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1. Introduction

Hansen and Jagannathan (1997, HJ hereafter) propose two measures of model misspecification

based on the distance between a proposed stochastic discount factor (SDF) and the set of (nonneg-

ative) admissible SDFs (i.e., the set of SDFs that price a given set of test assets correctly). The

measure that does not impose the nonnegativity constraint (no-arbitrage condition) on the set of

admissible SDFs is referred to as unconstrained HJ-distance whereas the measure that imposes the

nonnegativity constraint is referred to as the constrained HJ-distance.

While the unconstrained HJ-distance is analyzed and used in many studies (see, for exam-

ple, Bansal, Hsieh and Viswanathan (1993), Hansen, Heaton and Luttmer (1995), Campbell and

Cochrane (2000), and Kan and Robotti (2009), among others), the constrained HJ-distance has

been largely ignored in the literature. Part of the difficulties with the use of the constrained HJ-

distance is that there is a lack of understanding of the theoretical properties of the constrained

HJ-distance due to the fact that an explicit expression for the constrained HJ-distance is not cur-

rently available even for linear models.

The main objective of our paper is to provide the readers with a better understanding of the

merits and drawbacks of the constrained HJ-distance and the difference between this measure and

its unconstrained counterpart. In particular, we derive an explicit solution for the constrained

HJ-distance under the assumption that the SDF and the returns are conditionally multivariate

elliptically distributed. To facilitate the analysis, we decompose the SDF into a component which

is spanned by the returns on the test assets and an unspanned component. This allows us to show

that nontrivial differences between the unconstrained and constrained HJ-distances can only arise

when the volatility of the unspanned component of an SDF is large and the Sharpe ratio of the

tangency portfolio of the test assets is very high. In addition, in the case of linear SDFs, we obtain

analytical expressions for the SDF parameters that minimize the constrained HJ-distance. When

there is an unspanned factor in the linear SDF, we show that choosing parameters to minimize the

constrained HJ-distance instead of the unconstrained HJ-distance results in a lower probability for
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the linear SDF to take on negative values, but leads to a serious deterioration in the ability of the

SDF to price the test assets.

The rest of the paper is organized as follows. Section 2 introduces the main setup and notation

for the unconstrained and constrained HJ-distances. Section 3 derives an analytical solution for

the constrained HJ-distance under the joint ellipticity assumption on the SDF and the returns on

the test assets. Some concluding remarks are provided in Section 4.

2. Unconstrained and Constrained HJ-Distances

2.1 Setup and Notation

Following HJ, let F be the information that is observed at the date of the asset payoffs. Associated

with F is the space L2 of all random variables with finite second moments that are in the information

set F. This space is used as the collection of hypothetical claims that could be traded. However,

for practical reasons, econometricians can only evaluate asset pricing models on a subspace of L2.

Let r̃ = [R0, r
′]′, where R0 is the gross return on the risk-free asset, and r is a vector of excess

returns (in excess of the risk-free rate) on N risky assets.1 We assume that the payoff space used

in an econometric analysis is given by the payoffs of portfolios of r̃:

P ≡ {ω′r̃ : ω ∈ <n}, (1)

where n = N + 1. In addition, we assume that E[r̃r̃′] is nonsingular so that none of the test assets

is redundant.

We call m ∈ L2 an admissible SDF if it prices the test assets correctly, i.e.,

E[r̃m] = q, (2)

where q = [1, 0′N ]′ and 0N is an N -vector of zeros. Let M denote the set of all admissible SDFs.

Although all SDFs in M can price the test assets correctly, some of them can take on negative

1It can be readily shown that both the unconstrained and constrained HJ-distances and their SDF parameters are
invariant to nonsingular transformations of the return data. Therefore, our results are the same regardless of whether
we use excess returns or gross returns on the risky assets. For the case with no risk-free asset, the analysis is slightly
more complicated and is available upon request.
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values with positive probability and are not consistent with the absence of arbitrage opportunities

on the space of hypothetical derivative claims. To eliminate these SDFs from consideration, HJ

consider M+, which is the set of nonnegative admissible SDFs.

Let y ∈ L2 be a candidate stochastic discount factor. If y prices the n test assets correctly, then

the vector of pricing errors, e, of the test assets is exactly zero:

e = E[r̃y]− q = 0n. (3)

However, the pricing errors are nonzero when the asset pricing model is misspecified. In this case,

we are interested in measuring the degree of model misspecification. HJ suggest using

δ = min
m∈M

(E[(y−m)2])
1
2 (4)

as a misspecification measure of y. In this paper, we refer to δ as the unconstrained HJ-distance.

It is possible for an SDF to price all the test assets correctly and yet to take on negative values

with positive probability. Such an SDF does not necessarily rule out arbitrage opportunities and it

could be problematic to use this SDF to price derivatives on the test assets, for example. To deal

with this issue, HJ provide a second model misspecification measure:

δ+ = min
m∈M+

(E[(y−m)2])
1
2 . (5)

We refer to δ+ as the constrained HJ-distance. Since M+ is a subset of M, δ+ cannot be smaller

than δ.

Instead of solving the above primal problems to obtain δ and δ+, HJ suggest that it is sometimes

more convenient to solve the following dual problems:

δ2 = max
λ∈<n

E[y2 − (y − λ′r̃)2] − 2λ′q, (6)

δ2+ = max
λ∈<n

E[y2 − [(y − λ′r̃)+]2] − 2λ′q, (7)

where λ is a vector of Lagrange multipliers and (a)+ ≡ max[a, 0].
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When the candidate SDF y depends on some unknown parameters γ, it is customary to choose γ

to minimize δ or δ+, and the squared unconstrained and constrained HJ-distances are then defined

as

δ2 = min
γ∈Γ

min
m∈M

E[(y(γ)−m)2] = min
γ∈Γ

max
λ∈<n

E[y(γ)2 − (y(γ) − λ′r̃)2] − 2λ′q, (8)

δ2+ = min
γ∈Γ

min
m∈M+

E[(y(γ) −m)2] = min
γ∈Γ

max
λ∈<n

E[y(γ)2 − [(y(γ) − λ′r̃)+]2]− 2λ′q, (9)

where Γ is the parameter space of γ.

2.2 Analytical Solution for the Unconstrained HJ-Distance

In this section, we present the explicit expressions for the unconstrained HJ-distance and its associ-

ated quantitites. We start with the case where the SDF y does not depend on unknown parameters.

The candidate SDF y can always be decomposed into two components:

y = y∗ + z, (10)

where y∗ is the part of y that is spanned by the returns on the test assets and is given by

y∗ = µy + V ′
ryV

−1
rr (r − µr), (11)

with µy = E[y], µr = E[r], Vrr = Var[r], and Vry = Cov[r, y]. It is easy to see that z, the unspanned

component, has mean zero and is uncorrelated with r.

