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the case for a model-specific optimal rule can break down when uncertainty exists about which of several 
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1. Introduction 

 

This paper contributes to the policy evaluation literature by developing new 

strategies to study alternative policy rules.  We are interested in assessing the case that 

can be made for optimal rules as opposed to simple rules for policy.  Our specific focus is 

on monetary policy rules.  In our context, an optimal rule represents the solution to an 

intertemporal optimization problem in which a loss function for the policymaker and an 

explicit model of the macroeconomy are specified.  We define a simple rule as a 

summary of the intuitions policymakers and economists have about how a central bank 

should react to aggregate disturbances.   

Simple monetary policy rules have evolved since Friedman’s classic (1948) 

presentation of the k% money growth rule.  Modern versions of simple monetary policy 

rules typically embody a notion of “leaning against the wind”.2  A central bank plays an 

active role in stabilizing macroeconomic aggregates when it works to offset adverse 

shocks.  The canonical modern example of a simple policy heuristic is Taylor’s rule 

(1993), in which the Federal funds rate rises in response to output relative to trend and by 

more than one-for-one with the inflation rate.  Taylor’s rule is motivated by the notion 

that a central bank should attempt to reverse aggregate demand shocks, whereas 

aggregate supply shocks should be allowed to operate unhindered in the economy. 

The distinction between optimal and simple rules has taken on particular 

significance in recent debates over the desirability of inflation targeting, as exemplified in 

the competing views expressed in Svensson (2003) and McCallum and Nelson (2005).  

The latter paper takes particular interest in the claim made by Svensson that targeting 

rules are preferred to instrument rules because the former embodies the restrictions 

intertemporal optimality places on the solution to the optimal policy problem.3  As a 

                                                 
2Tobin (1983) distinguishes between fixed and reactive rules. Recent work on monetary 
policy evaluation focuses on the latter. 
3Some arguments that appear in the literature strike us as self-evidently weak, for 
example, the claim that an instrument rule is inferior to a targeting rule because the latter 
uses the entire information set the policymaker has at hand.  It is obvious that any 
information available for a targeting rule may be exploited by an instrument rule.  
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theoretical matter, McCallum has shown that in principle an instrument rule may 

arbitrarily well approximate a targeting rule, so long as the rules are conditioned on the 

same information set.  Nonetheless, Svensson’s claim has force when targeting rules are 

compared to some classes of simple rules (e.g., Taylor rules) in which we are interested.4   

This paper questions the case for optimal rules at two levels.  First, we consider 

the role model uncertainty plays in vitiating the superiority of optimal to simple rules.  As 

argued by McCallum and Nelson (2005)5, the optimality of a rule with respect to a given 

economic environment begs the question of its evaluation when the true model of the 

economy is not known.   Our paper evaluates this issue by comparing model-specific 

optimal rules with simple alternatives.  Second, we compare simple and optimal rules 

from the perspective of frequency-specific effects on uncertainty.  Conventional policy 

assessments assume that the preferences of the policymaker are summarized by the 

variances of the aggregates under study.  As we discuss below, such preferences ignore 

the disparate short-, medium- and long-run affects of policy.  Since Brock and Durlauf 

(2004, 2005) and Brock, Durlauf, and Rondina (2007) show that the choice of a policy 

rule yields a frequency by frequency variance tradeoff, we argue that these tradeoffs 

should be reported to a policymaker, to account for different preferences with respect to 

fluctuations at different cycles.  We believe that such comparisons contain useful 

information for policymakers.    

Our analysis is in the spirit of Friedman (1948) who explicitly grounds his 

arguments for tying monetary policy to a fixed money growth rule on information 

limitations facing a central bank.  Friedman concludes his analysis with 

 

…I should like to emphasize the modest aim of the proposal. It does not claim to provide 
full employment…It does not claim to eliminate entirely cyclical fluctuations in output 
and employment.  Its claim to serious consideration is that it provides a stable framework 
of fiscal and monetary action, that it largely eliminates the uncertainty…of discretionary 
actions by government authorities…It is not perhaps a proposal that one would consider 
at all optimum if our knowledge of the fundamental causes of cyclical fluctuations were 

                                                 
4Notice that the comparison of targeting rules to simple instrument rules renders moot the 
claim that targeting rules are more transparent than instrument rules. 
5See McCallum (1988, 1999) for early discussions of model uncertainty and monetary 
policy that broadly study many of the questions we wish to consider. 
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considerably greater than I think them to be; it is a proposal that involves minimum 
reliance on uncertain and untested knowledge.  (pg. 263) 
 

Model uncertainty has, due to the pioneering work of Hansen and Sargent ((2003) 

and especially (2007)) on robustness, become a major feature of current research.6  In this 

paper we follow an approach developed in Levin and Williams (2003) and Brock, 

Durlauf, and West (2003, 2006) to evaluate policies in the presence of model uncertainty.  

The idea of this approach is to first construct a model space that includes all candidate 

models for the economy, evaluate policies for each of the candidate models, and then 

determine how to draw policy influences given the fact that the true model is unknown.  

This approach differs from the usual robustness analysis in that we do not focus on model 

misspecification which is measured local to a given baseline model.  Rather, our 

approach acknowledges the global character of model uncertainty.  

Given a model space, it is necessary to determine how to aggregate information 

on rule performance across the different models.  In this paper, we consider non-Bayesian 

approaches that are based on minimax and minimax regret criteria.  These approaches 

involve guarding against “worst case scenarios”, but do so in different ways that we 

formalize below. Relative to the Bayesian approach described below, neither minimax 

nor minimax regret requires the policymaker to take a stance on model space priors in 

order to compute posterior model probabilities. 

Our analysis does not address the question of the design of optimal rules in the 

presence of model uncertainty.  We regard this as an important, but distinct question from 

understanding the sensitivity of rules to model uncertainty.  We believe our exercise is 

useful because it provides insights into how to evaluate the performance of rules in the 

presence of model uncertainty that cannot be explicitly described in advance.  There are 

fundamental conceptual questions involved in thinking about policy effects when one 

cannot specify the support of the uncertainty faced by a policymaker.  Nevertheless, we 

believe insights into this difficult problem are found from understanding how rules 

perform within a model space when, by construction, the rules fail to account for model 

uncertainty.  Our approach to non-Bayesian decision theory follows Hansen and Sargent 

                                                 
6Examples that focus on monetary policy include Giannoni (2002), Onatski and Stock 
(2002) and Tetlow and von zur Muehlen (2001). 
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(who focus on minimax evaluation).  Since we operate within somewhat different model 

spaces, it requires additional justification for our approach.   

In terms of substantive conclusions, we find that for some standard univariate 

macroeconomic models there exist significant limitations to model-specific optimal rules.  

When model uncertainty is restricted to the case where the target variable (inflation in our 

example) is either entirely forward-looking or backwards-looking, minimax and minimax 

regret often choose rules that do not feedback on the lagged instrument variable (i.e., the 

output gap) when the policymaker aims to minimize the total unconditional variance of 

the target.   In contrast, the optimal rule for the forward looking model is favored when 

attention is restricted to the higher frequencies, even when the true model is uncertain.  

When we consider a hybrid model space, in which the relative weights of the backwards- 

and forward-looking components are unknown, the comparison of a model-specific 

optimal rule (based on the model where each component has equal weight) and a rule of 

thumb reveals that the model-specific rule is preferred when one focuses on overall 

variance and higher frequencies, whereas the rule of thumb is preferred for lower 

frequencies.  Taken as a whole, these results indicate how the case for a model-specific 

optimal rule can breakdown when one relaxes the assumption that the true model is 

known as well as the assumption that the appropriate loss function is known.   

 Section 2 describes our basic framework for assessing model uncertainty.  Section 

3 discusses the evaluation of frequency-specific effects of policies.  Section 4 applies our 

general ideas to policy evaluation when there is uncertainty about the respective 

importance of backwards- and forward-looking elements to the inflation process. Section 

5 provides summary and discussion of future research directions. A Technical Appendix 

which provides derivations is available from the authors upon request. 

 

 

2. Model uncertainty: basic ideas 

 

 At an abstract level, the issue of model uncertainty is easily described.  Suppose 

that a policymaker faces a choice among a set P of candidate policies.  Given , which Θ
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captures whatever features of the economy matter to the policymaker, a policymaker 

experiences a loss associated with those features 

 

 ( ).l Θ  (1) 

 

The features defined by Θ  are not, for interesting cases, a deterministic function of a 

policy and so are in general described by a conditional probability 

 

 ( ), ,p d mµ Θ  (2) 

 

where we explicitly allow the state of the economy to depend on the policy choice, p , 

the available data, d, and the model of the economy that is assumed to apply, m.  Data 

dependence in this conditional probability may incorporate both direct dependence, as 

occurs in an autoregression, where forecasts depend on past realizations, or uncertainty 

about parameters.   For simplicity, we measure losses as positive, so a policymaker 

wishes to minimize (1) by choosing a policy to affect (2).  Our goal in the analysis is to 

relax the assumption that the policymaker knows the correct model of the economy, m.  

