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Abstract

This chapter discusses identification of common selection models of the labor market.

We start with the classic Roy model and show how it can be identified with exclusion

restrictions. We then extend the argument to the generalized Roy model, treatment

effect models, duration models, search models, and dynamic discrete choice models.

In all cases, key ingredients for identification are exclusion restrictions and support

conditions.
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1 Introduction

This chapter discusses identification of common selection models of the labor market.

We are primarily concerned with nonparametric identification. We view nonparametric

identification as important for the following reasons.

First, recent advances in computer power, more widespread use of large data sets,

and better methods mean that estimation of increasingly flexible functional forms is

possible. Flexible functional forms should be encouraged. The functional form and

distributional assumptions used in much applied work rarely come from the theory.

Instead, they come from convenience. Furthermore, they are often not innocuous.1

Second, the process of thinking about nonparametric identification is useful input

into applied work. It is helpful to an applied researcher both in informing her about

which type of data would be ideal and which aspects of the model she might have

some hope of estimating. If a feature of the model is not nonparametrically identified,

then one knows it cannot be identified directly from the data. Some additional type

of functional form assumption must be made. As a result, readers of empirical papers

are often skeptical of the results in cases in which the model is not nonparametrically

identified.

Third, identification is an important part of a proof of consistency of a nonpara-

metric estimator.

However, we acknowledge the following limitation of focusing on nonparametric

identification. With any finite data set, an empirical researcher can almost never be

completely nonparametric. Some aspects of the data that might be formally identified

could never be estimated with any reasonable level of precision. Instead, estimators

are usually only nonparametric in the sense that one allows the flexibility of the model

to grow with the sample size. A nice example of this is Sieve estimators in which

one estimates finite parameter models but the number of parameters gets large with

the data set. An example would be approximating a function by a polynomial and

letting the degree of the polynomial get large as the sample size increases. However,

in that case one still must verify that the model is nonparametrically identified in

1A classic reference on this is Lalonde (1986) who shows that parametric models cannot replicate

the results of an experiment. Below we present an example on Catholic Schools from Altonji, Elder,

and Taber (2005a) suggesting that parametric assumptions drive the empirical estimates.
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order to show that the model is consistent. One must also construct standard errors

appropriately. In this chapter we do not consider the purely statistical aspects of

nonparametric estimation such as calculation of standard errors. This is a very large

topic within econometrics.2

The key issue in identification of most models of the labor market is the selection

problem. For example, individuals are typically not randomly assigned to jobs. With

this general goal in mind we begin with the simplest and most fundamental selection

model in labor economics, the Roy (1951) model. We go into some detail to explain

Heckman and Honoré’s (1990) results on identification of this model. A nice aspect

of identification of the Roy model is that the basic methodology used in this case can

be extended to show identification of other labor models. We spend the rest of the

chapter showing how this basic intuition can be used in a wide variety of labor market

models. Specifically we cover identification in the generalized Roy model, treatment

effect models, the competing risk model, search models, and forward looking dynamic

models. While we are clearly not covering all models in labor economics, we hope the

ideas are presented in a way that the similarities in the basic models can be seen and

can be extended by the reader to alternative frameworks.

The plan of this chapter is specifically as follows. Section 2 discusses some econo-

metric preliminaries. We consider the Roy model in section 3, generalize this to the

Generalized Roy model in section 4, and then use the model to think about identi-

fication of treatment effects in section 5. In section 6 we consider duration models

and search models and then consider estimation of dynamic discrete choice models in

section 7. Finally in section 8 we offer some concluding thoughts.

2 Econometric Preliminaries

2.1 Notation

Throughout this chapter we use capital letters with i subscripts to denote random

variables and small letters without i subscripts to denote possible outcomes of that

random variable. We will also try to be explicit throughout this chapter in denoting

2See Chen (2007) for discussion of Sieve estimators, including standard error calculation.
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conditioning. Thus, for example, we will use the notation

E(Yi | Xi = x)

to denote the expected value of outcome Yi conditional on the regressor variable Xi

being equal to some realization x.

2.2 Identification

The word “identification” has come to mean different things to different labor economists.

Here, we use a formal econometrics definition of identification. Consider two different

models that lead to data generating processes. If the data generated by these two

models have exactly the same distribution then the two models are not separately

identified from each other. However, if any two different model specifications lead to

different data distributions, the two specifications are separately identified. We give

a more precise definition below. Our definition of identification is based on some of

the notation and set up of Matzkin’s (2007) following an exposition based on Shaikh

(2010).

Let P denote the true distribution of the observed data X. An econometric model

defines a data generating process. We assume that the model is specified up to an

unknown vector θ of parameters, functions and distribution functions. This is known

to lie in space Θ. Within the class of models, the element θ ∈ Θ determines the

distribution of the data that is observable to the researcher Pθ. Notice that identification

is fundamentally data dependent. With a richer data set, the distribution Pθ would be

a different object.

Let P be the set of all possible distributions that could be generated by the class

of models we consider (i.e. P ≡ {Pθ : θ ∈ Θ}). We assume that the model is correctly

specified which means that P ∈ P. The identified set is defined as

Θ(P ) ≡ {θ ∈ Θ : Pθ = P} .

This is the set of possible θ that could have generated data that has distribution P .

By assuming that P ∈ P we have assumed that our model is correctly specified so this

set is not empty. We say that θ is identified if Θ(P ) is a singleton for all P ∈ P.

