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1. Introduction

Since all asset pricing models can be viewed as approximations of reality and are likely to

be misspecified, researchers are often interested in evaluating and comparing their empirical per-

formance. In order to perform these tasks, one has to take a stand on what measure of model

misspecification to use. While there are many possible choices, Hansen and Jagannathan (1997,

HJ hereafter) propose two interesting measures of model misspecification. The first one measures

the distance between a proposed stochastic discount factor (SDF) and the set of admissible SDFs

(i.e., the set of SDFs that price a given set of test assets correctly). The second one measures the

distance between a proposed SDF and the set of nonnegative admissible SDFs. Since the first mea-

sure does not impose the nonnegativity constraint (no-arbitrage condition) on the set of admissible

SDFs whereas the second one does, we refer to the first measure as the unconstrained HJ-distance

and to the second one as the constrained HJ-distance.

While the unconstrained HJ-distance is analyzed and used in many studies (see, e.g., Bansal,

Hsieh, and Viswanathan, 1993; Hansen, Heaton, and Luttmer, 1995; Jagannathan and Wang, 1996;

Jagannathan, Kubota, and Takehara, 1998; Campbell and Cochrane, 2000; Lettau and Ludvigson,

2001; Hodrick and Zhang, 2001; Farnsworth, Ferson, Jackson, and Todd, 2002; Dittmar, 2002; Kan

and Zhou, 2003; and Kan and Robotti, 2009, among others), the constrained HJ-distance is largely

ignored in the literature. The short list of studies that have analyzed and used the constrained

HJ-distance includes Hansen, Heaton, and Luttmer (1995), Bailey, Li, and Zhang (2004), Wang

and Zhang (2005), Chen and Ludvigson (2009), Fletcher (2009), and Liu, Kuo, and Coakley (2009).

We believe there are two reasons that contribute to the lack of popularity of the constrained HJ-

distance. The first reason is that an explicit solution for the constrained HJ-distance is not readily

available. The lack of an explicit solution hampers the theoretical analysis of the properties of

the constrained HJ-distance and implies that researchers often have to solve a high-dimensional

optimization problem in order to obtain an estimate of the constrained HJ-distance. The second

reason is that the statistical inference theory for the sample constrained HJ-distance is not fully

developed. Although Hansen, Heaton, and Luttmer (1995) derive some of the asymptotic theory

for estimating and evaluating asset pricing models based on the constrained HJ-distance, the model

selection tests are largely unavailable in the literature.

A recent paper by Li, Xu, and Zhang (2009, LXZ hereafter) aims at providing a more complete
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econometric study of the constrained HJ-distance. Besides developing specification and model

selection tests based on constrained HJ-distances, LXZ strongly advocate the use of the constrained

HJ-distance in empirical work because they find that this metric is more powerful in detecting

misspecified models, especially those that are not arbitrage free, and in differentiating between

models that have similar pricing errors on a given set of test assets. Their recommendation, however,

appears to be driven by empirical examples and is not based on an analysis of the theoretical and

statistical properties of the unconstrained and constrained HJ-distances.1

Our paper has two main objectives. The first one is to better understand the merits and draw-

backs of the constrained HJ-distance and the difference between this measure and its unconstrained

counterpart. We point out that when the SDF is perfectly correlated with the returns on the test

assets, the difference between the squared constrained and unconstrained HJ-distances is the same

as the difference between the constrained and unconstrained Hansen-Jagannathan bounds (HJ-

bounds, see Hansen and Jagannathan, 1991) constructed from the test assets. This suggests that

the difference between the two HJ-distances is identical across all SDFs that are spanned by the

returns. Therefore, for two spanned SDFs, testing the equality of unconstrained HJ-distances is

the same as testing the equality of constrained HJ-distances. For the more general case in which

the SDF is not spanned by the returns on the test assets, we derive an explicit solution of the

constrained HJ-distance under the assumption that the SDF and the returns are jointly normally

distributed. This allows us to show that nontrivial differences between the unconstrained and con-

strained HJ-distances can only arise when the volatility of the unspanned component of an SDF

is large and the Sharpe ratio of the tangency portfolio of the test assets is very high. In addition,

in the case of linear SDFs, we obtain analytical expressions of the SDF parameters that solve the

constrained HJ-distance problem and use them to analyze the trade-off between the deterioration

in the pricing ability of an SDF and its smaller probability of taking on negative values.

Our second objective is to provide an improved analysis of the sample constrained HJ-distance.

We show that the sample constrained HJ-distance takes on the value of infinity with positive

probability. As a result, the expectation of the sample constrained HJ-distance does not exist.

We also show that the sample constrained HJ-distance takes on the value of infinity if and only if

1LXZ also provide some simulation evidence to support their conjectures, but these simulation experiments show
that their model specification and selection tests based on the unconstrained and constrained HJ-distances have quite
similar size and power properties (for a more detailed discussion on this, see Sections 5 and 6).
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we can identify an in-sample arbitrage portfolio of the test assets. When an in-sample arbitrage

portfolio is identified, it implies that all models will have a sample constrained HJ-distance of

infinity, rendering it impossible to use the sample constrained HJ-distance for model comparison.

Furthermore, we demonstrate that, contrary to LXZ’s conjecture, the existing specification test

based on the unconstrained HJ-distance is also applicable to the constrained HJ-distance. We also

correct a common mistake in the literature (see, e.g., LXZ and Hodrick and Zhang, 2001) and show

that when the asset pricing model is correctly specified, the vectors of sample Lagrange multipliers in

the unconstrained and constrained HJ-distance problems are not always asymptotically normally

distributed. Finally, we improve on the model selection tests proposed by LXZ along several

dimensions. We show that for strictly non-nested models, LXZ’s testing methodology is incomplete

because it does not allow for the possibility that two strictly non-nested models are both correctly

specified. In addition, unlike LXZ, our model comparison tests allow for autocorrelated errors and

incorporate the proper null hypotheses. While the practice of not imposing the null hypotheses

in constructing the test statistics can be justified based on asymptotic arguments, it produces the

undesirable outcome of comparing test statistics that are positive by construction (as in the nested

models case discussed in Section 5) to distributions that can take on negative values. In addition,

incorporating the appropriate null hypotheses leads to simpler model comparison tests that require

the estimation of far fewer parameters than the ones suggested by LXZ.

In light of our theoretical findings, we reexamine the empirical performance of the seven asset

pricing models considered by LXZ. We find that LXZ’s main conclusion that it is easier to dif-

ferentiate between models when comparing them based on their sample constrained HJ-distances

is heavily driven by the very high sample Sharpe ratio of the test assets that they use. When

comparing their models on test assets that have a smaller sample Sharpe ratio, the model selection

tests based on the unconstrained and constrained HJ-distances deliver very similar conclusions.

The rest of the paper is organized as follows. Section 2 presents a theoretical analysis of the

unconstrained and constrained HJ-distances. Section 3 derives an analytical solution of the con-

strained HJ-distance under the normality assumption. Section 4 presents an econometrics analysis

of the sample constrained HJ-distance. Section 5 develops our model selection tests based on sam-

ple constrained HJ-distances. Section 6 contains our empirical results. Some concluding remarks

are provided in Section 7.
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2. Unconstrained and constrained Hansen-Jagannathan distances

2.1. The setup

Following HJ, let F be the information that is observed at the date of the asset payoffs. As-

sociated with F is the space L2 of all random variables with finite second moments that are in

the information set F. This space is used as the collection of hypothetical claims that could be

traded. However, for practical reasons, econometricians can only evaluate asset pricing models on

a subspace of L2. Let r̃ = [R0, r
′]′, where R0 is the gross return on the risk-free asset, and r is

a vector of excess returns (in excess of the risk-free rate) on N risky assets.2 We assume that the

payoff space used in an econometric analysis is given by the payoffs of portfolios of r̃:

P ≡ {w′r̃ : w ∈ <n}, (1)

where n = N + 1. In addition, we assume that E[r̃r̃′] is nonsingular so that none of the test assets

is redundant.

An SDF is a random variable in L2. We call m an admissible SDF if it prices the test assets

correctly, i.e.,

E[r̃m] = q, (2)

where q = [1, 0′N ]′ and 0N is an N -vector of zeros. Let M denote the set of all admissible SDFs.

Although all SDFs in M can price the test assets correctly, some of them can take on negative

values with positive probability and are not consistent with the absence of arbitrage opportunities

on the space of hypothetical derivative claims. To eliminate these SDFs from consideration, HJ

consider M+, which is the set of nonnegative admissible SDFs.

2.2. Pricing errors and Hansen-Jagannathan distances

Let y be a candidate stochastic discount factor. If y prices the n test assets correctly, then the

vector of pricing errors, e, of the test assets is exactly zero:

e = E[r̃y]− q = 0n. (3)
2It can be readily shown that both the unconstrained and constrained HJ-distances and their SDF parameters are

invariant to nonsingular transformations of the return data. Therefore, our results are the same regardless of whether
we use excess returns or gross returns on the risky assets. For the case with no risk-free asset, the analysis is slightly
more complicated and is available upon request.
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However, the pricing errors are nonzero when the asset pricing model is misspecified. In this case,

we are interested in measuring the degree of model misspecification. HJ suggest using

δ = min
m∈M

(E[(y−m)2])
1
2 (4)

as a misspecification measure of y. In this paper, we refer to δ as the unconstrained HJ-distance.

It is possible for an SDF to price all the test assets correctly and yet to take on negative values

with positive probability. Such an SDF does not necessarily rule out arbitrage opportunities and

it could be problematic to use this SDF to price payoffs that are not in P (e.g., derivatives on the

test assets). To deal with this issue, HJ provide a second model misspecification measure:

δ+ = min
m∈M+

(E[(y−m)2])
1
2 . (5)

We refer to δ+ as the constrained HJ-distance. Since M+ is a subset of M, δ+ cannot be smaller

than δ.

Instead of solving the above primal problems to obtain δ and δ+, HJ suggest that it is sometimes

more convenient to solve the following dual problems:

δ2 = max
λ∈<n

E[y2 − (y − λ′r̃)2] − 2λ′q, (6)

δ2+ = max
λ∈<n

E[y2 − [(y − λ′r̃)+]2] − 2λ′q, (7)

where λ is a vector of Lagrange multipliers and (a)+ ≡ max[a, 0].

When the candidate SDF y depends on some unknown parameters γ, it is customary to choose γ

to minimize δ or δ+, and the squared unconstrained and constrained HJ-distances are then defined

as

δ2 = min
γ∈Γ

min
m∈M

E[(y(γ)−m)2] = min
γ∈Γ

max
λ∈<n

E[y(γ)2 − (y(γ)− λ′r̃)2]− 2λ′q, (8)

δ2+ = min
γ∈Γ

min
m∈M+

E[(y(γ)−m)2] = min
γ∈Γ

max
λ∈<n

E[y(γ)2 − [(y(γ)− λ′r̃)+]2]− 2λ′q, (9)

where Γ is the parameter space of γ.

HJ provide a maximum pricing error interpretation of the two HJ-distances. Starting with

the unconstrained HJ-distance, it is easy to show that for a given SDF y, the vector of Lagrange

multipliers is given by

λ = U−1e, (10)

5



where U = E[r̃r̃′] is the second moment matrix of r̃. It follows that the squared unconstrained

HJ-distance is given by

δ2 = e′U−1e. (11)

Consider a portfolio w with unit second moment, i.e., w′Uw = 1. By the Jensen’s inequality, the

squared pricing error of such a portfolio is

(w′e)2 = (w′U
1
2U− 1

2 e)2 ≤ (w′Uw)(e′U−1e) = δ2. (12)

Specifically, the portfolio w = U−1e/δ has a pricing error δ. As a result,

max
w: w′Uw=1

|w′e| = δ, (13)

and we can interpret δ as the maximum pricing error that one can get from using y to price the

test assets.

The constrained HJ-distance also has a pricing error interpretation. Consider h ∈ L2 which can

be a nonlinear function of r̃ (say payoff of an option) or the payoff of other primitive assets that are

not used by the econometrician. Using Jensen’s inequality, we obtain the following upper bound

on the squared pricing error of h:

(E[yh]− E[mh])2 = (E[(y −m)h])2 ≤ E[(y −m)2]E[h2], (14)

where m ∈ M+. Since

min
m∈M+

E[(y−m)2] = δ2+, (15)

we have

min
m∈M+, E[h2]=1

|E[yh]−E[mh]| ≤ δ+. (16)

The upper bound in (16) is potentially attainable. Let m+
y = (y−λ′r̃)+ ∈ M+ be the nonnegative

admissible SDF that is closest to y, where λ is the vector of Lagrange multipliers that solves the

dual problem in (7). Suppose we choose

h =
y −m+

y

δ+
=

min[y, λ′r̃]
δ+

. (17)

Note that this h is proportional to the payoff of an exchange option. Since E[(y −m+
y )2] = δ2+, it

is easy to see that E[h2] = 1. If m+
y is in fact the SDF that the market uses to price h, then the

pricing error of h is given by

E[yh]− E[m+
y h] =

E[(y −m+
y )2]

δ+
= δ+. (18)
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While δ is indeed equal to the actual maximum pricing error from using y to price the test assets,

the pricing error interpretation of δ+ is not as clear. The actual maximum pricing error from using

y to price all the assets in the economy can be greater than or less than δ+. There are two reasons

why the actual maximum pricing error is not equal to δ+. The first one is that the exchange option

mentioned above may not be a tradable asset, especially if y is a function of non-traded factors.

The second reason is that even when such an exchange option is traded, the SDF that the market

uses to price this exchange option may not be m+
y . The pricing error on this exchange option from

using y can often be greater than δ+ when the true SDF is used to price the exchange option. In

fact, when the market is complete, δ+ represents a lower bound on the maximum pricing error for

payoffs in L2. To see this, assume that m∗ ∈ M+ is the true SDF. Then, using Jensen’s inequality,

the maximum squared pricing error for h ∈ L2 with E[h2] = 1 is given by

max
E[h2]=1

(E[yh]− E[m∗h])2 = max
E[h2]=1

(E[(y−m∗)h])2 = E[(y−m∗)2], (19)

when h = (y −m∗)/E[(y−m∗)2]
1
2 . Since

E[(y−m∗)2] ≥ min
m∈M+

E[(y−m)2] = δ2+, (20)

the maximum pricing error is generally larger than δ+. The only case in which we can interpret δ+

as the maximum pricing error for payoffs in L2 is when m+
y = m∗. However, it is hard to justify

the maximum pricing error interpretation of δ+ when multiple models are considered. The reason

is that m+
y is model dependent and it is not possible that m+

y = m∗ for all models unless M+

contains only a single element.

From (19), the maximum pricing error of a model is equal to the distance between y and m∗.

However, a model in M+ (i.e., δ+ = 0) can actually be further away from m∗ than a model that is

not in M+ (i.e., δ+ > 0). This makes it problematic to rank models by δ+ because a model with a

larger δ+ can actually be closer to m∗ and have a smaller maximum pricing error on payoffs in L2.

In particular, a model with a smaller δ+ is not necessarily a better model for pricing derivatives.3

While it is desirable to consider SDFs that are strictly positive, most SDFs used in empirical

work are typically misspecified and some of them can take on negative values. It is often believed

3The fact that different admissible SDFs can assign different prices to payoffs outside of the test assets is well
known. Boyle, Feng, Tian, and Wang (2008) provide a robust approach for selecting admissible SDFs to price
derivatives.
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that a model with a smaller δ+ has a smaller probability of taking on negative values because it is

closer to M+. As it turns out, the probability for an SDF to take on negative values has very little

to do with the magnitude of δ+.

To illustrate this point, we adapt an example from LXZ. We consider an economy with two states

(s1 and s2) that are equally likely to occur. The only test asset considered by the econometrician

is risk-free with gross risk-free rate R0 = 1, so that the payoff space of the test asset (P) can be

represented by the dashed line in Figure 1. For an SDF m to be admissible, it has to price the

risk-free asset correctly, which implies

E[m] = 1 ⇒ 1
2
×m1 +

1
2
×m2 = 1 ⇒ m2 = 2 −m1, (21)

where m1 and m2 are the values of m in states 1 and 2, respectively. As a result, the admissible

set of SDFs (M) is represented by the dotted line with a slope of −1. Since the probabilities of

the two states are equal, the line M is perpendicular to the line P . The part of M that represents

the set of nonnegative SDFs (M+) is highlighted with a thick solid line.

Figure 1 about here

In Figure 1, we consider two competing SDFs, yF and yG . The constrained HJ-distance of an

SDF y that takes on the values of y1 and y2 in the two states is given by

δ+ = min
m∈M+

E[(y −m)2]
1
2

= min
m∈M+

[
1
2
× (m1 − y1)2 +

1
2
× (m2 − y2)2

] 1
2

=
1√
2

min
m∈M+

[(m1 − y1)2 + (m2 − y2)2]
1
2 . (22)

It follows that the shortest distance between M+ and y is equal to
√

2δ+.4 In Figure 1, we observe

that yF is further away from M+ than yG . Consequently, we have δF,+ > δG,+. Despite having

a shorter constrained HJ-distance, yG takes on negative values in both states. In contrast, yF

always takes on positive values. The important message here is that while m ∈ M+ is positive, the

distance from M+ alone tells us little about the probability for an SDF to take on negative values.

2.3. Hansen-Jagannathan bounds and distances

4Although LXZ label the distance as δ+ instead of
√

2δ+, the interpretation of their results is not affected.
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To better understand the constrained and unconstrained HJ-distances, it proves advantageous

to introduce the concept of HJ-bounds. Hansen and Jagannathan (1991) propose two volatility

bounds on admissible stochastic discount factors. The unconstrained HJ-bound (σ2
0) is the mini-

mum variance that an SDF must have in order for it to be potentially admissible, and it is defined

as

σ2
0 = min

m∈M
Var[m] = min

m∈M
E[m2] −E[m]2 = min

m∈M
E[m2]− 1

R2
0

. (23)

The last equality follows because all m ∈ M price the risk-free asset correctly and hence E[m] =

1/R0. In addition, Hansen and Jagannathan (1991) define the constrained HJ-bound (σ2
c ) as the

minimum variance for the set of nonnegative admissible SDFs:

σ2
c = min

m∈M+
Var[m] = min

m∈M+
E[m2]− E[m]2 = min

m∈M+
E[m2]− 1

R2
0

. (24)

Note that both HJ-bounds (and their difference) only depend on the choice of the test assets and

are model independent.

For illustration purposes, we start with the case of a spanned SDF. We say that y is a spanned

SDF when it can be perfectly mimicked by the returns on the test assets. For such an SDF, the

difference between its squared constrained and unconstrained HJ-distances turns out to be equal

to σ2
c − σ2

0 — the difference between the two HJ-bounds. To see this, we write

δ2 = min
m∈M

E[(y −m)2] = E[y2] − 2E[ym] + min
m∈M

E[m2]. (25)

The last equality follows because y is the payoff of a portfolio of the test assets, so every m ∈ M

assigns the same price to y. As a result, E[ym] is constant across m ∈ M. Similarly, we have

δ2+ = min
m∈M+

E[(y −m)2] = E[y2] − 2E[ym] + min
m∈M+

E[m2]. (26)

It follows that

δ2+ − δ2 = min
m∈M+

E[m2] − min
m∈M

E[m2] = σ2
c − σ2

0. (27)

In establishing the above identity, we assume that the spanned SDF y is fixed. However, this

identity continues to hold even when y depends on some unknown parameters γ. For example, if

we assume y(γ) = γ0 +γ ′1f , where f is a vector of returns on K mimicking portfolios, then we have

δ2 = min
γ

min
m∈M

E[(y(γ)−m)2] = min
γ

(E[y(γ)2] − 2E[y(γ)m])+ min
m∈M

E[m2]. (28)

9



The last equality follows because the last term is independent of the model and the middle term is

the same for every m ∈ M. Similarly, we have

δ2+ = min
γ

min
m∈M+

E[(y(γ)−m)2] = min
γ

(E[y(γ)2] − 2E[y(γ)m])+ min
m∈M+

E[m2]. (29)

As a result, we have δ2+ − δ2 = σ2
c − σ2

0 and this difference is model independent.

