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I. Introduction

For at least twenty five years, economists have estimated structural models with
constant parameters using U.S. and international data. Experience has taught us
that some parameters in these models are unstable and a natural explanation for
the failure of the parameter constancy assumption is that the world is changing.
There are competing explanations for the source of parameter change that include
abrupt breaks in the variance of structural shocks (Stock and Watson, 2003; Sims
and Zha, 2006; Justiniano and Primiceri, 2008), breaks in the parameters of the
private sector equations due to financial innovation (Bernanke, Gertler, and Gilchrist,
1999; Christiano, Motto, and Rostagno, 2008; Gertler and Kiyotaki, 2010), or breaks
in the parameters of monetary and fiscal policy rules (Clarida, Galí, and Gertler,
2000; Lubik and Schorfheide, 2004; Davig and Leeper, 2007; Fernandez-Villaverde and
Rubio-Ramirez, 2008; Christiano, Eichenbaum, and Rebelo, 2009). Markov-switching
rational expectations (MSRE) models can capture the fact that the structure of the
economy changes over time.

Cogley and Sargent (2005a)’s estimates of random coefficient models suggest that
when parameters change, they move around in a low dimensional subspace; that is,
although all of the parameters of a VAR may change – they change together. This
is precisely what one would expect if parameter change were due to movements in a
small subset of parameters of a structural rational expectations model. Although this
phenomenon can be effectively modeled as a discrete Markov process, Sims (1982)
and Cooley, LeRoy, and Raymon (1984) pointed out some time ago that a rational
expectations model should take account of the fact that agents will act differently if
they are aware of the possibility of regime change.

In a related paper (Farmer, Waggoner, and Zha, 2009), we show that equilibria of
MSRE models are of two types; minimal state variable (MSV) equilibria and non-
fundamental equilibria. Non-fundamental equilibria may or may not exist. If a non-
fundamental equilibrium exists, it is the sum of an MSV equilibrium and a secondary
stochastic process. Our innovation in this paper is to develop an efficient method
for finding MSV equilibria in a general class of MSRE models, including those with
lagged state variables. Given the set of MSV equilibria, our (2009) paper shows how
to construct non-fundamental equilibria.

Previous authors, notably Leeper and Zha (2003), Davig and Leeper (2007), Farmer,
Waggoner, and Zha (2008), and Svensson and Williams (2005) have made some
progress in developing methods to solve for the equilibria of MSRE models. But
the techniques developed to date are not capable of finding all of the equilibria in a
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general class of MSRE models. We illustrate this point with an example. We use a
simple rational expectations model to illustrate why previous approaches (including
our own) may not find an MSV equilibrium, and in the case of multiple MSV equi-
libria, can at best find only one MSV equilibrium. In contrast, we show that our new
method is able to find all MSV equilibria. The algorithm we develop is shown to be
fast and efficient.

II. Minimal state variable solutions

A general class of MSRE models studied in the literature has the following form:
A(st) a1 (st)

(n−ℓ)×n

a2 (st)
ℓ×n

 xt
n×1

=

B(st) b1 (st)
(n−ℓ)×n

b2 (st)
ℓ×n

xt−1
n×1

+

Ψ(st) ψ1 (st)
(n−ℓ)×k

ψ2 (st)
ℓ×k

 εt
k×1

+

Π(st) π1 (st)
(n−ℓ)×ℓ

π2 (st)
ℓ×ℓ

 ηt
ℓ×1
, (1)

where xt is an n × 1 set of endogenous variables, a1, a2, b1, b2, ψ1, ψ2, π1, and π2 are
conformable parameter matrices, εt is a k × 1 vector of i.i.d. stationary exogenous
shocks, and ηt is an ℓ × 1 vector of endogenous random variables. The variable
st is an exogenous stochastic process following an h−regime Markov chain, where
st ∈ {1, ...h} with transition matrix P = [pij] defined as

pij = Pr(st = i | st−1 = j).

Because the vector ηt is a mean zero endogenous stochastic process and we implicitly
assume that Πst is of full rank, without loss of generality we let π1 (st) = 0, π2 (st) = Iℓ,
ψ1 (st) = ψ (st), and ψ2 (st) = 0, where Iℓ is the ℓ× ℓ identity matrix.

In most applications, xt is partitioned as

x′t =
[
y′t z′t Ety

′
t+1

]
, (2)

where the first pair [y′t z′t] is of dimension n− ℓ and the second block of Equation (1)
is of the form yt = Et−1yt + ηt. The vector yt is the endogenous component and zt is
the predetermined component consisting of lagged and exogenous variables. In this
case, the endogenous shocks ηt can be interpreted as expectational errors. Regime-
switching constant terms can be encoded by introducing a dummy variable zc,t as an
element of the vector zt together with the additional equation zc,t = zc,t−1, subject to
the initial condition zc,0 = 1. While this introduces a unit root into the system, this
is not a difficulty for the solution techniques developed in this paper.

In Farmer, Waggoner, and Zha (2009), we develop a set of necessary and suffi-
cient conditions for equilibria to be determinate in a class of forward-looking MSRE
models. We show in that paper that every solution of an MSRE model, including
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an indeterminate equilibrium, can be written as the sum of an MSV solution and a
secondary stochastic process (i.e., the sunspot component). For models with lagged
state variables, the most challenging task is to find all MSV equilibria; this task
has not been successfully accomplished in the literature. Once an MSV equilibrium
is found, the secondary stochastic process is straightforward to obtain, as shown in
Farmer, Waggoner, and Zha (2009).