The question we seek to answer here is under what conditions is it possible to

learn about θ (or some feature of θ) from the distribution of the observed data P .
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Our interest is not always to identify the full data generating process. Often we are

interested in only a subset of the model, or a particular outcome from it. Specifically,

our goal may be to identify

ψ = Ψ(θ)

where Ψ is a known function. For example in a regression model Yi = X ′
iβ + ui, the

feature of interest is typically the regression coefficients. In this case Ψ would take the

trivial form

Ψ(θ) = β.

However, this notation allows for more general cases in which we might be interested in

identifying specific aspects of the model. For example, if our interest is in identifying

the covariance between X and Y in the case of the linear regression model, we do not

need to know θ per se, but rather a transformation of these parameters. That is we

could be interested in

Ψ(θ) = Cov(Xi, Yi).

We could also be interested in a forecast of the model such as

Ψ(θ) = x′β

for some specific x. The distinction between identification of features of the model as

opposed to the full model is important as in many cases the full model is not identified,

but the key feature of interest is identified.

To think about identification of ψ we define

Ψ(Θ(P )) = {Ψ(θ) : θ ∈ Θ(P )} .

That is, it is the set of possible values of ψ that are consistent with the data distribution

P. We say that ψ is identified if Ψ(Θ(P )) is a singleton.

As an example consider the standard regression model with two regressors:

Yi = β0 + β1X1i + β2X2i + εi (2.1)

with E(εi | Xi = x) = 0 for any value x (where Xi = (X1i, X2i)). In this case

θ = (β, FX,ε) where FX,ε is the joint distribution of (X1i, X2i, εi) and β = (β0, β1, β2).

One would write Θ as B × FX,ε where B is the parameter space for β and FX,ε is the
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space of joint distributions between Xi and εi that satisfy E(εi | Xi = x) = 0 for all x.

Since the data here is represented by (X1i, X2i, Yi), Pθ represents the joint distribution

of (X1i, X2i, Yi). Given knowledge of β and FX,ε we know the data generating process

and thus we know Pθ.

To focus ideas suppose we are interested in identifying β (i.e. Ψ(β, FX,ε) = β) in

regression model (2.1) above. Let the true value of the data generating process be θ∗ =

(β∗, F ∗
X,ε) so that by definition Pθ∗ = P. In this case Θ(P ) ≡

{
(β, FX,ε) ∈ B × FX,ε : Pβ,Fx,ε

= P
}
,

that is it is the set of (β, FX,ε) that would lead our data (Xi, Yi) to have distribu-

tion P . In this case Ψ(Θ(P )) is the set of values of β in this set (i.e. Ψ(Θ(P )) =

{β : (β, FX,ε) ∈ Θ(P ) for some FX,ε ∈ FX,ε}).

In the case of 2 covariates, we know the model is identified as long as X1i and X2i

are not degenerate and not collinear. To see how this definition of identification applies

to this model, note that for any β∗ 6= β the lack of perfect multicollinearity means that

we can always find values of (x1, x2) for which

β0 + β1x1 + β2x2 6= β∗
0 + β∗

1x1 + β∗
2x2.

Since E(Yi | Xi = x) is one aspect of the joint distribution of Pθ, it must be the case

that when β∗ 6= β, Pθ 6= P. Since this is true for any value of β 6= β∗, then Ψ(Θ(P ))

must be the singleton β∗.

However, consider the well known case of perfect multicollinearity in which the

model is not identified. In particular suppose that

X1i +X2i = 1.

For the true value of β∗ = (β∗
0 , β

∗
1 , β

∗
2) consider some other value β̃ = (β∗

0 +β∗
2 , β

∗
1 −

β∗
2 , 0). Then for any x,

E(Yi | Xi = x) = β∗
0 + β∗

1x1 + β∗
2x2

= β∗
0 + β∗

1x1 + β∗
2 (1 − x1)

= β∗
0 + β∗

2 + (β∗
1 − β∗

2) x1

= β̃0 + β̃1x1.

If FX,ε is the same for the two models, then the joint distribution of (Yi, Xi) is the

same in the two cases. Thus the identification condition above is violated because with
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θ̃ = (β̃, F ∗
X,ε), Pθ̃

= P and thus β̃ ∈ Ψ(Θ(P )). Since the true value β∗ ∈ Ψ(Θ(P )) as

well, Ψ(Θ(P )) is not a singleton and thus β is not identified.

2.3 Support

Another important issue is the support of the data. The simplest definition of support

is just the range of the data. When data are discrete, this is the set of values that occur

with positive probability. Thus a binary variable that is either zero or one would have

support {0, 1}. The result of a die roll has support {1, 2, 3, 4, 5, 6}. With continuous

variables things get somewhat more complicated. One can think of the support of a

random variable as the set of values for which the density is positive. For example, the

support of a normal random variable would be the full real line (which we will often

refer to as “full support”). The support of a uniform variable on [0, 1] is [0,1]. The

support of an exponential variable would be the positive real line.

This can be somewhat trickier in dealing with outcomes that occur with mea-

sure zero. For example one could think of the support of a uniform variable as

[0, 1],(0, 1], [0, 1), or (0, 1). The distinction between these objects will not be impor-

tant in what we are doing, but to be formal we will use the Davidson (1994) definition

of support. He defines the support of a random variable with distribution F as the

set of points at which F is (strictly) increasing.3 By this definition, the support of a

uniform would be [0, 1]. We will also use the notation supp(Yi) to denote the uncondi-

tional support of random variable Yi and supp(Yi | Xi = x) to denote the conditional

support.

To see the importance of this concept, consider a simple case of the separable

regression model

Yi = g(Xi) + ui

with a single continuous Xi variable and E(ui | Xi = x) = 0 for x ∈ supp(Xi). In this

case we know that

E(Yi | Xi = x) = g(x).