Rather, we assume that the policymaker knows that the correct model lies in a model 

space M.  This space reflects uncertainty about the appropriate theoretical and functional 

form commitments needed to allow quantitative analysis of the effects of a policy.   

 In this paper we focus on non-Bayesian decision criteria with respect to model 

uncertainty.7 In order to understand why we take this route, recall that the standard 

Bayesian solution to the optimal policy problem solves 

 

 ( )( ) ( )( ) ( )min , , min , ,p P p P
m M

E l p d M E l p d m m dµ∈ ∈
∈

Θ = Θ∑  (3) 

 

                                                 
7Hansen and Sargent (2007) provide an extensive discussion on non-Bayesian approaches 
to macroeconomic analyses of the type we explore.  Their analysis develops a 
comprehensive theory of robust decisionmaking.  See also Brock, Durlauf and West 
(2003), whose formulation of model uncertainty and rule comparison we follow here. 
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where (m dµ )  denotes the posterior probability that model m is the correct one.8,9 

Recalling that  

 

 ( ) ( ) ( )d m m d mµ µ µ∝  (4) 

 

the Bayesian approach thus requires explicit assignment of model priors.   The 

assignment of these priors is problematic since a researcher rarely possesses any 

meaningful prior knowledge from which priors may be constructed.  The default prior in 

the model uncertainty literature assigns equal probabilities to all elements of the model 

space; but as discussed in Brock, Durlauf, and West (2003) such an approach is hard to 

justify.  Hence, a first limitation of Bayesian approaches to model uncertainty is the 

requirement of introducing priors that have little meaning.  There has been work on 

evaluating the robustness of Bayesian inferences to prior choice in the statistics literature 

as well as efforts in the econometrics literature to develop alternatives to the diffuse 

priors that are used in the model uncertainty literature, but neither of these approaches is 

well understood for the context we study.  We should note that the problem of defining 

priors continues to be a barrier to the adoption of Bayesian methods.10  

Second, beyond the difficulty of specifying priors, we feel that there are other 

good reasons, for at least some exercises, to avoid weighting models by posterior 

weights.  These have to do with the interpretation of the likelihood component in (4), i.e. 

(m dµ ) . In our judgment, the utility of models is context dependent.  A model which fits 

the overall data well, i.e. receives a high value of ( )m dµ , may perform relatively poorly 

when employed to consider regime changes when compared to another model whose 

overall fit is poorer.  It is easy to see how this could be the case when the model which 

fits historical data less well is relatively immune to the Lucas critique.   

                                                 
8We do not address the issue of how to interpret these probabilities when none of the 
models is true. This is a deep and unresolved problem; see Key, Perrichi and Smith 
(1998) for some efforts to address. 
9The Bayesian solution to model uncertainty involves model averaging, an idea suggested 
in Leamer (1978) and developed in detail in Raftery, Madigan, and Hoeting (1997).    
10Freedman (1991) has rejected the Bayesian approach for this reason. 
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Third, it is important to recognize that the model spaces studied in 

contemporaneous macroeconomics have not arisen sui generis; they reflect a history of 

theoretical and data work and as such, their relative fits reflect the interaction of macro 

modeling and empirical work.  Nonetheless, we study a class of macro models that 

evolved to achieve better fit because of data mining.  More generally, one should not 

reify a model space as representing the unique set of candidate models that were available 

to a researcher prior to data analysis. Instead, it should be recognized that the 

econometric versions of macro models that are under consideration (at a moment in time) 

have been influenced by the path of empirical work.  

Finally, there are reasons to believe that individual preferences may treat model 

uncertainty differently from other types of uncertainty. These arguments are often based 

on experimental evidence of the type associated with the Ellsberg paradox, in which 

individuals appear to evaluate model uncertainty differently from other types. Put 

differently, experimental evidence suggests that preferences exhibit ambiguity aversion 

as well as risk aversion, when model uncertainty is considered.  For our purposes, what 

matters is that the evidence of ambiguity aversion suggests a tendency to guard against 

the worst case scenario with respect to models; this idea is developed in Hansen and 

Sargent (2007) and Brock, Durlauf and West (2003).   

Non-Bayesian decision criteria attempt to avoid dependence of inferences on 

model probabilities guarding against especially bad outcomes.  At an intuitive level, these 

approaches abandon the search for optimal rules (in the Bayesian decision theory sense) 

in favor of good rules, where good is equated with the notion that the rule works 

relatively well regardless of which model is true.  The best known approach is the 

minimax criterion, proposed by Wald (1950), under which a policy is chosen to minimize 

the expected loss under the least favorable model (relative to that rule) in the model set.  

The minimax policy choice is, for our formulation 

 

 ( )( )min max , ,p P m M E l p d m∈ ∈ Θ . (5) 

 

The minimax approach has been pioneered by Hansen and Sargent for macroeconomic 

contexts and forms the basis of the literature on robustness analysis.  From the 
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perspective of the economic theory literature, versions of minimax have been justified by 

Gilboa and Schmeidler (1989) and Epstein and Wang (1994).     

A standard criticism of the minimax criterion is that it is inappropriately 

conservative because it assumes the worst case possible in assessing policies.  The force 

of this criticism, in our view, depends on whether the policy choice is driven by a 

relatively implausible model.  This of course leads back to the question of model 

probabilities, the reasons for eschewing we have already given.  Nevertheless, the 

extreme conservatism of minimax leads us to consider an alternative criterion: minimax 

regret. 

Minimax regret was originally proposed by Savage (1951) to avoid the pessimism 

of minimax by moving away from the idea that the worst outcome should be the 

benchmark comparison.  Rather, the focus in minimax regret is on the relative loss 

associated with choosing a policy in absence of knowledge of the correct model.  For a 

given policy p and model m, the regret ( ), ,R p d m  associated with the policy choice is 

defined as  

 

 ( ) ( )( ) ( )( ), , , , min , ,p PR p d m E l p d m E l p d m∈= Θ − Θ . (6) 

 

Regret therefore measure the loss incurred by a policy given a model relative to what 

would have incurred under the optimal policy for that model.  The minimax regret policy 

is correspondingly defined by 

 

 ( )min max , ,p P m M R p d m∈ ∈ . (7) 

 

Seminal work by Manski (2005) has generated a great deal of attention in the 

microeconometrics literature for minimax regret.11  As far as we know, minimax regret 

                                                 
11Chamberlain (2001) is an important precursor in suggesting minimax regret. See Brock 
(2006) and Manski (2006a,b) for applications. 
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has not been used to study macroeconomic questions in general, let alone with respect to 

questions associated with policy evaluation.12  

The minimax regret criterion’s appeal for policy comparison may be seen in the 

following example. Suppose that there are two policies and two possible models.  For  

policy 1, there is a loss under model 1 of 22 and a loss under model 2 of 21.  For policy 2, 

the losses under models 1 and 2 are 23 and 3 respectively.  Under the minimax criterion, 

policy 1 is chosen since the maximum loss under it is 22 versus a maximum loss of 23 

under policy 2.  Under minimax regret policy 2 is chosen, since the maximum regret for 

policy 1 is 18 whereas for policy 2 it is 1.  The reason why minimax regret chooses a 

different model than minimax is that under model 1, both policies lead to similar losses, 

whereas under model 2, the losses are quite different.    

This example illustrates a key source of the appeal of minimax regret, namely, the 

criterion “normalizes” policy comparisons to account for the fact that certain realizations 

of the unknown state of nature (in our case, the correct model) are associated with 

relatively high losses regardless of the policy choice.  In the language of classical 

decision theory, minimax regret has the virtue that it subtracts off for the loss associated 

with each candidate action the inevitable loss associated with a particular model, i.e. the 

loss under the model-specific optimal rule.   

