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Abstract 

Some models are presented in this paper which extend the concept of measuring 

superefficiency to the useful case of variable returns-to-scales (VRS), thus enabling the 

ranking of efficient as well as inefficient units. Two models, namely the Universal Radial 

Model and the Universal Additive Model, are presented that also have strong invariance 

properties (units and translation invariance). For both of these models a method for 

normalising the efficiency scores on a (0-1+) scale is presented. These models have been 

implemented in a software package and applied to the ranking of units in an industrial 

context.  
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Introduction 

Some Data Envelopment Analysis (DEA) approaches to productivity measurement and 

ranking of units depend on measuring the ‘distance’ of a DMU (Decision Making Unit) to the 

convex hull spanned by other DMU’s; calculating Malmquist productivity indices is one case, 

‘superefficiency’ measurement (Andersen and Petersen, 1993) is another. Standard input- or 

output-oriented DEA models exhibit deficiencies when applied to this task. Superefficiency is 

only well-defined for CRS (constant returns-to-scales) specifications, and such models are 

units invariant in the radial, but not in the slack components.  

Three models are presented in this paper which extend the concept of measuring 

superefficiency to the useful case of variable returns-to-scales (VRS), thus enabling the 

ranking of efficient as well as inefficient units. Two of these models also have strong 

invariance properties. 

(i)  Universal Radial: This model is units and translation invariant (also for slacks) for the 

VRS specification: input or output data may thus assume negative or zero values. It is 

units invariant (also for slacks) for non-negative data in CRS. 

(ii) Universal Additive: This model is units and translation invariant (slacks being included in 

the efficiency score) for the VRS specification: input or output data may thus assume 

negative or zero values. It is units invariant for non-negative data in CRS. Unlike the 

universal radial model, it exhibits however discontinuity in the (super)efficiency values 

along the weak efficient boundary, so the former model may be preferred for ranking 

purposes. 

For both of these models a method for normalising the efficiency scores is presented, so that 

inefficient units obtain an ‘efficiency’ value less than one, weak efficient units obtain a value 

of one, and superefficient units obtain a value greater than one. 

These models have been implemented in a software package and applied to the ranking of 

units in an industrial context. 
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Model 1 for Ranking 

Let X and Y be the input and output matrices, respectively, for all DMU’s. We implement a 

ranking based on the ‘Andersen and Petersen’ procedure i.e. each DMU d is evaluated with 

respect to a set including all other DMU’s, except for itself. So 

 

 

Then the problem is to solve the following Linear Programs. Note thatY d
, Y d− , X d

, and 

X d− are in general different for each DMU d. 

 

Y  is the k × n matrix for k outputs and n DMU’s 

Y d−  is the k ×(n-1) matrix for k outputs and n-1 DMU’s, without data for DMU d 

Y d
  is the k ×1 output vector for DMU d being evaluated 

(for example Y  = the augmented matrix [ ] [ ]Y Y Y Yn
n1

1− −= ) 

X     is the m × n matrix for m inputs and n DMU’s 

X d−  is the m × (n-1) matrix for m inputs and n-1 DMU’s, without data for DMU d 

X d
  is the m ×1 input vector for DMU d being evaluated 

ϕ
λ









is the n × 1 solution vector, for scalar ϕ  and (n-1) × 1 vector λ  

0 is a (n-1) × 1 vector of zeros 

and 1 is a 1 ×(n-1) row vector of 1’s. 
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max
λ

ϕ
≥ 0

    (MODEL 1) 

 s.t.  X X Xd
d

dϕ λ+ ≤−  

   Y Y Yd
d

dϕ λ− ≤ −−  

   11 =λ  

   λ ≥ 0  

 

Note that Model 1 may be presented concisely in the form ‘ max   xc s.t. bxA ≤ ’ as follows: 
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This may be instructive for constructing the matrices needed for the simplex tableau. 