Letting X be the support of Xi, it is straightforward to see that g is identified on the set

X . But g is not identified outside the set X because the data is completely silent about

these values. Thus if X = R, g is globally identified. However, if X only covers a subset

3He defines F (strictly) increasing at point x to mean that for any ε > 0, F (x + ε) > F (x − ε).
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of the real line it is not. For example, one interesting counterfactual is the change in the

expected value of Yi if Xi were increased by δ : E(g(Xi + δ)). If X = R this is trivially

identified, but if the support of Xi were bounded from above, this would no longer be

the case. That is, if the supremum of X is x̄ < ∞, then for any value of x > x̄ − δ,

g(x+ δ) is not identified and thus the unconditional expected value of g(Xi + δ) is not

identified either. This is just a restatement of the well known fact that one cannot

project out of the data unless one makes functional form assumptions. Our point here

is that support assumptions are very important in nonparametric identification results.

One can only identify g over the range of plausible values of Xi if Xi has full support.

For this reason, we will often make strong support condition assumptions. This also

helps illuminate the tradeoff between functional form assumptions and flexibility. In

order to project off the support of the data in a simple regression model one needs to

use some functional form assumption. The same is true for selection models.

2.4 Continuity

There is one complication that we need to deal with throughout. It is not a terribly

important issue, but will shape some of our assumptions. Consider again the separable

regression model

Yi = g(Xi) + ui. (2.2)

As mentioned above E(Yi | Xi = x) = g(x) so it seems trivial to see that g is identified,

but that is not quite true. To see the problem, suppose that both Xi and ui are

standard normals. Consider two different models for g,

Model 1:

g(x) =





0 x < 1.4

1 x ≥ 1.4

versus

Model 2:

g(x) =





0 x ≤ 1.4

1 x > 1.4

.

These models only differ at the point x = 1.4, but since Xi is normal this is a zero

probability event and we could never distinguish between these models because they
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imply the same joint distribution of (Xi, Yi). For the exact same reason it isn’t really a

concern (except in very special cases such as if one was evaluating a policy in which we

would set Xi = 1.4 for everyone). Since this will be an issue throughout this chapter

we explain how to deal with it now and use this convention throughout the chapter.

We will make the following assumptions.

Assumption 2.1. Xi can be written as (Xc
i , X

d
i ) where the elements of Xc

i are con-

tinuously distributed (no point has positive mass), and Xd
i is distributed discretely (all

support points have positive mass).

Assumption 2.2. For any xd ∈ supp(Xd
i ), g(xc, xd) is almost surely continuous across

xc ∈ supp(Xc
i | Xd

i = xd).

The first part says that we can partition our observables into continuous and discrete

ones. One could easily allow for variables that are partially continuous and partially

discrete, but this would just make our results more tedious to exposit. The second

assumption states that choosing a value of X at which g is discontinuous (in the

continuous variables) is a zero probability event.

Theorem 2.1. Under assumptions 2.1 and 2.2 and assuming model 2.2 with E(ui |

Xi = x) = 0 for x ∈ supp(Xi), g(x) is identified on a set X ∗ that has measure 1.

(Proof in Appendix)

The proof just states that g is identified almost everywhere. More specifically it is

identified everywhere that it is continuous.

3 The Roy Model

The classic model of selection in the labor market is the Roy (1951) model. In the

Roy model, workers choose one of two possible occupations: hunting and fishing. They

cannot pursue both at the same time. The worker’s log wage is Yfi if he fishes and

Yhi if he hunts. Workers maximize income so they choose the occupation with higher

wage. Thus a worker chooses to fish if Yfi > Yhi. The occupation is defined as

Ji =




f if Yfi > Yhi

h if Yhi ≥ Yfi

(3.1)
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and the log wage is defined as

Yi = max{Yfi, Yhi}. (3.2)

Workers face a simple binary choice: choose the job with the highest wage. This

simplicity has led the model to be used in one form or another in a number of important

labor market contexts. Many discrete choice models share the Roy model’s structure.

Examples in labor economics include the choice of whether to continue schooling, what

school to attend, what occupation to pursue, whether to join a union, whether to

migrate, whether to work, whether to obtain training, and whether to marry.

As mentioned in the introduction, we devote considerable attention to identification

of this model. In subsequent sections we generalize these results to other models.

The responsiveness of the supply of fishermen to changes in the price of fish depends

critically on the joint distribution of (Yfi, Yhi). Thus we need to know what a fisherman

would have made if he had chosen to hunt. However, we do not observe this but must

infer its counterfactual distribution from the data at hand. Our focus is on this selection

problem. Specifically, much of this chapter is concerned with the following question:

Under what conditions is the joint distribution of (Yfi, Yhi) identified? We

start by considering estimation in a parametric model and then consider nonparametric

identification.

Roy (1951) is concerned with how occupational choice affects the aggregate distri-

bution of earnings and makes a series of claims about this relationship. These claims

turn out to be true when the distribution of skills in the two occupations is lognormal.

Heckman and Honoré (1990) consider identification of the Roy model (i.e., the joint

distribution of (Yfi, Yhi)). They show that there are two methods for identifying the

Roy model. The first is through distributional assumptions. The second is through

exclusion restrictions.4

In order to focus ideas, we use the following case:

Yfi = gf(Xfi, X0i) + εfi (3.3)

Yhi = gh(Xhi, X0i) + εhi, (3.4)

4Heckman and Honoré discuss price variation as separate from exclusion restrictions. However, in

our framework price changes can be modeled as just one type of exclusion restriction so we do not

explicitly discuss price variation.
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where the unobservable error terms (εfi, εhi) are independent of the observable variables

Xi = (Xfi, Xhi, X0i) and Yfi and Yhi denote log wages in the fishing and hunting

sectors respectively. We distinguish between three types of variables. X0i influences

productivity in both fishing and hunting, Xfi influences fishing only, and Xhi influences

hunting only. The variables Xfi and Xhi are “exclusion restrictions,” and play a very

important role in the identification results below. In the context of the Roy model, an

exclusion restriction could be a change in the price of rabbits which increases income

from hunting, but not from fishing. The notation is general enough to incorporate a

model without exclusion restrictions (in which case one or more of the Xji would be

empty).

