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Why Do Borrowers Pledge Collateral? 
New Empirical Evidence on the Role of Asymmetric Information 

 

I. Introduction 

Although collateral is a widely observed debt contracting feature, the underlying 

motivation for collateral is not well understood.  An important set of theoretical models explains 

collateral as arising from information gaps between borrowers and lenders.  Specifically, when 

borrowers hold private information regarding their project quality, equilibrium may be 

characterized by adverse selection and credit rationing (Stiglitz and Weiss 1981, Wette 1983).  

Collateral requirements may allow lenders to sort observationally equivalent loan applicants and 

mitigate these inefficiencies.  In particular, lenders may offer a menu of contract terms such that 

applicants with higher-quality projects choose secured debt at lower premiums, while those with 

lower-quality projects select unsecured debt at higher premiums (e.g., Bester 1985, 1987, 

Besanko and Thakor 1987a, 1987b, Chan and Thakor 1987, Boot, Thakor and Udell 1991, 

Beaudry and Poitevin 1995, Schmidt-Mohr 1997).  

Recent research, however, suggests that collateral may not always be optimal within the 

private information framework (Carlier and Renou 2005, 2006).  Furthermore, an expansive 

theoretical literature invokes alternative frictions that motivate collateral as part of an optimal 

contract.  These frictions include risk-shifting, reduced effort, and other moral hazard concerns 

(e.g., Holmstrom and Tirole 1997, Aghion and Bolton 1997), limited contract enforceability 

(e.g., Banerjee and Newman 1993, Albuquerque and Hopenhayn 2004, Cooley, Marimon, and 

Quadrini 2004), or an inability of lenders to monitor project outcomes at sufficiently low cost 

(e.g., Townsend 1979, Gale and Hellwig 1985, Williamson 1986, Border and Sobel 1987, 
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Mookherjee and Png 1989, Boyd and Smith 1994, Krasa and Villamil 2000, Lacker 2001, Hvide 

and Leite 2006).   

In this paper, we isolate and test a central empirical prediction that is distinctly generated 

by the private-information models.  In particular, we test whether a reduction in information gaps 

between borrowers and lenders is associated with a lower incidence of collateral.  Our test 

exploits variation in ex ante lender information created by the adoption of an information-

enhancing loan underwriting technology.  The test isolates the private-information models by 

focusing only on the ex ante information environment (i.e., information gaps that are present 

when the loan is made), rather than the ex post frictions featured in other theoretical models.  

Thus, a finding that the technology is associated with a lower incidence of collateral may be 

interpreted as consistent with the central implication of the private-information literature.  By 

contrast, a finding that the technology is not associated with a significantly lower incidence of 

collateral may suggest that ex post frictions – such as moral hazard, limited contract 

enforceability, and/or costly monitoring – are empirically dominant. 1  

Our data set provides an advantageous laboratory in which to test the empirical 

prediction.  We match the contract terms of nearly 14,000 individual newly-issued loans to small 

businesses between 1993 and 1997 from the Federal Reserve’s Survey of Terms of Bank 

Lending Technology (STBL) with Call Report data on the 37 large U.S. banks that extended 

these credits.  We also include data from a 1998 Atlanta Federal Reserve survey on whether, 

when, and how these banks employ small business credit scoring technology (SBCS), which 

provides our measure of asymmetric information.  The combined data set allows for a rich set of 

                                                 
1 Inderst and Mueller (forthcoming) suggest an alternative model in which collateral arises due to informational 
advantages of the lending bank vis-à-vis its competitors.  The model shares the prediction that an increase in the 
information available to the lending bank reduces the incidence of collateral. 
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controls at both the loan and bank level, as well as for bank and time fixed effects to account for 

unobserved bank heterogeneity and changes in the lending environment, respectively. 

Small business credit scoring combines data on the personal credit history of the small 

business owner with firm financial data to generate a “score” which reflects repayment 

probabilities.2   The SBCS technology may be used exclusively or in a way that augments other 

lending technologies – such as financial statement lending, asset-backed lending, and/or 

relationship lending.  To isolate those cases in which SBCS technology is most likely to reduce 

informational asymmetries, our analysis focuses on banks that use this technology in conjunction 

with other lending technologies.  Recent research suggests that SBCS improves the lender’s 

information set when the technology is used in this fashion (e.g., Berger, Frame, and Miller 

2005, Berger, Espinosa-Vega, Frame, and Miller 2005).  The extant research also finds the use of 

SBCS to be exogenous in that it is unrelated to the bank’s prior portfolio composition, financial 

condition, and market characteristics (e.g., Frame, Srinivasan, and Woosley 2001, Akhavein, 

Frame, and White 2005). 

By way of preview, the data suggest that the employment of the SBCS technology in a 

fashion that supplements information from other lending technologies is associated with a 

reduction in the use of collateral, consistent with the private-information models.  The result is 

both statistically and economically significant and is robust to a number of alternative 

specifications and samples.  We also present some evidence that the results are not driven by 

compositional shifts in the pool of borrowers served by SBCS adopters, and are not due to the 

endogenous adoption of the technology.  We believe that our analysis provides the first clear-cut 

                                                 
2 The personal information used in SBCS models (obtained from consumer credit bureaus) may include the owner’s 
monthly income, outstanding debt, financial assets, employment tenure, home ownership, and previous loan defaults 
or delinquencies (Mester 1997).  Although credit scoring models were applied to consumer loans well before the 
sample period, their application to business loans was delayed due to concerns regarding firm heterogeneity and 
nonstandardized documentation across firms (Berger and Frame 2007). 
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empirical evidence regarding the implications of the private-information models.3  Previous 

findings have been mixed and may be hampered by issues relating to endogenous selection and 

other biases. 