To give a precise description of an MSV equilibrium in an MSRE model, we first
consider the constant parameter case, a special case of the Markov-switching system
given by (1), which we represent as follows,

A a1
(n−ℓ)×n

a2
ℓ×n

 xt
n×1

=

B b1
(n−ℓ)×n

b2
ℓ×n

xt−1
n×1

+

Ψ ψ
(n−ℓ)×k

0
ℓ×k

 εt
k×1

+

Π 0
(n−ℓ)×ℓ

Iℓ

 ηt
ℓ×1
. (3)

There are a variety of techniques to solve this system and the general solution is of
the form

xt = Γxt−1 + Ξ1εt + Ξ2γt, (4)

where the mean-zero random process γt, if present, is a sunspot component. For
expositional clarity, let us assume that A is invertible. The matrices Γ, Ξ1, and Ξ2

can be obtained from the real Schur decomposition of A−1B = UTU ′. The matrix
U is orthogonal and T is block upper triangular with 1 × 1 and 2 × 2 blocks along
its diagonal. The 1 × 1 blocks correspond to real eigenvalues of A−1B and the 2 × 2

blocks correspond to conjugate pairs of complex eigenvalues of A−1B. The real Schur
decomposition is unique up to the ordering of the eigenvalues along the block diagonal
of T . If we partition U as U = [V V̂ ], then the Schur decomposition can be written
as

A−1B =
[
V V̂

] [T11 T12

0 T22

][
V ′

V̂ ′

]
.

If we define Γ = V T11V
′, Ξ1 = V G1, and Ξ2 = V N1, where G1 and N1 are solutions

of the matrix equations[
AV Π

] [G1

G2

]
= Ψ and

[
AV Π

] [N1

N2

]
= 0,

then Equation (4) will define a solution of the system given by (3). This is straight
forward to verify by multiplying Equation (4) by A and then transforming the right
hand side using the definitions of Γ, Ξ1, and Ξ2, the fact that xt is in the column
space of V , the identity A−1BV = ΓV and the implicit definition ηt = −G2εt −N2γt.
Furthermore, any solution will correspond to some ordering of the eigenvalues A−1B
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and a partition of U . Since we require solutions to be stable,1 all the eigenvalues of
T11 must lie inside the unit circle.

The first requirement of an MSV solution is that it be fundamental, i.e. it cannot
contain a sunspot component. This implies that N1 must be zero or equivalently
that [AV Π] must be of full column rank. The second requirement is that if xt

is decomposed as an endogenous component, a predetermined component, and an
expectations component as in Equation (2), then no restrictions should be placed
on the “data”, which corresponds to the endogenous and predetermined components.
This implies that the number of columns in V must be n − ℓ and that [AV Π] be
invertible.

We can use these ideas to formalize what we mean by an MSV equilibrium. First,
note that the column space of V is the span of solution xt in the sense that support of
the random process xt is contained in and spans the column space of V . A solution of
the system (3) is an MSV solution if and only if it is the unique solution on its span
and there are no restrictions on the endogenous and exogenous components given by
Equation (2). These ideas can be expanded to the Markov switching system given by
(1) and (2). In this context, the relevant concept is not the span of the solution, but
the conditional span. The span of the solution xt conditional on st = i is the span of
the support of the random process xt given st = i.

Definition 1. A stable solution of the system given by (1) and (2) is a minimal state
variable solution if and only if it is unique given all the conditional spans and none of
the conditional spans impose a relationship among the endogenous and predetermined
components.

Unlike the constant parameter case, one can no longer apply an eigenvalue con-
dition used to identify all candidates for the conditional spans. One can, however,
use iterative techniques to construct MSV equilibria. Our approach builds on the
following theorem.

Theorem 1. If {xt, ηt}∞t=1 is an MSV solution of the system (1), then

xt = VstF1,stxt−1 + VstG1,stεt, (5)

ηt = − (F2,stxt−1 +G2,stεt) , (6)

1For constant parameter systems such (3), stable and bounded are equivalent requirements, but
not so for the time varying systems such as (1).
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where the matrix
[
A(i)Vi Π

]
is invertible and

[
A(i)Vi Π

] [F1,i

F2,i

]
= B(i), (7)

[
A(i)Vi Π

] [G1,i

G2,i

]
= Ψ(i), (8)(

h∑
i=1

pi,jF2,i

)
Vj = 0ℓ,n−ℓ, for 1 ≤ j ≤ h. (9)

The dimension of Vi is n× (n− ℓ), F1,i is (n− ℓ)×n, F2,i is ℓ×n, G1,i is (n− ℓ)×k,
and G2,i is ℓ× k.