 One objection to the minimax regret criterion is that decisionmaking under it is 

not required to obey the axiom of independence of irrelevant alternatives (IIA), 

something first shown in Chernoff (1954).  It is not clear that this axiom is appropriate 

for policy decisions, as opposed to individual ones. Without focusing on the 

individual/policymaker distinction, we can see reasons why the axiom may not be 

natural.  The axiom in essence states that one’s preferences over different pairs of actions 

does not depend on the context in which they are made, where the total choice set is part 

of the context.  This is not an obvious requirement of rationality.13  In absence of the 

                                                 
12After writing this paper, we discovered Eozenou, Rivas and Schlag (2006) who provide 
a brief application of minimax regret to a question in economic growth to illustrate 
methods the authors have developed and as such is a macroeconomic example.  
13Blume, Easley, and Halperin (2006) argue, for example, that an appropriate 
axiomatization of rationality should not require that agents have preferences which obey 
certain consistency conditions over all possible states of the world, as is required by 
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axiom, there do exist coherent axiom systems that produce minimax regret as the 

standard for evaluation; Stoye (2006) is the state of the art treatment.  We note that in 

Stoye’s system, for example, minimax regret obeys a weakened version of IIA called 

independence of nonoptimal alternatives, which means that the introduction or removal 

of a possible choice that is never the optimal one for any state of nature, will not matter in 

comparing the other choices.   

 We do not predicate our interest in minimax regret as a method of comparing 

policies on a strong adherence to any particular argument against the IIA assumption.  

We report minimax comparisons in addition to minimax regret comparisons to see where 

the criteria differ in practice.  As will be apparent, minimax regret and minimax produced 

qualitatively similar results.  We do not interpret this as indicating that one of the criteria 

is redundant, rather we feel it reinforces our general conclusions.  

  

 

3.  Frequency-specific effects of policies 

 

 In this section we consider rule performance with respect to fluctuations at 

different frequencies.  Standard analyses of the effects of policies focus on weighted 

averages of the unconditional variances of the states and possibly the controls.  Hence, it 

is common to compare policies by considering, for example, a weighted average of the 

unconditional variances of inflation and unemployment.  Such calculations thus mask the 

effects of policies on the variance of fluctuations at different frequencies. 

 Brock and Durlauf (2004, 2005) and Brock, Durlauf, and Rondina (2007) argue 

that fundamental tradeoffs in the variance associated with different frequencies of state 

variables can arise for macroeconomic contexts of the type conventionally studied.  We 

describe these tradeoffs for a one dimensional system 

 

 t  (8) 
                                                                                                                                                

( ) ( ) ( )1 ,t t t t tx E x A L x B L u W Lβ ε+= + + +

 
Savage, but rather that rationality requires certain consistency conditions only over states 
under consideration.  While they do not explicitly pursue this approach as a critique of 
irrelevance of independent alternatives, their work can be used to justify its exclusion as a 
rationality requirement.   
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with feedback rule 

 

 ( ) 1.t tu L xπ −=  (9) 

Let 
 

( )C
xf ω denote the spectral density of the state when control rule  is applied.  Let C

NC
tx   the system when 0tudenote ≡ , i.e. there is no control; ( )NC

xf ω  is the associated 

tral density matrix.spec 14  Each choice of control can be understood as producing a 

sensitivity function ( )S ω  such that 

 

 ( ) ( ) ( )2C N
x xf S f Cω ω ω= . (10) 

ifferent choices of the feedback rule thus shape the spectral density of the state 

set of feasible 

 

D

variables relative to the no control baseline.  Hence, one can characterize what feedback 

rules can achieve in terms of frequency-by-frequency effects on the state by 

characterizing the set of sensitivity functions that are available to the policymaker.  This 

is the key notion underlying the study of design limits for policy choice.15

 It turns out that there is a simple way to characterize the 

sensitivity functions in univariate systems.  For each specification of a model of the 

uncontrolled system M and a control C, it must be the case that the associated sensitivity 

function obeys 

 

 ( )( ) ( )2log ,S d M C
π

π
ω ω κ

−
=∫ . (11) 

                                                

 

 
14When the uncontrolled system contains explosive or unit roots in the AR component, 
then the spectral density will not exist.  Our results on restrictions on the sensitivity 
function still hold in this case.   
15Brock and Durlauf (2004, 2005) give initial treatments of these issues. Brock, Durlauf, 
and Rondina (2007) provides a detailed theory. 
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As discussed in Brock, Durlauf, and Rondina (2007)16, if the system has no forward-

looking elements, i.e. 0β ≡ , then the constraint  depends only on the unstable 

autoregressive roots of the unconstrained system.  The constraint equals 0 if there are no 

such roots, and is positive otherwise. The constraint is thus independent of the choice of 

control.  Since 

( ,M Cκ )

( )( ω 2log S )  cannot be less than 0 for all frequencies, it must be the case 

that ( ) 2
S ω  cannot be less than 1 for all frequencies.  Therefore, it is impossible to 

induce uniform reductions in the spectral density of the state variable relative to its value 

when there is no control, i.e. reductions at some frequencies require increases at others. 

Of course, the overall variance may be reduced.  

 The results are more complicated for forward-looking systems.  When 

, it is possible for a rule to reduce the variance of the state at all frequencies, 

although whether this is possible will depend on the values of the polynomials in (8). 

Brock, Durlauf and Rondina (2007) show that a variance-minimizing rule may increase 

variance at some frequencies, even when a uniform reduction at all frequencies is 

possible. 

0,1)β ∈ (

 Should a central bank evaluate rules on the basis of frequency specific effects?  

One reason why a central bank should do so concerns problems of measuring low 

frequency components of state variables, which is discussed in Onatski and Williams 

(2003).17  Low frequency behavior is of course hard to identify.  Such measurement 

problems take on particular importance if it is believed that long-run movements in the 

data are those outside the control of the central bank.  For these reasons, it may be 

reasonable for a policymaker to compare the behavior of rules over integrals of “trimmed 

spectral densities,” i.e. integrating spectral densities over [ ] [ ], ,π ς ς π− − ∪  instead of 

[ ],π π− .18    

                                                 
16The results in Brock, Durlauf and Rondina (2007) for backwards-looking systems 
modulo details, may be found in the control theory literature; the results on forward-
looking systems are new.   
17Brock, Durlauf, Nason, and Rondina (2007) pursue this issue with respect to the effects 
on policy evaluation of alternative detrending methods. 
18The issue concerns integrating spectral densities to compute losses, not to detrend data. 
In which case, the argument does not justify use of ad hoc filters. 
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 A second argument for considering frequency-specific effects is based on 

nonseparable preferences. Under nonseparable preferences, a policymaker assigns 

different weights to different frequencies to calculate expected welfare.  Otrok (2001) has 

a useful example where the weights on different frequencies can differ by more than 9:1.  

According to Otrok, if preferences exhibit habit persistence the loss associated with 

volatility at high frequencies is greater than the loss associated with volatility at low 

frequencies.   

  Otrok’s results suggest that the study of frequency-specific losses may be 

important in understanding the role of preference uncertainty in evaluating policy rules.  

We can imagine two levels where such uncertainty exists.  First, an analyst may not be 

certain about the preferences of a policymaker; hence he will want to report frequency-

specific effects so that his findings may be used by policymakers with different 

preferences.  Second, a policymaker who is uncertain about public preferences over, say, 

inflation and the output gap, may wish to account for this uncertainty in evaluating 

policy, i.e. to account for lack of knowledge of whether or not these preferences are 

separable.  In this case, a policymaker will want to understand how losses occur for a 

policy at different frequencies.   

 The upshot of this discussion is that we believe part of the communication 

exercise for policymakers should involve reporting frequency specific comparisons. 

 

 

4. Model uncertainty and monetary policy evaluation: some illustrations 

 

In this section, we consider two analyses of rule of thumb versus optimal policies 

where model uncertainty is present.  We follow Levin and Williams (2003) in placing 

primary focus on model uncertainty with respect to backwards- and forward-looking 

expectations in Keynesian models.  In the context of the Phillips curve, the 2005 special 

issue, “The econometrics of the New Keynesian price equation”, in the Journal of 

Monetary Economics reveals little consensus on this issue.  For example, the Rudd and 

Whelan paper is especially clear about how disagreements over inflation dynamics create 

uncertainty for new Keynesian model building.  The difference between backwards- and 

 13



forward-looking models represents the modern instantiation of disagreements over the 

nature of the Phillips curve that helped launch the rational expectations revolution.  

In our analysis, we consider a univariate system where inflation rate tπ  is 

controlled by the output gap .  Model-specific optimal rules will be constructed on the 

basis of assuming a particular law of motion for the inflation rate and the intertemporal 

loss function 

ty

 

 0
0

1
2

t
t

t

E δ π
∞

=

⎡ ⎤
⎢ ⎥⎣ ⎦
∑ . (12) 

 

This corresponds to an “inflation nutter” in that volatility in the control variable is not 

considered.  In subsequent work we consider richer loss functions, notably ones where 

the volatility of the control also matters, but this one is useful in illustrating our main 

ideas. 