Identifying the specific informational frictions that underlie the observed widespread use 

of collateral is important because collateral pledges often impose costs on both lenders and 

borrowers, reducing the efficiency of debt markets.  This contracting mechanism requires that 

lenders incur the screening costs of valuing the pledged assets; the costs of monitoring the 

secured assets; and any enforcement/disposal expenses in the event of repossession (e.g., Leeth 

and Scott 1989).  The use of collateral may also impose opportunity costs on borrowers to the 

extent that it ties up assets that might otherwise be put to more productive uses.  Borrowers may 

also suffer fluctuations in their credit availability as the values of their securable assets vary. 

The common application of collateral may also have macroeconomic consequences.  

Changes in the values of pledgeable assets that are correlated across borrowers – due to external 

shocks such as interest rate spikes, oil price increases, or real estate bubbles – may amplify the 

business cycle through procyclical changes in access to credit (e.g., Bernanke and Gertler 1989, 

1990, Kiyatoka and Moore 1997).  Indeed, recent empirical evidence suggests that the significant 

decline in real estate collateral values in Japan in the early 1990s played an important role in 

reducing debt capacity and investment in that nation (Gan forthcoming). 

We acknowledge that the focus here on small business loans may limit the generality of 

our results.  However, the use of these data also conveys a potentially important advantage in 

evaluating the theoretical literature because small businesses tend to fit the profile of firms under 

conditions of asymmetric information featured in the theoretical models.  The small business 

                                                 
3 The findings may also underscore the importance of investigating the effects of ex ante information gaps on other 
loan contract features, for example as in Diamond (1989) and Chatterjee, Corbae, and Rios-Rull (2007). 
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data may also yield the most insight regarding the policy issue of credit availability, given that 

these firms are likely to suffer the greatest reductions in funding when their collateral values are 

impaired due to external shocks. 

The remainder of the paper is structured as follows.  Section II reviews the existing 

empirical evidence and Section III outlines our econometric methodology.  Section IV describes 

the data and variables used in these econometric tests, respectively.  We present the test results in 

Section V and conclude in Section VI. 

 

II. Empirical Literature Review 

 A number of studies examine the empirical relationship between asymmetric information 

and the incidence of collateral.  These papers use the strength of the lender-borrower relationship 

– as measured by length or breadth, or whether the lender is the borrower’s main or only lender – 

as an inverse proxy for the degree of asymmetric information.  Lenders may gather proprietary 

information about the borrower’s project choice, effort, and risk as their relationship with the 

borrower strengthens (e.g., Petersen and Rajan 1994, Berger and Udell 1995, Degryse and van 

Cayseele 2000).  The empirical association between collateral and relationship strength is 

sometimes found to be negative as predicted by the private-information models (e.g., Berger and 

Udell 1995, Harhoff and Korting 1998, Chakraborty and Hu 2006); in other cases it is found to 

be positive (e.g., Machaer and Weber 1998, Elsas and Krahnen 2000, Ono and Uesegi 2005); 

while a third set of studies finds mixed signs (e.g., Degryse and van Cayseele 2000, Jiminez, 

Salas, and Saurina 2006, Menkhoff, Neuberger, and Suwanaporn 2006, Voordeckers and 

Steijvers 2006). 
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These analyses may have problems that diminish their usefulness for testing the 

implications of the private-information theory, which could also help explain the mixed 

empirical findings.  First, the results could be biased towards a positive association between 

collateral and relationships to the extent that lenders sort borrowers into different lending 

arrangements based on their opacity.  In particular, one could generate a positive coefficient if 

lenders use relationships to evaluate more opaque small businesses (e.g., Berger and Udell 2002) 

– precisely those borrowers that pledge collateral in models based on moral hazard and other ex 

post frictions.  Second, the results could be biased toward a negative association to the extent that 

collateral and relationships are substitute methods of dealing with opacity problems.  For 

example, lenders may often require that borrowers pledge fixed assets such as real estate, motor 

vehicles, or equipment as collateral to resolve information problems instead of using evidence 

acquired through strong relationships (e.g., Manove, Padilla, and Pagano 2001, Berger and Udell 

2006).  Our methodology sidesteps these complications by exploiting exogenous variation in ex 

ante private information.4 

Another set of studies examine the empirical association between risk and collateral, 

rather than that between asymmetric information and collateral.  The private-information models 

suggest that borrowers with low unobservable risk may signal this through the pledging of 

collateral.  The private-information models do not have a prediction regarding the relationship 

between observed risk and collateral, though the empirical literature finds that collateral is 

associated with higher risk (e.g., Leeth and Scott 1989, Berger and Udell 1990, 1995, Booth 

                                                 
4 The empirical association between collateral and relationship strength may also in part reflect the exercise of 
market power through a non-price term of credit.  Some of the theoretical literature on relationship lending predicts 
that loan rates rise over the course of a relationship as a borrower becomes “locked-in” to its current lender because 
of its informational advantage over other potential lenders (e.g., Greenbaum, Kanatas, and Venezia 1989, Sharpe 
1990, Rajan 1992).  It is also possible that lenders may use this market power to extract collateral pledges more 
often from borrowers with strong relationships . 
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1992, Degryse and Van Cayseele 2000, Ono and Uesegi 2005).  Some of these studies find that 

collateral is positively related to risk premiums among small business loans (e.g., Berger and 