To find an MSV equilibrium, we must find matrices Vi such that [A(i)Vi Π] is
invertible and Equation (9) holds where F2,i is defined via Equation (7). Since Π =

[0ℓ,n−ℓ Iℓ]
′, the matrix [A(i)Vi Π] is invertible if and only if the upper (n−ℓ)×(n−ℓ)

block of A(i)Vi is invertible. It is easy to see that multiplying Vi on the right by an
invertible matrix, and hence multiplying F1,i and G1,i on the left by the inverse of this
matrix, will not change equations (5) through (9). Thus, without loss of generality,
we assume that

A(i)Vi =

[
In−ℓ

−Xi

]
(10)

for some ℓ× (n− ℓ) matrix Xi. Since

F2,i =
[
0ℓ,n−ℓ Iℓ

] [
A(i)Vi Π

]−1

B(i)

=
[
Xi Iℓ

]
B(i),

Equation (9) becomes
h∑

i=1

pij

[
Xi Iℓ

]
B(i)A(j)−1

[
In−ℓ

−Xj

]
= 0ℓ,n−ℓ. (11)

In the previous derivation, we assume that A(i) is invertible for expositional clarity.
In Appendix B, we remove this assumption and show that our iterative algorithm
works even if A(i) is not invertible.

The advantage of our method is that we are able to reduce the task of finding an
MSV solution to that of computing the roots of a quadratic polynomial in several
variables. We exploit Newton’s method to compute these roots. This has the ad-
vantage over previously suggested methods of being fast and locally stable around
any given solution. This property guarantees that by choosing a large enough grid
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of initial conditions we will find all possible MSV solutions. This local convergence
property does not hold for iterative solutions that have previously been suggested in
the literature.

Let X = (X1, · · · , Xh), define fj to be the function from Rhℓ(n−ℓ) to Rℓ(n−ℓ) given
by

fj (X) =
h∑

i=1

pij

[
Xi Iℓ

]
B(i)A(j)−1

[
In−ℓ

−Xj

]
, (12)

and f to be the function from Rhℓ(n−ℓ) to Rhℓ(n−ℓ) given by

f (X) = (f1 (X) , · · · , fh (X)) . (13)

Finding an MSV equilibrium is equivalent to finding the roots of f (X) and Theorem
1 suggests the following constructive algorithm for finding MSV solutions.

Algorithm 1. Let X(1) =
(
X

(1)
1 , · · · , X(1)

h

)
be an initial guess. If the kth iteration is

X(k) =
(
X

(k)
1 , · · · , X(k)

h

)
, then the (k + 1)th iteration is given by

vec
(
X(k+1

)
= vec

(
X(k)

)
− f ′ (X(k)

)−1
vec
(
f
(
X(k)

))
.

where

f ′ (X) =


∂f1

∂X1
(X) · · · ∂f1

∂Xh
(X)

... . . . ...
∂fh

∂X1
(X) · · · ∂fh

∂Xh
(X)

 .
The sequence X(k) converges to a root of f(X).

It is straightforward to verify that for i ̸= j,

∂fj

∂Xi

(X) = pij

([
In−ℓ 0n−ℓ,ℓ

]
B(i)A(j)−1

[
In−ℓ

−Xj

])′

⊗ Iℓ

and for i = j,

∂fj

∂Xj

(X) = pjj

([
In−ℓ 0n−ℓ,ℓ

]
B(j)A(j)−1

[
In−ℓ

−Xj

])′

⊗ Iℓ

+ In−ℓ ⊗

(
h∑

k=1

pkj

[
Xk Iℓ

]
B(k)A(j)−1

[
0n−ℓ,ℓ

−Iℓ

])
.

In a series computational experiments, reported below, we have found that this
algorithm is relatively fast and that it converges to multiple solutions, when they
exist, for a suitable choice of initial conditions.

Once an MSV equilibrium is obtained, one can verify whether this solution is
stationary (mean-square-stable) in the sense of Costa, Fragoso, and Marques (2004,
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page 36). Let Γj = VjA(j) for j = 1, . . . , h. As shown in Costa, Fragoso, and
Marques (2004, Proposition 3.9, p. 36 and Proposition 3.33, p.49), an MSV solution
is stationary if and only if the eigenvalues of

(P ⊗ In2) diag [Γ1 ⊗ Γ1, . . . ,Γh ⊗ Γh] , (14)

are all inside the unit circle.
In Section IV, we present simple examples in which existing algorithms, that have

been proposed in the literature, break down. We also show that when there are
multiple MSV equilibria, existing algorithms can at best find only one equilibrium
and sometimes do not converge to any MSV equilibrium even when the initial starting
point is close to the equilibrium. This result is unsatisfactory because researchers
should be able to estimate models by searching across the space of all equilibria and
selecting the one that maximizes the posterior odds ratios. In all the examples we
study, our algorithm is capable of finding all MSV equilibria by randomly choosing
different initial points.

III. Previous approaches

Two existing algorithms have been frequently used to find an MSV equilibrium in
a MSRE model: the fixed-point (FP) algorithm developed in a previous version of
this paper (Farmer, Waggoner, and Zha (2008)) and the iterative algorithm proposed
by Svensson and Williams (2005). We review these algorithms in this section and in
Section IVwe discuss why they do not always work well in practice.