For the unconstrained HJ-distance, the vector of pricing errors of r̃ is given by

e = E[r̃y]− q =

[

R0µy − 1

Vry + µrµy

]

. (12)

Using the partitioned matrix inverse formula, it is easy to rewrite the inverse of U = E[r̃r̃′] as

U−1 =

[

R2
0 R0µ

′
r

R0µr Vrr + µrµ
′
r

]−1

=





1+a
R2

0
−µ′

r
V −1

rr

R0

−V −1
rr µr

R0
V −1

rr



 , (13)

where a = µ′rV
−1
rr µr is the squared Sharpe ratio of the tangency portfolio of the N risky assets. It

follows that the vector of Lagrange multipliers for the unconstrained HJ-distance problem is given
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by

λ = U−1e =





µ
y
−V ′

ry
V −1

rr µ
r

R0
− 1+a

R2
0

V −1
rr

(

Vry +
µ

r

R0

)



 (14)

and the admissible SDF that is closest to y is

my = y − λ′r̃ = z +
1

R0
− µ′rV

−1
rr (r − µr)

R0
. (15)

After simplification, the squared unconstrained HJ-distance of y is

δ2 = E[(y −my)
2] =

(

µy −
1

R0

)2

+

(

Vry +
µr

R0

)′

V −1
rr

(

Vry +
µr

R0

)

. (16)

When the SDF depends on parameters, we need to solve the outer optimization problem in (8).

For general nonlinear SDFs, it is hard to obtain explicit solutions for the SDF parameters, even for

the unconstrained HJ-distance. Therefore, we focus on linear SDFs of the form

y(γ) = γ0 + γ′1f, (17)

where f is a vector of K systematic factors, and γ = [γ0, γ
′
1]
′ is the vector of SDF parameters. In

addition to facilitating the derivation of γ, linear SDFs deserve a thorough investigation because

of their popularity in the literature.

Defining µf = E[f ] and Vrf = Cov[r, f ′], it can be readily shown that the parameter vector

γ = [γ0, γ
′
1]
′ that minimizes the unconstrained HJ-distance is

γ1 = − 1

R0
(V ′

rfV
−1
rr Vrf)−1(V ′

rfV
−1
rr µr), γ0 =

1

R0
− γ′1µf . (18)

As a result, the linear SDF that minimizes the unconstrained HJ-distance is

y =
1

R0
+ γ′1(f − µf). (19)

In addition, defining a1 = µ′rV
−1
rr Vrf(V ′

rfV
−1
rr Vrf)−1V ′

rfV
−1
rr µr as the squared Sharpe ratio of the

tangency portfolio constructed from the K factor mimicking portfolios, the squared unconstrained

HJ-distance for a linear SDF and the vector of Lagrange multipliers are given by

δ2 =
a− a1

R2
0

(20)
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and

λ =





−δ2

V −1
rr

(

Vrfγ1 +
µr

R0

)



 . (21)

3. Analytical Solution for the Constrained HJ-Distance

Unlike the case of the unconstrained HJ-distance, obtaining an analytical solution for δ+ is infeasible

without making a joint distributional assumption on the SDF and the returns on the test assets.

More specifically, we assume that the conditional joint distribution of the SDF and the returns is

multivariate elliptical (which includes normal, Student t, Cauchy, Laplace, symmetric stable, and

logistic distributions, among others, as special cases).2 It is important to emphasize that while we

assume that the conditional joint distribution of the SDF and the returns is multivariate elliptical,

we do not make any assumption on their time series properties. The mean and the covariance

matrix of the SDF and the returns can be time varying, and many popular time series models like

multivariate GARCH with multivariate normal or Student t errors are allowed under our framework.

Nevertheless, we do not argue that the multivariate elliptical distribution assumption is always

a good approximation of the true conditional distribution of the SDF and the returns. Whether

ellipticity provides a reasonable approximation or not depends on the problem at hand. Appendix A

provides definitions and notation for elliptically distributed random variables, including some new

results on the moments of censored and truncated elliptically distributed random variables. These

results are of independent interest given the importance of elliptical distributions for portfolio

choice theory, asset and option pricing theory (see Owen and Rabinovitch (1983), Zhou (1993) and

Hamada and Valdez (2008), among others.)

2Since an elliptically distributed SDF takes on negative values by construction, it cannot belong to M
+ and our

theoretical analysis of the constrained HJ-distance is clearly conducted under the hypothesis that the asset pricing
model is misspecified.
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3.1 Stochastic discount factors without parameters

Turning to the constrained HJ-distance case, the vector of Lagrange multipliers in (7) is given by

λ̃ = argminλE[(y − λ′r̃)+2] + 2λ′q, (22)

and λ̃ can be obtained by solving the following first order condition:

E[r̃(y − λ̃
′
r̃)+] = q. (23)

In principle, we can solve the n nonlinear equations E[r̃(y − λ̃
′
r̃)+] = q to obtain the vector of

Lagrange multipliers λ̃, but this can be very complicated. Instead, we simplify the problem so that

we only need to solve one nonlinear equation to obtain λ̃.

The solution to the first order condition in (23) depends on the joint distribution of y and

r. Assuming that conditional on F, y and r have a multivariate elliptical distribution with finite

variance, a linear combination of y and r̃, say v, also has a conditional elliptical distribution

in the same class. We assume that the characteristic function of v can be expressed as ϕ(t) =

exp(itµv)ψ(t2s2v/2) for some function ψ(·), where µv is the mean of v and c2s2v is the variance of v,

with c =
√

−ψ′(0).

We denote the density and cumulative distribution functions of ṽ = (v − µv)/sv as f and F ,

respectively. For a given choice of f , we define another elliptically distributed random variable w

with the following density function

f̃(w) =

∫

∞

w

csf(cs)ds. (24)

and denote the cumulative distribution function of w by F̃ . In Appendix A.1, we present a more

complete discussion of the class of elliptical distributions and explicitly derive f̃ .

Under the multivariate elliptical distribution assumption, the following proposition presents

explicit expressions for the Lagrange multipliers and the squared constrained HJ-distance.

Proposition 1. Suppose y and r are jointly elliptically distributed with finite variance, and c, F ,
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f̃ and F̃ are defined as above. Let η be the unique solution to the following equation

g(u) = [a+ σ2
zR

2
0F̃ (u)2]−

1
2 , (25)

where a is the squared Sharpe ratio of the tangency portfolio of the N risky assets, σ2
z is the variance

of the unspanned component of y, and

g(u) =
uF (cu) + f̃(u)

F̃ (u)
. (26)

The vector of Lagrange multipliers in the constrained HJ-distance case is given by

λ̃ =





µ
y
−V ′

ryV −1
rr µ

r

R0
− a+ η

g(η)

R2
0F̃ (η)

V −1
rr

(

Vry +
µ

r

R0F̃ (η)

)



 . (27)

The squared constrained HJ-distance of an SDF y is given by

δ2+ = δ2 + σ2
zF̃ (−η) +

a+ η
g(η)

R2
0F̃ (η)

− 1 + a

R2
0

, (28)

where the expression of δ2 is provided in (16).

Proof. See Appendix B.