 

a. theory uncertainty: backwards- versus forward- looking models 

 

We first consider the evaluation of policies when model uncertainty is represented 

by alternative forward-looking and backwards-looking theories of inflation. Our model 

space thus contains two candidates. The first is a backwards-looking model 

  

 1 1t t B t t ta b yπ π ε− −= + + ; ε ∼WN. (13) 

 

The optimal feedback rule for this model  is shown in the Technical AppendixBO 19 to be 

 

 .t
B

ay
b tπ= −  (14) 

 

                                                 
19 The optimal policy calculations performed in this section and Section 4.c are similar to 
those found in Clarida, Gali, and Gertler (1999), especially for forward-looking models.  
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This is the same as the optimal feedback rule that minimizes the unconditional variance 

of the state. Notice that when the disturbance is not white noise the optimal rule will 

contain lagged state variables. 

Our alternative forward-looking model is 

  

 1 1t t t F t t tE b yπ β π ε ε+ −= + + ∼; WN. (15) 

 

The optimal feedback rule ( ) is shown in the Technical Appendix to be FO

 

 1t t
F

y
b tyβ βπ

δ δ −= − + . (16) 

 
Eq. (16) reflects the substantial smoothing typical of timeless perspective optimal rules in 

forward looking models.  An explicit expression for  in terms of current and past ty tπ  

can be derived if β δ< .  

 In addition to  and  we consider two additional rules.  The first is a rule of 

thumb (

FO BO

RoT ) 

 

 ty f tπ= −  (17) 

 

where, in addition to the negative sign, our choice of the coefficient f  is such that the 

policy instrument is reacting to innovations in the inflation series more than one for 

one.20 Second, we consider a restricted optimal rule ( FRO ) for the forward-looking 

model, by which we mean rules restricted to the form ty f tπ=  in which the parameter f 
                                                 
20In this sense there is an analogy with the celebrated “Taylor principle” for monetary 
policy rules. The Taylor principle is defined in contexts where the policy rule is a 
nominal interest rate rule and the interest rate responds more than one for one to inflation. 
This ensures that when inflation increases the real interest rate increases because of the 
policy reaction. Thus, our focus on a single-equation model for inflation where the output 
gap is the policy instrument makes the analogy with the Taylor principle a loose one. The 
key property for our rule of thumb is that the instrument “leans against the wind” and that 
this reaction is relatively strong. 
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is chosen to minimize (12), which follows a candidate rule initially suggested in Levin 

and Williams (2003).  The restricted optimal rule is shown in Brock, Durlauf and 

Rondina (2007) to take on a value of the coefficient f  so that 

 

 
( )2 2

2

1 1 8 4

8t
F

y
b

β β
tπβ

− + −
= . (18) 

 

 We now consider how these different rules perform given uncertainty about 

whether the true model is backwards-looking or forward-looking.  We focus on the 

parameterizations 0.9, 0.9aβ
δ
= =  , and .1B Fb b= = (so that 1B

F

b
b

= ) for the state 

equation and employ the normalization 2 1εσ = .21    

We study a rule of thumb motivated by uncertainty about the backwards- versus 

forward-looking specifications (13) and (15) rather than uncertainty about the parameters 

 and  within the models. This suggests the employment of a rule of thumb (Bb Fb RoT ) 

that is normalized with respect to the slope parameter  where b ( )1 Bb b Fbµ µ= − + , for 

[ ]0,1µ∈ .  We choose 1.25
ty

b tπ
−

= ;22 the magnitude of the feedback parameter ensures 

that the reaction of the control to the state is relatively strong.  

                                                 
21Our choices of  and  are motivated by Woodford’s (2003) preferred estimates for 
the slope of the New-Keynesian Phillips Curve of 0.096 and the Rudebusch and Svensson 
(1999) preferred estimate of the slope in the backwards-looking Phillips Curve of .14.  
Although there is uncertainty surrounding the value of slope of alternative Phillips curve 
specifications (for example, Gali and Gertler (1999) suggest an estimate for the 
backwards-looking PC slope of 0.081 while they propose a range for the NKPC in 0.015 
and 0.037), we believe that fixing the slope in each Phillips Curve equation at .1 is 
appropriate in order to allow us to focus on the uncertainty with respect to the presence of 
the backwards-looking versus forward-looking elements of the state dynamics. 

Fb Bb

22Given that we consider the case .1B Fb b= =  the choice of µ  is irrelevant for the results 
reported. Experiments with different choices of  and  (and in turn of Bb Fb µ ) did not 
yield qualitatively different results with respect to the main messages we wish to 
communicate from our exercises.  
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 Tables 1–4 present results for the optimal backwards-looking rule , equation 

(14), the optimal forward-looking rule FO , equation (16), the restricted optimal rule F

BO

RO , 

equation (18), and the rule of thumb, RoT . The spectral densities induced by these rules 

are presented in Figures 1 and 2.  The various loss calculations are predicated on the loss 

function (12) and either on the backwards-looking model (13) or the forward-looking 

model (15).   Policymaker losses are reported for the backwards- and forward-looking 

models across the four policy rules in Tables 1 and 2.  Tables 3 and 4 include minimax 

and minimax regret calculations.  Besides the total variance of tπ , Tables 1 4 contain the 

variance of tπ computed on several frequency intervals.  The intervals are 

-

0, ,π⎡ ⎤
⎢ ⎥  

4⎢ ⎥⎣ ⎦
,π π⎡ ⎤

⎢ ⎥ , 
4 2⎢ ⎥⎣ ⎦

3,
2 4
π π⎡ ⎤

⎢ ⎥
⎢ ⎥⎣ ⎦

, and 3 ,
4
π π⎡ ⎤

⎢ ⎥⎣ ⎦
, along with the c ulated intervals um ,

4
π π⎡ ⎤
⎢ ⎥⎣ ⎦

 and ,
2
π π⎡ ⎤

s reveal how frequency-specific preferences matter for policy evaluation.  For 

example, 

⎢ ⎥⎣ ⎦
.  These 

interval

0,
4
π⎡ ⎤

⎢ ⎥⎣ ⎦
 gives the loss when a policymaker only cares about lower frequency 

fluctuations, while 3 ,
4
π π⎡ ⎤

⎢ ⎥⎣ ⎦
 represents loss when a policymaker only cares about higher 

frequency fluctuations, and ,
4
π π⎡ ⎤
⎢ ⎥⎣ ⎦

 and ,
2
π π⎡ ⎤
⎢ ⎥⎣ ⎦

 indic ss foate lo r all but the lower 

frequency fluctuations.  These approximate the frequency intervals considered by Otrok 

(2001).  Note that frequencies 0, 
4
π , 

2
π , 3

4
 and π π  correspond to ∞ , 8, 4, 2.67, and 2 

 Consider first the performance of different rules when the backwards-looking 

periods per cycle, respectively.  

 

model (13) is true.  Table 1 shows, not surprisingly, that  dominates the , BO FO FRO , 

and RoT policy rules.  However, the FRO  and RoT policy rules yield total variances 

close to , which has a total variance equal to the normalized variance of the shock .  

In contrast,  performs poorly generating a total variance nearly four times larger. 

BO tε

FO

 The frequency intervals contain information that explains the poor performance of 

the  rule for the backwards-looking model (13).   Across the frequency intervals FO
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0, ,
4

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

π  ,
4 2
π π⎡ ⎤

⎢ ⎥
⎢ ⎥⎣ ⎦

, 3,
2 4
π π⎡ ⎤

⎢ ⎥
⎢ ⎥⎣ ⎦

, and 3 ,
4
π π⎡ ⎤

⎢ ⎥⎣ ⎦
, this rule produces variances of 0.15, 3.15, 0.28, 

F

tπ appears in Figure 1, which plots spectral densities of tπ  across the four policy rules for 

the backwards-looking model (13).  Note that the BO , F

and 0.14, which appear in the second line of Table 1.  Thus, the  rule creates large 

fluctuations in in the middle to low frequencies.  This spike in the spectrum of 

O

tπ

RO , and RoT rules generate 

rly flat spectra that reflect the ability of these rules to annihilate fluctuations in 

tπ across all frequencies. Since the FO  rule cannot eliminate movem  in tπ  at the 

business cycle frequencies (i.e., the middle to low frequencies), which maybe the ones 

 policymaker cares about most, it appears costly for the policymaker’s staff to rely on 

the forward-looking model (15) when the underlying model is not.    