Our version of the Roy framework imposes two strong assumptions. First, that Yji is

separable in gj(Xji, X0i) and εji for j ∈ {f, h}. Second, we assume that gj(Xji, X0i) and

εji are independent of one another. Note that independence implies homoskedasticity:

the variance of εji cannot depend on Xji. There is a large literature looking at various

other more flexible specifications and this is discussed thoroughly in Matzkin (2007).

It is also trivial to extend this model to allow for a general relationship between X0i

and (εfi, εhi) as we discuss in section 3.3 below.

We focus on the separable independent model for two reasons. First, the assump-

tions of separability and independence have bite beyond a completely general non-

parametric relationship. That is, to the extent that they are true, identification is

facilitated by these assumptions. Presumably because researchers think these assump-

tions are approximately true, virtually all empirical research uses these assumptions.

Second, despite these strong assumptions, they are obviously much weaker than the

standard assumptions that g is linear (i.e. gf(Xfi, X0i) = X ′
fiγff + X ′

0iγ0f and that

εfi is normally distributed. One approach to writing this chapter would have been to

go through all of the many specifications and alternative assumptions. We choose to

focus on a single base specification for expositional simplicity.

Heckman and Honoré (1990) first discuss identification of the joint distribution of

(Yfi, Yhi) using distributional assumptions. They show that when one can observe the

distribution of wages in both sectors, and assuming (Yfi, Yhi) is joint normally dis-

tributed, then the joint distribution of (Yfi, Yhi) is identified from a single cross section

even without any exclusion restrictions or regressors. To see why, write equations (3.3)
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and (3.4) without regressors (so gf = µf , the mean of Yfi):

Yfi = µf + εfi

Yhi = µh + εhi

where

 εfi

εhi


 = N




 0

0


 ,


 σ2

f σfh

σfh σ2
h




 .

Letting

λ(·) =
φ(·)

Φ(·)

(with φ and Φ the pdf and cdf of a standard normal),

c =
µf − µh√

σ2
f + σ2

h − 2σfh

,

and for each j ∈ {h, f},

τj =
σ2

j − σfh√
σ2

f + σ2
h − 2σfh

.

One can derive the following conditions from properties of normal random variables

found in Heckman and Honoré (1990):

Pr(Ji = f) = Φ(c)

E(Yi | Ji = f) = µf + τfλ (c)

E(Yi | Ji = h) = µh + τhλ (−c)

V ar(Yi | Ji = f) = σ2
f + τ 2

f

(
−λ (c) c− λ2 (c)

)

V ar(Yi | Ji = h) = σ2
h + τ 2

h

(
λ (−c) c− λ2 (−c)

)

E
(
[Yi − E(Yi | Ji = f)]3 | Ji = f

)
= τ 3

f λ(c)
[
2λ2(c) + 3cλ(c) + c2 − 1

]
.

E
(
[Yi −E(Yi | Ji = h)]3 | Ji = h

)
= τ 3

hλ(−c)
[
2λ2(−c) − 3cλ(−c) + c2 − 1

]
.

This gives us seven equations in the five unknowns µf , µh, σ
2
f , σ

2
h, and σfh. It is straight-

forward to show that the five parameters can be identified from this system of equations.
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However, Theorems 7 and 8 of Heckman and Honoré (1990) show that when one

relaxes the log normality assumption, without exclusion restrictions in the outcome

equation, the model is no longer identified. This is true despite the strong assumption

of agent income maximization. This result is not particularly surprising in the sense

that our goal is to estimate a full joint distribution of a two dimensional object (Yfi, Yhi),

but all we can observe is two one dimensional distributions (wages conditional on job

choice). Since there is no information in the data about the wage that a fisherman may

have received as a hunter, one cannot identify this joint distribution. In fact, Theorem

7 of Heckman and Honoré (1990) states that we can never distinguish the actual model

from an alternative model in which skills are independent of each other.

3.1 Estimation of the Normal Linear Labor Supply model

It is often the case that we only observe wages in one sector. For example, when

estimating models of participation in the labor force, the wage is observed only if

the individual works. We can map this into our model by associating working with

“fishing” and not working with “hunting.” That is, we let Yfi denote income if working

and let Yhi denote the value of not working.5

But there are other examples in which we observe the wage in only one sector. For

example, in many data sets we do not observe wages of workers in the black market

sector. Another example is return immigration in which we know when a worker leaves

the data to return to their home country, but we do not observe that wage.

In Section 3.2 we discuss identification of the nonparametric version of the model.

However, it turns out that identification of the more complicated model is quite similar

to estimation of the model with normally distributed errors. Thus we review this in

detail before discussing the nonparametric model. We also remark that providing a

consistent estimator also provides a constructive proof of identification, so one can also

interpret these results as (informally) showing identification in the normal model. The

5There are two common participation models. The first is the home production model in which

the individual chooses between home and market production. The second is the labor supply model

in which the individual chooses between market production and leisure. In practice the two types

of models tend to be similar and some might argue the distinction is semantic. In a model of home

production, Yhi is the (unobserved) gain from home production. In a model of labor supply, Yhi is

the leisure value of not working.
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model is similar to Willis and Rosen’s (1979) Roy Model of educational choices or Lee’s

(1978) model of union status and the empirical approach is analogous. We assume that

Yfi = X ′
fiγff +X ′

0iγ0f + εfi

Yhi = X ′
hiγhh +X ′

0iγ0h + εhi

 εfi

εhi


 = N




 0

0


 ,


 σ2

f σfh

σfh σ2
h




 .