The SDF in M+ that is closest to y is m+
y , where

my = y − λ̃
′
r̃ = z +

1

R0F̃ (η)

[

η

g(η)
− µ′rV

−1
rr (r − µr)

]

. (29)

Just like my in (15) for the unconstrained HJ-distance case, the my for the constrained HJ-distance

has two components. The first component, z, is uncorrelated with the returns, and the second

component is a linear function of the excess return on the tangency portfolio of the test assets. Let

∆ = δ2+ − δ2 be the difference between the squared constrained and unconstrained HJ-distances of

y. We are interested in the determinants of ∆. Note that η, the solution to (25), depends on σ2
z,

a, and R0. As a result, ∆ also depends on these three parameters. Out of the three parameters,

the only one that is related to the SDF is σ2
z — the variance of the unspanned component. When

σ2
z = 0 (i.e., spanned SDF), we have

g(η) =
1√
a

(30)
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and hence

∆ =
a+

√
aη

R2
0F̃ (η)

− 1 + a

R2
0

=

[√
a(
√
a+ η)

R2
0F̃ (η)

− 1

R2
0

]

− a

R2
0

= σ2
c − σ2

0, (31)

where σ2
c = minm∈M+ Var[m] and σ2

0 = minm∈M Var[m] are the constrained and unconstrained

bounds of Hansen and Jagannathan (1991).3 It should be noted that both HJ-bounds (and their

difference) only depend on the choice of the test assets and are model independent. Therefore, when

the SDF is spanned, δ2+ − δ2 is also model independent. This result implies that for two spanned

SDFs, the difference between their unconstrained HJ-distances is the same as the difference between

their constrained HJ-distances. Therefore, for spanned SDFs, the constrained and unconstrained

HJ-distances will provide the same ranking of competing asset pricing models.

The following lemma provides the comparative statics of ∆ with respect to its three determi-

nants.

Lemma 1. The partial derivatives of ∆ with respect to (σ2
z, a, R0) are given by

∂∆

∂σ2
z

= F̃ (−η) > 0, (32)

∂∆

∂a
=

F̃ (−η)
R2

0F̃ (η)
> 0, (33)

∂∆

∂R0
=

2

R3
0

[

1− aF̃ (−η)
F̃ (η)

− η

F̃ (η)g(η)

]

. (34)

Proof. See Appendix B.

Lemma 1 shows that ∆ is an increasing function of σ2
z, which suggests that σ2

c − σ2
0 is a lower

bound for ∆. Intuitively, adding an unspanned component z to an SDF does not affect its ability

to price the test assets, so the unconstrained HJ-distance (which is a measure of aggregate pricing

errors) of a model is unaffected by z. As a result, the expression of δ2 in (16) is independent of σ2
z.

However, adding an elliptically distributed z to an SDF can affect the SDF’s probability of taking

on negative values and hence ∆ is an increasing function of σ2
z. Note that ∆ does not depend on

3The last equality in (31) is a general result. It is not specific to the ellipticity assumption on the SDF and the
returns or to assuming, as we do in this section, that the SDF does not depend on parameters (more on this in
Section 3.2).
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how good or bad a model is for the test assets. It is only a function of the variance of its unspanned

component. This suggests that for two different models, say F and G, we can expect δ2F,+ − δ2G,+

to differ substantially from δ2F − δ2G only when the variances of the unspanned components across

the two models are very different.

Furthermore, Lemma 1 suggests that ∆ is an increasing function of the Sharpe ratio of the

tangency portfolio of the test assets. This result requires some explanation. Consider the case in

which σ2
z → 0. When this happens, (δ2+−δ2) → (σ2

c −σ2
0) — the difference between the constrained

and unconstrained HJ-bounds. Lemma 6 of Kan and Robotti (2008) shows that, under normality,

(σ2
c−σ2

0) → 0 when a→ 0, (σ2
c −σ2

0) → ∞ when a→ ∞, and σ2
c−σ2

0 is a strictly increasing function

of a. Therefore, when a is small, we should not expect large differences between the constrained and

unconstrained HJ-bounds and between the constrained and unconstrained HJ-distances. Intuitively,

when a is close to zero, the weight of the risk-free asset in the minimum second moment portfolio

is close to one, and the gross return on this portfolio has a very small probability of taking on a

negative value. Since the minimum variance admissible SDF is proportional to the gross return on

this portfolio, imposing the nonnegativity constraint of Hansen and Jagannathan (1991) on it has

almost no effect.

Figure 1 about here

To gain some understanding of how σz and a affect ∆, Figure 1 plots ∆ as a function of σz for

three different values of the Sharpe ratio of the tangency portfolio (
√
a = 0.25, 0.5, and 0.75) with

R0 = 1.005 (the plot is not sensitive to other reasonable values of the gross risk-free rate). In the

plot, the SDF and the excess returns on the test assets are assumed to be multivariate t-distributed

with six degrees of freedom. As expected, Figure 1 reveals that ∆ is an increasing function of σz.

However, ∆ is heavily influenced by the Sharpe ratio of the tangency portfolio. When
√
a = 0.25,

the difference between δ2+ and δ2 is indistinguishable from zero. For
√
a = 0.5, the difference

between δ2+ and δ2 is still quite small, even for relatively large σz. This suggests that for reasonable

10



Sharpe ratio values, we should not expect to find a large difference between the constrained and

unconstrained HJ-distances of a model, even if the model contains a large unspanned component.

3.2 Linear stochastic discount factors

Consider the linear SDF (17). We first define the covariance matrix of the residuals from projecting

the factors onto the returns as Vff ·r = Vff − V ′
rfV

−1
rr Vrf , where Vff = Var[f ]. The following

proposition presents the solution to the constrained HJ-distance problem.

Proposition 2. Let η be the unique solution to

g(u) =

(

a + α′

[

1

F̃ (u)
IK − V

−
1
2

ff Vff ·rV
−

1
2

ff

]−2

α

)− 1
2

, (35)

where α = V −1
ff V

1
2

ff ·rV
′
rfV

−1
rr µr, g(u) is defined in (26), and F̃ is defined before Proposition 1. Then,

the vector of SDF parameters that minimizes the constrained HJ-distance is given by γ̃ = [γ̃0, γ̃
′
1]
′,

where

γ̃1 = − 1

R0
[Vff − F̃ (η)Vff ·r]

−1(V ′
rfV

−1
rr µr), γ̃0 =

1

R0
− γ̃′1µf , (36)

and the SDF that minimizes the constrained HJ-distance is

ỹ =
1

R0
+ γ̃′1(f − µf). (37)

Furthermore, the squared constrained HJ-distance has the following expression:

δ2+ =
a+ η

g(η)

R2
0F̃ (η)

− 1 + ã1

R2
0

, (38)

where ã1 = µ′rV
−1
rr Vrf [Vff − F̃ (η)Vff ·r]

−1V ′
rfV

−1
rr µr and the vector of Lagrange multipliers for the

constrained HJ-distance is given by

λ̃ =





−δ2+
V −1

rr

(

Vrf γ̃1 +
µ

r

R0F̃ (η)

)



 . (39)

Proof. See Appendix B.

11



Besides the simplicity of the expressions for γ̃, λ̃, and δ2+, a few interesting observations emerge

from Proposition 2. First, the Lagrange multiplier on the risk-free asset is equal to −δ2
+ (expression

(21) shows that a similar result holds for the unconstrained HJ-distance). Second, in contrast to the

SDF case without parameters, η does not depend on R0 since ỹ prices the risk-free asset correctly.

Third, when the factors are spanned by the returns (i.e., Vff ·r = 0K×K), it can be readily shown

that the difference between the squared constrained and unconstrained HJ-distances coincides with

the difference between the constrained and unconstrained HJ-bounds. This result confirms our

earlier findings for spanned SDFs in Section 3.1. Finally, when one or more factors are useless,

i.e., they are uncorrelated with the returns, the SDF parameters that minimize the unconstrained

HJ-distance are not identified since the matrix V ′
rfV

−1
rr Vrf is not of full rank and cannot be inverted.

However, the SDF parameters that minimize the constrained HJ-distance are still well defined. For

example, when all factors are useless, we have γ̃ = [1/R0, 0′K ]′ and ỹ = 1/R0. In this case, δ2+ is

equal to the constrained HJ-bound σ2
c .