 The reduced form of t

nea

ents

the

π  explains the behavior of FO  in the backwards-looking 

model.  Under this policy rule, tπ  is an ARMA(2,1) process with associated MA ( )∞  of 

e formth  

  

 
2

1

1 B

F

L

a L a L
b

β

t tb
δπ ε

β β β
⎝ ⎠=

⎛ ⎞
. (19) 

δ δ δ

⎛ ⎞−⎜ ⎟

−⎜ ⎟
⎝ ⎠

The roots of the polynomial in the denominator of (19) are 

− + +

 

 
2

B Bb ba a 4

2

F F

a
b b

a

β β β β

 

β
δ δ δ δ δ

β
δ

−⎜ ⎟
⎝ ⎠ . (20) 

The discriminant 

⎛ ⎞ ⎛ ⎞
+ − ± + −⎜ ⎟

⎝ ⎠

 
2

4B

F

ba a
b

β β β
δ δ δ

⎛ ⎞
+ − −⎜ ⎟

⎝ ⎠
 is negative given our calibrations, which 

yields complex conjugate roots for the polynomial in the denominator of the MA process 
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(19). In this case, the spectral density of the state produces a peak at business cycle 

frequencies.   

 In contrast, FRO  policy produces a more parsimonious AR(1) process with 

associated MA representation 

 

 
( )2 2

2

1

1
1 1 8 4

8

t t

B

F

ba L
b

π ε=

−

. (21) 
β β

β

⎛ ⎞− + −⎜ ⎟+⎜ ⎟
⎜ ⎟
⎝ ⎠

No spurious cycles are induced in this case because the policymaker is able to wipe out 

the first-order serial correlation in  at almost all frequencies.  Figure 1 provides 

vidence that much the same holds for the  and 

 

 tπ

e BO FRO  policy rules, conditional on the 

 p rules

uency interval 

loss function (12) and the backwards-looking model (13). 

When one considers the frequency-specific effects of policies, some interesting 

differences emerge in the comparisons.  The olicy  are evaluated differently across 

the frequency intervals, except for the mid- to low freq ,
4 2
π π⎡ ⎤
⎢ ⎥⎣ ⎦

example, the FO  rule performs better than BO  at the low frequencies, 

.  For 

0,
4
π⎡ ⎤

⎢ ⎥ , high 
⎣ ⎦

frequencies, 3π ,
4

π⎡ ⎤
⎢ ⎥⎣ ⎦

, and the high to mid-frequency interval ,
2
π π⎡ ⎤
⎢ ⎥⎣ ⎦

.  Since time 

ren t supp

the  policy rule in the backwards-looking model (13) depends on the loss function 

ance of the 

separable prefe ces place less weight on the  frequencies, it shows tha ort for 

(12).  Although this result is not controversial, the superior perform  policy 

rule in the backwards-looking model (13) at specific frequency intervals suggests that the 

choice of the ‘best’ policy relies on knowledge of the policymaker’s preferences. 

Table 2 and Figure 2 record results when the forward-looking model (15) is true.  

The FO  rule dominates the BO , F

low

BO

FO

RO , and RoT  policies for total variance as well as 

across the frequency intervals on which we have focused.   Note that the BO , FRO , and 
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RoT  p

o ver,

low m

u

olicies generate losses three to eight times larger than produced by the FO  policy 

rule at the high frequencies.  H we  the superiority of FO  is not as clear cut as it is for 

BO  when the true model is the backwards-looking model (13). At the  iddle 

encies, the losses under the BO , F

to 

freq RO , and RoT  policies are close to those 

produced by the FO  rule when the forward-looking model (15) is correct.  Thus, model 

ertainty creates an asymmetry in the conduct of policy evaluation.   

We present minimax and m m gret ca tions in Tables 3 and 4 to 

evaluate the stren  of the case for the model-specific optimal rules.  The tables reveal 

that the preferred rule depends on the criterion used to evaluate policy

unc

maker loss.  For 

total va

ini ax re lcula

gth

riance, Table 3 show that BO  is favored under minimax, but minimax regret 

chooses the FRO  rule according to Table 4.23  This shows that when a rule performs 

poorly it affects policy comparisons.  Given that a policymaker strives to mitigate the 

impact of the worst outcomes, we argue that minimax regret is preferred for policy 

evaluation.  Unlike minimax, minimax regret is designed to account for these efforts by 

the policymaker.   

Frequency-specific comparisons produce different conclusions.  Tables 3 and 4 

show that minimax never selects BO , while minimax regret chooses FO  most often 

across the frequency intervals.  Un minimax, the der RoT  policy domi t the low to 

middle

nates a

.  At the middle to high frequencies, minimax favors either the FO  or FRO  rules.  

The FO  rule is not chosen by mi ax regret only at the middle to low frequency 

interval, where the

nim

RoT policy performs best, and at high to low frequency interval, 

where the F

the 

RO  policy dominates.  Although Tables 3 and 4 indicate at th F  rule 

gener s the largest total variance either for minimax or for minimax regret, this rule 

 th e O

ate

                                                 
23We note that the minimax regret choice of FRO  for overall variance is the one case 
where independence of irrelevant alternatives is violated: if   is removed from the 
policy rule set, then minimax regret chooses .  The reason for this is that when 

FO

BO  
FO  is 

removed, another rule becomes the best choice among the candidate rule for the forward-
looking case and so alters the regret calculations. Our comparisons all fulfill the 
independence of nonoptimal alternatives criterion described above.  
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performs best at the higher frequencies under these criteria.  Moreover, minimax regret 

often settles the FO  rule across most of the frequency intervals.  Thus, total v iance 

can mask frequency-specific policy trade-offs. 

This section shows that policy evaluation is sensitive to model and loss function 

uncertainty.   The m max and minimax regret exercises reveal that frequency-specific 

fluctuations matter most for the latter type of

 on ar

 uncertainty.  Given the backwards- and 

forward

This section studies a hybrid model that has backwards- and forward-looking 

ld equations (13) and (15) into a continuum of potential hybrid models 

y varying the weights on the backwards- and forward-looking components.  The result is 

 

ini

-looking models of equations (13) and (15), the policymaker chooses the FO  rule 

most often when he places more weight on high frequency fluctuations under minimax or 

minimax regret.  For total variance, the minimax and minimax regret are split on which 

policy rule to follow.  This suggests that the benefits of optimal rules are conditional on 

the loss function imposed on the policymaker. 

 

 

b. hybrid models 

 

elements.   We me

b

 ( ) ( )1 1 11t t t t t t tE a b yπ θ β π θ π θ ε ε+ − −= − + + + ∼;     WN (22) 

 

where [ ]0,1θ ∈  and  ( ) ( )1B Fb bθ θ θ= + − b .  Under the objective function (12) it can be 

hown that the fully optimal policy for this model under the objectiv

 

s e function is 

 

( ) ( )
( )

( )( )
( )( )

*y
α θ 1

1t t

B L
b L

θ
θ π

θ γ θ
−

−
=    (23) 

here 

 

( ) ( ) ( ) ( )
( )

1 1
, ,

1
a a

B
a

θ β θ δ θ θ β
α θ θ

δ θ β θ δ
− + −

= − =
− +

and ( ) ( )1 .βγ θ θ
δ

= −   Notice w

that as 0θ →  this policy converges to the policy that is optimal under the purely 
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forward-looking model.  Given this rule, a rational expectations equilibrium exists and is 

unique when 

 

 ( ) 21
1

θ β δ− +
>  (24) 

βδ

which we assume.  The process for the state variable under the optimal policy is 

 

 

 
( ) ( )2 1 1
1t tLδ βπ θ ε⎛ ⎞= − −⎜ ⎟θ β δ δ− +

. (25) 

uppose now that the benchmark model is one with 

⎝ ⎠

 

ˆθ θ= . We are interested in S

evaluating how this policy performs across the model space [ ]0,1θ ∈  compared to a 

eneric rule of thumb g t ty fπ= .  

 The respective laws of motion for the state variable under the rule of thumb and 

the model-specific optimal policies are 

 

 ( ) ( )1 1 11t t t t t tE a b fπ θ β π θ π θ π ε+ − −= − + + +  (26) 

 

and 

  

( ) ( ) ( )*
1 1 1

ˆ1t t t t tE a b y tπ θ β π θ π θ θ ε+ − −= − + + + . (27) 

 

respectively.  For the rule of thumb, the solution for the state is an AR(1) process 

 

 ( ) ( ) ( )( )1 2, 1 1 ,f
1 1

t t
f L

π ε=  (28) 

where 

λ θ β θ λ θ− −
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( )
( ) ( )( )

( )( )
1 1 4 11

, 2i

a fb

f a fb

θ β θ θ

λ θ θ θ

± − − +
=

+
 . (29) 

xistence and uniqueness require that 

  

 

 

E

( ) ( )1 2, 1, ,f fλ θ λ θ> <1 . (30) 

n we study.  