In a labor supply model where f represents market work, Yfi is the market wage which

will be observed for workers only. Yhi, the pecuniary value of not working, is never

observed in the data. Keane, Todd, and Wolpin’s (this volume) example of the static

model of a married woman’s labor force participation is similar.

One could simply estimate this model by maximum likelihood. However we discuss

a more traditional four step method to illustrate how the parametric model is identi-

fied. This four step process will be analogous to the more complicated nonparametric

identification below. Step 1 is a “reduced form probit” of occupational choices as a

function of all covariates in the model. Step 2 estimates the wage equations by con-

trolling for selection as in the second step of a Heckman Two step (Heckman, 1979).

Step 3 uses the coefficients of the wage equations and plugs these back into a probit

equation to estimate a “structural probit.” Step 4 shows identification of the remaining

elements of the variance-covariance matrix of the residuals.

Step 1: Estimation of Choice Model

The probability of choosing fishing (i.e., work) is:

Pr ( Ji = f | Xi = x) = Pr (Yfi > Yhi | Xi = x)

= Pr
(
x′fγff + x′0γ0f + εfi > x′0γ0h + x′hγhh + εhi

)

= Pr
(
x′fγff − x′hγhh + x′0 (γ0f − γ0h) > εhi − εfi

)

= Φ

(
x′fγff − x′hγhh + x′0 (γ0f − γ0h)

σ∗

)

= Φ (x′γ∗) (3.5)

where Φ is the cdf of a standard normal, σ∗ is the standard deviation of (εhi − εfi) ,

and

γ∗ ≡

(
γff

σ∗
,
−γhh

σ∗
,
γ0f − γ0h

σ∗

)
.
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This is referred to as the “reduced form model” as it is a reduced form in the classical

sense: the parameters are a known function of the underlying structural parameters.

It can be estimated by maximum likelihood as a probit model. Let γ̂∗ represent the

estimated parameter vector. This is all that can be learned from the choice data alone.

We need further information to identify σ∗ and to separate γ0f from γ0h.

Step 2: Estimating the Wage Equation

This is essentially the second stage of a Heckman (1979) two step. To review the idea

behind it, let

ε∗i =
εhi − εfi

σ∗

Then consider the regression

εfi = τε∗i + ζi

where cov (ε∗i , ζi) = 0 (by definition of regression) and thus:

τ =
cov (εfi, ε

∗
i )

var (ε∗i )

= E

[
εfi

(
εhi − εfi

σ∗

)]

=
σfh − σ2

f

σ∗
.

The wage of those who choose to work is

E (Yfi | Ji = f,Xi = x) = x′fγff + x′0γ0f + E (εfi | Ji = f,Xi = x)

= x′fγff + x′0γ0f + E (τε∗i + ζi | ε
∗
i ≤ x′γ∗)

= x′fγff + x′0γ0f + τE (ε∗i | ε
∗
i ≤ x′γ∗)

= x′fγff + x′0γ0f − τλ (x′γ∗) . (3.6)

Showing that E (ε∗i | ε
∗
i ≤ x′γ∗) = −λ (x′γ∗) is a fairly straightforward integration prob-

lem and is well known. Because equation (3.6) is a conditional expectation function,

OLS regression of Yi on X0i, Xfi, and λ
(
X ′

iγ̂
∗
)

gives consistent estimates of γff , γ0f ,

and τ . γ̂∗ is the value of γ∗ estimated in equation (3.5).

Note that we do not require an exclusion restriction. Since λ is a nonlinear function,

but gf is linear, this model is identified. However, without an exclusion restriction,

identification is purely through functional form. When we consider a nonparametric
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version of the model below, exclusion restrictions are necessary. We discuss this issue

in section 3.2.

Step 3: The Structural Probit

Our next goal is to estimate γ0h and γhh. In Step 1 we obtained consistent estimates

of γ∗ ≡
(

γ0f−γ0h

σ∗
,

γff

σ∗
, −γhh

σ∗

)
and in Step 2 we obtained consistent estimates of γ0f and

γff .

When there is only one exclusion restriction (i.e. γff is a scalar), identification

proceeds as follows. Because we identified γff in Step 2 and γff/σ
∗ in Step 1, we can

identify σ∗. Once σ∗ is identified, it is easy to see how to identify γhh (because −γhh

σ∗
is

identified) and γ0h (because
γ0f−γ0h

σ∗
and γ0f are identified).

In terms of estimation of these objects, if there is more than one exclusion restriction

the model is over-identified. If we have two exclusion restrictions, γff and γff/σ
∗ are

both 2 × 1 vectors, and thus we wind up with 2 consistent estimates of σ∗. The most

standard way of solving this model is by estimating the “structural probit:”

Pr(Ji = f | Xi = x) = Φ

(
1

σ∗

(
x′f γ̂ff + x′0γ̂0f

)
− x′h

γhh

σ∗
− x′0

γ0h

σ∗

)
. (3.7)

That is, one just runs a probit of Ji on
(
X ′

fiγ̂ff +X ′
0iγ̂0f

)
, X0i, and Xhi where γ̂ff and

γ̂0f are our our estimates of γff and γ0f .