With the analytical solutions of the linear SDF parameters for the unconstrained and con-

strained HJ-distances, we can now answer two interesting questions. The first question is whether

the linear SDF ỹ in (37) results in a lower probability of taking on negative values than the linear

SDF y in (19). If this is the case, one can think of this as a potential benefit of using the constrained

HJ-distance. The second question is whether there is a trade-off between getting the linear SDF

closer to M+ and the ability of the SDF to price the test assets. For this purpose, we introduce

an aggregate measure of pricing errors of ỹ as

δ̃
2

= ẽ′U−1ẽ, (40)

where ẽ = E[r̃ỹ]− q is the vector of pricing errors when we use ỹ to price the test assets. Just like

the δ2 measure, δ̃
2

can be interpreted as the maximum squared pricing error of a portfolio of test

assets when one uses ỹ as the SDF. Comparing δ̃
2

with δ2, we gain useful insights of the potential

cost of using ỹ instead of y to price the test assets. The following lemma provides answers to these

two questions.
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Lemma 2. Let y and ỹ be the linear SDFs that minimize the unconstrained and constrained

HJ-distances, respectively. Then, we have

P [y < 0]− P [ỹ < 0] = F

(

− c

R0

√

γ′1Vffγ1

)

− F

(

− c

R0

√

γ̃′1Vff γ̃1

)

> 0, (41)

where F and c are defined before Proposition 1. In addition, we have

δ2 ≤ δ̃
2 ≤ δ2+. (42)

Proof. See Appendix B.

As shown in the proof of Lemma 2, (42) is a general result. It is not specific to the linear model

and our proof does not rely on the ellipticity assumption. However, we can only establish P [y <

0] > P [ỹ < 0] for the case of linear models and under the ellipticity assumption.

Lemma 2 suggests that there are potential benefits and costs in choosing the SDF parameters

to minimize the constrained HJ-distance as opposed to minimizing the unconstrained HJ-distance.

On the one hand, ỹ is less likely than y to take on negative values. On the other hand, ỹ will

price the test assets worse than y. Exactly how large is this cost-benefit trade-off depends on the

parameters. For the one-factor case, we can show that

P [y < 0]− P [ỹ < 0] = F

(

− c|ρ|√
a1

)

− F

(

−c[1− F̃ (η)(1− ρ2)]√
a1|ρ|

)

, (43)

where η is the unique solution to

g(u) =

[

a+
a1ρ

2(1− ρ2)F̃ (u)2

[1− F̃ (u)(1− ρ2)]2

]− 1
2

, (44)

and ρ2 = V ′
rfV

−1
rr Vrf/Vff is the proportion of variability of the factor that is explained by the

returns on the test assets. In addition, we have

δ̃
2 − δ2 =

a1

R2
0

[

F̃ (−η)(1− ρ2)

1 − F̃ (η)(1− ρ2)

]2

. (45)
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Note that both (43) and (45) depend on a, a1 and ρ2. In these expressions, a is the squared Sharpe

ratio of the tangency portfolio of the test assets, which is a measure of the cross-sectional difference

in expected excess returns across the test assets; a1 measures how good the model is in explaining

the expected returns on the test assets (recall that δ2 = (a−a1)/R
2
0); and, finally, ρ2 measures how

well the factor is spanned by the returns.

Assuming that the factor and the excess returns on the test are multivariate t-distributed with

six degrees of freedom, Figure 2 plots P [y < 0] − P [ỹ < 0] as a function of ρ2 for three different

values of the Sharpe ratio of the tangency portfolio (
√
a = 0.25, 0.5, and 0.75). In each case,

we assume a1 = a/2, so that the model explains half of the cross-sectional variation in expected

returns.

Figure 2 about here

From Figure 2, we can see that when ρ2 → 0 (y is not defined when ρ2 = 0), P [y < 0] − P [ỹ <

0] → 0.5. The reason is that when the unspanned component of the factor increases, y becomes

more volatile (because γ1 does not depend on the unspanned component of the factor) and behaves

more like a useless factor. As a result, P [y < 0] → 0.5. However, as ρ2 → 0, ỹ converges to

1/R0 and has almost zero probability of taking on negative values. In contrast, when ρ2 → 1, the

SDF behaves more like a spanned SDF. For a spanned SDF, the SDF parameters and hence the

probabilities of taking on negative values are the same for y and ỹ. Finally, Figure 3 shows that

the Sharpe ratio is important in determining P [y < 0] − P [ỹ < 0]. For a given value of ρ2, we can

see that the difference between the two probabilities is an increasing function of a. The reason is

that the spanned component of the SDF y is a linear function of the return on the factor mimicking

portfolio. When a is small, a1 is also small, so y puts relatively little weight on the factor mimicking

portfolio and hence P [y < 0] is small, leaving not much room for ỹ to improve.

Using the same parameters and distributional assumption as in Figure 2, Figure 3 plots δ̃
2 − δ2

as a function of ρ2 for R0 = 1.005.
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Figure 3 about here

Again, when ρ2 ≈ 1, the SDF is close to a spanned one. It follows that y ≈ ỹ, so they have

roughly the same aggregate pricing errors and δ̃
2 − δ2 → 0. However, when ρ2 → 0, we have

δ̃
2

= a/R2
0 (as ỹ ≈ 1/R0 and ỹ does not explain any cross-sectional difference in expected excess

returns). It follows that δ̃
2 − δ2 → a1/R

2
0. Similar to Figure 2, we also find a to be quite important

in determining δ̃
2 − δ2. It is only when a is large (and hence a1 is large) that we should expect a

large difference between the aggregate measures of pricing errors of y and ỹ.

In summary, we should expect y and ỹ to behave differently if a is large and ρ2 is small. In these

situations, P [ỹ < 0] will be substantially smaller than P [y < 0], but these are also situations in

which ỹ will do substantially worse than y in pricing the test assets. Whether one should sacrifice

the pricing of the test assets in exchange for a smaller SDF’s probability of taking on negative

values is not entirely clear. For example, when ρ2 is small, ỹ ≈ 1/R0 and ỹ is indeed almost always

positive. However, this ỹ is unlikely to be a good SDF even for pricing derivatives since it prices

every asset by discounting the future asset payoffs using the risk-free rate.

4. Conclusion

In this paper, we derive an analytical solution for the constrained HJ-distance, the associated

Lagrange multipliers, and the SDF parameters in the case of linear SDFs under an ellipticity

assumption on the conditional joint distribution of the SDF and the returns. This allows us to

show that nontrivial differences between the constrained and unconstrained HJ-distances can only

arise when the volatility of the unspanned component of an SDF is large and the Sharpe ratio of

the tangency portfolio of the test assets is very high. In addition, our analysis allows us to quantify

the deterioration in the ability of a given linear SDF to price the test assets when imposing a

no-arbitrage constraint.
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Appendix A: Definitions and Preliminary Lemmas

A.1 Elliptical distributions: Definitions and notation

In this section, we introduce the definitions and notation for the class of multivariate elliptical

distributions, following closely Landsman and Valdez (2003). We say that two random variables

(u, v) have a bivariate elliptical distribution, written as E(µ, S, ψ), if their characteristic function

can be expressed as

ϕ(t) = exp(it′µ)ψ

(

t′St

2

)

(A1)

for some

µ =

[

µu

µv

]

, S =

[

s2u suv

svu s2v

]

, (A2)

and ψ(·), which is called the characteristic generator. When the mean of [u, v]′ exists, we have

E[u] = µu and E[v] = µv. When the variance of [u, v]′ exists, we have σ2
u = Var[u] = c2s2u,

σ2
v = Var[v] = c2s2v and σuv = Cov[u, v] = c2suv , where c =

√

−ψ′(0). It is important to remember

that S is not the covariance matrix of [u, v]′ in general.