 

These conditions hold for the calibratio

 The model-specific optimal rule induces a law of motion for the state of the form 

 

( ) ( )( ) ( ) ( ) ( )( )1 1 2
ˆ ˆ ˆ1 1 , , 1t t t t t

ˆ
tL E H K Lπ θ β γ θ π θ θ π θ θ π γ θ ε+ − −= − − + + + − . (31) 

 our generic hybrid model, where 

 

 

( ) ( ) ( )
( )
( )

ˆ
ˆ ˆ,

ˆ
H a b

b

α θ
θ θ γ θ θ θ

θ
≡ + +  and in

( ) ( ) ( )
( ) ( )
( )

ˆ ˆ
ˆ ˆ,

ˆ
B

K a b
b

α θ θ
θ θ θ γ θ θ

θ
= − − .  These two terms are the equilibrium coefficients 

n and are critical in understandin

model uncertainty affects the evaluation of a model-specific optimal rule.  If the 

policymaker works with the correct m

shown to vanish, i.e. 

on past inflation resulting from the implementatio g how 

odel, the backwards-looking terms in (31) can be 

( ) ( ), 0  and  , 0H Kθ θ θ θ= = . When the assumed model is not 

correct the, the functions ( ) ( )ˆ ˆ,   and  ,H Kθ θ θ θ  are generally different from zero.  The 

intuition for this is that optimal policy exploits the presence of forward-looking agents in 

them to internalize the a

the model.  A commitme odifies the expectations of agents by forcing 

nticipated dynamics of

nt to the rule (23) m

 tπ  as m

rect model, this elimi

odified by the policy rule.  When 

the rule is based on the cor nates the direct role of lags in tπ  so that 

changes in expectations exclusively drive the tπ  dynamics.  When the policy rule is 
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optimized based on a misspecified model, tπ  depends on its own lags, which affects its 

time series properties.   

 The moving average representation of the state variable, ( )t tG Lπ ε= can be 

shown to follow 

 

( )

 

 
( )( ) ( )( )

( ) ( ) ( )( ) ( ) )( )(
0

ˆ1 1

ˆ,

L G L
G L

L

γ θ θ β

θ θ

− − −
=  (32) 

hen the policymaker employs a misspecified model.  This representation is neither 

unique nor bounded unless restrictions are imposed in the roots of the autoregressive 

olynomial.  This polynomial can be rewritten as  

 

2 3ˆ ˆ1 1 1 ,L H L Kθ β θ βγ θ θ θ− − + − + +

 

w

p

 ( ) ( )( ) ( )( ) ( )( )1 2 31 1 , 1 , 1 ,ˆ ˆ ˆL L Lθ β λ θ θ λ θ θ λ θ θ− − − − . (33) 

 
A sufficient condition for a unique and bounded solution is 

 

( ) ( ) ( )1 2 3
ˆ ˆ, 1, , 1, ,λ θ θ λ θ θ λ θ θ> < ˆ 1<  (34) 
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which we assume.   The solution is again an ARMA(2,1) 

 

( )( )
( )( )( ) ( )( ) ( )( )1 2 3

ˆ1

ˆ ˆ, 1 1 , 1 ,
t t

L

L L

γ θ

ˆ
π

λ θ θ θ β λ θ θ λ θ θ

−
=

− − −
ε . (35)  

                                                 
24The presence of  on the right hand side of (32) is the source of potential non-

in th

0G
uniqueness, while the possibility of a root at the denominator polynomial bigger than one 

 absolute value is e source of potential unboundedness. Following Whiteman (1983), 
the term 0G  is chosen so that the unstable autoregressive root ( )1

ˆ, 1λ θ θ >  is cancelled 

with a root of the polynomial at the numerator in (32). Once the cancellation is 
performed, the unique bounded solution is an ARMA (2,1) as reported in the text. 
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under the misspecified model.  Since the autoregressive roots ( )2
ˆ,λ θ θ  and ( )3

ˆ,λ θ θ  are 

zero under the correct model ( ˆθ θ= ), (35) reveals how conditioning an optimal policy on 

e wrong model will generate fluctuations in th tπ . 

 We conduct several numerical exercises to gauge the im model uncertainty 

the previous exercise, which sets 0.9, 0.99, 0.9a

pact of 

on the policymaker’s loss when the economic model is eq. (22) . The calibration follows 

β δ= = =  , and .1b b= = .  The 

optimal rule is constructed on the basis of the benchm

B F

ark model, where 0.5θ = , which 

yields the optimal rule ( )
( )
1 0.22

0.90
1 0.45t t

L
y

L
π

−
= −

−
.  We continue to engage the rule of 

thumb 1
1.25

t ty
b

π −= − . Note that the rational expectations equilibrium exists, is unique 

and bounded in all the exercises discussed below.   

 Table 5 presents losses over the model space [ ]0,1θ ∈  for the optimal benchmark 

B) and the rurule (O le of thumb ( RoT ).  The Table describes average, minimum, 

frequency intervals.  Average loss is taken across th

maximum, maximum regret losse he rules for total variance and across the 

e model space under the assumption 

at

s for t

th  θ  is uniformly distributed on the interval [ ]0,1 .   

Table 5 reveals how the compa ns between the model-specific optimal rule and 

rule of thumb depend on which frequencies are considered.  Starting with average loss, 

the OB rule dominates the 

  

riso

RoT rule at the mi ,
2
π π⎡ ⎤d- to high frequencies, i.e. ⎢ ⎥⎣ ⎦

.  This 

translates into the OB rule generating lower total variance.  However, RoT  is selected 

over OB on the intervals 0, , ,
4 4 2
π π π⎡ ⎤

⎢ ⎥ ⎢ ⎥
⎡ ⎤

⎣ ⎦ ⎣ ⎦
 and 3,

2 4
π π⎡ ⎤
⎢ ⎥⎣ ⎦

.   The average loss comparisons 

Thus, we find that the ranking of rules is sensitive to the frequency i als used to 

are mirrored in all cases by the minimax and minimax regret comparisons of the rules.  

nterv

evaluate policy, which is consistent with results reported in the previous section. 
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 Figure 3 transform ts the total and frequency interval variances of π  under the OB 

RoT  rules found in Table 5 into plots that move pointwise th odel space, rough the mand 

[ ]0,1θ ∈ .  The dashed lines denote variance generated by the OB rule, while the RoT  

variances are solid lines in Figure 3.  Figure 3-a shows that the OB rule always yields 

smaller total variance pointwise across the model space.  As Table 5 and the associated 

panels in Figure 3 suggest, the same is true on the 3 ,
4
π π⎡ ⎤

⎢ ⎥⎣ ⎦
, ,

2
π

π⎡ ⎤
⎢ ⎥⎣ ⎦

, and ,
4
π

π⎡ ⎤
⎢ ⎥⎣ ⎦

 

y intervals.  Also consistent with Table 5 is that on the low to mid-frequency 

intervals the 

frequenc

RoT  almost always generates a smaller variances across the model space.  

Nonetheless, the OB rule comes close to the RoT  for [ ]0,.4θ ∈  on the 0,
4
π⎡ ⎤  and ⎢ ⎥⎣ ⎦

,
4 2
π π⎡ ⎤  frequency intervals and on the ⎢ ⎥⎣ ⎦

3,
2 4
π π⎡ ⎤
⎢ ⎥⎣ ⎦

 frequency interval at [ ].9,1θ ∈ .  

Contrast this with results reported in Table 1 and Figure 1 that the RoT  dominates the 

optimal forward-looking rule, FO , when 1θ = . The source of the disparate results is that 

the optim ark rule  is constructed under the assumpal benchm OB tion that 0.5θ = .  This 

assump true mo

unlike the exercises reported in Table 1 and Figure 1 that do not combine the competing 

atter

tion minimizes deviations from the del and hence model uncertainty, 

models. 

 Model uncertainty continues to m  once policy is evaluated across the entire 

spectrum for a fixed θ .  Figure 4 displays spectral densities for tπ  that are produced by 

the OB rule and the RoT  at 0.5θ = , 0.25, and 0.75.  Although 0.5θ =  minimizes 

variance for the OB rule, the top panel of Figure 4 reveals that the RoT produces less 

pow  spectral density of ter in the π  on the frequency interval 3,
4 4
π π⎡ ⎤
⎢ ⎥⎣ ⎦

.  At 0.25θ =  and 

0.75, spectral densities of tπ  are qualitatively similar across the B rule and the  O RoT .  

