institutional Design of Bailouts and Its Role in Hardening Budget Constraints in Federations
03/2006

Nr. 52 Ulrich Heilemann / Nancy Beck
08/2006

Nr. 53 Gunther Schnabl
Die Grenzen der monetären Integration in Europa
08/2006

Nr. 54 Herrmut Karmann
Gibt es so etwas wie typisch mittelständige Strategien?
11/2006

Nr. 55 Wolfgang Bernhardt
(Misc)-Stimmung, Bestimmung und Mitbestimmung
Zwischen Juristentag und Biedenkopf-Kommission
11/2006

Nr. 56 Ulrich Heilemann / Annika Blaschzik
Indicators and the German Business Cycle
A Multivariate Perspective on Indicators of Ifo, OECD, and ZEW
01/2007

Nr. 57 Ulrich Heilemann
„The Soul of a new Machine“
zur Anfängen des RWI-Konjunkturmodells
12/2006

Nr. 58 Ulrich Heilemann / Roland Schuhr / Annika Blaschzik
Zur Evolution des deutschen Konjunkturzyklus 1958 bis 2004
Ergebnisse einer dynamischen Diskriminanzanalyse
01/2007

Nr. 59 Christine Falken / Mario Schmidt
Kameralistik versus Doppik
Zur Informationsschutz des alten und neuen Rechnungswesens der Kommunen
Teil I: Einführende und Erläuternde Betrachtungen zum Systemwechsel im kommunalen Rechnungswesen
01/2007

Nr. 60 Christine Falken / Mario Schmidt
Kameralistik versus Doppik
Zur Informationsschutz des alten und neuen Rechnungswesens der Kommunen
Teil II: Bewertung der Informationsschutz im Vergleich
01/2007

Nr. 61 Udo Hielscher
Monti della citta di Firenze
Innovative Finanzierungen im Zeitalter Der Medici. Wurzeln der modernen Finanzmärkte
03/2007

Nr. 62 Ulrich Heilemann / Stefan Wappler
Sachsen wächst anders
Konjunkturelle, sektorale und regionale Bestimmungsgründe der Entwicklung der Bruttowertschöpfung
1992 bis 2006
07/2007

Nr. 63 Adolf Wagner
Regionalökonomik:
Konvergierende oder divergierende Regionalentwicklungen
08/2007

Nr. 64 Ulrich Heilemann / Jens Ulrich
Good bye, Professor Phillips?
Zum Wandel der Tariflohndeterminanten in der Bundesrepublik 1952 – 2004
08/2007

Nr. 65 Gunther Schnabl / Franziska Schobert
Monetary Policy Operations of Debtor Central Banks in MENA Countries
10/2007

Nr. 66 Andreas Schäfer / Simone Valente
Habit Formation, Dynastic Altruism, and Population Dynamics
11/2007

Nr. 67 Wolfgang Bernhardt
5 Jahre Deutscher Corporate Governance Konnex
Eine Erfolgsgeschichte?
01/2008

Nr. 68 Ulrich Heilemann / Jens Ulrich
Viel Lärm um wenig? Zur Empirie von Lohnformeln in der Bundesrepublik
01/2008

Nr. 69 Christian Groth / Karl-Josef Koch / Thomas M. Steger
When economic growth is less than exponential
02/2008

Nr. 70 Andreas Bohne / Linda Kochmann
Ökonomische Umweltbewertung und endogene Entwicklung peripherer Regionen
Synthese einer Methodik und einer Theorie
02/2008

Nr. 71 Andreas Bohne / Linda Kochmann / Jan Slavík / Lenka Slavková
Deutsch-tschechische Bibliographie
Studien der kontingenten Bewertung in Mittel- und Osteuropa
06/2008
Nr. 72 Paul Lehmann / Christoph Schröter-Schlaack
Regulating Land Development with Tradable Permits: What Can We Learn from Air Pollution Control
08/2008

Nr. 73 Ronald McKinnon / Gunther Schnabl
China's Exchange Rate Impasse and the Weak U.S. Dollar
10/2008

Nr. 74 Wolfgang Bernhardt
Managervergütungen in der Finanz- und Wirtschaftskrise
12/2008

Nr. 75 Moritz Schularick / Thomas M. Steger
Financial Integration, Investment, and Economic Growth: Evidence from Two Eras of Financial Globalization
12/2008

Nr. 76 Gunther Schnabl / Stephan Freitag
An Asymmetry Matrix in Global Current Accounts
01/2009

Nr. 77 Christina Ziegler
Testing Predictive Ability of Business Cycle Indicators for the Euro Area
01/2009

Nr. 78 Thomas Lenk / Oliver Rattmann / Florian F. Woitek
Public Corporate Governance in Public Enterprises: Transparency in the Face of Divergent Positions of Interest
02/2009

Nr. 79 Thomas Steger / Lucas Bretschger
Globalization, the Volatility of Intermediate Goods Prices, and Economic Growth
02/2009

Nr. 80 Marcela Munoz Escobar / Robert Holländer
Institutional Sustainability of Payment for Watershed Ecosystem Services: Enabling conditions of institutional arrangement in watersheds
04/2009

Nr. 81 Robert Holländer / WU Chunyou / DUAN Ning
Sustainable Development of Industrial Parks
07/2009