We assume that the density functions of u and v exist. The density function of v (the density

function of u is similarly defined) is given by

fv(v) =
c1
sv
h

(

(v − µv)
2

2s2v

)

, (A3)

where h(·) is a nonnegative function (called the density generator) and

c1 =
1√
2

[
∫ ∞

0
x−

1
2h(x)dx

]−1

(A4)

is a normalization constant.

We provide two examples of elliptical distributions: normal and Student t. For the normal
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distribution, we have

ψ(s) = e−s, (A5)

h(t) = e−t, (A6)

c1 =
1√
2π
, (A7)

fv(v) =
1√

2πsv
e
−

(v−µv)2

2s
2
v . (A8)

It follows that ψ′(s) = −e−s, c =
√

−ψ′(0) = 1, and σ2
v = s2v.

For the Student t distribution with ν degrees of freedom, we have

ψ(s) =
Kν/2(

√
2νs)

(

νs
2

)
ν

4

2Γ
(

ν
2

) , (A9)

h(t) =

(

1 +
2t

ν

)−
ν+1

2

, (A10)

c1 =
1

B
(

1
2 ,

ν
2

)√
ν
, (A11)

fv(v) =
1

B
(

1
2 ,

ν
2

)√
νsv

[

1 +
(v − µv)

2

νs2v

]−
ν+1

2

, (A12)

where Kν(x) is the modified Bessel function of the second kind, Γ(a) is the gamma function, and

B(a, b) is the beta function. It is straightforward to show that

ψ′(s) = −
νK(ν−2)/2(

√
2νs)

(

νs
2

)
ν−2

4

Γ
(

ν
2

) , (A13)

and c =
√

−ψ′(0) = [ν/(ν − 2)]
1
2 . In addition, when ν > 1, the mean of v exists and when ν > 2,

the variance of v exists and σ2
v = νs2v/(ν − 2).

For a given elliptical random variable v with parameters µv and s2v, we define

ṽ =
v − µv

sv
. (A14)

The random variable ṽ has a spherical distribution (i.e., an elliptical distribution with parameters

µṽ = 0 and sṽ = 1). We denote its density and cumulative distribution functions by f(ṽ) and F (ṽ),

respectively. Note that

f(ṽ) = c1h

(

ṽ2

2

)

. (A15)
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By symmetry, we have f(−ṽ) = f(ṽ) and 1 − F (−ṽ) = F (ṽ). In addition, we have σ2
ṽ = c2 when

the variance of ṽ exists.

For every spherical random variable ṽ with finite variance, Landsman and Valdez (2003) show

that a random variable w with the following density function4

f̃(w) =

∫ ∞

w
cṽf(cṽ)dṽ =

1

c

∫ ∞

cw
sf(s)ds (A16)

is also a spherical random variable. The density function of w can alternatively be written as

f̃(w) =
c1
c
H

(

c2w2

2

)

, (A17)

where

H(x) =

∫ ∞

x
h(t)dt. (A18)

From this expression, we can easily see that the density function of w only depends on w2, so w

has a spherical distribution. The distribution of w is crucial for us to obtain the tail conditional

expectation of v.

For a given spherical random variable ṽ, the above definitions allow us to quickly obtain the

density function of the associated spherical random variable w. For example, when ṽ ∼ N (0, 1),

we have h(t) = e−t and

H(x) =

∫

∞

x
e−tdt = e−x. (A19)

Therefore, using c = 1 and c1 = 1/
√

2π, we obtain

f̃(w) =
1√
2π
e−

w
2

2 (A20)

and w ∼ N (0, 1).

When ṽ ∼ tν for ν > 2, we use (A10) to obtain

H(x) =

∫

∞

x

(

1 +
2t

ν

)−
ν+1

2

dt =
ν

ν − 1

(

1 +
2x

ν

)−
ν−1

2

. (A21)

4Instead of mapping ṽ to w, Landsman and Valdez (2003) define a slightly different mapping from ṽ to Z
∗ = cw.
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Then using (A11) and c = [ν/(ν − 2)]
1
2 , we obtain

f̃ (w) =
1√

νB
(

1
2 ,

ν
2

)

√
ν − 2√
ν

ν

ν − 1

(

1 +
w2

ν − 2

)−
ν−1

2

=
1√

ν − 2B
(

1
2 ,

ν−2
2

)

(

1 +
w2

ν − 2

)−
ν−1

2

, (A22)

and w ∼ tν−2.

A.2 Preliminary lemmas

Lemma A.1. Suppose [u, v]′ is bivariate elliptically distributed with finite variance. Let η = µv/σv,

where µv and σv are the mean and standard deviation of v, respectively. We have

E[v+] = µvF (cη) + σvf̃(η) = F̃ (η)σvg(η), (A23)

E[uv+] = σuvF̃ (η) + µu[µvF (cη) + σv f̃(η)]

= F̃ (η) (E[uv] + µuσv [g(η)− η]) , (A24)

where F is the cumulative distribution function of ṽ = (v−µv)/sv, c = σṽ, f̃ and F̃ are the density

and cumulative distribution functions of another spherical random variable w that is associated with

ṽ as defined in (A16), and

g(η) =
ηF (cη) + f̃ (η)

F̃ (η)
. (A25)

Proof of Lemma A.1. For a given f , we define the functions

h̃(x) =

∫ ∞

−x
ṽf(ṽ)dṽ, (A26)

H̃(x) =

∫

∞

−x

ṽ2f(ṽ)dṽ. (A27)

We are interested in obtaining E[v+], which is given by

E[v+] =

∫ ∞

0
vfv(v)dv =

∫ ∞

−cη
(µv + sv ṽ)f(ṽ)dṽ = µvF (cη) + svh̃(cη) = µvF (cη) + σv f̃(η), (A28)

where the last equality follows from (A16) and the fact that h̃(cη) = cf̃(−η) = cf̃(η).
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In order to obtain E[uv+], we need to first derive E[v+2], which is given by

E[v+2] =

∫ ∞

0
v2fv(v)dv =

∫ ∞

−cη
(µv + sv ṽ)

2f(ṽ)dṽ = µ2
vF (cη) + 2µvsvh̃(cη) + s2vH̃(cη). (A29)

Since

dh̃(η)

dη
= ηf(−η) = ηf(η), (A30)

we can use integration by parts to obtain

H̃(cη) =

∫

∞

−cη

ṽ2f(ṽ)dṽ

= ṽh̃(ṽ)
∣

∣

∣

∞

−cη
−
∫ ∞

−cη
h̃(ṽ)dṽ

= d− cηh̃(cη) − c

∫ ∞

−cη
f̃

(

ṽ

c

)

dṽ

= d− c2ηf̃(η) − c2
∫ ∞

−η
f̃(s)ds

= d− c2ηf̃(η) + c2F̃ (η), (A31)

where d ≡ limṽ→∞ ṽh̃(ṽ). We now show that d = 0 when c < ∞. Since w is a symmetric random

variable, F̃ (0) = 1/2 and it follows that

H̃(0) = d+ c2F̃ (0) = d+
c2

2
. (A32)