The results above have two implications. The first one is that for a spanned SDF, the SDF

parameters that minimize δ and δ+ are identical because both of them are given by

argminγE[y(γ)2]− 2E[y(γ)m], (30)

and they do not depend on whether m ∈ M or M+. This suggests that for δ and δ+, one should

not expect the corresponding SDFs to be any different, or take on negative values with different

probabilities.

The second implication is that for two spanned SDFs, say yF and yG , the difference between their

unconstrained HJ-distances is the same as the difference between their constrained HJ-distances.

This is because

δ2F,+ − δ2G,+ = δ2F + (σ2
c − σ2

0) − δ2G − (σ2
c − σ2

0) = δ2F − δ2G . (31)

This illustrates that for spanned SDFs, one should not expect the constrained HJ-distance to be

better than the unconstrained HJ-distance in differentiating between competing models. The above

two implications are based on analyses of the population HJ-distances of spanned SDFs. However,

it can be easily shown that for spanned SDFs, these two implications also hold in sample provided

that the sample estimate of σ2
c is finite.

Knowing that the choice of unconstrained or constrained HJ-distances does not affect a spanned

SDF, we now turn our attention to SDFs that are not spanned by the returns on test assets. We

can always decompose a candidate SDF y into two components:

y = y∗ + z, (32)

where y∗ is the part of y that is spanned by the returns on the test assets and is given by

y∗ = µy + V ′
ryV

−1
rr (r − µr), (33)

10



with µy = E[y], µr = E[r], Vrr = Var[r], and Vry = Cov[r, y]. It is easy to see that z has mean zero

and is uncorrelated with r. Since y∗ is spanned by the returns, E[y∗m] is constant across m ∈ M.

It follows that the squared unconstrained HJ-distance of y is given by

δ2 = min
m∈M

E[(y−m)2]

= min
m∈M

E[(y∗ + z −m)2]

= E[y∗2] + 2E[y∗(z −m)] + min
m∈M

E[(z−m)2]

= E[y∗2]− 2E[y∗m] + σ2
0 +

1
R2

0

. (34)

The last equality follows because if m ∈ M, then m̃ = m− z also prices all the test assets correctly

and we have m̃ ∈ M. As a result, we have the following identity

min
m∈M

E[(z −m)2] = min
m̃∈M

E[m̃2] = σ2
0 +

1
R2

0

. (35)

However, the above equality does not hold if we replace M with M+. This is because when

m ∈ M+, m̃ = m − z can take on negative values and is not always in M+. As a result, the

derivation of the constrained HJ-distance is more complicated when the SDF is not spanned by the

returns on the test assets. In general, the squared constrained HJ-distance of y is given by

δ2+ = min
m∈M+

E[(y∗ + z −m)2]

= E[y∗2] + 2E[y∗(z −m)] + min
m∈M+

E[(z −m)2]

= E[y∗2] − 2E[y∗m] + min
m∈M+

E[(z −m)2]. (36)

It follows that the difference between the squared constrained and unconstrained HJ-distances of

y is given by

δ2+ − δ2 = min
m∈M+

E[(z −m)2] − σ2
0 −

1
R2

0

. (37)

This result implies that only the unspanned component, z, of an SDF is responsible for determining

the difference between δ2+ and δ2. Therefore, if an SDF is a function of non-traded factors, it is

possible that the SDF parameters differ across the constrained and unconstrained HJ-distances.

Our analysis also suggests that δ2F,+ − δ2G,+ 6= δ2F − δ2G only when at least one of the two competing

SDFs is not spanned. However, to deepen our understanding of the relation between the constrained

and unconstrained HJ-distances, we first need to derive their analytical expressions. Obtaining an

11



analytical solution for δ+ is a significant challenge, and we will take up this task (albeit with a

distributional assumption) in the next section.

3. Analytical solution of the constrained Hansen-Jagannathan distance

While an explicit solution of the unconstrained HJ-distance is easy to obtain, the constrained

HJ-distance problem is much harder and, to the best of our knowledge, an analytical solution is

not available in the literature. To a large extent, the lack of an analytical expression has severely

hampered our ability to understand the constrained HJ-distance. To overcome this problem, we

make a joint distributional assumption on the SDF and the returns on the test assets. Throughout

this section, we assume that the SDF and the returns are jointly normally distributed. Since a

normally distributed SDF takes on negative values by construction, it cannot belong to M+ and

our theoretical analysis of the constrained HJ-distance is clearly conducted under the hypothesis

that the asset pricing model is misspecified. Note that we assume normality solely for the purpose

of deriving an analytical solution for δ2+. As we demonstrate below, solving for δ2+ is nontrivial even

under the normality assumption. However, we do not argue that this distributional assumption is

always a good approximation of reality and whether normality provides a reasonable approximation

or not depends on the problem at hand.

3.1. Stochastic discount factors without parameters

We start off with the case in which the SDF y does not depend on unknown parameters. As

before, we decompose y into two components y∗ (spanned) and z (unspanned) as in (32). For the

unconstrained HJ-distance, the vector of pricing errors of r̃ is given by

e = E[r̃y]− q =

[
R0µy − 1

Vry + µrµy

]
. (38)

Using the partitioned matrix inverse formula, it is easy to rewrite the inverse of U = E[r̃r̃′] as

U−1 =

[
R2

0 R0µ
′
r

R0µr Vrr + µrµ
′
r

]−1

=




1+a
R2

0
−µ′

rV −1
rr

R0

−V −1
rr µr

R0
V −1

rr


 , (39)

where a = µ′rV
−1
rr µr is the squared Sharpe ratio of the tangency portfolio of the N risky assets. It

follows that the vector of Lagrange multipliers for the unconstrained HJ-distance is given by

λ = U−1e =




µy−V ′
ryV −1

rr µr

R0
− 1+a

R2
0

V −1
rr

(
Vry + µr

R0

)


 (40)
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and the admissible SDF that is closest to y is

my = y − λ′r̃ = z +
1
R0

− µ′rV
−1
rr (r − µr)
R0

. (41)

After simplification, the squared unconstrained HJ-distance of y is

δ2 = E[(y −my)2] =
(
µy −

1
R0

)2

+
(
Vry +

µr

R0

)′
V −1

rr

(
Vry +

µr

R0

)
. (42)

Turning to the constrained HJ-distance case, the vector of Lagrange multipliers in (7) is given

by

λ̃ = argminλE[(y − λ′r̃)+2] + 2λ′q, (43)

and λ̃ can be obtained by solving the following first order condition:

E[r̃(y − λ̃′r̃)+] = q. (44)

In principle, we can solve the n nonlinear equations E[r̃(y − λ̃′r̃)+] = q to obtain the vector of

Lagrange multipliers λ̃, but this can be very complicated. Instead, we simplify the problem so that

we only need to solve one nonlinear equation to obtain λ̃. The following proposition shows that,

under normality, it is possible to obtain explicit expressions for the Lagrange multipliers and the

squared constrained HJ-distance.

Proposition 1. Let η be the unique solution to

g(u) =
[
a+ σ2

zR
2
0Φ(u)2

]− 1
2 , (45)

where

g(u) = u+
φ(u)
Φ(u)

, (46)

φ(·) and Φ(·) are the density and cumulative distribution functions of a standard normal random

variable, respectively, and σ2
z = Var[z]. The vector of Lagrange multipliers in the constrained HJ-

distance case is given by

λ̃ =




µy−V ′
ryV −1

rr µr

R0
−

a+ η
g(η)

R2
0Φ(η)

V −1
rr

(
Vry + µr

R0Φ(η)

)


 . (47)

The squared constrained HJ-distance of an SDF y is given by

δ2+ = δ2 + σ2
zΦ(−η) +

a+ η
g(η)

R2
0Φ(η)

− 1 + a

R2
0

, (48)

where the expression of δ2 is provided in (42).
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Proof. See Appendix A.

The SDF in M+ that is closest to y is m+
y , where

my = y − λ̃′r̃ = z +
1

Φ(η)

[
η

R0g(η)
− µ′rV

−1
rr (r− µr)
R0

]
. (49)

Just like my in (41) for the unconstrained HJ-distance case, the my for the constrained HJ-distance

also has two components. The first component, z, is uncorrelated with the returns, and the second

component is a linear function of the excess return on the tangency portfolio of the test assets. Let

∆ = δ2+ − δ2 be the difference between the squared constrained and unconstrained HJ-distances of

y. We are interested in the determinants of ∆. Note that η, the solution to (45), depends on σ2
z ,

a, and R0. As a result, ∆ also depends on these three parameters. Out of the three parameters,

the only one that is related to the SDF is σ2
z — the variance of the unspanned component. When

σ2
z = 0 (i.e., spanned SDF), we have g(η) = 1/

√
a and hence

∆ =
a+

√
aη

R2
0Φ(η)

− 1 + a

R2
0

=
[√

a(
√
a+ η)

R2
0Φ(η)

− 1
R2

0

]
− a

R2
0

= σ2
c − σ2

0, (50)

where the last equality is based on Proposition 1 of Kan and Robotti (2008). This confirms the

result in Section 2.3 which suggests that δ2+ − δ2 for a spanned SDF is equal to the difference

between the constrained and unconstrained HJ-bounds.

The following lemma provides the comparative statics of ∆ with respect to its three determi-

nants.

Lemma 1. The partial derivatives of ∆ with respect to (σ2
z , a, R0) are given by

∂∆
∂σ2

z

= Φ(−η) > 0, (51)

∂∆
∂a

=
Φ(−η)
R2

0Φ(η)
> 0, (52)

∂∆
∂R0

=
2
R3

0

[
1 − aΦ(−η)

Φ(η)
− η

Φ(η)g(η)

]
. (53)

Proof. See Appendix A.

Lemma 1 shows that ∆ is an increasing function of σ2
z , which suggests that σ2

c − σ2
0 is a lower

bound for ∆. Intuitively, adding an unspanned component z to an SDF does not affect its ability

to price the test assets, so the unconstrained HJ-distance (which is a measure of aggregate pricing
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errors) of a model is unaffected by z. This explains why the expression of δ2 in (42) is independent

of σ2
z . However, adding z to an SDF can affect its probability of taking on negative values and

hence drives the SDF further away from M+. This explains why δ2+ and hence ∆ is an increasing

function of σ2
z . Note that ∆ does not depend on how good or bad a model is. It is only a function

of the variance of its unspanned component. This suggests that for two different models, say F

and G, we can expect δ2F,+ − δ2G,+ to differ substantially from δ2F − δ2G only when the variances of

the unspanned components across the two models are very different.

In addition, Lemma 1 shows that ∆ is an increasing function of the Sharpe ratio of the tangency

portfolio of the test assets. This result requires some explanation. Consider the case in which

σ2
z → 0. When this happens, (δ2+ − δ2) → (σ2

c − σ2
0) — the difference between the constrained

and unconstrained HJ-bounds. Lemma 6 of Kan and Robotti (2008) shows that, under normality,

(σ2
c −σ2

0) → 0 when a→ 0, (σ2
c −σ2

0) → ∞ when a→ ∞, and σ2
c −σ2

0 is a strictly increasing function

of a. Therefore, when a is small, we should not expect large differences between the constrained and

unconstrained HJ-bounds and between the constrained and unconstrained HJ-distances. Intuitively,

when a is close to zero, the weight of the risk-free asset in the minimum second moment portfolio

is close to one, and the gross return on this portfolio has a very small probability of taking on a

negative value. Since the minimum variance admissible SDF is proportional to the gross return on

this portfolio, imposing the non-negativity constraint of Hansen and Jagannathan (1991) on it has

almost no effect.

To gain some understanding of how σz and a affect ∆, Figure 2 plots ∆ as a function of σz for

three different values of the Sharpe ratio of the tangency portfolio (
√
a = 0.25, 0.5, and 0.75) with

R0 = 1.005 (the plot is not sensitive to other reasonable values of the gross risk-free rate).5 As

expected, Figure 2 reveals that ∆ is an increasing function of σz . However, ∆ is heavily influenced

by the Sharpe ratio of the tangency portfolio. When
√
a = 0.25, the difference between δ2+ and

δ2 is indistinguishable from zero. For
√
a = 0.5, the difference between δ2+ and δ2 is still quite

small, even for relatively large σz . This suggests that for reasonable Sharpe ratio values, we should

not expect to find a large difference between the constrained and unconstrained HJ-distances of a

model, even if the model contains a large unspanned component.

5Although a Sharpe ratio of 0.75 may seem high, this is in line with the sample Sharpe ratio (0.71) of the tangency
portfolio of the 25 Fama-French size and book-to-market portfolios used in the empirical application in Section 6.
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Figure 2 about here

Our prediction that we should expect δ2+ to be close to δ2 is based on the analysis of their

population values, which are the quantities that researchers are typically interested in. However,

even when the true Sharpe ratio of the tangency portfolio is 0.25, it is possible to find a large

difference between the sample constrained and unconstrained HJ-distances in a given sample. Such

difference could be partly due to sampling variation and partly due to an upward bias of the sample

constrained HJ-distance.

3.2. Linear stochastic discount factors

In the previous subsection, we derived an explicit expression for δ2+ for the case in which the

SDF does not depend on parameters. When the SDF depends on some parameters, we also need

to solve the outer optimization problem in (9). For general nonlinear SDFs, it is hard to obtain

explicit solutions for the SDF parameters, even for the unconstrained HJ-distance. Therefore, we

focus on linear SDFs of the form

y(γ) = γ0 + γ ′1f, (54)

where f is a vector of K systematic factors, and γ = [γ0, γ
′
1]
′ is the vector of SDF parameters. In

addition to facilitating the derivation of γ, linear SDFs deserve a thorough investigation because

of their popularity in the literature.

Throughout this subsection, we assume that f and r are jointly normally distributed (which

implies that y(γ) and r are jointly normally distributed). Before presenting an analytical solution

for γ, we take a short digression to discuss the issue of linear SDFs taking on negative values.

Researchers are sometimes concerned that under the normality assumption, a linear SDF can take

on negative values and hence is not arbitrage free. In the following lemma, we show that under

normality, an SDF that takes on negative values can be converted into a positive SDF without

affecting its ability to price the test assets.

Lemma 2. Suppose that an SDF y and the returns are jointly normally distributed. Consider the

following transformation of y:

y+ = µy exp

(
y

µy
− 1 −

σ2
y

2µ2
y

)
, (55)
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where µy = E[y] and σ2
y = Var[y]. Then, we have E[r̃y+] = E[r̃y] with y+ > 0 when µy > 0.

Proof. See Appendix A.

Lemma 2 suggests that if one can find a linear SDF y that prices all the test assets correctly, then

one should not be too concerned with the SDF’s probability of taking on negative values because

a simple transformation of y into y+ would make it positive.6 However, this is a mechanical

transformation and there is no compelling reason to believe that simply because y+ is positive, it

can price derivatives better than y.

For a linear SDF, the unconstrained HJ-distance problem is easy to solve. Defining µf = E[f ]

and Vrf = Cov[r, f ′], it can be readily shown that the γ = [γ0, γ
′
1]
′ that minimizes the unconstrained

HJ-distance is

γ1 = − 1
R0

(V ′
rfV

−1
rr Vrf)−1(V ′

rfV
−1
rr µr), γ0 =

1
R0

− γ ′1µf . (56)

As a result, the linear SDF that minimizes the unconstrained HJ-distance is

y =
1
R0

+ γ ′1(f − µf ). (57)

In addition, defining a1 = µ′rV
−1
rr Vrf(V ′

rfV
−1
rr Vrf)−1V ′

rfV
−1
rr µr as the squared Sharpe ratio of the

tangency portfolio constructed from the K factor mimicking portfolios, the squared unconstrained

HJ-distance for a linear SDF and the vector of Lagrange multipliers are given by

δ2 =
a− a1

R2
0

(58)

and

λ =




−δ2

V −1
rr

(
Vrfγ1 + µr

R0

)

 , (59)

respectively.

For the more difficult problem of the constrained HJ-distance, we first define the covariance

matrix of the residuals from projecting the factors onto the returns as Vff ·r = Vff − V ′
rfV

−1
rr Vrf ,

where Vff = Var[f ]. The following proposition presents the solution to the constrained HJ-distance

problem.
6This lemma also suggests that while an SDF that is linear in the return on the market portfolio implies that the

capital asset pricing model (CAPM) holds, the CAPM does not imply that the SDF can only be written as a linear
function of the market portfolio.
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Proposition 2. Let η be the unique solution to

g(u) =

(
a+ α′

[
1

Φ(u)
IK − V

− 1
2

ff Vff ·rV
− 1

2
ff

]−2

α

)− 1
2

, (60)

where α = V −1
ff V

1
2

ff ·rV
′
rfV

−1
rr µr and g(u) is defined in (46). Then, the vector of SDF parameters

that minimizes the constrained HJ-distance is given by γ̃ = [γ̃0, γ̃
′
1]
′, where

γ̃1 = − 1
R0

[Vff − Φ(η)Vff ·r]−1V ′
rfV

−1
rr µr, γ̃0 =

1
R0

− γ̃ ′1µf , (61)

and the SDF that minimizes the constrained HJ-distance is

ỹ =
1
R0

+ γ̃ ′1(f − µf ). (62)

Furthermore, the squared constrained HJ-distance has the following expression:

δ2+ =
a+ η

g(η)

R2
0Φ(η)

− (1 + ã1)
R2

0

, (63)

where ã1 = µ′rV
−1
rr Vrf [Vff − Φ(η)Vff ·r]−1V ′

rfV
−1
rr µr, and the vector of Lagrange multipliers for the

constrained HJ-distance is given by

λ̃ =




−δ2+
V −1

rr

(
Vrf γ̃1 + µr

R0Φ(η)

)

 . (64)

Proof. See Appendix A.

Besides the simplicity of the expressions for γ̃, λ̃, and δ2+, a few interesting observations emerge from

Proposition 2. First, the Lagrange multiplier on the risk-free asset is equal to −δ2+ (expression (59)

shows that a similar result holds for the unconstrained HJ-distance).7 Second, in contrast to the

SDF case without parameters, η does not depend on R0 since ỹ prices the risk-free asset correctly.

Third, when the factors are spanned by the returns (i.e., Vff ·r = 0K×K), it can be readily shown

that the difference between the squared constrained and unconstrained HJ-distances coincides with

the difference between the constrained and unconstrained HJ-bounds. This result confirms our

earlier findings for spanned SDFs in Section 2.3. Finally, when one or more factors are useless,

i.e., they are uncorrelated with the returns, the SDF parameters that minimize the unconstrained
7This identity is not due to the normality assumption. We refer the readers to Lemma 4 in Section 4 for a more

general version of this result.
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HJ-distance are not identified since the matrix V ′
rfV

−1
rr Vrf is not of full rank and cannot be inverted.

However, the SDF parameters that minimize the constrained HJ-distance are still well defined. For

example, when all factors are useless, we have γ̃ = [1/R0, 0′K ]′ and ỹ = 1/R0. In this case, δ2+ is

equal to the constrained HJ-bound σ2
c .

With the analytical solutions of the linear SDF parameters for the unconstrained and con-

strained HJ-distances, we can now answer two interesting questions. The first question is whether

the linear SDF ỹ in (62) results in a lower probability of taking on negative values than the linear

SDF y in (57). If this is the case, one can think of this as a potential benefit of using the constrained

HJ-distance. The second question is whether there is a trade-off between getting the linear SDF

closer to M+ and the ability of the SDF to price the test assets. For this purpose, we introduce

an aggregate measure of pricing errors of ỹ as

δ̃2 = ẽ′U−1ẽ, (65)

where ẽ = E[r̃ỹ]− q is the vector of pricing errors when we use ỹ to price the test assets. Just like

the δ2 measure, δ̃2 can be interpreted as the maximum squared pricing error of a portfolio of test

assets when one uses ỹ as the SDF. Comparing δ̃2 with δ2, we gain useful insights of the potential

cost of using ỹ instead of y to price the test assets. The following lemma provides answers to these

two questions.

Lemma 3. Let y and ỹ be the linear SDFs that minimize the unconstrained and constrained HJ-

distances, respectively. Then, we have

P [y < 0] − P [ỹ < 0] = Φ

(
− 1
R0

√
γ ′1Vffγ1

)
− Φ

(
− 1
R0

√
γ̃ ′1Vff γ̃1

)
> 0, (66)

and

δ2 ≤ δ̃2 ≤ δ2+. (67)

Proof. See Appendix A.