Nr. 82 Georg Quaas
Realgroessen und Preisindizes im alten und im neuen VGR-System
10/2009

Nr. 83 Ullrich Heilemann / Hagen Findeis
Empirical Determination of Aggregate Demand and Supply Curves: The Example of the RWI Business Cycle Model
12/2009

Nr. 84 Gunther Schnabl / Andreas Hoffmann
The Theory of Optimum Currency Areas and Growth in Emerging Markets
03/2010

Nr. 85 Georg Quaas
Does the macroeconomic policy of the global economy's leader cause the worldwide asymmetry in current accounts?
03/2010

Nr. 86 Volker Grossmann / Thomas M. Steger / Timo Trimborn
Quantifying Optimal Growth Policy
06/2010

Nr. 87 Wolfgang Bernhardt
Corporate Governance Kodex für Familienunternehmen? Eine Widerrede
06/2010

Nr. 88 Philipp Mandel / Bernd Süßmuth
A ReExamination of the Role of Gender in Determining Digital Piracy Behavior
07/2010

Nr. 89 Philipp Mandel / Bernd Süßmuth
Size Matters. The Relevance and Hicksian Surplus of Agreeable College Class Size
07/2010

Nr. 90 Thomas Kohstall / Bernd Süßmuth
Cyclic Dynamics of Prevention Spending and Occupational Injuries in Germany: 1886-2009
07/2010

Nr. 91 Martina Padmanabhan
Gender and Institutional Analysis. A Feminist Approach to Economic and Social Norms
08/2010

Nr. 92 Gunther Schnabl / Ansgar Belke
Finanzkrise, globale Liquidität und makroökonomischer Exit
09/2010

Nr. 93 Ullrich Heilemann / Roland Schulr / Heinz Josef Münch
A "perfect storm"? The present crisis and German crisis patterns
12/2010

Nr. 94 Gunther Schnabl / Holger Zimanek
Die Deutsche Wiedervereinigung und die europäische Schuldenkrise im Lichte der Theorie optimaler Währungsräume
06/2011

Nr. 95 Andreas Hoffmann / Gunther Schnabl
Symmetrische Regeln und asymmetrisches Handeln in der Geld- und Finanzpolitik
07/2011

Nr. 96 Andreas Schöfer / Mark T. Schneider
Endogenous Enforcement of Intellectual Property, North-South Trade, and Growth
08/2011

Nr. 97 Volker Grossmann / Thomas M. Steger / Timo Trimborn
Dynamically Optimal R&D Subsidization
08/2011
Nr.	Author(s)	Title	Date
98	Erik Gawel	Political drivers of and barriers to Public-Private Partnerships: The role of political involvement	09/2011
99	André Casajus	Collusion, symmetry, and the Banzhaf value	09/2011
100	Frank Hüttner / Marco Sunder	Decomposing R² with the Owen value	10/2011
101	Volker Grossmann / Thomas M. Steger / Timo Trimborn	The Macroeconomics of TANSTAAFL	11/2011
102	Andreas Hoffmann	Determinants of Carry Trades in Central and Eastern Europe	11/2011
103	Andreas Hoffmann	Did the Fed and ECB react asymmetrically with respect to asset market developments?	01/2012
104	Christina Ziegler	Monetary Policy under Alternative Exchange Rate Regimes in Central and Eastern Europe	02/2012
105	José Abad / Axel Löffler / Gunther Schnabl / Holger Zemanek	Fiscal Divergence, Current Account and TARGET2 Imbalances in the EMU	03/2012
106	Georg Quaas / Robert Köster	Ein Modell für die Wirtschaftszweige der deutschen Volkswirtschaft: Das "MOGBOT" (Model of Germany’s Branches of Trade)	10/2011
107	Andreas Schöfer / Thomas Steger	Journey into the Unknown? Economic Consequences of Factor Market Integration under Increasing Returns to Scale	04/2012
108	Andreas Hoffmann / Björn Urbansky	Order, Displacements and Recurring Financial Crises	06/2012
109	Finn Marten Körner / Holger Zemanek	On the Brink? Intro-euro area imbalances and the sustainability of foreign debt	07/2012
110	André Casajus / Frank Hüttner	Nullifying vs. dummifying players or nullified vs. dummified players: The difference between the equal division value and the equal surplus division value	07/2012
111	André Casajus	Solidarity and fair taxation in TU games	07/2012
112	Georg Quaas	Ein Nelson-Winter-Modell der deutschen Volkswirtschaft	08/2012
113	André Casajus / Frank Hüttner	Null players, solidarity, and the egalitarian Shapley values	08/2012
114	André Casajus	The Shapley value without efficiency and additivity	11/2012
115	Erik Gawel	Neuordnung der W-Besoldung: Ausgestaltung und verfassungsrechtliche Probleme der Konsumtionsregeln zur Anrechnung von Leistungsbezügen	02/2013
116	Volker Grossmann / Andreas Schöfer / Thomas M. Steger	Migration, Capital Formation, and House Prices	02/2013
117	Volker Grossmann / Thomas M. Steger	Optimal Growth Policy: the Role of Skill Heterogeneity	02/2012 (Eingang im Dekanat 03/2013)