Udell 1990, Degryse and Van Cayseele 2000).  To the extent that the risk premiums reflect 

unobserved risk that is signaled through the sorting mechanism of the private-information 

models, these data are not consistent with the prediction of lower unobserved risk for secured 

credits.  The data rather suggest that an association between collateral and higher observed risk 

may empirically dominate the findings.5   

 In another article of evidence on the private-information models, Jiminez, Salas, and 

Saurina (2006) show that collateral is negatively related to ex post defaults on debt issued to 

young firms.  The authors argue that ex post defaults may reflect high unobserved risk and hence 

ex ante private information.6  However, because collateral may raise the cost of default, one 

might expect to find that secured debt is less likely to default, irrespective of whether ex ante 

asymmetric information is important.  Moreover, defaults may reflect moral hazard or other 

frictions, and thus may not isolate the effects of ex ante private information.  Our methodology, 

which exploits an exogenous shock to the level of ex ante informational asymmetries, avoids the 

problems that characterize tests based on the collateral-risk relationship.  In particular, our 

methodology allows us to isolate the specific effect of ex ante private information from those of 

ex post frictions and other potentially confounding factors. 

                                                 
5 Interestingly, Weill and Godlewski (2006) show that collateral and risk premiums may be negatively related in 
nations characterized by higher levels of asymmetric information – as measured by variables such as accounting 
standards and the level of financial development of the nation – a result that is consistent with the private-
information models. 
6 Abbring, Chiappori, Heckman, and Pinquet (2002) discuss the merits of inferring ex ante private information from 
ex post claims in insurance markets.   
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III.  Outline of the Econometric Methodology 

We test the central prediction of the private-information models regarding collateral and 

asymmetric information using data on the terms of individual small business loan contracts, the 

banks that extend these loans, and whether and how these banks employ the SBCS lending 

technology.  We base the test on a logit model of whether collateral was pledged on the 

individual loans: 

 
ln [P(COLLATijt) / (1 - P(COLLATijt))] =  β1 SCOREjt + xijt'β2 + αj + γt ,                (1) 

 
where P(•) indicates probability, COLLATijt is a dummy variable that equals 1 if the loan is 

secured, and i, j, and t index loans, banks, and time, respectively.  The key exogenous variable is 

SCOREjt, which takes a value of one if bank j employs SBCS in a manner that reduces 

informational asymmetries in time t, and zero otherwise.  The vector xijt includes other loan and 

bank control variables.  The scalars αj and γt capture differences in the probability that collateral 

is pledged due to fixed effects for bank j and time t, respectively. 

A negative, statistically and economically significant estimate for the parameter β1 would 

be consistent with the prediction of the private-information models that a reduction in 

asymmetric information lowers the probability that collateral is pledged.  By contrast, an 

estimate that is not significantly negative would be consistent with the notion that ex post 

frictions – such as moral hazard, limited contract enforceability, and/or costly monitoring – 

empirically dominate any effect of ex ante private information on collateral.  As discussed 

below, we remove loan observations from the data set when the employment of SBCS has 
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ambiguous implications with respect to reducing asymmetric information.  In all cases, our 

empirical results are robust to changing the inclusion rules.  

In equation (1), the estimate of β1 is primarily determined by loans from banks for which 

SCORE takes on values of both 0 and 1 within the data set – i.e., banks that adopted SBCS 

during the sample period and have both before- and after- adoption observations available.  

Loans by other banks in the sample have no direct influence on the estimate of β1 because they 

have no variation in SCORE.  These other banks are of three types.  First, some banks had not 

adopted SBCS by the end of the sample period (SCOREjt = 0 for all t).  Second, some banks had 

adopted the technology prior to the sample period and therefore had experienced any information 

benefits at some earlier time (SCOREjt = 1 for all t).  Finally, some sample banks adopted SBCS 

during the sample period, but have no observations available prior to adoption because one of the 

underlying data sets had no observations for these institutions prior to adoption (SCOREjt = 1 for 

all t after adoption, no observations for SCOREjt prior to adoption).  The inclusion of loans by 

banks with no variation in SCORE directly improves the estimation efficiency of the loan and 

bank control variables and the time fixed effects, and thereby indirectly contributes to improving 

the estimation efficiency of β1, the SCORE effect. 

Our empirical test is essentially equivalent to differences-in-differences estimation and 

presents two important econometric issues.  First, the parameters are consistently estimated 

despite our use of fixed effects within a discrete-choice framework.  The ratio of observations to 

parameters tends to infinity as the number of loans per bank-quarter grows large, and as the 

number of banks and quarters rise together.  Our sample features 19 loans per bank-quarter, 37 

banks, and 20 quarters.  As a result, we are able to use nearly 14,000 observations to estimate 65 
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total parameters, including one parameter for SCOREjt (β1), seven parameters for the control 

variables (β2), 37 bank effects (αj), and 20 time effects (γt).  