III.1. The FP algorithm. To apply the FP algorithm, Farmer, Waggoner, and Zha
(2008) show how to define an expanded state vector x̃t. Using their definition, one
can write the Markov switching equations as a constant parameter system of the form

Ãx̃t = B̃x̃t−1 + Ψ̃ũt + Π̃ηt, (15)

where x̃t ∈ Rnh has dimension nh× 1.
To write system 1 in this form, define a family of matrices {ϕi}h

i=1 where h is the
number of Markov states and each ϕi has dimension ℓ× n with full row rank. Define
ej as a column vector equal to 1 in the jth element and zero everywhere else and the
matrix Φ as

Φ
ℓ(h−1)×nh

=


e′

2 ⊗ ϕ2

...
e′

h ⊗ ϕh

 . (16)
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Let the matrices Ã, B̃, and Π̃ be given by

Ã
nh×nh

=

 diag (a1 (1) , · · · , a1 (h))

a2 · · · a2

Φ

 ,

B̃
nh×nh

=

 diag (b1 (1) , · · · , b1 (h)) (P ⊗ In)

b2 · · · b2

0

 ,
Π̃

nh×ℓ
=
[

0, Iℓ, 0
]′
.

To define ũt and the corresponding coefficient matrix Ψ̃, let 1h be the h-dimensional
column vector of ones and let

Si
(n−ℓ)h×nh

= (diag [b1 (1) , · · · , b1 (h)]) × [(ei1
′
h − P ) ⊗ In] ,

for i = 1. . . . , h. With this notation, we have

ũt =

[
Sst

(
est−1 ⊗ (1′

h ⊗ In) x̃t−1

)
est ⊗ ut

]
,

and

Ψ̃
nh×(k+n−ℓ)h

=

 I(n−ℓ)h diag (ψ (1) , · · · , ψ (h))

0 0

0 0

 .
It is straightforward to show that Et−1 [ut] = 0. Thus, (15) is a linear system of

rational expectations equations and the solution of this linear system can be computed
by known methods. Farmer, Waggoner, and Zha (2008), show that a solution of the
expanded system (15) with the initial conditions x0 and x̃0 = e′

s0
⊗ x0 is a solution of

the original nonlinear system. The vectors xt and x̃t are related by the expression,

xt =
(
e′

st
⊗ In

)
x̃t. (17)

Although (3) is a linear rational expectations system, finding {ϕ1, ϕ2, ...ϕh} for this
linear system is a fixed-point problem of a system of nonlinear equations. Farmer,
Waggoner, and Zha (2008) propose the following algorithm. Let the superscript
(n) denote the nth step of an iterative procedure. Beginning with a set of initial

matrices
{
ϕ

(0)
i

}h

i=2
, define Φ(0) using Equation (16) and generate the associated matrix

A(0). Next, compute the QZ decomposition of
{
A(0), B

}
and denote the generalized

eigenvalues corresponding the unstable roots by Z
(0)
u =

[
z

(0)
1 , . . . , z

(0)
h

]
, where z(0)

i is

an ℓ × n matrix. Finally, set ϕ(1)
i = z

(0)
i . Form this new set of values of ϕi’s, form
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a new matrix A(1). Repeat this algorithm and, if it converges, the system (15) will
generate sequences {xt, ηt}∞t=1 that are consistent with the system (1), where xt is
governed by (17).

The qualification if it converges is crucial because, as we will show in Section IV,
it may not converge even in the simplest rational expectations model.

III.2. The SW algorithm. In this subsection we describe the algorithm developed
by Svensson and Williams (2005). As we exhaust many commonly used mathematical
symbols for matrices and vectors, we will use the same notation for some variables
and parameters as in Section III.1 as long as this double use of the notation does not
cause confusion.

Svensson and Williams (2005)’s algorithm is an iterative approach to solving a
general Markov-switching system. The system is written as

Xt = A11,stXt−1 + A12,stxt−1 + Cstϵt, (18)

EtHst+1xt+1 = A21,stXt + A22,stxt, (19)

where Xt is an nX × 1 vector of predetermined variables, xt is an nx × 1 vector of
forward-looking variables, and st. The MSV solution takes the following form:

xt = GstXt.

The algorithm works as follows.

(1) Start with an initial guess of G(0)
j , where st = j.

(2) For n = 0, 1, 2, . . . , iterate the value of G(n+1)
j according to

G
(n+1)
j =

[
A22,j −

∑
k

PkjHkG
(n)
k A12,k

]−1 [∑
k

PkjHkG
(n)
k A11,k − A21,j

]
. (20)

This algorithm is both elegant and efficient and can handle a large system. If it
converges to an MSV solution, the convergence is fast. As we show below, however,
the algorithm may not converge even if there is an MSV equilibrium.

IV. Comparison of our algorithm with alternatives

In this section we illustrate the properties of different methods using two simple
examples based on the following model:

ϕstπt = Etπt+1 + δstπt−1 + βstrt,

rt = ρstrt−1 + ϵt,
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where st = 1, 2 takes one of two discrete values according to the Markov-switching
process. If we interpret πt as inflation and rt as an exogenous shock to income or
preferences, this equation can be derived directly from the consumer’s optimization
problem together with a monetary policy rule that moves the interest rate in response
to current and past inflation rates (see Liu, Waggoner, and Zha (2009)).

IV.1. An example with a unique MSV equilibrium. We set δst = 0, βst = β =

1, and ρst = ρ = 0.9 for all values of st, ϕ1 = 0.5, ϕ2 = 0.8, p11 = 0.8, and p22 = 0.9.
One can show that for this parameterization (i.e., δst = 0), there is a unique MSV
equilibrium.2 The MSV solution has a closed form given by the expression,

πt = g1,strt−1 + g2,stϵt,

where [
g1,1

g1,2

]
=

[
p11ρ− ϕ1 p21ρ

p12ρ p22ρ− ϕ2

]−1 [
βρ

βρ

]
,

g2,st =
p1stg1,1 + P2stg1,2 + β

ϕst

.