Step 3 is essential if our goal is to estimate the labor supply equation. If we are

only interested in controlling for selection to obtain consistent estimates of the wage

equation, we do not need to worry about the structural probit. However, notice that

∂Pr(Ji = f | Xi = x)

∂Yfi

=
1

σ∗
φ (x′γ∗) .

and thus the labor supply elasticity is:

∂log[Pr(Ji = f | Xi = x)]

∂Yfi

=
∂Pr(Ji = f | Xi = x)

∂Yfi

1

Pr(Ji = f | Xi = x)
=

1

σ∗

φ (x′γ∗)

Φ (x′γ∗)
,

where, as before, Yfi is the log of income if working. Thus knowledge of σ∗ is essential

for identifying the effects of wages on participation.

One could not estimate the structural probit without the exclusion restriction Xfi

as the first two components of the probit in equation (3.7) would be perfectly collinear.

For any σ∗ > 0 we could find a value of γ0h and γhh to that delivers the same choice

probabilities. Furthermore, if these parameters were not identified, the elasticity of

labor supply with respect to wages would not be identified either.
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Step 4: Estimation of the Variance Matrix of the Residuals

Lastly, we identify all the components of Σ, (σ2
f , σ

2
h, σfh) as follows. We have described

how to obtain consistent estimates of σ∗ =
√
σ2

f + σ2
h − 2σfh and τ =

σfh−σ2

f

σ∗
. This

gives us two equations in three parameters. We can obtain the final equation by using

the variance of the residual in the selection model since

V ar(εfi | Ji = f,Xi = x) = σ2
f + τ 2

[
−λ(x′γ∗)x′γ∗ − λ2(x′γ∗)

]

Let i = 1, .., Nf index the set of individuals who choose Ji = f and ε̂fi is the residual

Yfi −X ′
fiγ̂ff −X ′

0iγ̂0f Using “hats” to denote estimators we can estimate the model as

σ̂2
f =

1

Nf

Nf∑

i=1

(
ε̂fi + τλ

(
X ′

iγ̂
∗
))2

− τ̂ 2
(
−λ
(
X ′

iγ̂
∗
)
X ′

iγ̂
∗ − λ2

(
X ′

iγ̂
∗
))

σ̂fh = σ̂2
f − τ̂ σ̂∗

σ̂h
2 = σ̂∗

2
− σ̂f

2 + 2σ̂fh.

3.2 Identification of the Roy Model: the Non-Parametric Ap-

proach

Although the parametric case with exclusion restrictions is more commonly known, the

model in the previous section is still identified non-parametrically if the researcher is

willing to impose stronger support conditions on the observable variables. Heckman

and Honoré (1990, Theorem 12) provide conditions under which one can identify the

model nonparametrically using exclusion restrictions. We present this case below.

Assumption 3.1. (εfi, εhi) is continuously distributed with distribution function G,

support R
2, and is independent of Xi. The marginal distributions of εfi and εfi − εhi

have medians equal to zero.

Assumption 3.2. supp(gf(Xfi, x0), gh(Xhi, x0)) = R
2 for all x0 ∈ supp(X0i).

Assumption 3.2 is crucial for identification. It states that for any value of gh(xh, x0),

gf(Xfi, x0) varies across the full real line and for any value of gf(xf , x0), gh(Xhi, x0)

varies across the full real line. This means that we can condition on a set of variables

for which the probability of being a hunter (i.e. Pr(Ji = h|Xi = x)) is arbitrarily close

to 1. This is clearly a very strong assumption that we will discuss further.

We need the following two assumptions for the reasons discussed in section 2.4.
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Assumption 3.3. Xi = (Xfi, Xhi, X0i) can be written as (Xc
fi, X

d
fi, X

c
hi, X

d
hi, X

c
0i, X

d
0i)

where the elements of (Xc
fi, X

c
hi, X

c
0i) are continuously distributed (no point has posi-

tive mass), and (Xd
fi, X

d
hi, X

d
0i) is distributed discretely (all support points have positive

mass).

Assumption 3.4. For any
(
xd

f , x
d
h, x

d
0

)
∈ supp(Xd

fi, X
d
hi, X

d
0i), gf(x

c
f , x

d
f , x

c
0, x

d
0) and

gh(x
c
h, x

d
h, x

c
0, x

d
0) are almost surely continuous across xc ∈ supp(Xc

i | Xd
i = xd).

Under these assumptions we can prove the theorem following Heckman and Honoré(1990).

Theorem 3.1. If (Ji ∈ {f, h}, Yfi if Ji = f , Xi) are all observed and generated under

model (3.1)-(3.4), then under assumptions 3.1-3.4, gf , gh, and G are identified on a

set X ∗ that has measure 1.

(Proof in Appendix)

A key theme of this chapter is that the basic structure of identification in this model

is similar to identification of more general selection models so we explain this result in

much detail. The basic structure of the proof we present below is similar to Heckman

and Honoré’s proof of their Theorems 10 and 12. We modify the proof to allow for the

case where Yhi is not observed.

The proof in the appendix is more precise, but in the text we present the basic ideas.

We follow a structure analogous to the parametric empirical approach when the residu-

als are normally distributed as presented in section 3.1. First we consider identification

of the occupational choice given only observable covariates and the choice model. This

is the nonparametric analogue of the reduced form probit. Second we estimate gf given

the data on Yfi which is the analogue of the second stage of the Heckman two step, and

is more broadly the nonparametric version of the classical selection model. In the third

step we consider the nonparametric analogue of identification of the structural probit.

Since we will have already established identification of gf , identification of this part

of the model boils down to identification of gh. Finally in the fourth step we consider

identification of G (the joint distribution of (εfi, εhi)). We discuss each of these steps

in order.