Second, we use a clustering correction that provides consistent estimates of the t statistics 

in the presence of arbitrary correlation patterns (including autocorrelation) among loan 

observations from the same bank.  Bertrand, Duflo, and Mullainathan (2004) show that 

autocorrelation may cause differences-in-differences estimators to yield upwardly-biased t 

statistics that over-reject the null.  However, they also note that the clustering correction we 

employ works well when then number of sample states – the number of sample banks in our case 

– is large, on the order of 50.  Our baseline sample includes data on 37 banks. 

 

IV.  Data and Variables Employed in the Tests 

We combine data from three sources to estimate equation (1) and test the main hypothesis 

about the effects of asymmetric information on the probability that collateral is pledged.  The 

first source is the Federal Reserve’s Survey of Terms of Bank Lending (STBL).  Respondents to 

this survey include virtually all of the largest U.S. banks plus a stratified random sample of 

smaller institutions.  The STBL contains details on the loan contract terms of all newly-issued 

domestic commercial and industrial (C&I) loans by surveyed banks during one or more days of 

the first week of the second month of each quarter.  The terms include whether collateral is 

pledged – the basis for the dependent variable in equation (1) – as well as information on 

whether the loan is issued under commitment, the amount of the loan and commitment (if any), 

and whether the loan has a floating interest rate. 

Our second data source is the January 1998 Survey of Small Business Credit Scoring 

conducted by the Federal Reserve Bank of Atlanta.  This survey targeted many of the same large 
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institutions as the STBL, including 99 of the largest 200 U.S. banking organizations operating at 

that time.  The available information includes whether lenders employed SBCS as of 1997:Q4, 

and if so, the date that they initially adopted the technology.  The survey responses also provide 

data on how the adopting institutions employ the technology – specifically whether they simply 

use credit scores to automatically approve/reject loan applications versus using SBCS in a 

manner that supplements their existing underwriting techniques (Frame, Srinivasan, and 

Woosley 2001).  The SBCS Survey data are used to construct the SCORE variable, and to 

determine whether and when this technology likely reduced asymmetric information.  

Finally, we gather statistics from regulatory reports on the banks that issue the loans – 

items from Call Reports, Summary of Deposits, and the National Information Center.  These 

regulatory files provide information on the financial statements, ownership, and market 

characteristics for virtually all U.S. banks.  We use these data to construct control variables for 

the bank’s size, age, financial condition, recent merger activity, and local market concentration. 

Our regression sample is compiled by matching data from these three sources, so that 

each observation includes loan contract information from the STBL, data on whether, when, and 

how large U.S. banking organizations employed small business credit scoring from the SBCS 

Survey data, and statistics on the banks themselves from the regulatory files.  The sample 

contains observations over the period 1993:Q1-1997:Q4.  As noted above, SBCS was introduced 

to many U.S. large banks during this interval.   

We exclude observations from the regression sample when there are ambiguities about 

whether the use of SBCS reduces informational asymmetries.  First, we exclude loans made in 

the two quarters following a bank’s adoption of SBCS to lessen the effects of any learning curves 

associated with implementing this new technology.  Second, we omit observations from banks 
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that use SBCS to automatically accept/reject credit applications, rather than to supplement the 

information from other loan evaluation methods.  Third, we exclude loans for which the total 

credit is over $100,000 because SBCS is often applied by lenders only on loans up to this size, 

and so would have no informational effect for larger credits.  Finally, we omit data on loans not 

issued under commitment.  Prior research finds that commitment loans are more often 

relationship-based and therefore are likely to be associated with greater asymmetric information 

problems (e.g., Berger and Udell 1995).  We show below that our empirical results are robust to 

altering all of these exclusion rules.  

Our main regression sample includes 13,973 loans made by 37 different large banks, 19 

of which use SBCS to supplement other loan evaluation methods and 18 of which do not use this 

technology in any way over the sample interval.  As discussed above, the estimated effect of 

SCORE is primarily determined by loans from banks that adopted the technology during the 

sample period and have both before- and after- adoption observations available.  In our sample, 

16 of the 19 adopting banks are in this category – one bank had adopted prior to the sample 

period and two banks adopted during the sample interval, but were added to the STBL data set 

only after adoption.  As discussed above, the inclusion of the three adopting banks for which 

SCORE = 1 for all observations and the 18 non-adopters for which SCORE = 0 for all 

observations improve estimation efficiency. 

Table 1 provides the means and standard deviations of the variables used in our main 

regressions.  The dependent variable, COLLAT, is a dummy variable that equals 1 if the loan is 

secured.  The key exogenous variable is SCORE, a dummy that equals one if the bank adopted 

SBCS at least two quarters before the loan was made.  As shown, more than 80 percent of the 

sample loans have collateral pledged, and about 50 percent are made by banks that use SBCS in 
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a way that is likely to reduce asymmetric information. 

 We control for two loan contract terms in our analysis: total loan size, including the 

amount of any commitment (SIZE), and a dummy variable indicating whether the loan has a 

floating interest (FLOAT).  Table 1 shows that most of the loans carry floating rates and that the 

average loan size is just below $50,000.  Recall that we limit SIZE to $100,000 or less because 

many banks use SBCS only for credits below this limit.  We also control for five bank 

characteristics, gross total assets (GTA), bank age (AGE), the ratio of nonperforming loans (past 

due at least 30 days or nonaccrual) to gross total assets (NPL), whether the bank was involved in 

a merger in the previous year (MERGED), and the weighted-average market Herfindahl index of 

deposit concentration (HERF).  The characteristics are constructed from the previous year’s 

regulatory reports to mitigate potential endogeneity problems.  The average GTA is about $16.5 

billion and the average AGE is almost 120 years.  There are no small or young banks in the 

sample because the SBCS survey queries only large institutions.  The means of NPL, MERGED 

and HERF are 0.014, 0.429, and 0.203 respectively. 