The Efficiency Score to be returned from the model  = 1−ϕ . 

This model returns efficiency and/or superefficiency values for all real non-zero first-quadrant 

data i.e. 0 , >∈∀ xXx  and 0 Y, >∈∀ yy . It may be similar to the radial 

improvement model (both input/output) of Thanassoulis (see reference), but latter does not 

allow for superefficiency measurement, and the efficiency score is different. 
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Universal Models 

The aim of ‘universal models’ is to provide a framework for evaluating the efficiency (or 

‘superefficiency’) of a DMU for the most general of convexity assumptions (VRS), whether or 

not that DMU is ‘inside’ or ‘outside’ the convex hull determined by a set of DMU’S which 

excludes the DMU itself being evaluated. The ability to carry out this evaluation is critical, for 

example, for the purposes of ranking, and the calculation of Malmquist productivity indices 

for panel data. 

We are implementing a ranking proposal after the fashion of Andersen and Petersen (1993), 

i.e. the DMU d is not part of the set out of which the convex frontier is obtained, but we do 

not know whether it is inside or outside the hull. Further we utilize the invariance properties 

of the objective function introduced by Lovell and Pastor (1995) 

The basic terminology is as follows: 

Y        is the k ×n matrix for k outputs and n DMU’s 

Y d−    is the k ×(n-1) matrix for k outputs and n-1 DMU’s 

Y d
    is the k ×1 output vector for DMU d being evaluated 

X     is the m × n matrix for m inputs and n DMU’s 

X d−  is the m × (n-1) matrix for m inputs and n-1 DMU’s 

X d
   is the m ×1 input vector for DMU d being evaluated 

λ , iϕ , and oϕ , are vectors of length (n-1), m, and  k, respectively;  
1-

iσ  

and 
1-

oσ are row vectors of length m, and  k, respectively 

 1 is a (n-1) row vector of 1’s; 0 denotes zero vectors of appropriate length 

+→−  and −→+  are ‘algorithmic operators’, as defined below 

and an asterisk denotes pointwise vector multiplication. 
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Model 2:  The Universal Additive Model 

The Universal Additive model is formulated (for VRS) in two parts as: 

a)  The point d lies ‘inside’ the hull 

 )()()()(max 11

0,,

d
oo

d
iiUA YXI

oi

∗+∗= −−

≥
ϕσϕσ

ϕϕλ
 

 s.t. 
( )1− ∗ ≥ −ϕ λi

d
dX X

    (MODEL 2a) 

  
( )1+ ∗ ≤ −ϕ λo

d
dY Y

 

  
1 1λ =

 

λ ϕ ϕ, ,i o ≥ 0
 

Notice that for each input i = 1,... , m,  [ ]( )jiXfi ,=σ , j = 1, …, n, i.e. the standard 

deviation for each input i is calculated over the entire set of DMU’S, including the input 

X i
d

of the DMU d being evaluated. IUA  may also be written as 

 I X YUA i i i
d

i

m

o o o
d

o

k

i o

= +
≥

−

=

−

=
∑ ∑max

, ,λ ϕ ϕ
σ ϕ σ ϕ

0

1

1

1

1
 

b)  The point d lies ‘outside’ the hull 

 )()()()(max 11

0,;0

d
oo

d
iiUA YXI

oi

∗+∗= −−

≤≥
ϕσϕσ

ϕϕλ
 

 s.t. 
( )1− ∗ ≥ −ϕ λi

d
dX X

    (MODEL 2b) 

  
( )1+ ∗ ≤ −ϕ λo

d
dY Y

 

  
1 1λ =

  
λ ϕ ϕ≥ ≤0 0, i o,     
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The only difference in Model 2b from Model 2a is that the restrictions on ϕ ϕi o,  are non-

positive instead of non-negative. However, since we do not know a priori which model is 

applicable, this difference is very significant.  