As shown in the proof of Lemma 3, (67) is a general result. It is not specific to the linear model

and our proof does not rely on the normality assumption. However, we can only establish P [y <

0] > P [ỹ < 0] for the case of linear models and under the normality assumption. Whether this
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inequality continues to hold for nonlinear models or without the normality assumption is an open

question.8

Lemma 3 suggests that there are potential benefits and costs in choosing the SDF parameters

to minimize the constrained HJ-distance as opposed to minimizing the unconstrained HJ-distance.

On the one hand, ỹ is less likely than y to take on negative values. On the other hand, ỹ will

price the test assets worse than y. Exactly how large is this cost-benefit trade-off depends on the

parameters. For the one-factor case, we can show that

P [y < 0]− P [ỹ < 0] = Φ
(
− |ρ|
√
a1

)
− Φ

(
−1 − Φ(η)(1− ρ2)

√
a1|ρ|

)
, (68)

where η is the unique solution of

g(u) =
[
a +

a1ρ
2(1 − ρ2)Φ(u)2

[1− Φ(u)(1− ρ2)]2

]− 1
2

, (69)

and ρ2 = V ′
rfV

−1
rr Vrf/Vff is the proportion of variability of the factor that is explained by the

returns on the test assets. In addition, we have

δ̃2 − δ2 =
a1

R2
0

[
Φ(−η)(1− ρ2)

1 − Φ(η)(1− ρ2)

]2

. (70)

Note that both (68) and (70) depend on a, a1 and ρ2. In these expressions, a is the squared Sharpe

ratio of the tangency portfolio of the test assets, which is a measure of the cross-sectional difference

in expected excess returns across the test assets; a1 measures how good the model is in explaining

the expected returns on the test assets (recall that δ2 = (a−a1)/R2
0); and, finally, ρ2 measures how

well the factor is spanned by the returns.

In Figure 3, we plot P [y < 0] − P [ỹ < 0] as a function of ρ2 for three different values of the

Sharpe ratio of the tangency portfolio (
√
a = 0.25, 0.5, and 0.75). In each case, we assume a1 = a/2,

so that the model explains about half of the cross-sectional variation in expected returns. From

Figure 3, we can see that when ρ2 → 0 (y is not defined when ρ2 = 0), P [y < 0]− P [ỹ < 0] → 0.5.

The reason is that when the unspanned component of the factor increases, y becomes more volatile

(because γ1 does not depend on the unspanned component of the factor) and behaves more like a

useless factor. As a result, P [y < 0] → 0.5. However, as ρ2 → 0, ỹ converges to 1/R0 and has almost

zero probability of taking on negative values. In contrast, when ρ2 → 1, the SDF behaves more like
8For example, many nonlinear SDFs are positive by construction. Therefore, the probability for these SDFs to

take on positive values is always one regardless of whether we choose the parameters to minimize δ or δ+.
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a spanned SDF. For a spanned SDF, the SDF parameters and hence the probabilities of taking on

negative values are the same for y and ỹ. Finally, Figure 3 shows that the Sharpe ratio is important

in determining P [y < 0]−P [ỹ < 0]. For a given value of ρ2, we can see that the difference between

the two probabilities is an increasing function of a. The reason is that the spanned component of

the SDF y is a linear function of the return on the factor mimicking portfolio. When a is small, a1

is also small, so y puts relatively little weight on the factor mimicking portfolio and hence P [y < 0]

is small, leaving not much room for ỹ to improve.

Figure 3 about here

Using the same parameters as in Figure 3 and R0 = 1.005, Figure 4 plots δ̃2 − δ2 as a function

of ρ2. Again, when ρ2 ≈ 1, the SDF is close to a spanned one. It follows that y ≈ ỹ, so they

have roughly the same aggregate pricing errors and δ̃2 − δ2 → 0. However, when ρ2 → 0, we have

δ̃2 = a/R2
0 (as ỹ ≈ 1/R0 and ỹ does not explain any cross-sectional difference in expected excess

returns). It follows that δ̃2 − δ2 → a1/R
2
0. Similar to Figure 3, we also find a to be quite important

in determining δ̃2 − δ2. It is only when a is large (and hence a1 is large) that we should expect a

large difference between the aggregate measures of pricing errors of y and ỹ.

Figure 4 about here

In summary, we should expect y and ỹ to behave differently if a is large and ρ2 is small. In these

situations, P [ỹ < 0] will be substantially smaller than P [y < 0], but these are also situations in

which ỹ will do substantially worse than y in pricing the test assets. Whether one should sacrifice

the pricing of the test assets in exchange for a smaller SDF’s probability of taking on negative

values is not entirely clear. For example, when ρ2 is small, ỹ ≈ 1/R0 and ỹ is indeed almost always

positive. However, this ỹ is unlikely to be a good SDF since it prices every asset by discounting

the future asset payoffs using the risk-free rate.

4. Sample constrained Hansen-Jagannathan distance

Since the population constrained HJ-distance of a model is unobservable, researchers have to

estimate it using data. In this section, we discuss issues related to the sample constrained HJ-

distance as well as some of its finite sample and asymptotic properties. Our analysis can also be
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easily adapted to the study of the sample unconstrained HJ-distance. Instead of considering test

assets that consist of a gross risk-free rate and a vector of excess returns on N risky assets as in

our theoretical section, here we allow for a slightly more general setup. We denote the vector of

payoffs of n assets at the end of period t by xt and the corresponding costs of these n assets at the

end of period t − 1 by qt−1.9 Besides being applicable to gross and excess returns, this setup can

accommodate payoffs of trading strategies that are based on time-varying information.

4.1. Sample estimators

Let yt and mt be the realizations of a candidate SDF and an admissible SDF at time t, respec-

tively. The sample squared constrained HJ-distance can be obtained as

δ̂2+ = min
{mt, t=1,...,T}

1
T

T∑

t=1

(yt −mt)2, (71)

s.t.
1
T

T∑

t=1

mtxt = q̄,

mt ≥ 0, t = 1, . . . , T,

where q̄ = 1
T

∑T
t=1 qt−1. In the literature, δ̂2+ is often obtained by solving the dual problem:

δ̂2+ = max
λ∈<n

1
T

T∑

t=1

[
y2
t − [(yt − λ′xt)+]2

]
− 2λ′q̄. (72)

However, it is not entirely clear that solving the dual problem in (72) has a numerical advantage

over solving the primal problem in (71). The reason is that the primal problem in (71) can be

easily solved as a quadratic programming problem as we show in Appendix B.

When the candidate SDF depends on some parameters, say yt = yt(γ), where γ ∈ Γ is a k-

vector of parameters, we need to solve an additional minimization problem. In this case, the primal

problem is given by

δ̂2+ = min
γ∈Γ

min
{mt, t=1,...,T}

1
T

T∑

t=1

(yt(γ)−mt)2, (73)

s.t.
1
T

T∑

t=1

mtxt = q̄,

mt ≥ 0, t = 1, . . . , T.
9When the SDF depends on some parameters, we assume that E[qt−1] 6= 0n. The reason is that when E[qt−1] = 0n,

the mean of the SDF cannot be identified and researchers have to choose some normalization of the SDF (see, e.g.,
Kan and Robotti, 2008).
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Similarly, the corresponding dual problem is given by

δ̂2+ = min
γ∈Γ

max
λ∈<n

1
T

T∑

t=1

[
yt(γ)2 − [(yt(γ)− λ′xt)+]2

]
− 2λ′q̄. (74)

In general, the outer minimization problem does not have a closed-form solution. However, for

linear SDFs, the primal problem in (73) can also be solved using quadratic programming as we

show in Appendix B. Appendix B also presents a fast numerical algorithm to solve (74) for linear

SDFs. Our fast algorithms should prove useful to researchers who are interested in solving the

constrained HJ-distance problem and in studying the sampling properties of various estimators

associated with the constrained HJ-distance.

4.2. In-sample arbitrage opportunities

In this subsection, we document the surprising and important finding that, in finite samples,

the sample constrained HJ-distance has a nonzero probability of taking on the value of infinity.

This occurrence only depends on the return realizations and not on the choice of the model. There

are two implications of this finding. The first one is that the moments of the sample constrained

HJ-distance do not exist. The second one is that the sample constrained HJ-distance could fail to

provide a ranking of models. Our results can be somewhat anticipated by similar findings related to

the sample constrained HJ-bound. For example, Burnside (1994) finds that the sample constrained

HJ-bound takes on the value of infinity quite frequently in his simulations. Kan and Robotti (2008)

prove that this occurs with nonzero probability in any finite sample. What these earlier studies do

not provide is the underlying reason for such an event to occur, a gap we try to fill in the following

analysis.

To understand why δ̂+ can take on the value of infinity with positive probability, we first define

the set {mt, t = 1, . . . , T} that satisfies the constraints in (71) or (73) as M̂+. M̂+ is the sample

counterpart of M+ and it is the set of T nonnegative random variables that can price the n assets

correctly in sample. However, M̂+ can be an empty set for some realizations of {xt, t = 1, . . . , T}

even when the population M+ is not an empty set. To understand what are the random payoffs xt

that would lead to M̂+ = ∅, we invoke the Farkas’ lemma, which suggests that the following two

statements are equivalent:
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1. There exists no mt ≥ 0, t = 1, . . . , T , such that

1
T

T∑

t=1

xtmt = q̄. (75)

2. There exists an n-vector w such that w′q̄ < 0 and

w′xt ≥ 0, t = 1, . . . , T. (76)

The equivalence of these two statements suggests that if one finds a portfolio w such that it has

negative average cost (i.e., w′q̄ < 0) but nonnegative payoffs in every period of the sample, then

M̂+ is an empty set. When such an event (i.e., existence of an in-sample arbitrage portfolio) occurs,

we show that δ̂+ = ∞ for all models. Suppose w′q̄ = −c, where c > 0. Let {yt, t = 1, . . . , T} be

the realizations of a candidate SDF. Consider λ = sw, where s is a positive scalar. Since sw for

s ≥ 0 is only a subset of <n, we have

δ̂2+ = max
λ∈<n

1
T

T∑

t=1

[
y2
t − [(yt − λ′xt)+]2

]
− 2λ′q̄ ≥ max

s≥0

1
T

T∑

t=1

[
y2
t − [(yt − sw′xt)+]2

]
+ 2cs. (77)

Note that since sw′xt ≥ 0, we have (yt − sw′xt)+ ≤ |yt| and y2
t − [(yt − sw′xt)+]2 ≥ 0. Hence, it

follows that

δ̂2+ ≥ max
s≥0

2cs = ∞. (78)

Knowing that δ̂+ can take on the value of infinity, it is of interest to understand how often such

an event occurs. In general, the probability for an in-sample arbitrage portfolio to exist is nonzero

because, for a finite T , there is always some probability that one asset will outperform another

asset in every period of the sample. The exact probability for δ̂+ = ∞ depends on the sample size

as well as on the joint distribution of (xt, qt−1), t = 1, . . . , T . For illustrative purposes, we consider

a case in which xt contains a constant gross risk-free rate and excess returns on N risky assets, i.e.,

q = [1, 0′N ]′. When the excess returns are i.i.d. multivariate normally distributed, we are able to

show that P [δ̂+ = ∞] is only a function of N , T , and a, where a is the squared Sharpe ratio of the

tangency portfolio of the risky assets.10

Figure 5 about here

10The proof of this result is available upon request.
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In Figure 5, we plot P [δ̂+ = ∞] as a function of T for N = 5, 10, 25, and 100 based on 10,000

simulations. For each N , we also consider three different values of the Sharpe ratio of the tangency

portfolio of the risky assets:
√
a = 0.25, 0.5, and 0.75. As we can see from Figure 5, P [δ̂+ = ∞] is

close to one when T is close toN . P [δ̂+ = ∞] declines as T increases, but the probability is still not

negligible unless T is large relative to N . For a fixed
√
a, the probability is an increasing function

of N . The reason is that it is easier to find an in-sample arbitrage opportunity when there are more

assets to choose from. Finally, for a given N and T , the probability is an increasing function of

a. This suggests that when the tangency portfolio of a set of assets has a high population Sharpe

ratio, it is easier to observe an in-sample arbitrage opportunity.

It is worth noting that in-sample arbitrage portfolios can also be found in real world data, not

only in our simulations. As an example, consider the return data used by LXZ in their empirical

analysis (the quarterly returns on the three-month T-bill and the 25 Fama-French size and book-to-

market ranked portfolios). When splitting their sample of 195 observations into three subperiods,

an in-sample arbitrage portfolio can be found in each subperiod. This shows that there are practical

situations in which δ̂+ = ∞ and the sample constrained HJ-distance fails to provide a ranking of

models.

The result P [δ̂+ = ∞] > 0 suggests that the finite sample moments of δ̂+ do not exist. Therefore,

the asymptotic theory can be inappropriate for finite sample inference, especially when N is large

relative to T . To deal with this problem, we have two suggestions. The first one is that we should

limit the number of test assets to reduce P [δ̂+ = ∞]. The second one is that before using the dual

problem (74) to obtain δ̂+, we should first find out if the primal problem in (73) is feasible. An

effective way to detect if M̂+ = ∅ is to set up a linear programming problem that has the same

constraints as in (74). We can then use standard linear programming routines (e.g., linprog in

Matlab) to determine whether such a problem is feasible.11

4.3. Asymptotic distributions

In this subsection, we derive the asymptotic distributions of the sample constrained HJ-distance

and the underlying parameter estimates under correctly specified and potentially misspecified mod-

11We implement the numerical procedure for estimating δ+ and other associated parameters in a set of Matlab
programs. The Matlab programs for this paper are available upon request.
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els. We present results for the case in which the candidate SDF depends on some unknown param-

eters, but it is straightforward to adapt our analysis to the case in which the SDF does not depend

on parameters. While some asymptotic results regarding the sample constrained HJ-distance are

already available (Hansen, Heaton, and Luttmer, 1995; and LXZ), we contribute to the existing

literature along several dimensions. First, we demonstrate that under the correctly specified model,

the sample Lagrange multipliers do not always have an asymptotic normal distribution. This con-

tradicts some of the claims in the current literature (see, e.g., footnote 15 of LXZ). For some special

cases, we can explicitly show that some sample Lagrange multipliers have a limiting distribution

that is in the form of a linear combination of independent chi-squared random variables with one

degree of freedom. Second, we extend the results in LXZ to the case of possibly serially correlated

errors, which can be important in empirical work, especially when models are misspecified.

We adopt the following definitions of correctly specified and misspecified models. An asset

pricing model is correctly specified if there exists a γ ∈ Γ such that yt(γ) ∈ M+, which implies

that λ = 0n and δ+ = 0. The model is misspecified if yt(γ) 6∈ M+ for all γ ∈ Γ, which implies that

δ+ > 0.

Let θ = [γ ′ , λ′]′ and denote by θ∗ = [γ∗′ , λ∗′]′ the pseudo-true value that solves the population

counterpart of the sample dual problem in (74):

θ∗ = argmin
γ∈Γ

max
λ∈<n

E[φt(γ, λ)], (79)

where

φt(γ, λ) = yt(γ)2 − [mt(θ)+]2 − 2λ′qt−1 (80)

and

mt(θ) = yt(γ)− λ′xt. (81)

When yt(γ∗) ∈ M+, we have λ∗ = 0n and we refer to γ∗ as the true value.12 The estimator of θ∗

is often obtained as the solution to the sample dual problem:

θ̂ =

[
γ̂

λ̂

]
= argmin

γ∈Γ
max
λ∈<n

1
T

T∑

t=1

φt(γ, λ). (82)

12The optimization problem in (79) bears some resemblance to the structure of the generalized empirical likelihood
(GEL) problem defined as minγ maxλ E[h(λ, γ)], where the function h(ς) indexes different members of the GEL
class. For example, when h(ς) = log(1 − ς), h(ς) = − 1

2
ς2 − ς and h(ς) = 1 − exp(ς), the GEL problem reduces

to the empirical likelihood, Euclidean likelihood (continuously-updated GMM), and exponential tilting estimators,
respectively. See Almeida and Garcia (2009) for further discussion.
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The major difficulty in developing the appropriate asymptotic theory for this problem is the

nondifferentiability of (yt(γ) − λ′xt)+ at the truncation point. To deal with the non-smoothness

of the objective function, we appeal to the empirical process theory (Pollard, 1990; and Andrews,

1994) for deriving the consistency and the asymptotic distributions of the estimators. Heuristically,

the main argument is based on the observation that while the function ∂φt(θ)/∂θ may not be

continuously differentiable in θ, its expectation typically is due to the smoothing properties of the

expectation operator (Andrews, 1994). This allows us to apply the usual Taylor series expansion

to the expected value of ∂φt(θ)/∂θ and employ the limit theory for empirical processes.

The main regularity conditions for the consistency and the asymptotic distribution theory are

listed as Assumptions A, B, and C in Appendix C.1. They include restrictions on the dependence

of the data, identification conditions for the pseudo-true values, and some standard assumptions

for deriving the limiting distributions.

Let A∼ stand for “asymptotically distributed as.” The following proposition presents the asymp-

totic distributions of the sample squared constrained HJ-distance under correctly specified and

misspecified models.

Proposition 3. Under Assumptions A, B, and C,

(a) if δ+ = 0,

T δ̂2+
A∼

n−k∑

i=1

ξiνi, (83)

where the νi’s are independent chi-squared random variables with one degree of freedom and

the ξi’s are the eigenvalues of

A = P ′U− 1
2SU− 1

2P, (84)

with S =
∑∞

j=−∞ E [(xtyt(γ∗) − qt−1)(xt+jyt+j(γ∗) − qt+j−1)′], D = E
[
xt

∂yt(γ∗)
∂γ′

]
, U = E [xtx

′
t],

and P being an n× (n− k) orthonormal matrix whose columns are orthogonal to U− 1
2D.

(b) if δ+ > 0,
√
T (δ̂2+ − δ2+) A∼ N(0, v), (85)

where v =
∑∞

j=−∞ E[(φt(θ∗) − δ2+)(φt+j(θ∗)− δ2+)].
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Proof. See Appendix C.2.

While Theorem 1 of LXZ appears to present a rather different asymptotic distribution of T δ̂2+

under the correctly specified model, it can be shown that the nonzero eigenvalues of their matrix

are the same as our ξi’s once the null hypothesis H0 : δ+ = 0 is imposed. It is also important to

emphasize that the eigenvalues in part (a) of Proposition 3 coincide with the ones derived by Parker

and Julliard (2005) for the unconstrained HJ-distance case. Hence, contrary to LXZ’s claim, the

existing specification test developed for the sample unconstrained HJ-distance is also applicable to

the sample constrained HJ-distance.

To conduct inference, the variance matrices in Proposition 3 should be replaced by consistent

estimators. In particular, in part (a), we can replace A with its sample analog

Â = P̂ ′Û− 1
2 ŜÛ− 1

2 P̂ , (86)

where Û = 1
T

∑T
t=1 xtx

′
t and Ŝ is obtained using a nonparametric heteroskedasticity and autocorre-

lation consistent (HAC) estimator (see, e.g., Newey and West, 1987; and Andrews, 1991). Similarly,

in part (b) we can use a HAC estimator to estimate the variance v.

Proposition 4 below establishes the asymptotic normality of the estimates of the SDF parameters

and of the Lagrange multipliers, θ̂, based on the constrained HJ-distance for the case of misspecified

models.

Proposition 4. Let

G+ = E

[(
yt(γ∗)−mt(θ∗)+

) ∂2yt(γ∗)
∂γ∂γ ′

+
∂yt(γ∗)
∂γ

∂yt(γ∗)
∂γ ′

I{mt(θ∗)≤0}

]
, (87)

D+ = E

[
xt
∂yt(γ∗)
∂γ ′

I{mt(θ∗)>0}

]
, (88)

U+ = E
[
xtx

′
tI{mt(θ∗)>0}

]
, (89)

where I{·} denotes the indicator function. Under Assumptions A, B, and C, and if δ+ > 0,

√
T (θ̂ − θ∗) A∼ N(0k+n,Σθ̂), (90)

where Σθ̂ =
∑∞

j=−∞ E[h̃th̃
′
t+j ] with h̃t = [h̃′1t , h̃

′
2t]

′ and

h̃1t = (G+ +D′
+U

−1
+ D+)−1

[
(yt(γ∗)−mt(θ∗)+)

∂yt(γ∗)
∂γ

+D′
+U

−1
+ [xtmt(θ∗)+ − qt−1]

]
(91)

h̃2t = U−1
+ [D+h̃1t − xtmt(θ∗)+ + qt−1]. (92)
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Proof. See Appendix C.2.