 

V. Empirical Results 

A. Main Regression Results 

Table 2 presents our main regression results examining the effects of SCORE on the 

likelihood that collateral is pledged.  The logit regression represented by equation (1) is 

estimated for four specifications that alternatively exclude or include the loan and bank control 

variables.  Each regression includes bank and time fixed effects.  Robust t statistics are 

calculated using a clustering correction for heteroskedasticity and arbitrary correlations among 

loan observations from the same bank. 
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The estimates for β1, the coefficient on SCORE, are negative and statistically significant 

at the 1% level in all four of the specifications in Table 2.  These findings are consistent with the 

central prediction of the private-information models that a reduction in asymmetric information 

lowers the probability that collateral is pledged.  For the specification in column (4), which 

includes all of the loan and bank control variables, the SCORE coefficient is -0.449.  The 

corresponding estimates in columns (1), (2), and (3) – which exclude all of the control variables, 

just the bank variables, and just the loan variables, respectively – the coefficients are quite 

similar, -0.530, -0.534, and -0.438. 

To evaluate whether these effects are economically significant, we convert the 

coefficients from the nonlinear logit model into predicted changes in the probability that 

collateral is pledged.  In the second row of the table, we show Predicted ? P(COLLAT), which is 

the predicted change in the probability that collateral is pledged from changing SCORE from 0 to 

1 at the sample means of the other exogenous variables.7  For the full specification in column (4), 

Predicted ? P(COLLAT) = -0.057, suggesting that the use of SBCS to augment other loan 

underwriting methods reduces estimated collateral incidence by roughly 6 percent.  This result is 

robust – the figures for the other specifications shown in Table 2 are all close to 6 percent.  Thus, 

for a loan at the sample mean P(COLLAT) of about 83%, the likelihood that collateral would be 

pledged falls to about 77% when SBCS is used to reduce asymmetric information.  This finding 

appears to be highly economically significant because the use of SBCS to supplement other 

lending technologies almost surely closes only a small portion of information gap between the 

                                                 
7 The formula for Predicted ? P(COLLAT) is as follows.  Let µX be the vector of sample means of control variable 
vector xijt over all i, j, and t; qj be the proportion of loans in the sample made by bank j, and rt be the proportion of 
sample loans made in year t.  Define d1 as β1 + µX'β2 + ?  qj αj + ?  rt γt, and define d0 as d1 - β1.  The values shown 
for Predicted ? P(COLLAT) are given by [exp(d1)/(1 + exp(d1))] – [exp(d0)/(1 + exp(d0))], where d1 and d0 replace 
the actual coefficients with the estimated coefficients in d1 and d0, respectively. 
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bank and borrower.  That is, the estimated 6 percentage point effect likely represents only a 

minor fraction of the full effect of private information on collateral decisions. 

 Turning briefly to the control variables, only three of these variables are statistically 

significant in the full specification in column (4).  The coefficients on ln(SIZE), ln(GTA) , and 

NPL suggest that larger credits and larger and financially healthier banks tend to be associated 

with a higher incidence of collateral.  In addition, Wald tests for the fixed effects (not shown) 

reject the null hypotheses that both the bank and the time effects are jointly zero at the 1% level 

in all four specifications.8 

In the remaining discussion, we refer to the findings for the full specification shown in 

column (4) of Table 2 as our baseline results.  These represent our best efforts at choosing the 

specification and sample that reflect the effects of a reduction in asymmetric information on the 

likelihood that collateral is pledged. 

B. Alternative Specifications and Samples 

In Table 3, we alter the specification of equation (1) in ways other than changing the 

control variables to examine further the robustness of the baseline results.  We show the 

consequences of excluding the fixed effects and of using conventional, uncorrected t statistics in 

place of robust t statistics calculated using the clustering correction.  Specifically, column (1) 

excludes the time effects, column (2) excludes the bank effects, column (3) excludes both sets of 

effects, and column (4) replicates the baseline regression without the clustering correction for 

robust t statistics.  The loan and bank control variables are included in all of these regressions, 

but their coefficients are not shown in the interest of brevity. 

                                                 
8 The results are also statistically and economically similar when controls for loan maturity and the bank’s internal 
loan risk rating are added to the specification.  We omit maturity from the main regressions due to potential 
endogeneity concerns, and we exclude the risk ratings because they are available only for the final three quarters of 
our sample. 
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The results in the first three columns suggest that the main results are robust with respect 

to excluding the time fixed effects, but not the bank fixed effects.  When only the time effects are 

excluded in column (1), the estimated coefficient on SCORE is -0.423, similar to the baseline 

coefficient of -0.449, and is statistically significant at the 1% level.  The economic significance is 

also maintained, with only a small change in Predicted ? P(COLLAT) to -0.045.  In contrast, the 

exclusion of bank fixed effects (with or without the time fixed effects) in columns (2) and (3) 

results in relatively small, statistically insignificant SCORE coefficient estimates, and much 

lower pseudo R-squared statistics.  These findings suggest that systematic differences across 

banks may exist that are not captured by observables.  For example, some institutions may 

require collateral more often than others due to their internal policies and procedures or because 

these banks tend to specialize in certain lending technologies that rely more heavily on collateral. 