The following algorithm solves the DEA for DMU d  

Step 1)  Run Model 2a for DMU d 

–  if an optimal value for IUA  is found, this is the solution 

–  if no feasible value is found, proceed to step 2 

Step 2)  Run Model 2b for DMU d 

–  the optimal value for IUA  is the solution. 

For this reason we can formulate the following universal model: 

For DMU d inside or outside the hull 

I X YUA i i
d

o o
d

i o

= → − ∗ + → − ∗
≥

− −max ( ) ( ) ( ) ( )
, ,λ ϕ ϕ

σ ϕ σ ϕ
0

1 1
 

s.t.  
( )1− → + ∗ ≥ −ϕ λi

d
dX X

   (MODEL 2c) 

  
( )1+ → − ∗ ≤ −ϕ λo

d
dY Y

 

  
1 1λ =

 

  
λ ϕ ϕ, ,i o ≥ 0

 

 

where the symbol − → + , for example, means that the LP solution is initially started 

with the minus operator: if no feasible initial solution can be found, then the simplex 

algorithm proceeds with the plus operator. The correct solution is thereby guaranteed. 
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It can be shown that this formulation is units invariant and translation invariant in the first 

quadrant: this means that the affine transformation must be such that  

 aX b ii + > ∀0 = 1,…,m  and  aY b oo + > ∀0 = 1,… , k. 

 

Two Extensions 

First we introduce the Reference Base point },{* ∗∗= oi YXr  for i = 1,..., m and o =1,..., k 

as an ‘artificial DMU’. It is defined as follows: 

 X Xi
j n

i
j∗

=
= max

,...,1
 for each input i, and 

 Y Yo
j n

o
j∗

=
= min

,...,1
  for each output o. 

The ‘DMU’ 
*r is now added to the set of DMU’s so that there are n+1 DMU’s altogether and 

X  and Y  are m ×(n+1) and k ×(n+1) matrices. Likewise X d−  and Y d−  are m ×n and 

k ×n matrices now, etc. 

Second, making the transformations ϕi i
d

iX s i= ∀ = 1,…,m  and  ϕo o
d

oY s o= ∀ = 

1,… , k, we can rewrite Model 2c as the Universal Additive Model. 

For DMU d inside or outside the hull 

 

I s sUA
s s

i i o o
i o

= → − + → −
≥

− −max ( ) ( )
, ,λ

σ σ
0

1 1

 

s.t.     
X s Xd i

d
− + → − ≤λ

 (MODEL 2d) 

  
Y s Yd o

d
− − → + ≥λ

       (UNIVERSAL ADDITIVE)  

  
1 1λ =

 

  
λ, ,s si o ≥ 0
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The apparent similarity of the Universal Additive Model to the Normalised Additive model of 

Lovell and Pastor (as described in Holzer. 1999) is deceptive: even although si  and so  may 

be regarded as ‘slacks’, the inequalities play an important non-trivial role. In the simplex 

solution additional slacks will be added to take account of the inequalities! 

The Model 2d is now completely translation and units invariant, which means that the correct 

solution will be calculated even if the data contains zeros or negative values. 

Denote the DEA solution for DMU d as I dUA ( ) . The inefficiency measure for the reference 

point 
*r  is also calculated by the DEA procedure. Let the result of this calculation be 

I rUA ( )∗
, i.e. Model 2d is solved with setting d = 

*r .  

 

We define the Normalised Universal Additive Efficiency E
I

I r
UA

UA

UA

*

( )
= − ∗1 , so that 

EUA
* = 1 for DMU’s on the strong and weak efficient boundaries, EUA

* ≥ 1 for DMU’s 

outside the hull , E rUA
* ( )∗ = 0  and in general EUA

* ≥ 0 . 