The variance matrix Σθ̂ in Proposition 4 can be consistently estimated using the sample analogs

of (91) and (92). Tests of parameter restrictions based on the Wald or distance metric (likelihood

ratio-type) statistics can be easily developed from the result in Proposition 4.

While the asymptotic distribution of γ̂ in Proposition 4 is valid under the null as well as under

the alternative hypotheses, the asymptotic distribution of some elements of λ̂ is not always normal

when δ+ = 0. To illustrate this, note that when δ+ = 0, we have λ∗ = 0n, mt(θ∗)+ = yt(γ∗),

G+ = 0k×k, D+ = D, and U+ = U , where D and U are defined in Proposition 3. As a result, we

can simplify h̃1t and h̃2t to

h̃1t = (D′U−1D)−1D′U−1(xtyt(γ∗)− qt−1) (93)

h̃2t = [U−1D(D′U−1D)−1D′ − In]U−1(xtyt(γ∗) − qt−1). (94)

Since D′h̃2t = 0k, the asymptotic covariance matrix of
√
Tλ̂ (which we denote by Σ

λ̂
) is singular

when δ+ = 0. This implies that for a nonzero vector α in the span of the column space of D,
√
Tα′λ̂ is not asymptotically normal because α′h̃2t = 0. In general, one cannot be sure that each

diagonal element of Σ
λ̂

is nonzero, so testing H0 : λi = 0 using the asymptotic normal distribution

can be problematic. In some cases, we can explicitly show that a particular diagonal element of Σ
λ̂

is zero and one can no longer use the asymptotic normal distribution for testing H0 : λi = 0.

To better illustrate this problem, we first state a lemma which shows the relation between the

Lagrange multipliers and the constrained HJ-distance for linear SDF models.

Lemma 4. For a linear SDF, we have

E[qt−1]′λ∗ = −δ2+, q̄′λ̂ = −δ̂2+. (95)

Proof. See Appendix C.2.

Lemma 4 shows that q̄′λ̂ is numerically identical to the negative of the sample squared con-

strained HJ-distance, so they should have the same asymptotic distribution. As an example, we

consider a case with qt−1 = q = [1, 0′n−1]
′, so that the first payoff is a gross return and the rest

of the payoffs are excess returns. In this case, λ̂1 = q′λ̂ = −δ̂2+, where λ̂1 is the first element of

λ̂. Therefore, when δ+ = 0 (or equivalently λ1 = 0),
√
Tλ̂1 cannot be asymptotically normally
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distributed. Instead, −Tλ̂1 = T δ̂2+ has a weighted chi-squared distribution as given in Proposi-

tion 3(a).13 It can be easily shown that Lemma 4 also works for the unconstrained HJ-distance.

This implies that some of the results in Table 5 of Hodrick and Zhang (2001) are incorrect because

in their setup, the sample Lagrange multiplier associated with the risk-free asset is equal to the

negative of the sample squared unconstrained HJ-distance, rendering the normal test, as suggested

after their Equation (26), invalid.14

5. Model selection tests based on constrained Hansen-Jagannathan distances

In this section, we refine the asymptotic theory for model comparison tests for strictly non-

nested, nested, and overlapping models. Our analysis is similar in spirit to Vuong (1989), Rivers and

Vuong (2002), Golden (2003), Marcellino and Rossi (2008), and LXZ’s model selection methodology.

We provide several improvements upon the results derived in LXZ. First, in the case of nested

models, the weights in the asymptotic weighted chi-squared distribution should be either all positive

or all negative depending on which model is larger. This restriction is not satisfied by the general

expression provided in LXZ which is expected to lead to size distortions in finite samples. In

contrast, our limiting expressions and their sample counterparts are guaranteed to satisfy the

restrictions imposed by the null hypothesis and the structure of the models. Second, we provide an

asymptotic analysis that allows us to deal with the case of two strictly non-nested models that are

both correctly specified. Such a case is not considered in LXZ. Third, for nested and overlapping

models, we develop chi-squared versions of the model comparison tests that are easier to implement

than the weighted chi-squared tests. Finally, our tests are robust to heteroskedasticity and serial

correlation of unknown form.15

Define models

F = {yF(γF) ; γF ∈ ΓF} (96)

13Our result bears some resemblance to the results in Sims, Stock, and Watson (1990) on higher-order autoregressive
(AR) models with a unit root (see also Inoue and Kilian, 2002). These authors find that while most linear combinations
of the AR parameters are

√
T -consistent and asymptotically normally distributed, there exists a particular linear

combination that converges to a non-normal limiting distribution at rate T . One important difference is that in our
context we have k (instead of one) possible linear combinations of λ̂ that are non-normally distributed and these
linear combinations are, in general, not known a priori.

14It should be emphasized that when the SDF does not have parameters (as in the case of Proposition 4.1 of
Hansen, Heaton, and Luttmer, 1995), then

√
T λ̂ has an asymptotic normal distribution even when δ+ = 0.

15Rivers and Vuong (2002), Golden (2003), and Marcellino and Rossi (2008) also propose inference procedures
robust to heteroskedasticity and serial correlation in a general nonlinear setup.
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and

G = {yG(γG) ; γG ∈ ΓG}, (97)

where γF and γG are k1 and k2 parameter vectors, respectively, and ΓF and ΓG denote their

corresponding parameter spaces. The constrained HJ-distances for models F and G are given by

δ2F,+ = min
γF

max
λF

E[φFt (θF)] (98)

δ2G,+ = min
γG

max
λG

E[φGt (θG)], (99)

where θF = [γ ′F , λ
′
F ]′ and θG = [γ ′G, λ

′
G ]′. Denote by θ∗F = [γ∗′F , λ

∗′
F ]′ and θ∗G = [γ∗′G , λ

∗′
G ]′ the

pseudo-true parameters of models F and G, respectively. Note that model F can be correctly

specified or misspecified depending on whether yFt (γ∗F) ∈ M+ or yFt (γ∗F) 6∈ M+. Similarly, G can

be correctly specified or misspecified. If F ∩ G = ∅, we have the case of strictly non-nested models.

For nested models, we have F ⊂ G or G ⊂ F . Finally, if F ∩ G 6= ∅, F 6⊂ G, and G 6⊂ F , we refer to

F and G as overlapping models.

5.1. The normal test

A simple way of testing H0 : δ2F,+ = δ2G,+ is suggested by Hansen, Heaton, and Luttmer (1995,

pp. 255–256) who establish that the difference between the sample squared constrained HJ-distances

of two models under H0 : δ2F,+ = δ2G,+ is asymptotically normally distributed:

√
T (δ̂2F,+ − δ̂2G,+) A∼ N(0, σ2

d), (100)

where

σ2
d =

∞∑

j=−∞
E[dtdt+j ], (101)

and dt = (φFt (θ∗F )− E[φFt (θ∗F )])− (φGt (θ∗G) −E[φGt (θ∗G)]).

It is worth emphasizing that the above result holds only if σ2
d 6= 0. This variance is zero when

φFt (θ∗F) = φGt (θ∗G). To determine whether the use of the normal test above is appropriate, one could

do a pretest of H0 : σ2
d = 0 (see, e.g., Rivers and Vuong, 2002; Golden, 2003; and Marcellino and

Rossi, 2008). In our analysis, we prefer to have separate tests of φFt (θ∗F ) = φGt (θ∗G) since there are

two possible reasons for φFt (θ∗F ) = φGt (θ∗G): (i) the two SDFs are equal, i.e., yFt (γ∗F) = yGt (γ∗G), or (ii)

the two SDFs are different and are both correctly specified, so that φFt (θ∗F ) = 0 and φGt (θ∗G) = 0,
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which implies δ2F,+ = δ2G,+ = 0. By separating the test of σ2
d = 0 into these two cases, we provide

more information on the underlying reason for the equality and simplify the implementation of the

tests.

When the two models are strictly non-nested, we cannot have yFt (γ∗F) = yGt (γ∗G). As a result,

we only have to test H0 : δ2F,+ = δ2G,+ = 0 before using the normal test. LXZ appear to have missed

this possibility in the case of strictly non-nested models and proceed directly to the normal test.

In fact, it is possible for two strictly non-nested models to be both correctly specified, and we offer

such an example in Appendix C.2.16 As a result, one cannot ignore this scenario.

When the two models are overlapping, it is possible that both models have the same SDF.

Another possibility is that the two models have distinct SDFs but yet both models are correctly

specified. As a result, we need to conduct two pre-tests before we can use the normal test.

Finally, for nested models, we only need to test whether the two SDFs are equal. The reason is

that, in general, the larger model has a smaller constrained HJ-distance and the only way for the

two models to have the same HJ-distance is when their SDFs are equal. We discuss each of these

three cases in the following subsections.

5.2. Strictly non-nested models

To testH0 : δ2F,+ = δ2G,+ = 0 for strictly non-nested models, we define eFt (γ∗F) = xty
F
t (γ∗F)−qt−1 ,

eGt (γ∗G) = xty
G
t (γ∗G)− qt−1, and

S ≡

[
SF SFG

SGF SG

]
=

∞∑

j=−∞
E
[
ẽtẽ

′
t+j

]
, (102)

where ẽt = [eFt (γ∗F)′, eGt (γ∗G)′]′. Also, let PF and PG denote orthonormal matrices with dimensions

n× (n− k1) and n× (n− k2) whose columns are orthogonal to U− 1
2DF and U− 1

2DG, respectively,

where DF (DG) is the D matrix for model F (G) defined in Proposition 3. The following proposition

provides the appropriate asymptotic distribution of the difference in the sample squared constrained

HJ-distances when both models are correctly specified.

Proposition 5. Suppose that Assumptions A, B, and C hold for each model and yF(γ∗F) 6= yG(γ∗G).
16In a likelihood framework (see Vuong, 1989), two strictly non-nested models cannot be both correctly specified.

However, our correctly specified model is defined in terms of moment conditions, so it is possible for two strictly
non-nested models to be both correctly specified. See Hall and Pelletier (2008) and Kan and Robotti (2009) for
further discussion of this point.
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Then, under H0 : δ2F,+ = δ2G,+ = 0,

T (δ̂2F,+ − δ̂2G,+) A∼
2n−k1−k2∑

i=1

ξiνi, (103)

where the νi’s are independent chi-squared random variables with one degree of freedom, and the

ξi’s are the eigenvalues of the (2n− k1 − k2) × (2n− k1 − k2) matrix

[
P ′
FU

− 1
2SFU

− 1
2PF −P ′

FU
− 1

2SFGU
− 1

2PG

P ′
GU

− 1
2SGFU

− 1
2PF −P ′

GU
− 1

2SGU
− 1

2PG

]
. (104)

Proof. See Appendix C.2.

Since the eigenvalues ξi’s can take on both positive and negative values, the test of the hypothesis

H0 : δ2F,+ = δ2G,+ = 0 should be two-sided.

In summary, our proposed test of equality of the squared constrained HJ-distances of two strictly

non-nested models involves first testing whether the two models are both correctly specified using

Proposition 5. If we reject, then we can perform the normal test in Section 5.1. Suppose that α1

and α2 are the asymptotic significance levels used in these two tests. Then, our sequential test has

a significance level that is asymptotically bounded above by max[α1, α2]. Thus, if α1 = α2 = 0.05,

the significance level of this procedure, as a test of H0 : δ2F,+ = δ2G,+, is asymptotically no larger

than 5%.

5.3. Nested models

For nested models, σ2
d is zero by construction under the null of equal constrained HJ-distances.

Therefore, the normal test described in Section 5.1 cannot be used. In addition, for nested models,

δ2F,+ = δ2G,+ if and only if yF(γ∗F) = yG(γ∗G), so we can simply test H0 : yF (γ∗F) = yG(γ∗G).

LetHF = limT→∞
1
T

∑T
t=1

∂2E[φF
t (θ∗F )]

∂θF∂θ′F
(HG is similarly defined) and Σθ̂FG

=
∑∞

j=−∞ E[h̃FG
t h̃FG′

t+j ]

with h̃FG
t = [h̃Ft ′, h̃Gt

′]′, where h̃t for each model is defined in Proposition 4. For nested and

overlapping models, LXZ show that under H0 : φFt (θ∗F ) = φGt (θ∗G),

T (δ̂2F,+ − δ̂2G,+) A∼
2n+k1+k2∑

i=1

ξiνi, (105)

33



where the ξi’s are the eigenvalues of17

1
2

[
−HF 0(n+k1)×(n+k2)

0(n+k2)×(n+k1) HG

]
Σ

θ̂FG
. (107)

In the ensuing analysis, we will show that under H0 : δ2F,+ = δ2G,+, some of the ξi’s are equal to

zero and the nonzero ξi’s have the same sign. Being unaware of such simplifications, LXZ use

the sample counterpart of the matrix in (107) to estimate the ξi’s and end up with more nonzero

estimated ξi’s than the theory suggests. In addition, their estimated ξi’s do not have the same sign.

This is problematic because for nested models, the larger model has a smaller constrained sample

HJ-distance by construction. By not imposing the constraints that the ξi’s should have the same

sign, LXZ end up comparing T (δ̂2F,+ − δ̂2G,+) with a distribution that can take on both positive and

negative values. This could result in serious finite sample distortions of the test.

Without loss of generality, we assume F ⊂ G. Suppose that the null hypothesis H0 : yF (γ∗F) =

yG(γ∗G) can be written as a parametric restriction of the form H0 : ψG(γ∗G) = 0k2−k1 for model G

against H1 : ψG(γ∗G) 6= 0k2−k1 , where ψ(·) is a twice continuously differentiable function in its

argument. Define

ΨG(γG) =
∂ψG(γG)
∂γ ′G

(108)

as a (k2−k1)×k2 derivative matrix of the parametric restrictions ψG . For many models of interest,

yF (γF) = yG(γG) when a subset of the parameters of model G is equal to zero (or a constant vector

c). In this case, we can rearrange the parameters such that ψG(γG) = [0(k2−k1)×k1
, Ik2−k1 ]γG − c.

Then, ΨG(γG) = [0(k2−k1)×k1
, Ik2−k1 ], which is a selector matrix that selects only the part of

the parameter vector γG that is not contained in model F . Also, let Σγ̂G be the asymptotic

covariance matrix of γ̂G given in Proposition 4, MG ≡ limT→∞ Var
[

1√
T

∑T
t=1

∂φG
t (θ∗G)

∂θG

]
, and H̃G =

(GG
+ +DG

+
′U−1

+ DG
+)−1, where the matrices G+, D+, and U+ are defined in Proposition 4.

Proposition 6 below presents the asymptotic distribution of T (δ̂2F,+ − δ̂2G,+) under the null

hypothesis H0 : ψG(γ∗G) = 0k2−k1 .

17It is straightforward to verify that the eigenvalues of the matrix in (107) are identical to the ones of the matrix
presented in LXZ. Alternatively, one can directly test H0 : σ2

d = 0. It can be shown that under H0 : σ2
d = 0, we have

T σ̂2
d

A∼
2n+k1+k2∑

i=1

4ξ2
i νi, (106)

where σ̂2
d is the sample version of σ2

d. The proof of this result is available upon request.
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Proposition 6. Suppose that Assumptions A, B, and C hold and F ⊂ G. Then, under H0 :

ψG(γ∗G) = 0k2−k1 ,

T (δ̂2F,+ − δ̂2G,+) A∼
k2−k1∑

i=1

ξiνi, (109)

where the νi’s are independent chi-squared random variables with one degree of freedom, the ξi’s

are the eigenvalues of (ΨG
∗ H̃GΨG

∗
′)−1ΨG

∗Σγ̂GΨG
∗
′, ΨG

∗ ≡ ΨG(γ∗G), and the ξi’s are all positive.

Proof. See Appendix C.2.

Proposition 6 shows that, under H0 : yF(γ∗F) = yG(γ∗G), only k2 − k1 of the eigenvalues of (107)

are nonzero and they all have the same sign. In practice, we need to estimate the ξi’s to construct

the test. Using the sample version of the matrix in Proposition 6 instead of the sample version of

the matrix in (107) to estimate the ξi’s results in a substantial reduction of the number of estimated

eigenvalues. In addition, the resulting estimated eigenvalues are guaranteed to be positive.

An alternative way of testing the equality of two nested SDFs is to test directly H0 : ψG(γ∗G) =

0k2−k1 using the Wald test

Tψ̂′
G(Ψ̂GΣ̂γ̂GΨ̂G ′)−1ψ̂G

A∼ χ2
k2−k1

, (110)

where ψ̂G = ψG(γ̂G), Ψ̂G = ΨG(γ̂G), and Σ̂γ̂G is a consistent estimator of the asymptotic covariance

matrix of γ̂G . The test in (110) is asymptotically pivotal and is easier to implement than the test

in Proposition 6.

5.4. Overlapping models

For overlapping models, the variance σ2
d can be zero when (i) yF(γ∗F) = yG(γ∗G) or (ii) both

models are correctly specified.18 Since Proposition 5 is applicable to this second scenario, here we

only need to derive the test of H0 : yF(γ∗F) = yG(γ∗G).

It is well known that for linear models, the equality of the SDFs implies zero restrictions on

the parameter vectors (see, e.g., Lien and Vuong, 1987; and Kan and Robotti, 2009). Similar

restrictions can also be obtained for nonlinear models. Let yH(γH) be the SDF of model H, where

H = F ∩ G and γH is a k3-vector. Therefore, yF(γ∗F) = yG(γ∗G) implies yF (γ∗F) = yH(γ∗H) and

yG(γ∗G) = yH(γ∗H). Suppose that H0 : yF(γ∗F) = yH(γ∗H) and yG(γ∗G) = yH(γ∗H) can be written as

18Similar to the case of strictly non-nested models, it is possible for two overlapping positive SDFs to be both
correctly specified. Examples are available upon request.
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a parametric restriction of the form H0 : ψF(γ∗F) = 0k1−k3 and ψG(γ∗G) = 0k2−k3 , where ψF(·) and

ψG(·) are some twice continuously differentiable functions of their arguments. Let

ΨF (γF) =
∂ψF(γF)
∂γ ′F

(111)

and

ΨG(γG) =
∂ψG(γG)
∂γ ′G

(112)

be (k1 − k3) × k1 and (k2 − k3) × k2 derivative matrices of the parametric restrictions ψF and

ψG , respectively. In many cases, H0 : yF(γ∗F) = yH(γ∗H) implies that a subset of the parameters

of model F is equal to zero, and H0 : yF (γ∗G) = yH(γ∗H) implies that a subset of the parameters

of model G is equal to zero. For such cases, we can arrange the parameters so that ΨF (γF) =

[0(k1−k3)×k3
, Ik1−k3 ] and ΨG(γG) = [0(k2−k3)×k3

, Ik2−k3 ]. Let Σγ̂FG the asymptotic covariance

matrix of γ̂FG = [γ̂F′, γ̂G
′]′, H̃F = (GF

+ +DF
+
′U−1

+ DF
+)−1, H̃G = (GG

+ +DG
+
′U−1

+ DG
+)−1, and

ΨFG
∗ ≡

[
ΨF (γ∗F) 0(k1−k3)×k2

0(k2−k3)×k1
ΨG(γ∗G)

]
. (113)

The next proposition establishes the asymptotic distribution of T (δ̂2F,+−δ̂2G,+) under H0 : ψF(γ∗F) =

0k1−k3 and ψG(γ∗G) = 0k2−k3 .

Proposition 7. Suppose that F ∩ G 6= ∅, F 6⊂ G, G 6⊂ F , and Assumptions A, B, and C hold.

Then, under H0 : ψF (γ∗F) = 0k1−k3 and ψG(γ∗G) = 0k2−k3 , we have

T (δ̂2F,+ − δ̂2G,+) A∼
k1+k2−2k3∑

i=1

ξiνi, (114)

where the νi’s are independent chi-squared random variables with one degree of freedom and the ξi’s

are the eigenvalues of
[

−(ΨF
∗ H̃FΨF

∗
′)−1 0(k1−k3)×(k2−k3)

0(k2−k3)×(k1−k3) (ΨG
∗ H̃GΨG

∗
′)−1

]
ΨFG

∗ Σγ̂FGΨFG
∗

′, (115)

where ΨF
∗ ≡ ΨF (γ∗F) and ΨG

∗ = ΨG(γ∗G)

Proof. See Appendix C.2.