The results in column (4) of Table 3 show that when uncorrected t statistics are used in 

place of robust t statistics that correct for correlations among loan observations from the same 

bank, the coefficient on SCORE is again statistically significant at the 1% level.  The uncorrected 

statistic is much larger in absolute value than the robust statistic, consistent with the potential 

autocorrelation bias discussed above.   

In Table 4, we examine the robustness of our baseline results with respect to the use of 

alternative data samples.  Specifically, we examine the effects of using different bank samples, 

different loan samples, and excluding different numbers of quarters after SBCS adoption.  

Columns (1) and (2) show the effects of altering the set of banks included in the sample.  In 

column (1), we include 22 additional banks that use credit scores to automatically approve/reject 

loan applications.  In column (2), we restrict the sample to include only those banks present in 

the data in both 1993 and 1997, reducing the number of sample banks by 11.  The STBL bank 
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panel changes somewhat over the sample period due to mergers, bank growth, and other factors, 

which could potentially introduce sample selection issues.  The results in columns (1) and (2) 

suggest that our baseline results are robust to these changes in bank samples.  In both cases, the 

coefficients on SCORE remain negative and statistically significant at the 1% level, and the value 

of Predicted ? P(COLLAT) is reasonably close to the -0.057 found for the baseline regression.   

 We next show the results from regressions using alternative loan samples.  Specifically, 

we use observations on loans not issued under commitment in column (3), loans of total size up 

to $50,000 in column (4), and loans of total size between $50,000 and $100,000 in column (5).  

As discussed above, the sample in our baseline regression includes only loans issued under 

commitment which are expected to be associated with greater asymmetric information problems, 

and credits of all sizes up to $100,000, the maximum size on which many lenders use the SBCS 

technology.  In all three alternative samples, the coefficients on SCORE are negative, statistically 

significant, and of economically significant magnitude – actually notably greater magnitude for 

loans not issued under commitment.  Again, the findings support the robustness of the baseline 

results and suggest that our finding that the adoption of SBCS is associated with less collateral is 

not due to specific loan sample restrictions. 

 Columns (6), (7), and (8) give the findings when we exclude different numbers of 

quarters after SBCS adoption: zero quarters (column (6)), one quarter (column (7)), and four 

quarters (column (8)).  The sample used in the baseline regression excludes two quarters to 

reduce the effects of any learning curve associated with implementing the technology.   The 

SCORE coefficients are all again negative and statistically significant, consistent with the 

baseline regression.  However, the value of Predicted ? P(COLLAT) is smaller when zero 
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quarters are excluded, which suggests that the new technology may take some time to 

significantly improve lender information. 

C. Alternative Explanations 

One alternative explanation for the results is that banks may experience compositional 

shifts in their pools of borrowers after adopting the SBCS technology.  In particular, if the SBCS 

technology improves the ability to screen marginal credits, then the reduction in collateral may 

reflect overall changes in borrower risk rather than changes in the level of asymmetric 

information.  To address this issue, we regress the banks’ internal loan risk ratings on SCORE, 

the bank and loan control variables, and the time fixed effects.  The risk rating characterizes 

loans as being of “minimal,” “low,” “moderate,” and “acceptable” risk, and we use ordered logit 

to capture the effect of SBCS on risk accordingly.  The risk ratings are available only starting in 

1997:Q2, so we restrict the sample to the final three quarters of data.9  The resulting SCORE 

coefficient is small (0.089) and not statistically significant (t statistic of 0.110).  The finding 

suggests that composition shifts do not drive the main results of the paper. 

 A second alternative explanation for the results is that the adoption of SBCS technology 

is not truly exogenous.  For example, if a bank’s borrowers become less able to provide 

collateral, then one might expect the bank to adopt technology that allows it to better evaluate 

unsecured loans.  In this interpretation, the SBCS technology results from movements in demand 

away from collateralization, rather than causes changes in collateral requirements.  Three articles 

of evidence suggest that this does not describe our results.  First, the extant research finds the 

timing of SBCS adoption is unrelated to the bank’s prior portfolio composition, financial 

condition, and market characteristics (Frame, Srinivasan, and Woosley 2001, Akhavein, Frame, 

                                                 
9 Given the shorter sample period, the SCORE coefficient is not identifiable in the presence of bank fixed effects 
(only two banks adopt during these quarters), and we exclude bank fixed effects from the regression.   
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and White 2005).  Second, if borrowers become less able to provide collateral over time and this 

causes SBCS adoption, then one might also expect SBCS technology to be associated with 

changes in borrower risk.  The risk rating regressions discussed above suggest that this did not 

occur.  Third, our main results include bank and time fixed effects, so any source of endogeneity 

bias must vary both across banks and across time.  In an attempt to account directly for such 

factors, we run the main regressions adding bank-specific time trends to the bank and time fixed 

effects.  The SCORE coefficient remains negative, although it is somewhat smaller and no longer 

statistically significant.  Together, these findings suggest that the main results are not likely due 

to endogenous SBCS adoption. 