In this case, the sup ity of OB rule is derived from its ability to reduce 

fluctuations in t

 

erior  the 

π  at the high frequencies.  This indicates that outcomes under the OB rule 

and the RoT  are sensitive to the equency intervals on which les ar red.   fr  these ru e compa
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Thus, policy evaluation becomes more difficult once it is recognized that model and 

preference uncertainty can interact. 

 We conclude this section by noting that there is evidence for the policymaker to 

choose the OB e over the  rul RoT .  However, this result rests on certainty about the 

policymaker’s loss function (i.e., total variance).  Our exercises acknowledge model 

uncertainty along the lines of backwards- versus forward-looking elements, but this 

e the

In this paper, we have attempted to illustrate how the case for optimal policy rules 

ance of the rules in the presence of model 

ific effects. These two dimensions interact 

al rules to go awry seems especially great for 

particular frequency-specific intervals.  This

uncertainty plays a secondary role because of the simplicity of our economic model.  

Nonetheless, our results indicat  need for policy evaluation to account for preference 

uncertainty with the same effort that is dedicated to model uncertainty. 

 

  

5. Summary and conclusions 

  

is weakened when one considers the perform

uncertainty and with respect to frequency-spec

as we observe that the potential for optim

 suggests to us that great caution should be 

taken in seriously advocating a policy that is optimal with respect to an environment, 

using the standard variance-based loss function.  While we are not so nihilistic as to 

believe such knowledge is impossible, we believe that it is often the case that 

contemporaneous scholarly discussions of macroeconomic policy pay too little attention 

to Friedman’s 1948 arguments.  Indeed, our analysis is more interventionist than his in 

that our simple rules are versions of leaning against the wind policies, which Friedman 

specifically questions because of the problem of long and variable lags in policy effects. 

We do not think it unfair to say that modern time series analysis has led to a more 

optimistic view of the information available to policymakers than assumed by 
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Friedman.25  Hence, we are comfortable with recommendations that are more 

interventionist than his.26

A major weakness in our analysis is that we focus on comparisons of permanent 

rule choices.  In other words, we ask whether a policymaker should permanently prefer 

one rule or the other, without allowing for the possibility that the policymaker will learn 

about the nature of model uncertainty over time.  While this is the standard procedure in 

most of the monetary rules literature, the analysis fails to address how a rule should be 

chosen when the policymaker has the option of changing it in response to new 

information that affects the model space under consideration.  One solution is suggested 

by Svensson and Williams (2005) who treat different models as regimes across which the 

economy switches; in their analysis the model uncertainty facing a policymaker is 

equivalent to uncertainty about the regime in which the economy is currently in as the 

conditional probabilities of future regimes given the current regime state.  This is a 

promising research direction and admits progress using Markov jump process methods, 

but it treats model uncertainty in a very different way than we conceptualize it.  In our 

view, model uncertainty represents something that may be resolved over time, not 

something that exists in a steady state.  Hence the next step in the approach we take 

seems likely to draw from ideas from the theory of bandit problems rather than from the 

theory of Markov jump processes.  Further, both approaches to model uncertainty cannot 

address the issue of policy evaluation when new elements emerge in the model space 

over time.  This problem begins to link monetary policy evaluation with issues that lie at 

the frontiers of the work on decisionmaking under ambiguity, where even the most 

advanced treatment typically assumes that while the probabilities are not available for the 

object of interest, its support is known.   

Finally, we observe that our frequency-specific results suggest that a systematic 

examination of preference uncertainty is an important complement to the analysis of 

model uncertainty.  Our findings that rules that are optimal with respect to overall 

variance mask frequency tradeoffs, even when there is no model uncertainty, suggests a 

                                                 
25In fact, Friedman (1972) acknowledges some progress of this type, although worry 
about politicization preserves his skepticism of countercyclical monetary policy.  
26As such, we are sympathetic to the common sense spirit of Blinder (1998) though in our 
parlance a rule can react to the state of the economy. 
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new dimension along which to consider the question of robustness.  Brock, Durlauf and 

Rondina (2007) show, for example, that in forward looking systems, one can design 

feedback rules that induce frequency by frequency variance reductions.  The 

consideration of this type of property as a distinct form of robustness seems a promising 

direction.   

Therefore, we see this paper as only a first step in a long research program. 
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Table 1 
 

Losses for Backwards Model Under Four Alternative Policies 
 
 Total 

Variance 

Low 

Freq. 
[ ]40, π  

Middle-

Low 
[ ]4 2,π π  

Middle-

High 
[ ]3
2 4,π π  

High 
[ ]3
4 ,π π  

High to 

Mid 
[ ]2 ,π π  

High to 

Low 
[ ]4 ,π π  

 (1) (2) (3) (4) (5) (6) (7) 

BO  1.00 0.25 0.25 0.25 0.25 0.50 0.75 

FO  3.71 0.15 3.15 0.28 0.14 0.41 3.57 

FRO  1.05 0.38 0.28 0.21 0.18 0.39 0.67 

RoT  1.14 0.14 0.18 0.30 0.52 0.81 1.00 

 
Table 1 reports the loss measured by the unconditional variance of  for the backwards-looking model of 
equation (13) under four alternative policy rules:  (Optimal Backwards) – the optimal rule of the 
backwards-looking model (equation (14));  (Optimal Forward) – the optimal rule of the forward-
looking model (equation (16);  (Restricted Optimal) – the optimal rule of the forward-looking model 
in the class of simple first-order feedback rules (equation (20)); theRoT (Rule of Thumb) of the form 

tπ

BO

FO

FRO

1.25
ty b

π= − t . Column (1) reports the loss across the entire frequency range, columns (2)-(7) report the 

loss generated at relevant frequency intervals. The loss generated at the interval [ ],L Hω ω ω∈  is 

( )2
H

L

f d
ω

π
ω

ω ω∫  where ( ) ( )
21

2
if G e ω

π ω
π

−=  and π  ( ε  white noise, ). ( )t tG L ε= t
2 1εσ =
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Table 2 
 

Loss for Forward Model Under Four Alternative Policies 
 
 Total 

Variance 

Low 

Freq. 
[ ]40, π  

Middle-

Low 
[ ]4 2,π π  

Middle-

High 
[ ]3
2 4,π π  

High 
[ ]3
4 ,π π  

High to 

Mid 
[ ]2 ,π π  

High to 

Low 
[ ]4 ,π π  

 (1) (2) (3) (4) (5) (6) (7) 

BO  0.65 0.04 0.06 0.13 0.42 0.55 0.61 

FO  0.17 0.00 0.03 0.06 0.08 0.14 0.17 

FRO  0.63 0.06 0.08 0.15 0.35 0.50 0.58 

RoT  0.81 0.03 0.04 0.10 0.64 0.74 0.78 
Table 2 reports the loss measured by the unconditional variance of  for forward-looking model of 
equation (15) under four alternative policy rules:  (Optimal Backwards) – the optimal rule of the 
backwards-looking model (equation (14));  (Optimal Forward) – the optimal rule of the forward-
looking model (equation (16));  (Restricted Optimal) – the optimal rule of the forward-looking model 
in the class of simple first-order feedback rules (equation (18)); theRoT (Rule of Thumb) of the 

form

tπ

BO

FO

FRO

1.25
ty b

π= − t . Column (1) reports the loss across the entire frequency range, columns (2)-(7) report 

the loss generated at relevant frequency intervals. The loss generated at the interval [ ],L Hω ω ω∈  is 

( )2
H

L

f d
ω

π
ω

ω ω∫  where ( ) ( )
21

2
if G e ω

π ω
π

−=  and π  ( ε  white noise, ).  ( )t tG L ε= t
2 1εσ =
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Table 3 
 

Minimax Calculations 
 

  Total 

Varian

ce 

Low 

Freq. 
[ ]40, π  

Middle-

Low 
[ ]4 2,π π  

Middle-

High 
[ ]3
2 4,π π  

High 
[ ]3
4 ,π π  

High to 

Middle 

[ ]2 ,π π  

High to 

Low 

[ ]4 ,π π  

  (1) (2) (3) (4) (5) (6) (7) 

BO  1.00 0.25 0.25 0.25 0.42 0.55 0.75 

FO  3.71 0.15 3.15 0.28 0.14 0.41 3.57 

FRO  1.05 0.38 0.28 0.21 0.35 0.50 0.67 

 

 

Maximum 

RoT  1.14 0.14 0.18 0.30 0.64 0.81 1.00 
Minimax  BO  RoT  RoT  FRO   FO  FO  FRO  

 
Table 3 reports the maximum losses across the backwards- and forward-model models from the entries 
reported in Table 1 and in Table 2 for the four alternative policy rules , ,  and RoT . Column 
(1) reports the maximum loss across the entire frequency range, columns (2)-(7) report the maximum loss 
generated at relevant frequency intervals. The entries in bold indicate the minima of the maximum losses in 
each of the columns. The bottom row of Table 3 reports the minimax policy strategies, i.e. the rules that 
would ensure at most the minimum of the maximum losses. 