Unlike the case of nested models, the eigenvalues in Proposition 7 are not always positive

because δ̂2F,+ − δ̂2G,+ can take on both positive and negative values. As a result, we need to perform
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a two-sided test of H0 : yF (γ∗F) = yG(γ∗G). Similarly to the nested case, an alternative way of testing

the equality of two overlapping SDFs is to directly test H0 : ψF(γ∗F) = 0k1−k3 , ψG(γ∗G) = 0k2−k3

using the Wald test

Tψ̂′
FG(Ψ̂FG Σ̂γ̂FGΨ̂FG ′)−1ψ̂FG

A∼ χ2
k1+k2−2k3

, (116)

where ψ̂FG = [ψF(γ̂F)′, ψG(γ̂G)′]′,

Ψ̂FG =

[
ΨF (γ̂F) 0(k1−k3)×k2

0(k2−k3)×k1
ΨG(γ̂G)

]
, (117)

and Σ̂γ̂FG is a consistent estimator of Σγ̂FG . This test is asymptotically pivotal and is easier to

implement than the test in Proposition 7.

In summary, our proposed test of equality of the squared constrained HJ-distances of two

overlapping models involves first testing whether the SDFs of the two models are equal using

either Proposition 7 or (116). If we reject the null hypothesis, then we need to test whether the two

models are both correctly specified using Proposition 5. Finally, if we still reject, we can perform the

normal test in Section 5.1. The significance level of this procedure, as a test of H0 : δ2F,+ = δ2G,+,

is asymptotically bounded above by max[α1, α2, α3], where α1, α2, and α3 are the asymptotic

significance levels used in these three tests.

5.5. Discussion

The results in Propositions 6 and 7 (and the related chi-squared tests in (110) and (116))

offer substantial advantages over the inference procedure in (105)–(107). Imposing the parametric

restrictions that directly arise from the structure of the model and the appropriate null hypotheses

results in a drastic reduction of the number of weights that are used to compute the critical values

of the tests. More specifically, the number of eigenvalues in the weighted chi-squared distribution

is reduced from 2n + k1 + k2 to k2 − k1 for nested and to k1 + k2 − 2k3 for overlapping models.

This proves to be particularly advantageous when the number of test assets n is large. The reduced

dimensions of the matrices in Propositions 6 and 7 are expected to lead to improved finite sample

(size and power) behavior of the model selection tests.

While our Sections 4 and 5 provide an exhaustive asymptotic treatment of specification and

model selection tests based on sample constrained HJ-distances, it is beyond the scope of this

paper to investigate the finite sample properties of such tests. However, it is worth mentioning that

37



some finite sample evidence is available in the current literature. In their simulation experiments,

LXZ examine the size and power properties of model specification and selection tests. Overall,

they find that the tests based on the unconstrained and constrained HJ-distances behave similarly,

which provides little support to their claims that tests based on the constrained HJ-distance are

more powerful than tests based on the unconstrained HJ-distance in detecting and distinguishing

misspecified models. Nevertheless, it is important to mention that their simulation findings cannot

be used to draw strong conclusions one way or the other since they suffer from the following

problems. First, their analysis of the size properties of the specification test based on the constrained

HJ-distance is incorrect because, by generating SDFs that are normally distributed, they do not

impose the null of zero constrained HJ-distance. In fact, it is impossible to impose the null of

zero constrained HJ-distance when the SDF has a normal distribution because the SDF takes on

negative values by definition. Second, in all experiments, their power analyses under the alternative

hypotheses are not size-adjusted, thus rendering the comparisons between the properties of tests

based on the unconstrained and constrained HJ-distances problematic. Finally, in some of their

simulation experiments, LXZ adopt a useless factor setting which is inappropriate for evaluating

their methodologies.19 In fact, for the unconstrained HJ-distance, the presence of a useless factor

violates their Assumption A.1 which requires the parameters to be uniquely identified (see our

discussion in Section 3.2).

6. Empirical analysis

In this section, we focus on linear asset pricing models because of their popularity in the

literature and the fact that their SDFs can potentially take on negative values, making it interesting

to study the difference between the unconstrained and constrained HJ-distances of these models.

6.1. Data and asset pricing models

For ease of comparison, we focus on the same asset pricing models considered by LXZ and use

their data to perform our empirical analysis.20 The return data consist of quarterly gross returns

on the three-month T-bill and the 25 Fama-French size and book-to-market ranked portfolios. The

data are from 1952:2 to 2000:4 (195 quarterly observations). The seven models that are considered

19See, e.g., Kan and Zhang (1999a,b) and Burnside (2007) for analyses of asset pricing tests with useless factors.
20We thank LXZ for making their data available to us and refer to their paper for a more detailed description of

the data.
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are:

LL: the conditional consumption CAPM of Lettau and Ludvigson (2001)

yLL
t = γ0 + γ1cayt−1 + γ2ct + γ3cayt−1ct,

where cay is the consumption-wealth ratio and c is the log consumption growth rate;

LV: a version of the conditional consumption CAPM of Lustig and Van Nieuwerburgh (2004)

yLV
t = γ0 + γ1myt−1 + γ2ct + γ3myt−1ct,

where my is the housing collateral ratio;

SV: the conditional CAPM of Santos and Veronesi (2006)

ySV
t = γ0 + γ1rmkt,t + γ2s

ω
t−1rmkt,t,

where rmkt is the excess return on the market portfolio and sω is the labor income-consumption

ratio;

LVX1: the simple sector investment model of Li, Vassalou, and Xing (2006)

yLV X1
t = γ0 + γ1ihh,t + γ2icorp,t + γ3incorp,t,

where ihh, icorp, and incorp are the log investment growth rates for households, non-financial

corporations, and non-corporate sector, respectively;

LVX2: the extended sector investment model of Li, Vassalou, and Xing (2006)

yLV X2
t = γ0 + γ1ihh,t + γ2icorp,t + γ3incorp,t + γ4ifcorp,t + γ5ifm,t,

where ifcorp and ifm are the log investment growth rates for financial corporations and farm

sector, respectively;21

21Li, Vassalou, and Xing (2006) eliminate the ifm variable from their tests due to problems with missing observations
from the data series. Although the ifm series provided to us by LXZ has no missing observations, it contains large
outliers. Therefore, in our empirical analysis we also consider a version of LVX2 without the ifm variable. We find
that all of our conclusions are unaffected by this alternative specification of LVX2. The results of this additional
analysis are available upon request.
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YOGO: the durable consumption CAPM of Yogo (2006)

yY OGO
t = γ0 + γ1cndur,t + γ2cdur,t + γ3rmkt,t,

where cndur and cdur denote the log consumption growth rates of non-durable and durable

goods, respectively;

FF3: the three-factor model of Fama and French (1993)

yFF3
t = γ0 + γ1rmkt,t + γ2rsmb,t + γ3rhml,t,

where rsmb is the return difference between portfolios of small and large stocks and rhml is

the return difference between portfolios of high and low book-to-market ratios.

6.2. Results

Table 1 presents the sample unconstrained (δ̂) and constrained (δ̂+) HJ-distances (Panels A and

B, respectively) of the seven linear asset pricing models considered.22 The table also reports the

standard errors of δ̂ and δ̂+ (assuming δ > 0 and δ+ > 0), the p-values for the tests ofH0 : δ = 0 and

H0 : δ+ = 0, and the probability that the estimated SDF takes on negative values in the sample.

For the specification test based on the sample constrained HJ-distance, we report two different

p-values, pn and pa, where pn stands for the p-value that imposes the null hypothesis H0 : δ+ = 0,

and pa stands for the p-value that does not impose the null hypothesis (see Proposition 3(a) and

related discussion). In order to allow for serial correlation in the data, the reported standard errors

and p-values are constructed using the Newey and West (1994) HAC estimator with Bartlett kernel

and automatic lag selection. In addition to the standard deviations of the estimated SDF and φ

function, each panel also reports the centered R2 from a linear regression of the estimated SDF on

the returns on the test assets. The second last row of Panel B presents the percentage difference

between the sample constrained and unconstrained HJ-distances of each model. Finally, in the last

row of Panel B, we report ˆ̃
δ for the SDF that minimizes the constrained HJ-distance, where δ̃,

defined in (65), is a measure of the maximum pricing error on the test assets.

Table 1 about here

22For the unconstrained HJ-distance and related tests, we refer the readers to Kan and Robotti (2009).
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While some of the results in Table 1 are already reported and discussed in LXZ, we would like to

emphasize and reinterpret several important findings that naturally emerge from the predictions of

our theoretical analyses in Sections 2 and 3. First, Table 1 clearly shows that the largest increases in

the sample constrained HJ-distance over its unconstrained counterpart occur for models with high

probabilities of taking on negative values (such as LV, LVX1, and LVX2). For these models, the

probability for their SDF to take on negative values can be greatly reduced when the parameters

are chosen to minimize the constrained HJ-distance. However, as discussed in Section 3.2, this

reduction in probability generally comes at the cost of higher pricing errors on the test assets (a

higher δ̃). For models with large differences between δ̂+ and δ̂ (such as LV, LVX1, and LVX2), we

also see a significant difference between ˆ̃
δ and δ̂, indicating a substantial deterioration in the ability

of the SDF to price the test assets when its parameters are chosen to minimize the constrained

HJ-distance instead of the unconstrained HJ-distance. The deterioration in the pricing ability of

LV, LVX1, and LVX2 is also reflected in the standard deviations of their SDFs, which significantly

drop from 0.817, 1.229, and 1.478 in Panel A to 0.294, 0.318, and 0.350 in Panel B. This implies

that it would be even harder for these models to satisfy the sample HJ-bounds if their parameters

were chosen to minimize the constrained HJ-distance.

Second, the variation in the differences between the sample unconstrained and constrained HJ-

distances across models deserves some remarks. As expected from our theoretical analysis, the

differences are relatively small for SDFs that are close to being spanned by the returns on the test

assets. For example, the percentage difference between the sample constrained and unconstrained

HJ-distances of FF3 is only 4.2% since this model has a very high R2 of 0.983. While we do

not report the parameter estimates of the various models to preserve space, the pattern of the

differences in the parameter estimates provides further support to our theoretical predictions: the

largest differences in parameter estimates arise in models with non-traded factors and almost no

differences arise in models with traded factors.23 As a result, the different effects of imposing

the no-arbitrage constraint across models appear to be driven by the underlying structure of the

problem and characteristics of the factors (traded versus non-traded).

Finally, while choosing the SDF parameters to minimize δ̂+ instead of δ̂ leads to a lower proba-

bility for the SDF to take on negative values and yields a less volatile SDF, the standard error of δ̂+

23The full set of parameter estimates and their standard errors are available upon request.
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is not always smaller than the standard error of δ̂. In fact, we find that for five out of seven models,

the standard error of δ̂+ is larger than the standard error of δ̂. This suggests that the sample

unconstrained and constrained HJ-distances are similarly noisy measures of model misspecification

and that it could be difficult to differentiate between models using either metric.

Table 2 about here

Table 2 presents our model comparison tests based on the unconstrained and constrained HJ-

distances. Two of the considered models are nested (LVX1 and LVX2) and the remaining models

are overlapping.24 We use Propositions 5, 6, 7, and the normal test described in Section 5.1 to

perform our sequential tests. It should be emphasized that Propositions 6 and 7 substantially

reduce the dimension of the matrix used by LXZ to compute the eigenvalues for the weighted

chi-squared tests. In particular, the number of eigenvalues is reduced from 59–62 (in the deficient

rank matrix (107)) to 2–8. This is expected to improve considerably the finite sample properties

of our tests and explains the (substantial, in some cases) differences between the p-values reported

in Table 2 and those in LXZ.

Panel A of Table 2 shows that when comparing FF3 with other models, the test of H0 : yF = yG

based on the unconstrained HJ-distance rejects the equality of SDFs in all cases except two (LVX1

and LVX2). In the other model comparisons, the test based on the unconstrained HJ-distance

detects no statistically significant differences across models. Consistent with our previous discus-

sion, imposing the no-arbitrage constraint has the largest effect on models with a high probability

of taking on negative values (LV, LVX1, and LVX2). Interestingly, the number of rejections of

equality of two non-nested SDFs significantly increases when considering the test of H0 : yF = yG

based on the constrained HJ-distance. To gain some intuition of why this is the case, note that

the test of H0 : yF = yG is essentially a test of joint significance of the parameter vectors of the

two models, as shown by the expression of the chi-squared test in (116). As discussed in Sections 2

and 3, imposing the no-arbitrage constraint on unspanned SDFs drastically reduces their volatility

and makes them behave more like spanned SDFs by putting more weight on the risk-free asset and

less weight on the unspanned factors (this is reflected in the higher R2s of the estimated SDFs in

Table 1.B). For such SDFs, it can be shown that the standard errors of the parameter estimates
24Since all models are linear and have a constant term in common, we do not have to deal with the case of strictly

non-nested models.
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shrink proportionately more than the estimates themselves, thus making the chi-squared test in

(116) bigger and more likely to reject the null hypothesis H0 : yF = yG.

Since the test in Panel A only represents the first stage of our sequential test, in Panel B we test

H0 : δ2F = δ2G = 0 (H0 : δ2F,+ = δ2G,+ = 0) for those pairs of non-nested models for which we reject

H0 : yF = yG at the 5% level. For the unconstrained HJ-distance, we find that the null is rejected

at the 5% level in two out of four cases. For the constrained HJ-distance, the null is rejected at

the 5% level for all models that are paired with FF3. For these pairs of models, we need to further

investigate whether they have the same constrained HJ-distance using the normal test.

Panel C of Table 2 presents the results from the normal test in Section 5.1 for the pairs of models

for which the null hypotheses in Panels A and B are rejected at the 5% level. This represents the

last stage of our sequential test procedure. The normal test delivers only one rejection of the null

hypothesis for both the unconstrained and constrained HJ-distances at the 5% level. In particular,

FF3 only outperforms YOGO when using the unconstrained HJ-distance, while it only outperforms

LV when using the constrained HJ-distance.25 Although we find the same number of rejections

for the unconstrained and constrained HJ-distances at the 5% level, there appears to be slightly

stronger evidence that FF3 outperforms the other models when we do model comparison using the

constrained HJ-distance. This is particularly the case if we increase the size of the test to 10%,

which then leads to more rejections of equality in the constrained HJ-distance case (six) than in

the unconstrained HJ-distance case (two). This result requires some explanation. First, as pointed

out earlier, the differences between the sample squared HJ-distance of FF3 and the sample squared

HJ-distances of the other models are larger in Table 1.B than in Table 1.A. Second, since the various

SDFs are closer to being spanned in the constrained HJ-distance case, their φ’s exhibit a stronger

positive correlation with the φ of the almost spanned FF3. Given that the standard deviations

of the φ’s are similar across Panels A and B of Table 1, the standard errors of the differences

between the sample squared HJ-distance of FF3 and the sample squared HJ-distances of the other

six models tend to shrink when imposing the no-arbitrage constraint. This implies that in the

constrained HJ-distance case, the t-ratios of these differences are higher and the corresponding

p-values lower.

25Ignoring serial correlation in the data produces the same number of rejections as in LXZ. At the 5% level,
we obtain three rejections of equality using the constrained HJ-distance and one rejection of equality using the
unconstrained HJ-distance.
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While our empirical results show that it is slightly easier to reject the hypothesis of equality

of constrained HJ-distances than the hypothesis of equality of unconstrained HJ-distances for this

dataset, it is important to understand how robust this finding is. Our theoretical results suggest

that we can expect some meaningful differences between the unconstrained and constrained HJ-

distances only when the Sharpe ratio of the tangency portfolio of the risky assets is very high. As it

turns out, the tangency portfolio of the 25 Fama-French size and book-to-market portfolios used by

LXZ has a relatively high sample Sharpe ratio (0.71). To understand whether this is an important

reason for the difference in results between the two tests, we consider another set of test assets

with a smaller sample Sharpe ratio. Specifically, we use quarterly gross returns on the three-month

T-bill and ten size and 12 industry portfolios from Kenneth French’s website.26 The sample Sharpe

ratio of the tangency portfolio of this new set of risky assets is 0.53. We then perform the same

analyses as in Tables 1 and 2, leaving the sample period and the models unchanged (the results

of this exercise are available upon request). Using this new set of test assets, we find that the

specification tests based on the unconstrained and constrained HJ-distances reject all models but

one (YOGO in the unconstrained case and LV in the constrained case). In addition, our model

selection tests based on the unconstrained and constrained HJ-distances suggest that no model

outperforms its competitors at any conventional significance level. Therefore, consistent with our

theoretical results, a decrease in the Sharpe ratio of the tangency portfolio of the risky assets

causes the model comparison tests based on unconstrained and constrained HJ-distances to behave

similarly.

In summary, our empirical analysis suggests that one can find a nontrivial difference between

the tests of H0 : δ2F = δ2G and H0 : δ2F,+ = δ2G,+ only when at least one of the SDFs has a large

unspanned component and the Sharpe ratio of the tangency portfolio of the test assets is high.

Nevertheless, we would like to emphasize that since H0 : δ2F = δ2G and H0 : δ2F,+ = δ2G,+ are in

general two different hypotheses, it is not meaningful to compare the power of the two tests. In

particular, the choice of the model comparison test should depend on whether the research interest

lies in the unconstrained or the constrained HJ-distances of a model, and should not be dictated

by which test is more likely to reject its corresponding null hypothesis.

7. Conclusion

26Considering size and industry portfolios in addition to or instead of the 25 Fama-French size and book-to-market
portfolios is consistent with one of the prescriptions of Lewellen, Nagel, and Shanken (2009).
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This paper fills an important gap in the current literature by examining the population and

sampling properties of the HJ-distance with a no-arbitrage constraint. We first clarify the maximum

pricing error interpretation of the constrained HJ-distance. Unlike the unconstrained HJ-distance

which is a measure of the maximum pricing error of an SDF on the test assets, the constrained

HJ-distance does not represent the maximum pricing error of an SDF on all the tradable assets.

In a complete market, the constrained HJ-distance is only a lower bound on the maximum pricing

error.

Since a model with a smaller lower bound on the maximum pricing error does not necessarily

have a smaller actual maximum pricing error, ranking models using the constrained HJ-distance

can be problematic. However, when the SDF is spanned by the returns on the test assets, we show

that ranking models using the constrained HJ-distance is the same as ranking models using the

unconstrained HJ-distance. The reason is that in the spanned SDF case, the difference between the

constrained and unconstrained HJ-distances becomes model independent and coincides with the

difference between the constrained and unconstrained HJ-bounds. The rankings of models using

the two HJ-distances can differ only when at least one of the SDFs is far from being spanned by

the returns on the test assets.

When the SDF is not spanned by the returns on the test assets, we derive an analytical solution

for the constrained HJ-distance, the associated Lagrange multipliers, and the SDF parameters in

the case of linear SDFs under a joint normality assumption on the SDF and the returns. This allows

us to show that nontrivial differences between the constrained and unconstrained HJ-distances can

only arise when the volatility of the unspanned component of an SDF is large and the Sharpe

ratio of the tangency portfolio of the test assets is very high. In addition, our analysis allows us to

quantify the deterioration in the ability of a given linear SDF to price the test assets when imposing

a no-arbitrage constraint.

In our econometric analysis, we document the surprising finding that in finite samples, the

sample constrained HJ-distance takes on the value of infinity with positive probability. In particular,

we show that the sample constrained HJ-distance takes on the value of infinity if and only if we

can identify an in-sample arbitrage portfolio of the test assets. When such a portfolio is identified,

the sample constrained HJ-distance cannot be used to rank models. Furthermore, we show that

contrary to common belief, the asymptotic normality of the estimated Lagrange multipliers can
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break down when the asset pricing model is correctly specified. Finally, we provide a complete

limiting theory for estimation, testing, and comparison of SDFs using the constrained HJ-distance.