However, we know that

H̃(0) =

∫ ∞

0
ṽ2f(ṽ)dṽ =

c2

2
, (A33)

and hence d = 0 when c is finite. Therefore, we have

H̃(cη) = −c2ηf̃(cη) + c2F̃ (η). (A34)

Using (A29) and h̃(cη) = cf̃(η), we have

E[v+2] = µ2
vF (cη) + 2µvsvh̃(cη) − s2vc

2ηf̃(η) + s2vc
2F̃ (η)

= µ2
vF (cη) + µvσv f̃(η) + σ2

vF̃ (η). (A35)
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Under the bivariate elliptical assumption on u and v, we have

E[u|v] = µu +
σuv

σ2
v

(v − µv). (A36)

It then follows that

E[uv+] = E[E[u|v]v+]

= E

[(

µu +
σuv

σ2
v

(v − µv)

)

v+

]

=

(

µu − σuv

σ2
v

µv

)

E[v+] +
σuv

σ2
v

E[v+2]

=

(

µu − σuv

σ2
v

µv

)

[µvF (cη) + σvf̃(η)] +
σuv

σ2
v

[µ2
vF (cη) + σ2

vF̃ (η) + µvσv f̃(η)]

= σuvF̃ (η) + µu[µvF (cη) + σvf̃(η)]. (A37)

This completes the proof.

The following lemma is used in proving the uniqueness of the solution to the equation in Propo-

sition 1 for elliptically distributed random variables.

Lemma A.2. Let f and F be the density and cumulative distribution functions of a spherical

random variable ṽ with finite variance. By truncating ṽ from above at the value of cu, we define a

truncated random variable x with density function f(x)/F (cu) for −∞ < x < cu. The variance of

x is given by

Var[x] =
c2

F (cu)

[

F̃ (u) − uf̃ (u)− f̃(u)2

F (cu)

]

, (A38)

where c = σṽ, and f̃ and F̃ are the density and cumulative distribution functions of another

elliptical random variable w that is associated with ṽ as defined in (A16).

Proof of Lemma A.2. Using the fact that

∂cf̃(x/c)

∂x
= −xf(x), (A39)

we can easily obtain

E[x] =
1

F (cu)

∫ cu

−∞

xf(x)dq = − c

F (cu)
f̃
(x

c

)∣

∣

∣

cu

−∞
= − cf̃(u)

F (cu)
. (A40)
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Then using integration by parts, we obtain the second moment of x as

E[x2] =
1

F (cu)

∫ cu

−∞

x2f(x)dx

=
1

F (cu)

[

−cxf̃
(x

c

)
∣

∣

∣

cu

−∞
+

∫ cu

−∞

cf̃
(x

c

)

dq

]

=
1

F (cu)
[−c2uf̃(u) + c2F̃ (u)]. (A41)

Then, the variance of x is given by (A38). This completes the proof.

Appendix B: Proofs of Main Results

Proof of Proposition 1. Since my = y − λ̃
′
r̃ follows an elliptical distribution with mean µm and

variance σ2
m, we can invoke Lemma A.1 to obtain

E[r̃m+
y ] = F̃ (η)(E[r̃y] − Uλ̃+E[r̃]σm[g(η) − η]), (B1)

where η = µm/σm.

Using the first order condition E[r̃m+
y ] = q and the expression of U−1 in (13), we obtain

U−1E[r̃] = q/R0 and

λ̃ = U−1E[r̃y] + σm[g(η) − η]U−1E[r̃] − 1

F̃ (η)
U−1q

=





µ
y
−V ′

ryV −1
rr µ

r

R0

V −1
rr Vry



+

[

σm[g(η)−η]
R0

0N

]

− 1

F̃ (η)

[ 1+a
R2

0

−V −1
rr µ

r

R0

]

. (B2)

Using (B2) and after simplification, we have

my = y − λ̃
′
r̃ = z +

1

F̃ (η)

[

1

R0
− µ′rV

−1
rr (r − µr)

R0

]

− σm[g(η)− η], (B3)

and the variance of my is given by

σ2
m = σ2

z +
a

R2
0F̃ (η)2

. (B4)
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With (B2) and (B4), we can see that once η is identified, λ̃ will be uniquely determined and there

is no need to solve n nonlinear equations to obtain λ̃.

Now, using the fact that m+
y prices the risk-free asset correctly, we have E[m+

y ] = 1/R0. Then

using (A23) to express E[m+
y ] = F̃ (η)σmg(η), we obtain

g(η) =
1

σmR0F̃ (η)
. (B5)

Substituting σm from (B4) into this expression, we can see that η satisfies the following first order

condition:

g(u) = [a+ σ2
zR

2
0F̃ (u)2]−

1
2 . (B6)

For establishing the uniqueness of the solution to equation (B6), we need to show that (i)

g(u) > 0, (ii) g(∞) = ∞, (iii) g(−∞) = 0, and (iv) g′(u) > 0. Condition (i) follows from (A23).

Condition (ii) follows from the definition of g. For condition (iii), it is convenient to write

g(u) =
uF (cu) + f̃(u)

F̃ (u)
=
g1(u)

g2(u)
. (B7)

Then,

g′1(u) = F (cu), (B8)

g′2(u) = f̃ (u), (B9)

g′′1 (u) = cf(cu), (B10)

g′′2 (u) = −cuf(cu). (B11)

Using L’Hôpital’s rule twice, we have

lim
u→−∞

g(u) = lim
u→−∞

g′′1 (u)

g′′2 (u)
= lim

u→−∞

cf(cu)

−cuf(cu)
= lim

u→−∞
−1

u
= 0. (B12)

For (iv), taking the derivative of g(u), we have

g′(u) =
F (cu)

F̃ (u)2

[

F̃ (u)− uf̃(u)− f̃(u)2

F (cu)

]

> 0, (B13)
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where the inequality is obtained by using (A38) and the fact that Var[x] > 0. Since the left hand

side of (B6) is positive and increasing in η, and the right hand side of (B6) is positive and decreasing

in η, the solution to (B6) is unique.

Using (B5), we can express the vector of Lagrange multipliers as

λ̃ =





µ
y
−V ′

ryV −1
rr µ

r

R0
+

1− η

g(η)

R2
0F̃ (η)

− 1+a
R2

0F̃ (η)

V −1
rr

(

Vry +
µ

r

R0F̃ (η)

)



 =





µ
y
−V ′

ryV −1
rr µ

r

R0
− a+ η

g(η)

R2
0F̃ (η)

V −1
rr

(

Vry +
µ

r

R0F̃ (η)

)



 . (B14)

The nonnegative admissible SDF that is closest to y is m+
y , where my is defined in (B3). It

follows that the squared constrained HJ-distance of y is given by

δ2+ = E[(y−m+
y )2] = E[y2] − 2E[ym+

y ] +E[m+
y

2]. (B15)

It is straightforward to show that

E[y2] = σ2
z + µ2

y + V ′
ryV

−1
rr Vry. (B16)

Using (A24) and the fact that E[m+
y ] = 1/R0, we obtain

E[ym+
y ] =

(

σ2
z −

V ′
ryV

−1
rr µr

R0F̃ (η)

)

F̃ (η) +
µy

R0
, (B17)

E[m+
y

2] = E[mym
+
y ] = σ2

mF̃ (η) +
µm

R0
. (B18)

With these expressions, we obtain

δ2+ = σ2
z + µ2

y + V ′
ryV

−1
rr Vry − 2

(

σ2
zF̃ (η) −

V ′
ryV

−1
rr µr

R0

)

−
2µy

R0
+ σ2

mF̃ (η) +
µm

R0

=

(

µy −
1

R0

)2

+

(

Vry +
µr

R0

)′

V −1
rr

(

Vry +
µr

R0

)

+ σ2
z − 2σ2

zF̃ (η) + σ2
mF̃ (η) +

µm

R0
− 1 + a

R2
0

= δ2 + σ2
z[1 − F̃ (η)] + (σ2

m − σ2
z)F̃ (η) +

ησm

R0
− 1 + a

R2
0

= δ2 + σ2
zF̃ (−η) +

a+ η
g(η)

R2
0F̃ (η)

− 1 + a

R2
0

, (B19)

where the last equality follows from (B4) and (B5). This completes the proof.