In experiments based on this example, our algorithm converged quickly to the
following MSV equilibrium for all initial conditions,

πt = −10.9285rt−1 − 12.1428ϵt, for st = 1,

πt = 8.3571rt−1 + 9.2857ϵt, for st = 2.

Using (14), one can easily verify that this equilibrium is mean square stable.
Both the FP or the SW algorithms, however, are unstable when applied to this

example. To gain an intuition of why these previous algorithms do not work, we map
this example to the notation of the SW algorithm described in Section III.2:

Hk = 1, nX = nx = 1, Xt = rt, xt = πt, A11,k = ρ,A12,k = 0, A21,j = −β,A22,j = ϕj.

For expositional clarity, we further simplify the model by assuming that ϕ1 = ϕ2 =

ϕ = 0.85. The MSV equilibrium for this case can be characterized as

πt = g1rt−1 + g2εt,

where g1 = βρ
ϕ−ρ

. It follows from (20) that

g
(n)
1 =

(
g

(n−1)
1 + β

)
ρ

ϕ
.

2There also exists a continuum of non-fundamental equilibria around the unique MSV solution.
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The above iterative algorithm also characterizes the FP algorithm. Since the MSV
solution g1 is great than 1 in absolute value and ρ/ϕ > 1 in this case, g(n)

1 will go
to either plus infinity or minus infinity (depending on the initial guess) as n → ∞.
Thus, the FP and SW algorithms cannot find the MSV equilibrium.

IV.1.1. An example with multiple MSV equilibria. We now provide an example where
there are multiple MSV equilibria, but the FP and SW algorithms can find only one
of them. In contrast, our proposed algorithm converges to all of the MSV equilibria
providing one chooses a suitably diverse set of initial guesses. The example has the
following parameter configuration:

ϕ1 = 0.2, ϕ2 = 0.4, δ1 = −0.7, δ2 = −0.2,

β1 = β2 = 1, ρ1 = ρ2 = 0, p11 = 0.9, p22 = 0.8.

An MSV equilibrium takes the form πt = g1,stπt−1 + g2,stϵt. For this example, there
are four stationary MSV equilibria given by

g1,1 = −0.765149, g1,2 = −0.262196, first MSV equilibrium;

g1,1 = 0.960307, g1,2 = 0.646576, second MSV equilibrium;

g1,1 = −0.826316, g1,2 = 0.96551, third MSV equilibrium;

g1,1 = 1.024809, g1,2 = −0.392746, fourth MSV equilibrium.

Our algorithm converges rapidly to all the MSV solutions when we vary the initial
guess randomly. In contrast, both the FP and SW algorithms, no matter what the
initial guess (unless it is set exactly at an MSV solution), converge to only the first
MSV equilibrium reported above.

V. An application to a monetary policy model

In previous sections, we showed that the FP and SW algorithms may not converge
to an MSV equilibrium and that if they converge, they converge to only one MSV
equilibrium. In contrast, our new algorithm, using Newton’s method to compute
roots, is stable, efficient, and reliable for finding all MSV equilibria.

In this section we present simulation results based on a calibrated version of the
New-Keynesian model and we use it to study changes in output, inflation, and the
nominal interest rate.

Clarida, Galí, and Gertler (2000) and Lubik and Schorfheide (2004) argue that
the large fluctuations in output, inflation, and interest rates are manifestations of
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indeterminacy induced by passive monetary policy. Sims and Zha (2006), on the
other hand, find no evidence in favor of indeterminacy when they allow monetary
policy to switch regimes stochastically. Furthermore, they find that once the model
permits time variation in disturbance variances, there is no evidence in favor of policy
changes at all (see also Cogley and Sargent (2005b) and Primiceri (2005)).

Once it is known that policy changes might occur, a rational agent should treat
these changes probabilistically and the probability of a future policy change should
enter into his current decisions. Previous work in this area has neglected these effects
and all of the studies cited above study regime switches in a purely reduced form
model. We show in this section how to use the MSV solution to a MSRE model to
study the effects of regime change that is rationally anticipated to occur. We use
simulation results to show that the persistence and volatility in inflation and the
interest rate can be the result of (1) policy changes, (2) changes in shock variances,
or (3) changes in private sector parameters. Hence, our method provides a tool for
empirical work, in which a more formal analysis of the data can be used to discriminate
between these competing explanations.

Our regime-switching policy model, based on Lubik and Schorfheide (2004), has
the following three structural equations:

xt = Etxt+1 − τ(st)(Rt − Etπt+1) + zD,t, (21)

πt = β(st)Etπt+1 + κ(st)xt + zS,t, (22)

Rt = ρR(st)Rt−1 + (1 − ρR(st)) [γ1(st)πt + γ2(st)xt] + ϵR,t, (23)

where xt is the output gap at time t, πt is the inflation rate, and Rt is the nominal
interest rate. Both πt and Rt are measured in terms of deviations from the steady
state.3 The coefficient τ measures the intertemporal elasticity of substitution, β is
the household’s discount factor, and the parameter κ reflects the rigidity or stickiness
of prices.