Our tests based on the unconstrained and constrained HJ-distances are used to analyze a va-

riety of asset pricing models that have been proposed in the literature. With the exception of the

three-factor model of Fama and French (1993), we do not find any evidence to conclude that one

model outperforms the others. This is consistent with recent findings based on the sample uncon-

strained HJ-distance (Kan and Robotti, 2009) and the sample cross-sectional R2 (Kan, Robotti,

and Shanken, 2009). In addition, we reexamine the empirical results of Li, Xu, and Zhang (2009) in

light of our new theoretical results. Their main conclusion that it is easier to differentiate between

models when using the constrained HJ-distance instead of the unconstrained HJ-distance appears

to be heavily driven by the very high Sharpe ratio of the test assets that they use.

Our analysis could be extended in a number of ways. For example, the issue of model selec-

tion when the SDF does not depend on parameters deserves further investigation. In addition,

other metrics for comparing models could be considered. Finally, although we have made substan-

tial progress in deriving asymptotic results, future research should also address the small sample

properties of the various estimators and test statistics considered in this paper.
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Appendix A

We first provide a lemma which will be repeatedly used in Appendix A.

Lemma A.1 Suppose (u, v) is bivariate normally distributed with µu = E[u], µv = E[v], σ2
u =

Var[u], σ2
v = Var[v], and σuv = Cov[u, v]. Then, we have

E[uv+] = E[uv]Φ(η)+ µuσvφ(η), (A1)

where η = µv/σv, and φ(·) and Φ(·) are the density and cumulative distribution functions of a

standard normal random variable, respectively.

Proof of Lemma A.1: Lemma 4 of Kan and Robotti (2008) provides the following explicit expres-

sions of E[v+] and E[v+2]:

E[v+] = µvΦ(η) + σvφ(η), (A2)

E[v+2] = (µ2
v + σ2

v)Φ(η) + µvσvφ(η). (A3)

Under the bivariate normality assumption, we have

E[u|v] = µu +
σuv

σ2
v

(v − µv). (A4)

It follows that

E[uv+] = E[E[u|v]v+]

= E

[(
µu +

σuv

σ2
v

(v − µv)
)
v+

]

=
(
µu − σuv

σ2
v

µv

)
E[v+] +

σuv

σ2
v

E[v+2]

=
(
µu − σuv

σ2
v

µv

)
[µvΦ(η) + σvφ(η)] +

σuv

σ2
v

[
(µ2

v + σ2
v)Φ(η) + µvσvφ(η)

]

= E[uv]Φ(η)+ µuσvφ(η). (A5)

Note that the above expression can also be rewritten as

E[uv+] = σuvΦ(η) + µuE[v+]. (A6)

This completes the proof.
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Proof of Proposition 1: Let my = y − λ̃′r̃ ∼ N(µm, σ
2
m). Invoking Lemma A.1, we obtain

E[r̃m+
y ] = E[r̃my]Φ(η) + E[r̃]σmφ(η) = (E[r̃y]− Uλ̃)Φ(η) + E[r̃]σmφ(η), (A7)

where η = µm/σm. Using the first order condition E[r̃m+
y ] = q and the expression of U−1 in (39),

we obtain U−1E[r̃] = q/R0 and

λ̃ = U−1E[r̃y] +
φ(η)
Φ(η)

σmU
−1E[r̃] − 1

Φ(η)
U−1q

=




µy−V ′
ryV −1

rr µr

R0

V −1
rr Vry


 +

[
σmφ(η)
R0Φ(η)

0N

]
− 1

Φ(η)

[ 1+a
R2

0

−V −1
rr µr

R0

]
. (A8)

Instead of directly solving this system of n nonlinear equations to obtain λ̃, we seek a way to first

solve for η. Using (A8) and after simplification, we have

my = y − λ̃′r̃ = z +
1

Φ(η)

[
1
R0

− µ′rV
−1
rr (r − µr)
R0

]
− σmφ(η)

Φ(η)
, (A9)

and the variance of my is given by

σ2
m = σ2

z +
a

R2
0Φ(η)2

. (A10)

In addition, we can use (A2) to express E[m+
y ] as

E[m+
y ] = µmΦ(η) + σmφ(η) = ησmΦ(η) + σmφ(η) = σmΦ(η)g(η). (A11)

Since m+
y prices R0 correctly, we have E[m+

y ] = 1/R0, which implies

g(η) =
1

σmR0Φ(η)
. (A12)

Substituting σm from (A10) into this expression, we obtain the following first order condition:

g(η) = [a+ σ2
zR

2
0Φ(η)2]−

1
2 . (A13)

As shown in Lemma 5 of Kan and Robotti (2008), g(η) is increasing in η and goes from zero to

infinity as η increases. Since the right hand side of (A13) is positive and decreasing in η, the

solution to this equation is unique.

Using (A12), we can express the vector of Lagrange multipliers as

λ̃ =




µy−V ′
ryV −1

rr µr

R0
+ φ(η)

g(η)R2
0Φ(η)2

− 1+a
R2

0Φ(η)

V −1
rr

(
Vry + µr

R0Φ(η)

)


 =




µy−V ′
ryV −1

rr µr

R0
−

a+ η
g(η)

R2
0Φ(η)

V −1
rr

(
Vry + µr

R0Φ(η)

)


 , (A14)
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where the last equality is obtained by using φ(η)/Φ(η) = g(η)− η.

The nonnegative admissible SDF that is closest to y is m+
y , where my is defined in (A9). It

follows that the squared constrained HJ-distance of y is given by

δ2+ = E[(y−m+
y )2] = E[y2] − 2E[ym+

y ] + E[m+
y

2]. (A15)

It is straightforward to show that

E[y2] = σ2
z + µ2

y + V ′
ryV

−1
rr Vyr. (A16)

Using (A6) and the fact that E[m+
y ] = 1/R0, we obtain

E[ym+
y ] =

(
σ2

z −
V ′

ryV
−1
rr µr

R0Φ(η)

)
Φ(η) +

µy

R0
, (A17)

E[m+
y

2] = E[mym
+
y ] = σ2

mΦ(η) +
µm

R0
. (A18)

With these expressions, we obtain

δ2+ = σ2
z + µ2

y + V ′
ryV

−1
rr Vyr − 2

(
σ2

zΦ(η)−
V ′

ryV
−1
rr µr

R0

)
− 2µy

R0
+ σ2

mΦ(η) +
µm

R0

=
(
µy −

1
R0

)2

+
(
Vry +

µr

R0

)′
V −1

rr

(
Vry +

µr

R0

)

+ σ2
z − 2σ2

zΦ(η) + σ2
mΦ(η) +

µm

R0
− 1 + a

R2
0

= δ2 + σ2
zΦ(−η) + (σ2

m − σ2
z)Φ(η) +

ησm

R0
− 1 + a

R2
0

= δ2 + σ2
zΦ(−η) +

a+ η
g(η)

R2
0Φ(η)

− 1 + a

R2
0

, (A19)

where the last equality follows from (A10) and (A12). This completes the proof.

Proof of Lemma 1: We first show that

∂∆
∂η

= −σ2
zφ(−η)− aφ(η)

R2
0Φ(η)2

+
Φ(η)g(η)− η[φ(η)g(η)+ Φ(η)g′(η)]

R2
0Φ(η)2g(η)2

= −σ2
zφ(η)− aφ(η)

R2
0Φ(η)

+
g(η)− η

R2
0Φ(η)g(η)2

= − φ(η)
R2

0Φ(η)2g(η)2
+

φ(η)
R2

0Φ(η)2g(η)2

= 0. (A20)
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The second equality follows because g′(η) = 1− g(η)φ(η)/Φ(η). The third equality follows because

a + σ2
zR

2
0Φ(η)2 =

1
g(η)2

. (A21)

This suggests that as far as the partial derivatives of ∆ with respect to (σ2
z , a, R0) are concerned,

we can treat η as a constant. Thus, it follows that

∂∆
∂σ2

z

= Φ(−η) > 0, (A22)

∂∆
∂a

=
1

R2
0Φ(η)

− 1
R2

0

=
Φ(−η)
R2

0Φ(η)
> 0, (A23)

∂∆
∂R0

= − 2
R3

0

[
a

Φ(η)
+

η

Φ(η)g(η)
− 1 − a

]
=

2
R3

0

[
1 − aΦ(−η)

Φ(η)
− η

Φ(η)g(η)

]
. (A24)

This completes the proof.

Proof of Lemma 2: Since y/µy ∼ N(1, σ2
y/µ

2
y), using the mean of a lognormal distribution yields

E[exp(y/µy)] = exp(1 + σ2
y/(2µ

2
y)). Then, it follows that

E

[
exp

(
y

µy
− 1 −

σ2
y

2µ2
y

)]
= 1. (A25)

Therefore, E[R0y+] = R0E[y+] = R0µy = E[R0y] and both y+ and y assign the same price to the

risk-free asset. For risky assets, we use Stein’s lemma to obtain27

Cov[r, y+] = E

[
exp

(
y

µy
− 1 −

σ2
y

2µ2
y

)]
Cov[r, y] = Cov[r, y]. (A26)

Together with the fact that E[y+] = E[y], this implies E[ry+] = E[ry] and y+ and y assign the

same price to the risky assets. This completes the proof.

Proof of Proposition 2: Let ỹ = γ̃ ′f̃ and mỹ = ỹ − λ̃′r̃, where f̃ = [1, f ′]′. In addition, let

C = E[f̃f̃ ′] and D = E[r̃f̃ ′]. Differentiating

δ2+ = E[ỹ2] −E[m+2
ỹ ] − 2λ̃′q (A27)

with respect to γ̃ and λ̃, we obtain the following first order conditions:

Cγ̃ − E[f̃m+
ỹ ] = 0K+1, (A28)

E[r̃m+
ỹ ] = q. (A29)

27Stein’s lemma suggests that if u and v are jointly normally distributed, we have Cov[f(u), v] = E[f ′(u)]Cov[u, v],
where f(u) is a differentiable function of u.
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Let µm = E[mỹ] and σ2
m = Var[mỹ]. Invoking Lemma A.1, we have

E[f̃m+
ỹ ] = Φ(η)E[f̃mỹ ] + σmφ(η)E[f̃] = Φ(η)(Cγ̃ −D′λ̃) + σmφ(η)E[f̃], (A30)

E[r̃m+
ỹ ] = Φ(η)E[r̃mỹ ] + σmφ(η)E[r̃] = Φ(η)(Dγ̃− Uλ̃) + σmφ(η)E[r̃], (A31)

where η = µm/σm. Putting the above expressions into the first order conditions, we obtain
[

Φ(−η)C Φ(η)D′

Φ(η)D −Φ(η)U

][
γ̃

λ̃

]
=

[
σmφ(η)E[f̃]

q − σmφ(η)E[r̃]

]
. (A32)

Let H = [C + Φ(η)(D′U−1D − C)]−1. We can use the partitioned matrix inverse formula to write

[
Φ(−η)C Φ(η)D′

Φ(η)D −Φ(η)U

]−1

=

[
H HD′U−1

U−1DH − 1
Φ(η)U

−1 + U−1DHD′U−1

]
. (A33)

Using (39), we can easily verify that U−1E[r̃] = q/R0 and hence

D′U−1E[r̃] =
1
R0
D′q =

1
R0
E[R0f̃ ] = E[f̃ ]. (A34)

Using this identity, we can then show that

γ̃ = HD′U−1q + σmφ(η)H(E[f̃] −D′U−1E[r̃]) = HD′U−1q, (A35)

λ̃ = σmφ(η)U−1DHE[f̃ ]−
[

1
Φ(η)

U−1 − U−1DHD′U−1

]
(q − σmφ(η)E[r̃])

= U−1Dγ̃ − 1
Φ(η)

U−1q +
σmφ(η)
R0Φ(η)

q. (A36)

From the partitioned matrix inverse formula and after some algebra, we can simplify the H matrix

as

H =

[
1 + µ′fPµf −µ′fP

−Pµf P

]
, (A37)

where P = [Vff − Φ(η)Vff ·r]−1. Using this expression and (39), we can then rewrite (A35) as

γ̃ =

[
1 + µ′fPµf −µ′fP

−Pµf P

][
R0 µ′r

µfR0 V ′
rf + µfµ

′
r

]


(1+a)
R2

0

−V −1
rr µr

R0


 . (A38)

After some algebra, we can express γ̃ = [γ̃0, γ̃
′
1]
′ as

γ̃1 = − 1
R0

PV ′
rfV

−1
rr µr, γ̃0 =

1
R0

− γ̃ ′1µf . (A39)
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As a result, we can write ỹ = (1/R0) + γ̃ ′1(f − µf ) and

Dγ̃ = E[r̃ỹ] =

[
1

µr

R0
+ Vrf γ̃1

]
. (A40)

Then, using (39), we can simplify λ̃ to

λ̃ = U−1

[
1

µr

R0
+ Vrf γ̃1

]
−
[ 1+a

R2
0Φ(η)

− V −1
rr µr

R0Φ(η)

]
+

[
σmφ(η)

R2
0Φ(η)

0K

]
=




1+ã1

R2
0

− 1+a
R2

0Φ(η)
+ σmφ(η)

R0Φ(η)

V −1
rr

(
Vrf γ̃1 + µr

R0

)

 . (A41)

To obtain explicit expressions for γ̃ and λ̃, we first need to solve for η. Defining ε = (f − µf ) −

V ′
rfV

−1
rr (r − µr) as the unspanned components of the factors, we can write

mỹ = γ̃ ′f̃ − λ̃′r̃ = γ̃ ′1ε +
1

Φ(η)

[
1
R0

− µ′rV
−1
rr (r − µr)
R0

]
− σmφ(η)

Φ(η)
. (A42)

Using E[ε] = 0K and Var[ε] = Vff ·r, we have

µm =
1

Φ(η)

[
1
R0

− σmφ(η)
]
, (A43)

σ2
m = γ̃ ′1Vff ·rγ̃1 +

a

R2
0Φ(η)2

. (A44)

Since m+
ỹ prices the risk-free asset correctly, we have

E[m+
ỹ ] = σmg(η)Φ(η) =

1
R0
. (A45)

Then, plugging the expression of σ2
m from (A44) into (A45), we obtain

g(η) =
[
a+ γ̃ ′1Vff ·rγ̃1R

2
0Φ(η)2

]− 1
2 . (A46)

Using the expression for γ̃1 in (A39) and rearranging terms, we can see that η satisfies the following

equation:

g(u) =

(
a+ α′

[
1

Φ(u)
IK − V

− 1
2

ff Vff ·rV
− 1

2
ff

]−2

α

)− 1
2

, (A47)

where α = V −1
ff V

1
2

ff ·rV
′
rfV

−1
rr µr . Since the left hand side is increasing in u from zero to infinity and

the right hand side is decreasing in u and is positive (because all the eigenvalues of V
− 1

2
ff Vff ·rV

− 1
2

ff

are less than or equal to one), (A47) has a unique solution. Using Lemma A.1, it is straightforward

to obtain

E[m+2
ỹ ] = E[mỹm

+
ỹ ] = σ2

mΦ(η) +
µm

R0
, (A48)

E[ỹm+
ỹ ] = Cov[ỹ, mỹ]Φ(η) +

1
R2

0

=
[
γ̃ ′1Vff ·rγ̃1 +

ã1

R2
0Φ(η)

]
Φ(η) +

1
R2

0

. (A49)
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The squared constrained HJ-distance is then given by

δ2+ = E[(ỹ −m+
ỹ )2]

= E[ỹ2]− 2E[ỹm+
ỹ ] + E[m+2

ỹ ]

=
1
R2

0

+ γ̃ ′1Vff γ̃1 − 2
[
γ̃ ′1Vff ·rγ̃1 +

ã1

R2
0Φ(η)

]
Φ(η)− 2

R2
0

+ σ2
mΦ(η) +

µm

R0

= γ̃ ′1Vff γ̃1 − 2γ̃ ′1Vff ·rγ̃1Φ(η)− 1 + 2ã1

R2
0

+
[
γ̃ ′1Vff ·rγ̃1 +

a

R2
0Φ(η)2

]
Φ(η) +

ησm

R0

= γ̃ ′1(Vff − Φ(η)Vff ·r)γ̃1 −
1 + 2ã1

R2
0

+
a

R2
0Φ(η)

+
η

R2
0Φ(η)g(η)

=
a+ η

g(η)

R2
0Φ(η)

− (1 + ã1)
R2

0

, (A50)

where the second last equality is obtained using σm = 1/[R0Φ(η)g(η)] from (A45). Finally, using

this expression of σm and φ(η)/Φ(η) = g(η)− η, we can see that the first element of λ̃ is equal to

−δ2+. This completes the proof.

Proof of Lemma 3: The probability for y to take on negative values is equal to

P [y < 0] = Φ
(
−µy

σy

)
= Φ

(
− 1
R0σy

)
= Φ

(
− 1
R0

√
γ ′1Vffγ1

)
, (A51)

where σy is the standard deviation of the SDF y. In contrast, the probability for ỹ to take on

negative values is equal to

P [ỹ < 0] = Φ
(
−µỹ

σỹ

)
= Φ

(
− 1
R0σỹ

)
= Φ

(
− 1
R0

√
γ̃ ′1Vff γ̃1

)
. (A52)

The inequality holds because

R2
0γ̃

′
1Vff γ̃1 = µ′rV

−1
rr Vrf(Vff − Φ(η)Vff ·r)−1Vff(Vff − Φ(η)Vff ·r)−1V ′

rfV
−1
rr µr

= µ′rV
−1
rr VrfV

1
2

ff

(
IK − Φ(η)V

− 1
2

ff Vff ·rV
− 1

2
ff

)−2

V
1
2

ffV
′
rfV

−1
rr µr

≤ µ′rV
−1
rr VrfV

1
2

ff(IK − V
− 1

2
ff Vff ·rV

− 1
2

ff )−2V
1
2

ffV
′
rfV

−1
rr µr

= µ′rV
−1
rr Vrf(V ′

rfV
−1
rr Vrf)−1Vff(V ′

rfV
−1
rr Vrf)−1V ′

rfV
−1
rr µr

= R2
0γ

′
1Vffγ1. (A53)

For (67), the first inequality, δ2 ≤ δ̃2, is obvious since γ is chosen to minimize δ2 = e′U−1e but

γ̃ is not. For the second inequality, δ̃2 ≤ δ2+, note that for every h ∈ L2 with E[h2] = 1, we have

min
m∈M+

(E[ỹh] − E[mh])2 ≤ δ2+. (A54)
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Consider a portfolio w with unit second moment, i.e., w′Uw = 1. When ỹ is the SDF, the squared

pricing error of the portfolio is (w′ẽ)2, and it is maximized when w is chosen to be

w∗ =
U−1ẽ

(ẽ′U−1ẽ)
1
2

. (A55)

Let h = w∗′r̃. Since h is a linear combination of r̃, E[mh] = w∗′E[mr̃] = w∗′q and the price of h is

the same for every m ∈ M+. It follows that

δ2+ ≥ inf
m∈M+

(E[ỹh]− E[mh])2 = (E[ỹh] −E[mh])2 = (w∗′(E[ỹr̃]− q))2 = (w∗′ẽ)2 = δ̃2. (A56)

This completes the proof.
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Appendix B

In this Appendix, we present a discussion of the numerical methods for obtaining the sample

constrained HJ-distance and its associated parameters. We first show that the primal problem

for solving the sample constrained HJ-distance for a linear SDF can be written as a quadratic

programming problem. The sample constrained HJ-distance for a fixed yt can also be obtained

using quadratic programming but, since the setup is similar to the linear SDF case, we do not

provide a separate discussion of this case.

Let yt = f̃ ′tγ, where f̃t is a k-vector of systematic factors at time t with its first element typically

being equal to one. From (73), the squared constrained HJ-distance of the model is given by

δ̂2+ = min
γ

min
{mt,t=1,...,T}

1
T

T∑

t=1

(f̃ ′tγ −mt)2, (B1)

s.t.
1
T

T∑

t=1

mtxt = q̄,

mt ≥ 0, t = 1, . . . , T.

Let z = [γ ′, m1, m2, . . . , mT ]′ and

A =
1
T

[F̃ , −IT ]′[F̃ , −IT ], (B2)

where F̃ is a T ×k matrix with typical row f̃ ′t . We can then rewrite (B1) as the following quadratic

programming problem:

min
z
z′Az s.t.

1
T

T∑

t=1

mtxt = q̄, mt ≥ 0, t = 1, . . . , T. (B3)

Besides the fact that well developed procedures for quadratic programming are widely available

(e.g., quadprog in Matlab), solving the primal problem has the additional advantage that we do

not need to worry that the λ in the dual problem may not be unique.