 

VI. Conclusions 

The theoretical literature identifies collateral as a key contracting tool employed by 

lenders to reduce problems associated with asymmetric information.  In particular, an important 

set of models suggests that collateral may mitigate adverse selection and reduce credit rationing 

when borrowers have ex ante private information regarding the quality of their project.  The 

central implication of these private-information models is that an attenuation of the information 

gap between borrowers and lenders should reduce the incidence of collateral.   Previous findings 

regarding this implication are mixed and may be hampered by issues relating to endogenous 

selection and other biases. 

In this paper, we sidestep the potential endogeneity and other problems of the existing 

empirical literature by employing data on an exogenous technological innovation that was not 

introduced to most large U.S. banks until the mid-1990s.  Specifically, we use data on whether, 

when, and how large U.S. banks employed small business credit scoring (SBCS) over the period 
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1993:Q1-1997:Q4, focusing on cases in which this technology supplements other loan evaluation 

techniques to reduce asymmetric information.  We combine the SBCS data with information on 

collateral and other contract terms on about 14,000 newly-issued small business loans and data 

on the banks themselves.   

The empirical results support the central prediction of the private-information models.  

The data are consistent with a fall in the use of collateral when banks adopt SBCS and use it to 

supplement information from other lending technologies.  The findings are both statistically and 

economically significant and are robust to a number of alternative specifications and changes in 

sample.  The results suggest that banks that used the new technology to reduce information gaps 

during our sample interval lessened their need for collateral on a significant number of small 

business loans.  The findings further imply that the employment of SBCS may have reduced 

lender and borrower costs and improved the efficiency of a segment of the small business 

lending market. 

Our empirical application examines the effects of just one new lending technology on 

credits to one class of borrower over one time interval.  Nonetheless, our findings may have 

more general implications.  The results suggest that any market advances (e.g., new technologies, 

financial contracting tools) or policy innovations (e.g., improved disclosure rules/enforcement) 

that appreciably reduce information gaps between borrowers and lenders may improve the 

efficiency of debt markets by reducing reliance on costly collateral.  Such developments may 

also bring about substantially greater credit availability for some potential borrowers – 

particularly those with severe asymmetric information problems or without access to pledgeable 

collateral – as collateral requirements are reduced.  Any improvements in information that 
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substantially reduce dependence on collateral may also reduce procyclicality and other adverse 

macroeconomic consequences associated with external shocks to asset values. 
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Table 1  

Variables and Summary Statistics  
Means and standard deviations for variables used in subsequent estimation.  The sample combines loan observations 
from 19 large banks that use small business credit scoring technology over 1993:Q1-1997:Q4, but not to 
automatically approve/reject loans, with loan observations from 18 large banks that do not use this technology in any 
capacity during this interval.  Loan observations from the first two quarters following credit scoring adoption are 
excluded.  COLLAT is a dummy that equals 1 if the loan is secured.  SCORE is a dummy that equals 1 if the bank uses 
small business credit scoring technology when the loan is made.  SIZE is the maximum of the loan amount and the 
amount of commitment.  FLOAT is a dummy that equals one if the loan has a floating interest rate.  GTA is the gross 
total assets of the bank.  AGE is the age of the bank.  NPL is the bank's ratio of nonperforming loans (past due at least 
30 days or nonaccrual) to GTA.  MERGED is a dummy that equals one if the bank was involved in a merger the 
previous year.  HERF is the bank's weighted-average market Herfindahl index of deposit concentration.  Bank 
variables are constructed from the previous year's regulatory reports.   The loans considered have SIZE less than or 
equal to $100,000 and are issued under commitment.  The total sample size is 13,973.  Sources: Federal Reserve's 
Survey of Terms of Bank Lending (STBL) for COLLAT, SIZE and FLOAT; January 1998 Federal Reserve Bank of 
Atlanta survey on the use of credit scoring for SCORE; bank regulatory reports (Call Reports, Summary of Deposits, 
National Information Center) for GTA, AGE, NPL, MERGED and HERF. 
Variable  Description Mean Std Dev 25% 50% 75% 
Dependent variable:      
  COLLAT Loan is secured (1=yes) 0.825 0.380 1.000 1.000 1.000 
Credit scoring dummy:      
  SCORE Bank uses credit scoring (1=yes) 0.505 0.500 0.000 1.000 1.000 
Loan 
variables       
  SIZE Loan size ($000) 48.544 28.734 24.466 47.087 72.005 
  FLOAT Floating interest rate (1=yes) 0.917 0.277 1.000 1.000 1.000 
Bank 
variables       
  GTA Gross total assets ($000) 16,718,600 20,827,050 3,878,491 9,558,315 27,057,860 
  AGE Age of the bank (years) 119.062 23.332 112.000 119.000 130.000 
  NPL Nonperforming loans ÷ GTA 0.015 0.008 0.010 0.013 0.019 
  MERGED Merged last year (1=yes) 0.445 0.497 0.000 0.000 1.000 
  HERF Average market Herfindahl 0.203 0.051 0.180 0.193 0.224 
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Table 2  

Main Collateral Regressions 
Logit regressions for COLLAT, a dummy variable that equals one if the loan is secured.  The 
sample combines loan observations from 19 large banks that use small business credit scoring 
technology over 1993:Q1-1997:Q4, but not to automatically approve/reject loans, with loan 
observations from 18 large banks that do not use this technology in any capacity during this 
interval.  The loans considered have SIZE of less than or equal to $100,000 and are issued under 
commitment.  Loans made during the first two quarters following credit scoring adoption are 
excluded.  Robust t statistics are calculated using a clustering correction for heteroskedasticity and 
arbitrary correlations among loan observations from the same bank.  Predicted ? P(COLLAT)  
indicates the predicted change in the probability that collateral is pledged from changing SCORE 
from 0 to 1 at the means of the other exogenous variables.  Significance at the 10%, 5%, and 1% 
levels is denoted by *, **, and ***, respectively. 