24



Proof of Lemma 1. We first show that ∂∆/∂η = 0.

∂∆

∂η
= −σ2

zf̃ (−η) − af̃ (η)

R2
0F̃ (η)2

+
R2

0F̃ (η)g(η) − η[R2
0F̃ (η)g′(η) + R2

0f̃(η)g(η)]

R4
0F̃ (η)2g(η)2

= −σ2
zf̃ (η) − af̃(η)

R2
0F̃ (η)2

+
1

R2
0g(η)F̃ (η)

− ηg′(η)

R2
0g(η)

2F̃ (η)
− ηf̃(η)

R2
0g(η)F̃ (η)2

= − f̃(η)

R2
0F̃ (η)2

[a+ σ2
zR

2
0F̃ (η)2] +

1

R2
0g(η)F̃ (η)

− ηg′(η)

R2
0g(η)

2F̃ (η)
− ηf̃(η)

R2
0g(η)F̃ (η)2

= − f̃(η)

R2
0F̃ (η)2g(η)2

+
g(η)F̃ (η)− ηF (cη)

R2
0F̃ (η)2g(η)2

= − f̃(η)

R2
0F̃ (η)2g(η)2

+
f̃(η)

R2
0F̃ (η)2g(η)2

= 0. (B20)

The fourth equality follows because

a+ σ2
zR

2
0F̃ (η)2 =

1

g(η)2
(B21)

and

g′(η) =
F (cη)− g(η)f̃(η)

F̃ (η)
, (B22)

which can be easily verified by using (A25) and (B13). This suggests that as far as the partial

derivatives of ∆ with respect to (σ2
z, a, R0) are concerned, we can treat η as a constant. Thus, it

follows that

∂∆

∂σ2
z

= F̃ (−η) > 0, (B23)

∂∆

∂a
=

1

R2
0F̃ (η)

− 1

R2
0

=
F̃ (−η)
R2

0F̃ (η)
> 0, (B24)

∂∆

∂R0
=

2

R3
0

[

1− aF̃ (−η)
F̃ (η)

− η

F̃ (η)g(η)

]

. (B25)

This completes the proof.

Proof of Proposition 2. Let ỹ = γ̃′f̃ and mỹ = ỹ − λ̃
′
r̃, where f̃ = [1, f ′]′. In addition, let

C = E[f̃f̃ ′] and D = E[r̃f̃ ′]. Differentiating

δ2+ = E[ỹ2] −E[m+2
ỹ ] − 2λ̃

′
q (B26)
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with respect to γ̃ and λ̃, we obtain the following first order conditions:

Cγ̃ − E[f̃m+
ỹ ] = 0K+1, (B27)

E[r̃m+
ỹ ] = q. (B28)

Let µm = E[mỹ] and σ2
m = Var[mỹ]. Invoking Lemma A.1, we have

E[f̃m+
ỹ ] = F̃ (η)(Cγ̃ −D′λ̃+ σm[g(η) − η]E[f̃]), (B29)

E[r̃m+
ỹ ] = F̃ (η)(Dγ̃ − Uλ̃+ σm[g(η) − η]E[r̃]), (B30)

where η = µm/σm. Putting the above expressions into the first order conditions, we obtain

[

F̃ (−η)C F̃ (η)D′

F̃ (η)D −F̃ (η)U

][

γ̃

λ̃

]

=

[

F̃ (η)σm[g(η)− η]E[f̃]

q − F̃ (η)σm[g(η) − η]E[r̃]

]

. (B31)

Let H = [C + F̃ (η)(D′U−1D − C)]−1. We can use the partitioned matrix inverse formula to write

[

F̃ (−η)C F̃ (η)D′

F̃ (η)D −F̃ (η)U

]−1

=

[

H HD′U−1

U−1DH − 1
F̃ (η)

U−1 + U−1DHD′U−1

]

. (B32)

Using (13), we can easily verify that U−1E[r̃] = q/R0 and hence

D′U−1E[r̃] =
1

R0
D′q =

1

R0
E[R0f̃ ] = E[f̃]. (B33)

Using this identity, we can then show that

γ̃ = HD′U−1q. (B34)

From the partitioned matrix inverse formula and after some algebra, we can simplify the H matrix

as

H =

[

1 + µ′fPµf −µ′fP
−Pµf P

]

, (B35)

where P = [Vff − F̃ (η)Vff ·r]
−1. Using this expression and (13), we can then rewrite (B34) as

γ̃ =

[

1 + µ′fPµf −µ′fP
−Pµf P

][

R0 µ′r

µfR0 V ′
rf + µfµ

′
r

]





(1+a)
R2

0

−V −1
rr µr

R0



 . (B36)
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After some algebra, we can express γ̃ = [γ̃0, γ̃
′
1]
′ as

γ̃1 = − 1

R0
PV ′

rfV
−1
rr µr, γ̃0 =

1

R0
− γ̃′1µf . (B37)

As a result, we can write ỹ = 1
R0

+ γ̃′1(f − µf ). Since the expression of λ̃ in (27) also works for ỹ,

we can use µỹ = 1/R0, and V ′
rỹV

−1
rr µr = γ̃′1V

′
rfV

−1
rr µr = −ã1/R0 to obtain

λ̃ =





1+ã1

R2
0

− a+ η

g(η)

R2
0F̃ (η)

V −1
rr

(

Vrf γ̃1 +
µ

r

R0F̃ (η)

)



 . (B38)

Note that we only need to solve for η to obtain explicit expressions for γ̃ and λ̃. Defining ε =

(f − µf )− V ′
rfV

−1
rr (r− µr) as the unspanned components of the factors, we can write

mỹ = γ̃′f̃ − λ̃
′
r̃ = γ̃′1ε−

µ′rV
−1
rr (r− µr)

R0F̃ (η)
+

η

R0F̃ (η)g(η)
. (B39)

Using E[ε] = 0K and Var[ε] = Vff ·r, we have

σ2
m = Var[mỹ] = γ̃′1Vff ·rγ̃1 +

a

R2
0F̃ (η)2

. (B40)

Since m+
ỹ prices the risk-free asset correctly, we have

E[m+
ỹ ] = F̃ (η)σmg(η) =

1

R0
. (B41)

Then, plugging the expression of σ2
m from (B40) into (B41), we obtain

g(η) =
[

a+ γ̃ ′1Vff ·rγ̃1R
2
0F̃ (η)2

]− 1
2
. (B42)