Instead of using the quadratic programming method to solve the primal problem, in the case

of linear SDFs we can also solve the dual problem using a fast iterative method. Specifically, the
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first order conditions for the dual problem are given by

1
T

T∑

t=1

f̃t[f̃ ′tγ − (f̃ ′tγ − λ′xt)+] = 0k, (B4)

1
T

T∑

t=1

xt(f̃ ′tγ − λ′xt)+ = q̄. (B5)

More compactly, we can write these first order conditions as

Ĉ−γ + D̂′
+λ = 0k, (B6)

D̂+γ − Û+λ = q̄, (B7)

where

Ĉ− =
1
T

T∑

t=1

f̃tf̃
′
tI{mt≤0}, (B8)

D̂+ =
1
T

T∑

t=1

xtf̃
′
tI{mt>0}, (B9)

Û+ =
1
T

T∑

t=1

xtx
′
tI{mt>0}, (B10)

and mt = f̃ ′tγ − λ′xt. When Û+ is nonsingular (i.e., when
∑T

t=1 I{mt>0} ≥ n), we can solve (B6)

and (B7) conditional on Ĉ−, D̂+, and Û+. This gives us the following closed-form solution for γ̂

and λ̂:

γ̂ = (Ĉ− + D̂′
+Û

−1
+ D̂+)−1D̂′

+Û
−1
+ q̄, (B11)

λ̂ = Û−1
+ [D̂+(Ĉ− + D̂′

+Û
−1
+ D̂+)−1D̂′

+Û
−1
+ q̄ − q̄]. (B12)

Note that (B11) and (B12) only provide γ̂ and λ̂ conditional on a given set of indicator functions

I{mt>0}. To obtain the optimal γ̂ and λ̂, we use the following iterative method. We start off with

the estimates of γ and λ from the unconstrained HJ-distance problem to compute the initial set of

I{mt>0}. Then, we obtain γ̂ and λ̂ using (B11) and (B12). If the mt’s computed based on these

updated γ̂ and λ̂ do not alter I{mt>0}, we have found our optimal solution. If not, we compute

Ĉ−, D̂+, Û+ using the updated I{mt>0} and obtain a new set of γ̂ and λ̂. We repeat this process

until the first order conditions are satisfied. In our experience, this iterative approach is extremely

efficient and typically delivers the final γ̂ and λ̂ with only a few iterations.
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Appendix C

C.1. Assumptions

We first introduce regularity conditions to ensure the stochastic equicontinuity of the sample

constrained HJ-distance and establish the consistency of θ̂. Let |w| = (w′w)
1
2 denote the Euclidean

norm of a vector w and ||A|| =
√

tr(A′A) be the Euclidean norm of a matrix A, where tr(·) is the

trace operator. In addition, denote the indicator function by I{·}.

Assumption A. Assume that

(i) φt(θ) is m-dependent,

(ii) the parameter space Θ is compact,

(iii) φt (θ) is continuous in θ ∈ Θ almost surely,

(iv) |φt (θ1)− φt(θ2)| ≤ At |θ1 − θ2| ∀ θ1, θ2 ∈ Θ, where At is a bounded random variable that

satisfies limT→∞
1
T

∑T
t=1E[|At|2+ω] <∞ for some ω > 0,

(v) sup θ∈ΘE[|φt(θ)|2+ω] <∞ for some ω > 0,

(vi) the population dual problem (79) has a unique solution θ∗ which is in the interior of Θ .

Assumptions A(i)–A(v) ensure the stochastic equicontinuity of φt (θ) (see Andrews, 1994; and

Stock and Wright, 2000) and imply that

sup θ∈Θ

∣∣∣∣∣
1
T

T∑

t=1

φt(θ) −E[φt(θ)]

∣∣∣∣∣
p→ 0. (C1)

The m-dependence can be relaxed although results for empirical processes with more general de-

pendence structure are still limited (see, for instance, Andrews, 1993; and Andrews and Pollard,

1994). Assumption A(vi) is an identification condition that ensures the uniqueness of the pseudo-

true value θ∗. The uniform convergence in (C1) and Assumption A(vi) are sufficient for establishing

the consistency of θ̂:

θ̂
p→ θ∗. (C2)
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Let

H ≡

[
Hγγ H ′

λγ

Hλγ Hλλ

]
= lim

T→∞

1
T

T∑

t=1

∂2E[φt(θ∗)]
∂θ∂θ′

, (C3)

M ≡

[
Mγγ M ′

λγ

Mλγ Mλλ

]
= lim

T→∞
Var

[
1√
T

T∑

t=1

∂φt(θ∗)
∂θ

]
, (C4)

and ht(θ) = ∂φt(θ)/∂θ. The next assumption provides conditions for the existence and uniform

convergence of the limiting matrices in (C3) and (C4).

Assumption B. Let N (θ∗) be a neighborhood of θ∗. Assume that

(i) P [yt(γ) = λ′xt] = 0 almost surely for θ ∈ N (θ∗),

(ii) E[φt(θ)] is twice continuously differentiable in θ for θ ∈ N (θ∗),

(iii) supθ∈N (θ∗)

∥∥∥∂2E[φt(θ)]
∂θ∂θ′

∥∥∥ <∞ and H is of full rank,

(iv) M is a finite positive definite matrix when δ+ > 0, or Mλλ is a finite positive definite matrix

when δ+ = 0.

Assumption B(i) implies that ht(θ) is well defined for θ close to θ∗ and the consistent estimator

θ̂ satisfies the first order conditions

h̄T (θ̂) =
1
T

T∑

t=1

ht(θ̂) = 0n+k (C5)

with probability approaching one as T → ∞. Following Andrews (1994), let

h̄∗T (θ) =
1
T

T∑

t=1

E[ht(θ)] (C6)

and define an empirical process by
√
Tv̄T (θ), where

v̄T (θ) =
1
T

T∑

t=1

vt(θ) ≡
1
T

T∑

t=1

(ht(θ) − E[ht(θ)]). (C7)

Assumption C. Assume that vt(θ) satisfies the conditions

(i) |vt (θ1)− vt (θ2)| ≤ Bt |θ1 − θ2| ∀ θ1, θ2 ∈ Θ, where Bt is a bounded random variable that

satisfies limT→∞
1
T

∑T
t=1E[|Bt|2+ω] <∞ for some ω > 0,
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(ii) sup θ∈ΘE[|vt (θ) |2+ω] <∞ for some ω > 0.

Assumption C imposes sufficient conditions for the stochastic equicontinuity of the empirical

process
√
T v̄T (θ). Together with Assumption B, these conditions ensure that

√
T v̄T (θ) obeys the

central limit theorem.

Below we provide explicit expressions for the partitioned matrices in (C3) and (C4). Using the

fact that

∂φt(θ∗)
∂γ

= 2[yt(γ∗) −mt(θ∗)+]
∂yt(γ∗)
∂γ

, (C8)

∂φt(θ∗)
∂λ

= 2[xtmt(θ∗)+ − qt−1], (C9)

and under Assumptions A, B, and C, we can write

Hγγ = 2E
[(
yt(γ∗) −mt(θ∗)+

) ∂2yt(γ∗)
∂γ∂γ ′

+
∂yt(γ∗)
∂γ

∂yt(γ∗)
∂γ ′

I{mt(θ∗)≤0}

]
≡ 2G+, (C10)

Hλγ = 2E
[
xt
∂yt(γ∗)
∂γ ′

I{mt(θ∗)>0}

]
≡ 2D+, (C11)

Hλλ = −2E
[
xtx

′
tI{mt(θ∗)>0}

]
≡ −2U+, (C12)

and

Mλλ = 4
∞∑

j=−∞
E
[
(xtmt(θ∗)+ − qt−1)(xt+jmt+j(θ∗)+ − qt+j−1)′

]
≡ 4S+. (C13)

If the model is correctly specified, we have λ∗ = 0n and yt(γ∗) = mt(θ∗)+. Then, it follows that

G+ = 0k×k , D+ = D ≡ E
[
xt

∂yt(γ∗)
∂γ′

]
, U+ = U ≡ E [xtx

′
t], and S+ = S ≡

∑∞
j=−∞ E[(xtyt(γ∗) −

qt−1)(xt+jyt+j(γ∗) − qt+j−1)′]. Furthermore, we have ∂φt(θ∗)/∂γ = 0k which yields Mγγ = 0k×k

and Mλγ = 0n×k . This is the reason why Assumption B(iv) requires only Mλλ, and not M, to be

positive definite when δ+ = 0.

The next lemma develops an expansion of the sample constrained HJ-distance that will be used

in the proofs of the subsequent propositions for model specification and model selection tests.

Lemma C.1. Under Assumptions A, B, and C,

δ̂2+ − δ2+ =
1
T

T∑

t=1

(φt(θ∗)− E[φt(θ∗)])−
1
2
v̄T (θ∗)′H−1v̄T (θ∗) + op

(
1
T

)
. (C14)
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Proof. We start by expanding E[φt(θ∗)] = δ2+ about θ̂. Since 1
T

∑T
t=1 ∂φt(θ̂)/∂θ = 0n+k , we obtain

E[φt(θ∗)] =
1
T

T∑

t=1

φt(θ̂) −
1
T

T∑

t=1

(
φt(θ̂) − E[φt(θ̂)]

)
+

1
2
(θ̂ − θ∗)′

∂2E[φt(θ̃)]
∂θ∂θ′

(θ̂ − θ∗), (C15)

where θ̃ is an intermediate point between θ̂ and θ∗. A mean value expansion of h̄∗T (θ∗) about θ̂

yields

0n+k =
√
Th̄∗T (θ∗) =

√
T h̄∗T (θ̂) − ∂h̄∗T (θ̌)

∂θ

√
T (θ̂ − θ∗), (C16)

where θ̌ is another intermediate point on the line segment joining θ̂ and θ∗. From Assumption

B(iii) and the consistency of θ̂, we have

√
T (θ̂ − θ∗) = H−1

√
Th̄∗T (θ̂) + op(1). (C17)

Using the definition of v̄T (θ) in (C7) and the first order condition of 1
T

∑T
t=1 ht(θ̂) = 0n+k , it follows

that
√
T v̄T (θ̂) =

1√
T

T∑

t=1

(
ht(θ̂) −E[ht(θ̂)]

)
= − 1√

T

T∑

t=1

E[ht(θ̂)] = −
√
T h̄∗T (θ̂). (C18)

This allows us to rewrite
√
Th̄∗T (θ̂) as

√
Th̄∗T (θ̂) = −

√
T v̄T (θ̂) =

√
T [v̄T (θ∗) − v̄T (θ̂)] −

√
T v̄T (θ∗). (C19)

By the consistency of θ̂, P [|θ̂ − θ∗| > ω] → 0 for any arbitrarily small ω > 0. Then,

√
T |v̄T (θ∗) − v̄T (θ̂)| ≤ sup

θ∈Θ:|θ−θ∗ |≤ω

√
T |v̄T (θ∗) − v̄T (θ)| . (C20)

From the stochastic equicontinuity of the empirical process
√
T v̄T (·),

sup
θ∈Θ:|θ−θ∗ |≤ω

√
T |v̄T (θ∗) − v̄T (θ)| p→ 0. (C21)

Therefore, we have
√
T [v̄T (θ∗) − v̄T (θ̂)] = op(1) and

√
Th̄∗T (θ̂) = −

√
T v̄T (θ∗) + op(1). (C22)

Finally, substituting (C22) into (C17) yields

√
T (θ̂ − θ∗) = −H−1

√
Tv̄T (θ∗) + op(1). (C23)
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Thus, from (C23), the consistency of θ̂, and Assumption B(iii), we obtain

δ̂2+ − δ2+ =
1
T

T∑

t=1

(
φt(θ̂) − E[φt(θ̂)]

)
− 1

2
(θ̂ − θ∗)′

∂2E[φt(θ̃)]
∂θ∂θ′

(θ̂ − θ∗)

=
1
T

T∑

t=1

(φt(θ∗)− E[φt(θ∗)]) −
1
2
v̄T (θ∗)′H−1v̄T (θ∗) + op

(
1
T

)
. (C24)

This completes the proof.

C.2. Proofs

Proof of Proposition 3: (a) From the definition of H in (C3), we can use the partitioned matrix

inverse formula to obtain

H−1 =

[
2G+ 2D+

′

2D+ −2U+

]−1

=
1
2

[
H̃ H̃D′

+U
−1
+

U−1
+ D+H̃ −U−1

+ + U−1
+ D+H̃D

′
+U

−1
+

]
, (C25)

where H̃ = (G+ + D′
+U

−1
+ D+)−1. Under the null hypothesis H0 : δ+ = 0, (C14) in Lemma C.1

becomes

δ̂2+ = −1
2
v̄T (θ∗)′H−1v̄T (θ∗) + op

(
1
T

)
(C26)

since λ∗ = 0n and φt(γ∗, 0n) = E[φt(γ∗, 0n)] = 0. Let v̄T (θ∗) = [v̄1,T (θ∗)′ , v̄2,T(θ∗)′]′ , where

v̄1,T (θ∗) denotes the first k elements of v̄T (θ∗). Under the null, v̄1,T (θ∗) = 0k, G+ = 0k×k , D+ = D,

and U+ = U .

Then, it follows that

T δ̂2+ = −1
2

√
T v̄T (θ∗)′H−1

√
T v̄T (θ∗) + op(1)

=
1
4

√
T v̄2T (θ∗)′[U−1 − U−1D(D′U−1D)−1D′U−1]

√
T v̄2,T (θ∗) + op(1)

=
1
4

√
T v̄2T (θ∗)′U− 1

2PP ′U− 1
2

√
T v̄2,T (θ∗) + op(1) (C27)

by using the fact that In − U− 1
2D(D′U−1D)−1D′U− 1

2 = PP ′. Also, Assumptions A, B, and C

ensure that the empirical process
√
T v̄2,T (θ∗) obeys the central limit theorem and

√
T v̄2,T (θ∗) A∼ N(0n,Mλλ). (C28)

Thus, using the fact that Mλλ = 4S under the null, we obtain

T δ̂2+
A∼ z′S

1
2U− 1

2PP ′U− 1
2S

1
2 z, (C29)
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where z ∼ N(0n, In). Since S
1
2U− 1

2PP ′U− 1
2S

1
2 has the same nonzero eigenvalues as P ′U− 1

2SU− 1
2P ,

we have

T δ̂2+
A∼

n−k∑

i=1

ξiνi, (C30)

where the ξi’s are the eigenvalues of P ′U− 1
2SU− 1

2P .

(b) Now consider the case δ+ > 0. In this situation, the asymptotic behavior of
√
T (δ̂2+ − δ2+) is

determined by 1√
T

∑T
t=1(φt(θ∗)−E[φt(θ∗)]), which converges weakly to a Gaussian process. Under

Assumptions A, B, and C, and since E[φt(θ∗)] = δ2+, we have

√
T (δ̂2+ − δ2+) =

1√
T

T∑

t=1

(φt(θ∗) −E[φt(θ∗)]) + op(1) A∼ N(0, v). (C31)

This completes the proof.

Proof of Proposition 4: For δ+ > 0 and under Assumptions A, B, and C,

√
T v̄T (θ∗) A∼ N(0n+k,M). (C32)

Then, combining (C23) and (C32), we obtain

√
T (θ̂ − θ∗) A∼ N(0n+k, H

−1MH−1). (C33)

To derive an explicit expression for the asymptotic covariance matrix of θ̂, we write

H−1MH−1 =
∞∑

j=−∞
E[h̃th̃

′
t+j ], (C34)

where

h̃t ≡

[
h̃1t

h̃2t

]
= H−1∂φt(θ∗)

∂θ
. (C35)

Using (C25), (C8), and (C9), we can express h̃1t and h̃2t as

h̃1t = (G+ +D′
+U

−1
+ D+)−1

[
(yt(γ∗) −mt(θ∗)+)

∂yt(γ∗)
∂γ

+D′
+U

−1
+ [xtmt(θ∗)+ − qt−1]

]
,

h̃2t = U−1
+ [D+h̃1t − xtmt(θ∗)+ + qt−1].

This completes the proof.
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Proof of Lemma 4: We only provide the proof for E[qt−1]′λ∗ = −δ2+. The proof for q̄′λ̂ = −δ̂2+ can

be similarly obtained by replacing the expectation operator with 1
T

∑T
t=1. From the dual problem,

the squared constrained HJ-distance is given by

δ2+ = E[yt(γ∗)2 − (mt(θ∗)+)2 − 2λ∗′qt−1]. (C36)

Using the fact that mt(θ∗)+ = (yt(γ∗) − λ∗′xt)+ ∈ M+, we have

E[mt(θ∗)+(λ∗′xt)] = λ∗′E[qt−1] (C37)

and we can write

E[(mt(θ∗)+)2] = E[mt(θ∗)+(yt(γ∗) − λ∗′xt)] = E[mt(θ∗)+yt(γ∗)] − λ∗′E[qt−1]. (C38)

Therefore,

δ2+ = E[yt(γ∗)2]−E[mt(θ∗)+yt(γ∗)]−λ∗′E[qt−1] = E[yt(γ∗)(yt(γ∗)−mt(θ∗)+)]−λ∗′E[qt−1]. (C39)

When yt(γ∗) = γ∗′f̃t, we have the following first order condition:

E[f̃tf̃
′
t ]γ

∗ − E[f̃tmt(θ∗)+] = 0k. (C40)

Premultiplying both sides of (C40) by γ∗′, we obtain

E[yt(γ∗)2] −E[yt(γ∗)mt(θ∗)+] = E[yt(γ∗)(yt(γ∗)−mt(θ∗)+)] = 0. (C41)

Then, it follows that δ2+ = −λ∗′E[qt−1]. This completes the proof.

Example of two strictly non-nested models that are both correctly specified: Let R be the gross

returns on N risky assets and R0 be the gross return on the risk-free asset. Suppose that Rp is the

gross return on the tangency portfolio of the N risky assets. Simple mean-variance mathematics

gives

E[R] = R01N + Cov[R,Rp]γ∗, (C42)

where γ∗ = (µp − R0)/σ2
p, with µp = E[Rp] and σ2

p = Var[Rp]. In addition, assume that R is

multivariate normally distributed. Consider the following SDF

yF(γF) =
1
R0

exp (a0 − γFRp) , (C43)
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where

a0 = −
γ∗2σ2

p

2
+ γ∗µp. (C44)

Using Stein’s lemma as in the proof of Lemma 2, we can easily establish that

E[R0y
F(γ∗)] = 1, E[RyF(γ∗)] = 1N , (C45)

so that yF (γ∗) ∈ M+.

Now consider a factor f = Rp+ε, where ε is a normal mean-zero measurement error independent

of the returns. It follows that µf = E[f ] = µp and σ2
f = Var[f ] > σ2

p. Consider an alternative SDF

yG(γG) =
1
R0

exp (ã0 − γGf) , (C46)

where

ã0 = −
γ∗2σ2

f

2
+ γ∗µp. (C47)

Using Stein’s lemma, we obtain

E[R0y
G(γ∗)] = 1, E[RyG(γ∗)] = 1N , (C48)

and yG(γ∗) is also a correctly specified model. Note that yF (γF) and yG(γG) are two strictly non-

nested models because there are no choices of γF and γG that can make these two SDFs identical.

This example shows that we can have two strictly non-nested positive SDFs that are both correctly

specified.