To map the Roy model into our formal definition of identification presented in sec-

tion 2.2, the model is determined by θ = (gf , gh, G, Fx) where Fx is the joint distribution

of (Xfi, Xhi, X0i). The observable data here is (Xfi, Xhi, X0i, Ji, 1(Ji = f)Yfi). Thus P
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is the joint distribution of this observable data and Θ(P ) represents the possible data

generating processes consistent with P .

Step 1: Identification of Choice Model

The nonparametric identification of this model is established in Matzkin (1992). We

can write the model as

Pr(Ji = f | Xi = x) = Pr(εhi − εfi < gf(xf , x0) − gh(xh, x0))

= Gh−f(gf(xf , x0) − gh(xh, x0)),

where Gh−f is the distribution function of εhi − εfi.

Using data only on choices, this model is only identified up to a monotonic trans-

formation. To see why, note that we can write Ji = f when

gf(xf , x0) − gh(xh, x0) > εhi − εfi (3.8)

but this is equivalent to the condition

M(gf(xf , x0) − gh(xh, x0)) > M(εhi − εfi) (3.9)

where M(.) is any strictly increasing function. Clearly the model in equation (3.8) can-

not be distinguished from an alternative model in equation (3.9). This is the nonpara-

metric analog of the problem that the scale (i.e., the variance of εhi − εfi) and location

(only the difference between gf(xf , x0) and gh(xh, x0) but not the level of either) of the

parametric binary choice model are not identified. Without loss of generality we can

normalize the model up to a monotonic transformation. There are many ways to do

this. A very convenient normalization is to choose the transformation M(·) = Gh−f(·)

because Gh−f (εhi − εfi) has a uniform distribution.6 So we define

εi ≡ Gh−f(εhi − εfi)

g(x) ≡ Gh−f(gf(xf , x0) − gh(xh, x0)).

6To see why note that for any x, Pr(Gh−f (εhi − εfi) < x) = Pr(εhi − εfi ≤ G−1
h−f (x)) =

Gh−f

(
G−1

h−f (x))
)

= x.

18



Then

Pr(Ji = f | Xi = x) = Pr(gf(xf , x0) − gh(xh, x0) > εhi − εfi)

= Pr(Gh−f(gf(xf , x0) − gh(xh, x0)) > Gh−f(εhi − εfi))

= Pr(εi < g(x))

= g(x).

Thus we have established that we can (i) write the model as Ji = f if and only if

g(Xi) > εi where εi is uniform [0, 1] and (ii) that g is identified.

This argument can be mapped into our formal definition of identification from

Section 2.2 above. The goal here is identification of g so we defineΨ(θ) = g. Note

that even though g is not part of θ, it is a known function of the components of θ.

The key set now is Ψ(Θ(P )) which is now defined as the set of possible values g that

could have generated the joint distribution of (Xfi, Xhi, X0i, Ji, 1(Ji = f)Yfi). Since

Pr(Ji = f | Xi = x) = g(x), no other possible value of g could generate the data. Thus

Ψ(Θ(P )) only contains the true value and is thus a singleton.

Step 2: Identification of the Wage Equation gf

Next consider identification of gf. Median regression identifies

Med(Yi | Xi = x, Ji = f) = gf(xf , x0) +Med(εfi | Xi = x, εi < g(x)).

The goal is to identify gf(xf , x0). The problem is that when we vary (xf , x0) we

also typically vary Med(εfi | Xi = x, g(x) > εi). This is the standard selection

problem. Because we can add any constant to gf and subtract it from εfi without

changing the model, a normalization that allows us to pin down the location of gf is

that Med(εfi) = 0. The problem is that this is the unconditional median rather than

the conditional one. The solution here is what is often referred to as identification at

infinity (e.g. Chamberlain, 1986, or Heckman, 1990). For some value (xf , x0) suppose

we can find a value of xh to send Pr(εi < g(x)) arbitrarily close to one. It is referred to

as identification at infinity because if gh were linear in the exclusion restriction xh this

could be achieved by sending xh → −∞. In our fishing/hunting example, this could

be sending the price of rabbits to zero which in turn sends log income from hunting to
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−∞. Then notice that7

lim
g(x)→1

Med(Yi | Xi = x, Ji = f) = gf(xf , x0) + lim
g(x)→1

Med(εfi | εi ≤ g(x)) = gf(xf , x0) +Med(εfi | εi ≤ 1)

= gf(xf , x0) +Med(εfi)

= gf(xf , x0).

Thus gf is identified.

Conditioning on x so that Pr(Ji = 1 | Xi = x) is arbitrarily close to one is essentially

conditioning on a group of individuals for whom there is no selection, and thus there

is no selection problem. Thus we are essentially saying that if we can condition on a

group of people for whom there is no selection we can solve the selection bias problem.

While this may seem like cheating, without strong functional form assumptions

it is necessary for identification. To see why, suppose there is some upper bound of

supp[g(Xi)] equal to gu < 1 which would prevent us from using this type of argument.

Consider any potential worker with a value of εi > gu. For those individuals it must be

the case that

εi > g(Xi)

so they must always be a hunter. As a result, the data is completely uninformative

about the distribution of εfi for these individuals. For this reason the unconditional

median of εfi would not be identified. We will discuss approaches to dealing with this

potential problem in the Treatment Effect section below.

To relate this to the framework from Section 2.2 above now we define Ψ(θ) = gf ,

so Ψ(Θ(P )) contains the values of gf consistent with P . However since

lim
g(x)→∞

Med(Yf | Xi = x, Ji = f) = gf(xf , x0),

gf is the only element of Ψ(Θ(P )), thus it is identified.