  (1) (2) (3) (4) 

Credit scoring dummy:     
  SCORE -0.530*** -0.534*** -0.438*** -0.449*** 
 (-3.42) (-3.60) (-2.91) (-3.10) 
     
Predicted ?  P(COLLAT) -0.066 -0.066 -0.056 -0.057 
     
Loan variables:     
  ln(SIZE)  0.356***  0.353*** 
  (3.95)  (3.88) 
  FLOAT  -0.374*  -0.321 
  (-1.74)  (-1.44) 
Bank variables:     
  ln(GTA)   0.393*** 0.384*** 
   (3.55) (3.67) 
  ln(AGE)   15.488 15.379 
   (1.58) (1.62) 
  NPL   -8.374** -7.560* 
   (-2.03) (-1.72) 
  MERGED   -0.035 -0.064 
   (-0.33) (-0.63) 
  HERF   0.340 0.672 
   (0.20) (0.41) 
     
Bank fixed effects yes yes yes yes 
Time fixed effects yes yes yes yes 
     
Pseudo R-Squared 0.096 0.106 0.098 0.108 
Number of obs. 13,973 13,973 13,973 13,973 
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Table 3  

Robustness Tests: Additional Alternative Specifications  
Logit regressions for COLLAT, a dummy variable that equals one if the loan is 
secured.  The sample combines loan observations from 19 large banks that use 
small business credit scoring technology over 1993:Q1-1997:Q4, but not to 
automatically approve/reject loans, with loan observations from 18 large banks 
that do not use this technology in any capacity during this interval.  The loans 
considered have SIZE of less than or equal to $100,000 and are issued under 
commitment.  Loans made during the first two quarters following credit 
scoring adoption are excluded.  Where indicated, robust t statistics are 
calculated using a clustering correction for heteroskedasticity and arbitrary 
correlations among loan observations from the same bank.  Otherwise, 
uncorrected t statistics are used.  Predicted ?  P(COLLAT) indicates the 
predicted change in the probability that collateral is pledged from changing 
SCORE from 0 to 1 at the means of the other exogenous variables.  
Significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, 
respectively. 

  (1) (2) (3) (4) 
Credit scoring dummy:     
  SCORE -0.423*** 0.085 0.274 -0.449*** 
 (-2.83) (0.27) (0.76) (-4.27) 
     
Predicted ?  P(COLLAT) -0.045 0.012 0.038 -0.057 
     
Loan variables Yes yes yes Yes 
Bank variables Yes yes yes Yes 
     
Bank fixed effects Yes no no yes 
Time fixed effects No yes no yes 
     
Robust t statistics Yes yes yes no 
     
Pseudo R-Squared 0.106 0.033 0.026 0.108 
Number of obs. 13,973 13,997 13,997 13,973 
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Table 4  

Robustness Tests: Alternative Samples 
Logit regressions for COLLAT, a dummy variable that equals one if the loan is secured.  The baseline sample combines loan observations from 19 large banks 
that use small business credit scoring technology over 1993:Q1-1997:Q4, but not to automatically approve/reject loans, with loan observations from 18 banks 
that do not use this technology in any capacity during this interval.  Unless otherwise noted, loans have SIZE less than or equal to $100,000, are issued under 
commitment, and are not made during the first two quarters following credit scoring adoption.  Robust t statistics are calculated using a clustering correction for 
heteroskedasticity and arbitrary correlations among loan observations from the same bank.  Predicted ? P(COLLAT) indicates the predicted change in the 
probability that collateral is pledged from changing SCORE from 0 to 1 at the means of the other exogenous variables.  Significance at the 10%, 5%, and 1% 
levels is denoted by *, **, and ***, respectively. 

 Different bank samples: Different loan samples: Different # of quarters excluded after 
adoption: 

 Includes banks 
that use credit 

scoring to 
automatically 
approve/reject 

Includes 
only banks 

that are 
present in 
both 1993 
and 1997 

Loans not 
issued under 
commitment 

Loans of up 
to $50,000 

Loans of 
$50,000-
$100,000 

None One Four 

  (1) (2) (3) (4) (5) (6) (7) (8) 

Credit scoring dummy:         
  SCORE -0.422*** -0.458*** -0.532** -0.397*** -0.567*** -0.327** -0.405*** -0.445*** 
 (-2.81) (-3.06) (-2.49) (-3.01) (-2.76) (-2.26) (-2.71) (-2.81) 
         
Predicted ?  P(COLLAT) -0.072 -0.055 -0.114 -0.044 -0.077 -0.032 -0.050 -0.052 
         
Loan variables yes Yes yes yes yes yes yes yes 
Bank variables yes Yes yes yes yes yes yes yes 
         
Bank fixed effects yes Yes yes yes yes yes yes yes 
Time fixed effects yes Yes yes yes yes yes yes yes 
         
Pseudo R-Squared 0.238 0.105 0.179 0.165 0.053 0.105 0.107 0.107 
Number of obs. 21,980 12,858 8,807 8,582 5,339 14,780 14,357 13,087 
 