Using the expression for γ̃1 in (B37) and rearranging terms, we can see that η satisfies the following

equation:

g(u) =

(

a + α′

[

1

F̃ (u)
IK − V

−
1
2

ff Vff ·rV
−

1
2

ff

]−2

α

)− 1
2

, (B43)

where α = V −1
ff V

1
2

ff ·rV
′
rfV

−1
rr µr. Since the left hand side is positive and increasing in u and the right

hand side is positive and decreasing in u (because all the eigenvalues of V
−

1
2

ff Vff ·rV
−

1
2

ff are less than

or equal to one), (B43) has a unique solution. Using (A24), it is straightforward to obtain

E[ỹm+
ỹ ] = Cov[ỹ, mỹ]F̃ (η) +

1

R2
0

=

[

γ̃′1Vff ·rγ̃1 +
ã1

R2
0F̃ (η)

]

F̃ (η) +
1

R2
0

, (B44)

E[m+2
ỹ ] = E[mỹm

+
ỹ ] = σ2

mF̃ (η) +
µm

R0
. (B45)
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The squared constrained HJ-distance is then given by

δ2+ = E[(ỹ −m+
ỹ )2]

= E[ỹ2]− 2E[ỹm+
ỹ ] + E[m+2

ỹ ]

=
1

R2
0

+ γ̃′1Vff γ̃1 − 2

[

γ̃′1Vff ·rγ̃1 +
ã1

R2
0F̃ (η)

]

F̃ (η)− 2

R2
0

+ σ2
mF̃ (η) +

µm

R0

= γ̃′1Vff γ̃1 − 2γ̃′1Vff ·rγ̃1F̃ (η) − 1 + 2ã1

R2
0

+

[

γ̃′1Vff ·rγ̃1 +
a

R2
0F̃ (η)2

]

F̃ (η) +
ησm

R0

= γ̃′1[Vff − F̃ (η)Vff ·r]γ̃1 −
1 + 2ã1

R2
0

+
a

R2
0F̃ (η)

+
η

R2
0F̃ (η)g(η)

=
a+ η

g(η)

R2
0F̃ (η)

− 1 + ã1

R2
0

, (B46)

where the second last equality is obtained by using σm = 1/[R0F̃ (η)g(η)] from (B41). Finally, we

can easily see that the first element of λ̃ in (B38) is equal to −δ2+. This completes the proof.

Proof of Lemma 2. The probability for y to take on negative values is equal to

P [y < 0] = F

(

−
cµy

σy

)

= F

(

− c

R0σy

)

= F

(

− c

R0

√

γ′1Vffγ1

)

, (B47)

where µy and σy are the mean and standard deviation of the SDF y, respectively. In contrast, the

probability for ỹ to take on negative values is equal to

P [ỹ < 0] = F

(

−
cµỹ

σỹ

)

= F

(

− c

R0σỹ

)

= F

(

− c

R0

√

γ̃′1Vff γ̃1

)

, (B48)

where µỹ and σỹ are the mean and standard deviation of the SDF ỹ, respectively. The inequality

holds because

R2
0γ̃

′
1Vff γ̃1 = µ′rV

−1
rr Vrf(Vff − F̃ (η)Vff ·r)

−1Vff(Vff − F̃ (η)Vff ·r)
−1V ′

rfV
−1
rr µr

= µ′rV
−1
rr VrfV

1
2

ff

(

IK − F̃ (η)V
− 1

2
ff Vff ·rV

− 1
2

ff

)−2

V
1
2

ffV
′
rfV

−1
rr µr

≤ µ′rV
−1
rr VrfV

1
2

ff(IK − V
− 1

2
ff Vff ·rV

− 1
2

ff )−2V
1
2

ffV
′
rfV

−1
rr µr

= µ′rV
−1
rr Vrf(V ′

rfV
−1
rr Vrf )−1Vff(V ′

rfV
−1
rr Vrf)−1V ′

rfV
−1
rr µr

= R2
0γ

′
1Vffγ1. (B49)
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For (42), the first inequality, δ2 ≤ δ̃
2
, is obvious since γ is chosen to minimize δ2 = e′U−1e but

γ̃ is not. For the second inequality, δ̃
2 ≤ δ2+, note that for every h ∈ L2 with E[h2] = 1, we have

min
m∈M+

(E[ỹh] − E[mh])2 ≤ δ2+. (B50)

Consider a portfolio ω with unit second moment, i.e., ω′Uω = 1. When ỹ is the SDF, the squared

pricing error of the portfolio is (ω′ẽ)2, and it is maximized when ω is chosen to be

ω∗ =
U−1ẽ

(ẽ′U−1ẽ)
1
2

. (B51)

Let h = ω∗′r̃. Since h is a linear combination of r̃, E[mh] = ω∗′E[mr̃] = ω∗′q and the price of h is

the same for every m ∈ M+. It follows that

δ2+ ≥ inf
m∈M+

(E[ỹh] − E[mh])2 = (E[ỹh] − E[mh])2 = (ω∗′(E[ỹr̃] − q))2 = (ω∗′ẽ)2 = δ̃
2
. (B52)

This completes the proof.
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Figure 1. Difference between squared constrained and unconstrained Hansen-

Jagannathan distances. The figure plots the difference between squared constrained and uncon-

strained HJ-distances (∆) as a function of the standard deviation of the unspanned component (σz)
of the candidate SDF. The gross risk-free rate is assumed to be 1.005. The dotted line represents

the case in which the Sharpe ratio of the tangency portfolio (
√
a) is 0.25. The solid line is for√

a = 0.5, and the dashed line is for
√
a = 0.75. The SDF and the excess returns on the test assets

are assumed to be multivariate t-distributed with six degrees of freedom.
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Figure 2. Difference in the probabilities of taking on negative values for two linear

SDFs. The figure plots P [y < 0] − P [ỹ < 0] as a function of ρ2 in a 1-factor setting, where y

and ỹ are the linear SDFs chosen to minimize the unconstrained and constrained HJ-distances,
respectively. ρ2 is the proportion of variability of the factor that is explained by the returns. The

dotted line represents the case in which the Sharpe ratio of the tangency portfolio (
√
a) is 0.25.

The solid line is for
√
a = 0.5, and the dashed line is for

√
a = 0.75. In each case, we assume

that the squared Sharpe ratio of the factor mimicking portfolio (a1) is half of the value of a. The

factor and the excess returns on the test assets are assumed to be multivariate t-distributed with
six degrees of freedom.
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Figure 3. Difference in the aggregate measures of pricing errors of two linear SDFs.

The figure plots δ̃
2 − δ2 as a function of ρ2 in a one-factor setting, where δ2 and δ̃

2
are the

aggregate measures of pricing errors of the test assets when the linear SDF is chosen to minimize
the unconstrained and constrained HJ-distances, respectively. ρ2 is the proportion of variability of

the factor that is explained by the returns. The dotted line represents the case in which the Sharpe
ratio of the tangency portfolio (

√
a) is 0.25. The solid line is for

√
a = 0.5, and the dashed line is for√

a = 0.75. In each case, we assume that the squared Sharpe ratio of the factor mimicking portfolio
(a1) is half of the value of a. The gross risk-free rate is assumed to be 1.005. The factor and the

excess returns on the test assets are assumed to be multivariate t-distributed with six degrees of
freedom.
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