The shocks to the consumer and firm’s sectors, zD,t and zS,t, are assumed to evolve
according to an AR(1) process:[

zD,t

zS,t

]
=

[
ρD(st) 0

0 ρS(st)

][
zD,t−1

zS,t−1

]
+

[
ϵD,t

ϵS,t

]
,

where ϵD,t is the innovation to a demand shock, ϵS,t is an innovation to the supply
shock, and ϵR,t is a disturbance to the policy rule. All these structural shocks are

3See Liu, Waggoner, and Zha (2009) for a proof that the steady state in this example does not
depend on regimes.
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i.i.d. and independent of one another. The standard deviations for these shocks are
σD(st), σS(st), and σR(st).

Lubik and Schorfheide (2004) estimate a constant-parameter version of this model
for the two subsamples: 1960:I-1979:II and 1979:III-1997:IV. In our calibration we
consider two regimes. The parameters in the first regime correspond to their estimates
for the period 1960:I-1979:II and the parameters in the second regime correspond to
those for 1979:III-1997:IV. The calibrated values are reported in Tables 1 and 2. The
transition matrix is calculated by matching the average duration of the first regime to
the length of the first subsample and by assuming that the second regime is absorbing
to accommodate the belief that the pre-Volcker regime will never return:4

P =

[
0.9872 0

0.0128 1

]
.

A simple calculation verifies that, if only one regime were allowed to exist (in the
sense that a rational agent was certain that no other policy would ever be followed)
the first regime would be indeterminate and the second would be determinate. When
a rational agent forms expectations by taking account of regime changes, we need
to know if there exist multiple MSV equilibria. In our computations we apply our
method to this system with a large number of randomly selected starting points and
we obtain multiple MSV solutions for some configurations of parameterization that
we report below.

This kind of forward-looking model provides a natural laboratory to experiment
with different scenarios in light of the debate on changes in policy or changes in shock
variances. The estimates provided by Lubik and Schorfheide (2004) and reported in
Tables 1 and 2 mix changes in coefficients related to monetary policy with changes in
other parameters in the model, since Lubik and Schorfheide (2004) do not account for
the effect of the probability of regime change on the current behavior. One variation
in the structural parameter values is to let the coefficient on the inflation variable in
the policy equation (23) change while holding all the other parameters fixed across
the two regimes. Tables 3 and 4 report the parameter values corresponding to this
scenario, in which all the other parameters take the average of the values in Tables 1
and 2 over the two regimes. We call this scenario “policy change only”.

In a second scenario, “variance change only”, we keep the value of the policy coeffi-
cient γ1 at 2.19 for both regimes while letting the standard deviation σD in the first

4One could also match the average duration of the second regime to the length of the second
subsample, which give p22 = 0.9865.



MSV SOLUTIONS 14

regime be five times larger than that in the second regime and keeping the value of
σS at 0.3712 for both regimes.5 The parameter values for this scenario are reported
in Tables 5 and 6.

The last scenario we consider allows only the parameters in the private sector to
change. We call it “private-sector change only”. The idea is to study whether the
persistence and volatility in inflation can be generated by changes in the private
sector in a forward-looking model. We let the coefficient τ be 0.06137 in the first
regime and 0.6137 in the second regime. Tables 7 and 8 report the values of all the
parameters for this scenario. Similar results can be achieved if one lets the value of
κ in the first regime be much smaller than that in the second regime.

Using the method discussed in Section II, we obtain two MSV equilibria that char-
acterize the first two scenarios and a unique MSV equilibrium for the last two sce-
narios. Figures 1-3 display simulated paths of the output gap, the interest rate, and
inflation under each of these scenarios. With the original estimates reported in Lubik
and Schorfheide (2004), the largest eigenvalue for the matrix (14) is 0.8617 for one
equilibrium and 0.7225 for the other. The dynamics are quite different for these two
MSV equilibria. We display the simulated data based on the MSV equilibrium with
the largest eigenvalue 0.8617. The top chart in Figure shows that the output gaps in
the first regime display persistent and large fluctuations relative to their paths in the
second regime. It is well known that the constant-parameter New-Keynesian model
of this type is incapable of generating much of the difference in output volatility be-
tween the two regimes. This is certainly true for the equilibrium with the largest
eigenvalue 0.7225. When taking regime switching into account, we have two MSV
equilibria and the difference in output dynamics between two regimes shows up in
one of the equilibria.

When we restrict changes to the policy coefficient γ1 only, the results are very sim-
ilar to the first scenario, implying it is the change in policy across regimes that causes
macroeconomic dynamics to be different across regimes. For this policy-change-only
scenario, we have two MSV equilibria, one with the largest eigenvalue of the matrix
(14) being 0.8947 and the other equilibrium with 0.6972. The second chart from
the top in Figure 1 report the dynamics of output in the MSV equilibrium with the
largest eigenvalue 0.6972. As one can see, the volatility in output is similar across

5Sims and Zha 2006 find that differences in the shock standard deviation across regimes can be
on the scale of as high as 10 − 12 times. One could also decrease the difference in σD and increase
the difference in σS or experiment with different combinations. Our result that changes in variances
matter a great deal will hold.
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the two regimes. In summary, the top two charts in Figure 1 demonstrate that one
can obtain rich dynamics from different MSV equilibria. Thus, it is important that
a method be capable of finding all MSV equilibria if one would like to confront the
model with the data.