BO FO FRO
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Table 4 
 

Minimax Regret Calculations 
 

  Total 

Variance 

Low 

Freq. 
[ ]40, π  

Middle-

Low 
[ ]4 2,π π  

Middle-

High 
[ ]3
2 4,π π  

High 
[ ]3
4 ,π π  

High to 

Middle 

[ ]2 ,π π  

High to 

Low 

[ ]4 ,π π  

  (1) (2) (3) (4) (5) (6) (7) 

Backward 
BO  0.00 0.11 0.07 0.04 0.11 0.11 0.08 

FO  2.71 0.00 2.97 0.07 0.00 0.03 2.90 

FRO  0.05 0.23 0.10 0.00 0.04 0.00 0.00 

 
 
 

Regret 

RoT  0.14 0.00 0.00 0.09 0.38 0.43 0.33 
Forward 

BO  0.48 0.04 0.03 0.07 0.34 0.41 0.44 

FO  0.00 0.00 0.00 0.00 0.00 0.00 0.00 

FRO  0.46 0.05 0.05 0.09 0.27 0.36 0.41 

 
 
 

Regret 

RoT  0.64 0.03 0.02 0.04 0.55 0.59 0.61 

 
BO  0.48 0.11 0.07 0.07 0.34 0.41 0.44 

FO  2.71 0.00 2.97 0.07 0.00 0.03 2.90 

FRO  0.46 0.23 0.10 0.09 0.27 0.36 0.41 

 
 

Max 
Regret 

RoT  0.64 0.03 0.02 0.09 0.55 0.59 0.61 
Minimax 
Regret 

 FRO  FO  RoT  FO  FO  FO  FRO  

Table 4 reports losses for the regret defined by equation (6) using the backwards- and forward-looking 
models under four alternative policy rules:  (Optimal Backwards) – the optimal rule of the backwards-
looking model (equation (14));  (Optimal Forward) – the optimal rule of the forward-looking model 
(equation (16);  (Restricted Optimal) – the optimal rule of the forward-looking model in the class of 

simple first-order feedback rules (equation (18)); theRoT (Rule of Thumb) of the form

BO

FO

FRO

1.25
t ty

b
π= − . 

The regrets are computed from the entries in Table 1 and Table 2. Column (1) reports the maximum regret 
from the losses across the entire frequency range, columns (2)-(7) report the maximum regret from the 
losses generated at relevant frequency intervals. The entries in bold indicate the minima of the maximum 
regrets in each of the columns. The bottom part of Table 4 reports the minimax-regret policy strategies, i.e. 
the rules that would ensure at most the minimum of the maximum regrets. 
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Table 5 

  
Losses Over the Model Space [ ]0,1θ ∈  

 
 
  Total 

Variance 
Low 
Freq. 
[ ]40, π  

Middle
-Low 
[ ]4 2,π π  

Middle
-High 
[ ]3
2 4,π π  

High 
[ ]3
4 ,π π  

High 
to 

Middle
[ ]2 ,π π  

High 
to 

Low
[ ]4 ,π π  

  (1) (2) (3) (4) (5) (6) (7) 

Average Loss 0.84 0.08 0.18 0.25 0.33 0.58 0.75 

Min Loss  0.61 0.03 0.06 0.15 0.21 0.50 0.57 

Max Loss  1.05 0.18 0.37 0.32 0.37 0.62 0.88 

 

OB  

 

Max Regret 0.00 0.04 0.19 0.09 0.00 0.00 0.00 

Average Loss 0.99 0.07 0.09 0.19 0.83 0.83 0.92 

Min Loss  0.81 0.03 0.04 0.10 0.74 0.74 0.78 

Max Loss  1.14 0.14 0.18 0.30 0.88 0.88 1.01 

 

RoT  

 

Max Regret 0.21 0.00 0.00 0.01 0.34 0.32 0.21 

Minimax OB  RoT  RoT   RoT  OB  OB  OB  

Minimax Regret OB  RoT  RoT   RoT  OB  OB  OB  

 
Table 5 reports the loss measured by the unconditional variance of  for the hybrid model of equation 
(22) under two alternative policy rules: OB  (Optimal Benchmark) – the optimal rule of the benchmark 

model at ; the RoT (Rule of Thumb) specification

tπ

ˆ 0.5θ =
1.25

ty b
π= − t

)

.  The top 8 lines report the 

average loss, the minimum loss, the maximum loss and the maximum regret , for  as 

defined in (6) across the model space 
[ ]

(
0,1
max , ,R p d
θ

θ
∈

R

[ ]0,1θ ∈ .  The bold entries denote the minima of the maximum 
losses and of the maximum regrets across the two policies. The last two rows report the minimax policy 
strategy and the minimax regret policy strategy, respectively. Column (1) reports the loss and maximum 
regret measured with respect to the entire frequency range, columns (2)-(7) report the loss and maximum 
regret measured with respect to relevant frequency intervals. The loss generated at the interval 

[ ],L Hω ω ω∈  is 2 ( )
H

L

f d
ω

π
ω

ω ω∫ here ( w ) ( )
21

2
ifπ ω t tGπ ε= hite oise, 2 1εσ = ). G e ω

π
−=  and L w  n

 

( )  ( tε  
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Figure 1 
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(a) Optimal Forward
(b) Restricted Optimal
(c) Rule of Thumb
(d) Optimal Backward

 
Figure 1 reports the spectral density ( ) ( )

21
2

if G e ω
π ω

π
−=  for the unconditional variance of  

(  white noise, ), when the backwards-looking model of equation (13) is true under four 
alternative policy rules: (a)  (Optimal Forward) – the optimal rule of the forward-looking model of 
equation (16); (b)  (Restricted Optimal) – the optimal rule of the forward-looking model in the class 
of simple first-order feedback rules, equation (18); (c) the (Rule of Thumb) of the 

form

( )t tG Lπ ε=

tε
2 1εσ =

FO

FRO
RoT

1.25
t ty ; (d) O  (Optimal Backwards) – the optimal rule under the backwards-looking model, 

equation (14). 
b

π= − B
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Figure 2 
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(a) Optimal Forward
(b) Restricted Optimal
(c) Rule of Thumb
(d) Optimal Backward

 
 

Figure 2 reports the spectral density ( ) ( )
21

2
if G e ω

π ω
π

−=  for the unconditional variance of  

(  white noise, ), when the model is of the forward-looking type (equation (15))  under the four 
alternative policy rules: (a)  (Optimal Forward) – the optimal rule of the forward-looking model of 
equation (16); (b)  (Restricted Optimal) – the optimal rule of the forward-looking model in the class 
of simple first-order feedback rules, equation (18); (c) the (Rule of Thumb) of the 

form

( )t tG Lπ ε=

tε
2 1εσ =

FO

FRO

RoT
1.25

t ty ; (d) O  (Optimal Backwards) – the optimal rule under the backwards-looking model, 

equation (14). 
b

π= − B
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Figure 3  
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The top panel of Figure 3 reports the total unconditional variance for  
(22) across the model space, 

tπ
[ ]0,1θ ∈ . The unconditional variance is 

policy rule: (a) OB (Optimal Benchmark Rule) – the policy rule that is o
 where ; (b)  theRoT  (Rule of Thumb) of the form 

panels of Figure 3 reports the portions of the overall unconditional va
alternative policy rules) generated at relevant frequency intervals.  

ˆθ θ= ˆ .5θ = ty =
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Figure 4 
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(OB) Optimal Rule
(RoT) Rule of Thumb
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(OB) Optimal Rule
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(c)  

 
  
Figure 4 reports the spectral densities ( ) ( )

21
2

if G e ω
π ω

π
−=  for the unconditional variance of 

 ( ε  white noise, ), for the hybrid model of equation (22). The top panel reports the 
spectral densities for the model  under two alternative policy rules: (a) OB (Optimal Benchmark 
Rule) – the policy rule that is optimal for the benchmark model  where ; (b)  the  (Rule 

of Thumb) of the form

( )t tεG Lπ = t
2 1εσ =
.5θ =

ˆθ θ= ˆ .5θ = RoT
1.25

ty b
π= − t . The bottom left and bottom right panels report spectral densities for 

the two alternative policy rules given the models are and , respectively.  .25θ = .75θ =
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