 

This model exhibits a certain disadvantage: a DMU d which is on the weak efficient frontier 

will in general have E dUA
* ( ) < 1 (and definitely not equal to 1). However if there is, for 

example, another DMU 
εd which merely differs from d by a very small ε > 0 such that 

Y Yd d
1 1

ε

ε= +   and otherwise 
d

o
d

o YY =
ε

, o = 2,…, k and  iXX d
i

d
i ∀= ,

ε

= 1,… , m., 

then E dUA
* ( )ε = 1 as ε  decreases to zero. This represents a certain theoretical 

discontinuity in the efficiency which is unavoidable in this model, even if its practical 

implications may be considered as negligible. 
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Model 3:  The Universal Radial Model 

The Universal Radial Model is presented here using the same meaning for the notation as 

above. In particular the reference base-point 
*r is included in the set of DMU’s. 

The model is formulated as follows: 

For DMU d inside or outside the hull 

  

IUR = → −
≥ ≥
max

, ,ζ λ
ζ

0 0  

 s.t. 
X Xd i

d
− + → − ≤λ σ ζ

 (MODEL 3) 

  
Y Yd o

d
− − → + ≥λ σ ζ

                 (UNIVERSAL RADIAL) 

  
1 1λ =

 

 
ζ λ≥ ≥0 0, ,

 

 where ζ is a scalar. 

This model is radial because the projection is always along all input and output dimensions, 

which is not necessarily the case for the additive model, for example. It is ‘equi-radial 

because the ‘distance’ to the frontier is the same in each input and output, after the 

normalisation by means of standard deviations is taken into account. 

Just as is the case for the Universal Additive model, the Universal Radial model is also 

completely translation and units invariant. In other words, no matter what zeros or negative 

values are contained in the data, the solution will be found, and is identical for any affine 

translation. 

There is no discontinuity in efficiency measurement in this model. It is truly a universal model 

which can be used to measure efficiency from inside or outside the hull for the specification 

of variable returns-to-scale. Suggestions for implementing constant returns-to-scale, non-

increasing returns-to-scale, or non-decreasing returns-to-scale models based on this 

approach will follow at a later date. 
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Normalised Universal Radial Efficiency 

In just the same manner as above this is calculated for DMU d as 

 

E d
I d

I r
UA

UA

UA

* ( )
( )

( )
= − ∗1

 

and has the same properties mentioned above. 

 

Points to Remember 

• The Reference Base-point { , }X Yi o
∗ ∗

must be pre-calculated and added to the data set 

before constructing the tableau. 

• Standard deviations σ σi o,  are calculated after adding the Reference Base-point, i.e. 

)( j
ii Xσσ = for j = 1,… , n+1 DMU’s, for example.  

• In solving the Universal Additive and Universal radial models it is important to construct 

the initial tableau as indicated by the signs in the formulations. 

• Only if no feasible solution can be found, i.e. the artificial variables in the extended 

tableau can not be removed, do the signs in the tableau get changed according to the 

symbols → +  and → − . 

• In the Universal Additive case, these sign changes will affect the objective function row of 

the tableau and one variable in each input and output row. 

• In the Universal Radial case the sign changes will only affect the one column in the 

tableau (i.e. that pertaining to variable ζ  in the objective function and input and output 

constraint rows). 

• It is important that the inequalities as indicated in the constraints are used as given; in 

particular, although the solution variables si and so  effectively calculate slack values, 

extra (here not named) slacks will have to be added to the tableau (even although these 

will all turn out to have zero value in the solution!). 



I H S — Paterson / New Models for Data Envelopment Analysis — 11 

• If it is chosen to implement subroutines which require the objective function to be 

minimised instead of maximised then these formulations should be as follows: 

I s sUA
s s

i i o o
i o

= − → + − → +
≥

− −min ( ) ( )
, ,λ

σ σ
0

1 1

  

and  

IUR = − → +
≥ ≥
min

, ,ζ λ
ζ

0 0  

• After calculating IUA  or IUR  for each of n+1 DMU’s (including the reference point), the 

corresponding EUA
∗

 and EUR
∗

 may be calculated. 
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