When we allow only variances to change (the third scenario), there is a unique MSV
equilibrium. As one can see from the third chart in Figure 1, the volatility of output
in the first regime is distinctly larger than that in the second regime. The difference
in volatility of output across regimes disappears in the private-sector-change-only
scenario (the fourth scenario), as shown in the bottom chart of Figure 1.

Figures 2-3 display the simulated dynamics of the interest rate and inflation for
the four scenarios. In all scenarios, both inflation and the interest rate in the first
regime display persistent and large fluctuations relative to their paths in the second
regime. The degree of persistence and volatility in these variables in the first regime
increases with persistence of the shock zD,t or zS,t and with the size of shock variance
σD,t or σSt . Our final scenario is particularly interesting because, as illustrated by
the bottom charts of Figures 2-3, even if there is no change in policy and in shock
variances, inflation and the interest rate can have much larger fluctuations in the first
regime than in the second regime when the parameters of the private sector equations
are allowed to change across regimes.

These examples teach us that the sharply different dynamics in output, the interest
rate, and inflation observed before and after 1980 could potentially be attributed to
different sources. The methods we have developed here give researchers the tools to
address this and other issues in a regime-switching rational expectations in which
rational agents take into account the probability of regime change when forming their
expectations.

VI. Conclusion

We have developed a new approach to solving a general class of MSRE models.
The algorithm we have developed has proven efficient and reliable in comparison to
the previous methods. We have shown that MSV equilibria can be characterized as a
vector-autoregression with regime switching, of the kind studied by Hamilton (1989)
and Sims and Zha (2006). Our new method provides tools necessary for researchers
to solve and estimate a variety of regime-switching DSGE models.
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Table 1. Model coefficients (original)

Structural Equations
Parameter τ κ β γ1 γ2

First regime 0.69 0.77 0.997 0.77 0.17

Second regime 0.54 0.58 0.993 2.19 0.30

Table 2. Shock variances (original)

Shock Processes
Parameter ρD ρS ρR σD σS σR

First regime 0.68 0.82 0.60 0.27 0.87 0.23

Second regime 0.83 0.85 0.84 0.18 0.37 0.18

Table 3. Model coefficients (policy change only)

Structural Equations
Parameter τ κ β γ1 γ2

First regime 0.6137 0.6750 0.9949 0.77 0.235

Second regime 0.6137 0.6750 0.9949 2.19 0.235

Table 4. Shock variances (policy change only)

Shock Processes
Parameter ρD ρS ρR σD σS σR

First regime 0.755 0.835 0.72 0.225 0.6206 0.205

Second regime 0.755 0.835 0.72 0.225 0.6206 0.205
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Table 5. Model coefficients (variance change only)

Structural Equations
Parameter τ κ β γ1 γ2

First regime 0.6137 0.6750 0.9949 2.19 0.235

Second regime 0.6137 0.6750 0.9949 2.19 0.235

Table 6. Shock variances (variance change only)

Shock Processes
Parameter ρD ρS ρR σD σS σR

First regime 0.755 0.835 0.72 0.225 0.3712 0.205

Second regime 0.755 0.835 0.72 1.125 0.3712 0.205

Table 7. Model coefficients (private sector change only)

Structural Equations
Parameter τ κ β γ1 γ2

First regime 0.0614 0.6750 0.9949 2.19 0.235

Second regime 0.6137 0.6750 0.9949 2.19 0.235

Table 8. Shock variances (private sector change only)

Shock Processes
Parameter ρD ρS ρR σD σS σR

First regime 0.755 0.835 0.72 0.225 0.6206 0.205

Second regime 0.755 0.835 0.72 0.225 0.6206 0.205
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Figure 1. Simulated output gap paths from our regime-switching for-
ward looking model. The shaded area represents the first regime.
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Figure 2. Simulated interest rate paths from our regime-switching
forward looking model. The shaded area represents the first regime.
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Figure 3. Simulated inflation paths from our regime-switching for-
ward looking model. The shaded area represents the first regime.
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Appendix A. Proof of Theorem 1

Let {xt, ηt}∞t=1 be an MSV solution of Equation (1). Denote the span of this solution,
conditional on st = i, by V̂i and let Vi be any n× (n− ℓ) matrix whose columns form
a basis for V̂i. Applying the Et−1 [·|st = i] operator to Equation (1) gives

A(i)Et−1 [xt|st = i] = B(i)xt−1 + ΠEt−1 [ηt|st = i] . (A1)

This implies that for 1 ≤ j ≤ h, every element of B(i)Vj is a linear combination of
the columns of the matrix

[
A(i)Vi Π

]
. Thus there exist (n − ℓ) × (n − ℓ) matrices

F1,i,j and ℓ× (n− ℓ) matrices F2,i,j such that[
A(i)Vi Π

] [F1,i,j

F2,i,j

]
= B(i)Vj. (A2)

Furthermore, since
h∑

i=1

pi,st−1A(i)Et−1 [xt|st = i] =
h∑

i=1

pi,st−1 (B(i)xt−1 + ΠEt−1 [ηt|st = i])

=
h∑

i=1

pi,st−1B(i)xt−1 + ΠEt−1 [ηt]

=
h∑

i=1

pi,st−1B(i)xt−1

and Π is of full column rank, we can choose the F1,i,j and F2,i,j so that
h∑

i=1

pi,jF2,i,j = 0ℓ,n−ℓ.