Proof of Proposition 5: From Lemma C.1 and under the null H0 : δ2F,+ = δ2G,+ = 0, we can use

(C27) to obtain

T (δ̂2F,+ − δ̂2G,+)

=
1
4

[ √
T v̄F2,T (θ∗F)

√
Tv̄G2,T (θ∗G)

]′ [
U− 1

2PFP
′
FU

− 1
2 0n×n

0n×n −U− 1
2PGP

′
GU

− 1
2

][ √
T v̄F2,T (θ∗F )

√
T v̄G2,T (θ∗G)

]
+ op(1). (C49)

From Assumptions A, B, and C, we have
[ √

T v̄F2,T (θ∗F )
√
T v̄G2,T (θ∗G)

]
A∼ N (02n, 4S) . (C50)

Hence,

T (δ̂2F,+ − δ̂2G,+) A∼ z′S
1
2

[
U− 1

2PFP
′
FU

− 1
2 0n×n

0n×n −U− 1
2PGP

′
GU

− 1
2

]
S

1
2 z, (C51)
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where z ∼ N(02n, I2n). Furthermore, the nonzero eigenvalues of

S
1
2

[
U− 1

2PFP
′
FU

− 1
2 0n×n

0n×n −U− 1
2PGP

′
GU

− 1
2

]
S

1
2 (C52)

are the same as the eigenvalues of the matrix
[

P ′
FU

− 1
2 0(n−k1)×n

0(n−k2)×n P ′
GU

− 1
2

]
S

[
U− 1

2PF 0n×(n−k2)

0n×(n−k1) −U− 1
2PG

]
. (C53)

Then, it follows that

T (δ̂2F,+ − δ̂2G,+) A∼
2n−k1−k2∑

i=1

ξiνi, (C54)

where the ξi’s are the eigenvalues of the matrix
[
P ′
FU

− 1
2SFU

− 1
2PF −P ′

FU
− 1

2SFGU
− 1

2PG

P ′
GU

− 1
2SGFU

− 1
2PF −P ′

GU
− 1

2SGU
− 1

2PG

]
. (C55)

This completes the proof.

Proof of Proposition 6: Since yFt (γ∗F) = yGt (γ∗G) under the null, it follows that λ∗F = λ∗G and

mF
t (θ∗F) = mG

t (θ∗G) which implies that φFt (θ∗F) = φGt (θ∗G). Using these identities, we have

∂φFt (θ∗F )
∂λF

= 2[xtm
F
t (θ∗F)+ − qt−1] = 2[xtm

G
t (θ∗G)+ − qt−1] =

∂φGt (θ∗G)
∂λG

, (C56)

and

v̄F2,T (θ∗F ) = v̄G2,T (θ∗G). (C57)

It is convenient to express the null hypothesis H0 : ψG(γ∗G) = 0k2−k1 as a functional dependence

H0 : γ∗G = g(γ∗F), (C58)

where g(·) is a twice continuously differentiable function from ΓF to ΓG (see Gallant, 1987; Vuong,

1989).28 Denote by

G(γF) =
∂g(γF)
∂γ ′F

(C59)

the k2 × k1 matrix of derivatives of g(γF) with respect to γF . Gallant (1987, p. 241) shows that

ΨG(γ∗G)G(γ∗F) = ΨG(g(γ∗F))G(γ∗F) = 0(k2−k1)×k1
. (C60)

28Gallant (1987, Section 3.6) provides a discussion of these two alternative representations of the null hypothesis.
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Define the matrices

S = [ΨG
∗ , 0(k2−k1)×n], Q =

[
G(γ∗F) 0k2×n

0n×k1 In

]
(C61)

and note that SQ = 0(k2−k1)×(n+k1). Then, using (C57) and (C58), it follows that (see Lemma B

in Vuong, 1989)

v̄FT (θ∗F ) = Q′v̄GT (θ∗G) (C62)

and

HF = Q′HGQ. (C63)

By Lemma C.1 and the fact that φFt (θ∗F) = φGt (θ∗G) under the null, we obtain

T (δ̂2F,+ − δ̂2G,+)

= −1
2

√
Tv̄FT (θ∗F)′H−1

F
√
T v̄FT (θ∗F ) +

1
2

√
T v̄GT (θ∗G)′H−1

G
√
T v̄GT (θ∗G) + op(1)

= −1
2

√
Tv̄GT (θ∗G)′Q(Q′HGQ)−1Q′√T v̄GT (θ∗G) +

1
2

√
T v̄GT (θ∗G)′H−1

G
√
Tv̄GT (θ∗G) + op(1)

=
1
2

√
T v̄GT (θ∗G)′H

− 1
2

G [In+k2 −H
1
2
G Q(Q′HGQ)−1Q′H

1
2
G ]H

− 1
2

G
√
T v̄GT (θ∗G) + op(1). (C64)

Using SQ = 0(k2−k1)×(n+k1), it can be shown that (see Gallant, 1987, pp. 241–242)

In+k2 −H
1
2
G Q(Q′HGQ)−1Q′H

1
2
G = H

− 1
2

G S′(SH−1
G S′)−1SH− 1

2
G . (C65)

Substituting (C65) into (C64) yields

T (δ̂2F,+ − δ̂2G,+) =
1
2

√
T v̄GT (θ∗G)′H

− 1
2

G [H
− 1

2
G S′(SH−1

G S′)−1SH− 1
2

G ]H
− 1

2
G

√
T v̄GT (θ∗G) + op(1)

=
1
2

√
T v̄GT (θ∗G)′H−1

G S′(SH−1
G S′)−1SH−1

G
√
T v̄GT (θ∗G) + op(1). (C66)

Furthermore, invoking
√
T v̄GT (θ∗G) A∼ N (0n+k2 ,MG) , (C67)

we have

T (δ̂2F,+ − δ̂2G,+) A∼ 1
2
z′
[
M

1
2
GH

−1
G S′(SH−1

G S′)−1SH−1
G M

1
2
G

]
z, (C68)

where z ∼ N(0n+k2 , In+k2). Since the eigenvalues of the matrix 1
2M

1
2
GH

−1
G S′(SH−1

G S′)−1SH−1
G M

1
2
G

are the same as the eigenvalues of the matrix

1
2
(SH−1

G S′)−1SH−1
G MGH

−1
G S′ =

1
2
(SH−1

G S′)−1SΣ
θ̂G

S′ = (ΨG
∗ H̃GΨG

∗
′)−1ΨG

∗Σγ̂GΨG
∗
′, (C69)
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we conclude that

T (δ̂2F,+ − δ̂2G,+) A∼
k2−k1∑

i=1

ξiνi, (C70)

where the νi’s are independent chi-squared random variables with one degree of freedom and the

ξi’s are the eigenvalues of the matrix in (C69). Since A = ΨG
∗ H̃GΨG

∗
′ and B = ΨG

∗Σγ̂GΨG
∗
′ are

two symmetric positive definite matrices, A− 1
2BA− 1

2 is also symmetric positive definite with pos-

itive eigenvalues. Furthermore, because A−1B and A− 1
2BA− 1

2 share the same eigenvalues, the

eigenvalues of A−1B are also positive. This completes the proof.

Proof of Proposition 7: Define the following matrices

SF =
[
ΨF

∗ , 0(k1−k3)×n

]
, SG =

[
ΨG

∗ , 0(k2−k3)×n

]
. (C71)

Since H ⊂ F and H ⊂ G, we can use the results from the proof of Proposition 6 to obtain

T (δ̂2H,+ − δ̂2F,+) =
1
2

√
T v̄FT (θ∗F )′H−1

F S′
F(SFH

−1
F S′

F)−1SFH
−1
F

√
Tv̄FT (θ∗F) + op(1) (C72)

and

T (δ̂2H,+ − δ̂2G,+) =
1
2

√
T v̄GT (θ∗G)′H−1

G S′
G(SGH

−1
G S′

G)−1SGH
−1
G

√
T v̄GT (θ∗G) + op(1). (C73)

Taking the difference yields

T (δ̂2F,+ − δ̂2G,+) = −1
2

√
T v̄FT (θ∗F )′H−1

F S′
F(SFH

−1
F S′

F)−1SFH
−1
F

√
Tv̄FT (θ∗F)

+
1
2

√
T v̄GT (θ∗G)′H−1

G S′
G(SGH

−1
G S′

G)−1SGH
−1
G

√
T v̄GT (θ∗G) + op(1). (C74)

From Assumptions A, B, and C, the joint empirical process
√
T [v̄FT (θ∗F)′ , v̄GT (θ∗G)′]′ converges to

a Gaussian process: [ √
T v̄FT (θ∗F)

√
T v̄GT (θ∗G)

]
A∼ N (02n+k1+k2 ,M) , (C75)

where

M = lim
T→∞

Var




1√
T

∑T
t=1

∂φF
t (θ∗F)
∂θF

1√
T

∑T
t=1

∂φG
t (θ∗G)

∂θG


 . (C76)

Hence,

T (δ̂2F,+ − δ̂2G,+) (C77)

A∼ z′

[
1
2

M
1
2

(
−H−1

F S′
F(SFH

−1
F S′

F)−1SFH
−1
F 0(n+k1)×(n+k2)

0(n+k2)×(n+k1) H−1
G S′

G(SGH
−1
G S′

G)−1SGH
−1
G

)
M

1
2

]
z,
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where z ∼ N(02n+k1+k2 , I2n+k1+k2). Then, using the fact that AB and BA share the same nonzero

eigenvalues, the matrix in the square brackets in (C77) has the same nonzero eigenvalues as the

matrix

1
2

[
−(SFH

−1
F S′

F )−1 0(k1−k3)×(k2−k3)

0(k2−k3)×(k1−k3) (SGH
−1
G S′

G)−1

]

×

[
SFH

−1
F 0(k1−k3)×(n+k2)

0(k2−k3)×(n+k1) SGH
−1
G

]
M

[
H−1

F S′
F 0(n+k1)×(k2−k3)

0(n+k2)×(k1−k3) H−1
G S′

G

]
. (C78)

Using the fact that SFH
−1
F S′

F = 1
2ΨF

∗ H̃FΨF
∗
′, SGH

−1
G S′

G = 1
2ΨG

∗ H̃GΨG
∗
′, and

Σγ̂FG =

[
H−1

F 0(n+k1)×(n+k2)

0(n+k2)×(n+k1) H−1
G

]
M

[
H−1

F 0(n+k1)×(n+k2)

0(n+k2)×(n+k1) H−1
G

]
(C79)

is the asymptotic covariance matrix of [θ̂′F , θ̂
′
G ]′, the matrix in (C78) can be written as

[
−(ΨF

∗ H̃FΨF
∗
′)−1 0(k1−k3)×(k2−k3)

0(k2−k3)×(k1−k3) (ΨG
∗ H̃GΨG

∗
′)−1

]
ΨFG

∗ Σγ̂FGΨFG
∗

′. (C80)

Therefore,

T (δ̂2F,+ − δ̂2G,+) A∼
k1+k2−2k3∑

i=1

ξiνi, (C81)

where the ξi’s are the eigenvalues of the matrix in (C80). This completes the proof.
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Table 1
Summary of the models
The table presents the sample unconstrained and constrained HJ-distances (δ̂ and δ̂+, respectively) of seven
linear asset pricing models. The models include the conditional consumption CAPM (LL) of Lettau and
Ludvigson (2001), a version of the conditional consumption CAPM (LV) of Lustig and Van Nieuwerburgh
(2004), the conditional CAPM (SV) of Santos and Veronesi (2006), the simple and extended sector investment
models (LVX1 and LVX2, respectively) of Li, Vassalou, and Xing (2006), the durable consumption CAPM
(YOGO) of Yogo (2006), and the three-factor model (FF3) of Fama and French (1993). The models are
estimated using quarterly gross returns on the three-month T-bill and the 25 Fama-French size and book-to-
market ranked portfolios. The data are from 1952:2 to 2000:4 (195 observations). p(δ = 0) is the p-value for
the test of H0 : δ = 0. pn(δ+ = 0) and pa(δ+ = 0) are the p-values for the test of H0 : δ+ = 0 imposing the null
and not imposing the null, respectively. se(δ̂) (se(δ̂+)) is the standard error of δ̂ (δ̂+) under the assumption
that δ > 0 (δ+ > 0). We use the Newey and West (1994) HAC estimator with Bartlett kernel and automatic
lag selection to account for serial correlation in the data. P [ŷ < 0] is the probability for the estimated SDF
to take on negative values during the sample period. σŷ is the standard deviation of the estimated SDF. σφ̂

is the standard deviation of the estimated φ function. ρ2
c is the centered R2 from the linear regression of the

estimated SDF on the returns on the test assets. (δ̂+ − δ̂)/δ̂ is the percentage difference between the sample

constrained and unconstrained HJ-distances. ˆ̃δ is a sample measure of the maximum pricing error on the test
assets for the SDF that minimizes the constrained HJ-distance.

Panel A: Unconstrained Hansen-Jagannathan distance

Model LL LV SV LVX1 LVX2 YOGO FF3

δ̂ 0.643 0.643 0.642 0.580 0.546 0.651 0.582
p(δ = 0) 0.004 0.003 0.000 0.320 0.494 0.000 0.015
se(δ̂) 0.090 0.080 0.089 0.108 0.110 0.087 0.092
P [ŷ < 0] 0.021 0.103 0.010 0.138 0.154 0.000 0.015
σŷ 0.592 0.817 0.335 1.229 1.478 0.273 0.389
σφ̂ 1.667 1.660 1.495 1.862 1.846 1.481 1.365
ρ2

c 0.234 0.112 0.687 0.105 0.088 0.845 0.983

Panel B: Constrained Hansen-Jagannathan distance

Model LL LV SV LVX1 LVX2 YOGO FF3

δ̂+ 0.685 0.700 0.667 0.691 0.684 0.673 0.607
pn(δ+ = 0) 0.000 0.038 0.000 0.000 0.000 0.000 0.000
pa(δ+ = 0) 0.014 0.028 0.007 0.009 0.004 0.005 0.028
se(δ̂+) 0.094 0.089 0.096 0.094 0.099 0.097 0.099
P [ŷ < 0] 0.000 0.000 0.000 0.005 0.010 0.000 0.015
σŷ 0.392 0.294 0.296 0.318 0.350 0.260 0.389
σφ̂ 1.870 1.777 1.702 1.828 1.828 1.696 1.576
ρ2

c 0.239 0.138 0.795 0.129 0.136 0.925 0.983
(δ̂+ − δ̂)/δ̂ 6.4% 8.8% 3.9% 19.2% 25.2% 3.4% 4.2%
ˆ̃
δ 0.651 0.666 0.643 0.646 0.638 0.651 0.582
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Table 2
Model selection tests
The table presents the p-values for a sequential test based on the squared unconstrained and constrained
HJ-distances of seven linear asset pricing models. The models include the conditional consumption CAPM
(LL) of Lettau and Ludvigson (2001), a version of the conditional consumption CAPM (LV) of Lustig
and Van Nieuwerburgh (2004), the conditional CAPM (SV) of Santos and Veronesi (2006), the simple and
extended sector investment models (LVX1 and LVX2, respectively) of Li, Vassalou, and Xing (2006), the
durable consumption CAPM (YOGO) of Yogo (2006), and the three-factor model (FF3) of Fama and French
(1993). The models are estimated using quarterly gross returns on the three-month T-bill and the 25 Fama-
French size and book-to-market ranked portfolios. The data are from 1952:2 to 2000:4 (195 observations).
Panel A presents the p-values for the test of H0 : yF = yG given in Propositions 6 (for nested models)
and 7 (for overlapping models). For those overlapping models where the null hypothesis is rejected at the
5% level, Panel B reports the p-values for the test of H0 : δ2

F = δ2
G = 0 (unconstrained HJ-distance) and

H0 : δ2
F,+ = δ2

G,+ = 0 (constrained HJ-distance) derived in Proposition 5. Finally, for the overlapping models
where the null hypothesis in Panel B is rejected at the 5% level, Panel C presents the p-values for the test
of H0 : δ2

F = δ2
G 6= 0 (unconstrained HJ-distance) and H0 : δ2

F,+ = δ2
G,+ 6= 0 (constrained HJ-distance) based

on the normal test in equation (100). All p-values are computed using the Newey and West (1994) HAC
estimator with Bartlett kernel and automatic lag selection. Bold entries denote statistical significance at the
5% level.

Panel A: Test of H0 : yF = yG

Unconstrained Hansen-Jagannathan distance
LV SV LVX1 LVX2 YOGO FF3

LL 0.981 0.265 0.390 0.644 0.975 0.001

LV 0.282 0.368 0.608 0.884 0.001

SV 0.721 0.978 0.140 0.003

LVX1 0.512 0.393 0.310

LVX2 0.682 0.321

YOGO 0.001

Constrained Hansen-Jagannathan distance
LV SV LVX1 LVX2 YOGO FF3

LL 0.531 0.044 0.984 0.961 0.444 0.000

LV 0.021 0.501 0.535 0.226 0.000

SV 0.035 0.023 0.088 0.003

LVX1 0.389 0.517 0.000

LVX2 0.186 0.001

YOGO 0.001
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Table 2
Model selection tests (continued)

Panel B: Test of H0 : δ2F = δ2G = 0 (H0 : δ2F,+ = δ2G,+ = 0)

Unconstrained Hansen-Jagannathan distance
LV SV LVX1 LVX2 YOGO FF3

LL 0.259

LV 0.466

SV 0.029

LVX1

LVX2

YOGO 0.003

Constrained Hansen-Jagannathan distance
LV SV LVX1 LVX2 YOGO FF3

LL 0.584 0.023

LV 0.052 0.001

SV 0.263 0.263 0.007

LVX1 0.001

LVX2 0.001

YOGO 0.001

Panel C: Test of H0 : δ2F = δ2G 6= 0 (H0 : δ2F,+ = δ2G,+ 6= 0)

Unconstrained Hansen-Jagannathan distance
LV SV LVX1 LVX2 YOGO FF3

LL

LV

SV 0.077

LVX1

LVX2

YOGO 0.042

Constrained Hansen-Jagannathan distance
LV SV LVX1 LVX2 YOGO FF3

LL 0.077

LV 0.033

SV 0.059

LVX1 0.070

LVX2 0.089

YOGO 0.059
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Figure 1
Graphical representation of the constrained Hansen-Jagannathan distance. The figure presents two
SDFs (yF and yG) in an economy with two states (s1 and s2) and one risk-free asset. The dashed
line represents the payoff space of the risk-free asset (P). The dotted line represents the admissible
set of SDFs (M) and the thick solid line represents the set of nonnegative admissible SDFs (M+).
The shortest distance between yF (yG) and M+ is proportional to its constrained HJ-distance,
labeled as δF,+ (δG,+).
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Figure 2
Difference between squared constrained and unconstrained Hansen-Jagannathan distances. The
figure plots the difference between squared constrained and unconstrained HJ-distances (∆) as a
function of the standard deviation of the unspanned component (σz) of the candidate SDF. The
gross risk-free rate is assumed to be 1.005. The dotted line represents the case in which the Sharpe
ratio of the tangency portfolio (

√
a) is 0.25. The solid line is for

√
a = 0.5, and the dashed line is

for
√
a = 0.75.
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Figure 3
Difference in the probabilities of taking on negative values for two linear SDFs. The figure plots
P [y < 0]−P [ỹ < 0] as a function of ρ2 in a 1-factor setting, where y and ỹ are the linear SDFs chosen
to minimize the unconstrained and constrained HJ-distances, respectively. ρ2 is the proportion of
variability of the factor that is explained by the returns. The dotted line represents the case in
which the Sharpe ratio of the tangency portfolio (

√
a) is 0.25. The solid line is for

√
a = 0.5, and

the dashed line is for
√
a = 0.75. In each case, we assume that the squared Sharpe ratio of the

factor mimicking portfolio (a1) is half of the value of a.
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Figure 4
Difference in the aggregate measures of pricing errors of two linear SDFs. The figure plots δ̃2−δ2 as
a function of ρ2 in a one-factor setting, where δ2 and δ̃2 are the aggregate measures of pricing errors
of the test assets when the linear SDF is chosen to minimize the unconstrained and constrained
HJ-distances, respectively. ρ2 is the proportion of variability of the factor that is explained by the
returns. The dotted line represents the case in which the Sharpe ratio of the tangency portfolio
(
√
a) is 0.25. The solid line is for

√
a = 0.5, and the dashed line is for

√
a = 0.75. In each case, we

assume that the squared Sharpe ratio of the factor mimicking portfolio (a1) is half of the value of
a. The gross risk-free rate is assumed to be 1.005.
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Figure 5
Probability for the sample constrained Hansen-Jagannathan distance to take on the value of infinity.
The figure plots P [δ̂+ = ∞] as a function of the length of the time series (T ). The payoffs of the
test assets consist of a constant risk-free rate and the excess returns on N risky assets. The excess
returns are assumed to be i.i.d. multivariate normally distributed. The four graphs in the figure
present P [δ̂+ = ∞] for N = 5, 10, 25, 100. Within each graph, the dotted line represents the case
in which the Sharpe ratio of the tangency portfolio of the risky assets (

√
a) is 0.25. The solid line

is for
√
a = 0.5, and the dashed line is for

√
a = 0.75. The probabilities are computed based on

10,000 simulated series.

81