Subtracting Equation (A1) from Equation (1) gives

A(i) (xt − Et−1 [xt|st = i]) = Ψ(i)εt + Π (ηt − Et−1 [ηt|st = i]) .

This implies that there exist (n − ℓ) × k matrices G1,i and ℓ × k matrices G2,i such
that [

A(i)Vi Π
] [G1,i

G2,i

]
= Ψ(i). (A3)

Let V ∗
i denote the generalized inverse of Vi and define

x̂t = VstF1,st,st−1V
∗
st−1

x̂t−1 + VstG1,stεt−1,

η̂t = −
(
F2,st,st−1V

∗
st−1

x̂t−1 +G2,stεt−1

)
.

This will also be a solution of Equation (1) whose span, conditional on st = i, is V̂i.
This can be verified by direct substitution using Equations (A2) and (A3) and the
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fact that Vst−1V
∗
st−1

x̂t−1 = x̂t−1. Since {xt, ηt}∞t=1 is an MSV solution, it must be the
case that x̂t = xt and η̂t = ηt.

Finally,
[
A(i)Vi Π

]
must be invertible because otherwise we would have multiple

solutions with the same conditional span. So, define[
F1,i

F2,i

]
=
[
A(i)Vi Π

]−1

B(i).

It is easy to see that F1,iVj = F1,i,j and F2,iVj = F2,i,j. Thus(
h∑

i=1

pi,jF2,i

)
Vj = 0ℓ,n−ℓ,

and

xt = VstF1,stxt−1 + VstG1,stεt−1,

ηt = − (F2,stxt−1 +G2,stεt−1) .

Appendix B. Singular A(i)

Using the notation of Section II, we know that

A(i)Vi =

[
In−ℓ

−Xi

]
. (A4)

If A(i) were non-singular, then Equation (A4) is easily solved and the results of
Section II follow. We now consider the case in which A(i) may be singular. We can
use the QR decomposition to find an invertible matrix Ui such that A(i)Ui is of the
form [

In−ℓ 0n−ℓ,ℓ

C1,i C2,i

]
.

If the QR decomposition of A(i)′ is

A(i)′ = QiRi = Qi

[
Ri,1 Ri,2

0ℓ,n−ℓ Ri,3

]
,

then

Ui = Qi

[(
R′

i,1

)−1
0n−ℓ,ℓ

0ℓ,n−ℓ Iℓ

]
,

is the required matrix. If Ri,1 were not invertible, then a1(i), the upper block of
A(i), would not be of full row rank. This would imply an accounting identity exists,
at least for this regime, among the endogenous and predetermined components. If
this identity held across all regimes, which is the likely case, then the number of
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endogenous and predetermined variables could be reduced and the technique could
proceed. Equation (A4) implies that

U−1
i Vi =

[
In−ℓ

−Zi

]
for some ℓ × n − ℓ matrix Zi and that Xi = Ci,2Zi − Ci,1. Substituting this into
Equation (9), we obtain

h∑
i=1

pij

[
Ci,2Zi − Ci,1 Iℓ

]
B(i)Uj

[
In−ℓ

−Zj

]
= 0ℓ,n−ℓ.

Let Z = (Z1, · · · , Zh), define gj to be the function from Rhℓ(n−ℓ) to Rℓ(n−ℓ) given by

gj (Z) =
h∑

i=1

pij

[
Ci,2Zi − Ci,1 Iℓ

]
B(i)Uj

[
In−ℓ

−Zj

]
= 0ℓ,n−ℓ,

and g to be the function from Rhℓ(n−ℓ) to Rhℓ(n−ℓ) given by

g (Z) = (g1 (Z) , · · · , gh (Z)) .

We now have the following algorithm for finding MSV solutions.

Algorithm 2. Let Z(1) =
(
Z

(1)
1 , · · · , Z(1)

h

)
be an initial guess. If the kth iteration is

Z(k) =
(
Z

(k)
1 , · · · , Z(k)

h

)
, then the (k + 1)th iteration is given by

vec
(
Z(k+1

)
= vec

(
Z(k)

)
− g′

(
Z(k)

)−1
vec
(
g
(
Z(k)

))
.

where

g′ (X) =


∂g1

∂Z1
(Z) · · · ∂g1

∂Zh
(Z)

... . . . ...
∂gh

∂Z1
(Z) · · · ∂gh

∂Zh
(Z)

 .
The sequence Z(k) converges to a root of g(Z).

As before, it is straightforward to verify that for i ̸= j,

∂gj

∂Zi

(Z) = pij

([
In−ℓ 0n−ℓ,ℓ

]
B(i)Uj

[
In−ℓ

−Zj

])′

⊗ Ci,1

and for i = j,

∂gj

∂Zj

(Z) = pjj

([
In−ℓ 0n−ℓ,ℓ

]
B(j)Uj

[
In−ℓ

−Zj

])′

⊗ Cj,1

+ In−ℓ ⊗

(
h∑

k=1

pkj

[
Ck,1Zk + Ck2 Iℓ

]
B(k)Uj

[
0n−ℓ,ℓ

−Iℓ

])
.
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