Identification of the Slope Only without “Identification at Infinity”

If one is only interested in identifying the “slope” of gf and not the intercept, one

can avoid using an identification at infinity argument. That is, for any two points

(xf , x0) and (x̃f , x̃0), consider identifying the difference gf (xf , x0) − gf (x̃f , x̃0). The

7We are using loose notation here. What we mean by limg(x)→1 is to hold (xf , x0) fixed, but take

a sequence of values of xh so that g(x) → 1.
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key to identification is the existence of the exclusion restriction Xhi. For these two

points, suppose we can find values xh and x̃h so that

g(xf , xh, x0) = g(x̃f , x̃h, x̃0).

There may be many pairs of (xh, x̃h) that satisfy this equality and we could choose any

of them. Define x̃ ≡ (x̃f , x̃h, x̃0). The key aspect of this is that since g(x) = g(x̃), and

thus the probability of being a fisherman is the same given the two sets of points, then

the bias terms are also the same:Med(εfi | εi < g(x)) = Med(εfi | εi < g(x̃)).

This allows us to write

Med(Yi | Xi = x, Ji = f) −Med(Yi | Xi = x̃, Ji = f)

=gf (xf , x0) +Med(εfi | εi < g(x))

− [gf (x̃f , x̃0) +Med(εfi | εi < g(x̃))]

=gf (xf , x0) − gf (x̃f , x̃0) .

As long as we have sufficient variation in Xhi we can do this everywhere and identify

gf up to location.

Step 3: Identification of gh

In terms of identifying gh, the exclusion restriction that influences wages as a fisherman

but not as a hunter (i.e. Xfi) will be crucial. Consider identifying gh(xh, x0) for any

particular value (xh, x0). The key here is finding a value of xf so that

Pr(Ji = f | Xi = (xf , xh, x0)) = 0.5. (3.10)

Assumption 3.2 guarantees that we can do this. To see why equation (3.10) is useful,

note that it must be that for this value of (xf , xh, x0)

0.5 = Pr (εhi − εfi ≤ gf(xf , x0) − gh(xh, x0)) . (3.11)

But the fact that εhi − εfi has median zero implies that

gh(xh, x0) = gf(xf , x0).
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Since gf is identified, gh is identified from this expression.8

Again to relate this to the framework in Section 2.2 above, now Ψ(θ) = gh and

Ψ(Θ(p)) is the set of functions gh that are consistent with P . Above we showed that if

Pr(Ji = f | Xi = x) = 0.5, then gh(xh, x0) = gf(xf , x0). Thus since we already showed

that gf is identified, gh is the only element of Ψ(Θ(p)).

Step 4: Identification of G

Next consider identification of G given gf and gh. We will show how to identify the

joint distribution of (εfi, εhi) closely following the exposition of Heckman and Taber

(2008). Note that from the data one can observe

Pr(Ji = f, Yfi < s | Xi = x)

= Pr(gh(xh, x0) + εhi ≤ gf(xf , x0) + εfi, gf(xf , x0) + εfi ≤ s) (3.12)

= Pr(εhi − εfi ≤ gf(xf , x0) − gh(xh, x0), εfi ≤ s− gf(xf , x0))

which is the cumulative distribution function of (εhi − εfi, εfi) evaluated at the point

(gf(xf , x0) − gh(xh, x0), s − gf(xf , x0)). By varying the point of evaluation one can

identify the joint distribution of (εhi − εfi, εfi) from which one can derive the joint

distribution of (εfi, εhi).

Finally in terms of the identification conditions in Section 2.2 above, now Ψ(θ) = G

and Ψ(Θ(P )) is the set of distributions G consistent with P . Since G is uniquely defined

by the expression (3.12) and since everything else in this expression is identified, G is

the only element of Ψ(Θ(P )).

3.3 Relaxing Independence between Observables and Unob-

servables.

For expositional purposes we focus on the case in which the observables are independent

of the unobservables, but relaxing these assumptions is easy to do. The simplest case

is to allow for a general relationship between X0i and (εfi, εhi). To see how easy this

8Note that Heckman and Honoré (1990) choose a different normalization. Rather than normalizing

the median of εhi − εfi to zero (which is convenient in the case in which Yhi is not observed) they

normalize the median of εhi to zero (which is more convenient in their case). Since this is just a

normalization, it is innocuous. After identifying the model under our normalization we could go back

to redefine the model in terms of theirs.
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is, consider a case in which X0i is just binary, for example denoting men and women.

Independence seems like a very strong assumption in this case. For example, the

distribution of unobserved preferences might be different for women and men, leading

to different selection patterns. In order to allow for this, we could identify and estimate

the Roy model separately for men and for women. Expanding from binary X0i to finite

support X0i is trivial, and going beyond that to continuous X0i is straightforward.

Thus one can relax the independence assumption easily. But for expositional purposes

we prefer our specification.

The distinction between Xfi and X0i was not important in steps 1 and 2 of our dis-

cussion above. When one is only interested in the outcome equation Yfi = gf(Xfi, X0i)+

εfi, relaxing the independence assumption between Xfi and (εfi, εhi) can be done as

well. However, in step 3 this distinction is important in identifying gh and the inde-

pendence assumption is not easy to relax.

If we allow for general dependence between X0i and (εfi, εhi), the “identification at

infinity” argument becomes more important as the argument about “Identification of

the Slope Only without Identification at Infinity” no longer goes through. In that case

the crucial feature of the model was that Med(εfi | εi < g(x)) = Med(εfi | εi < g(x̃)).

However, without independence this is no longer generally true because Med(εfi | Xi =

x, Ji = f) = Med(εfi | X0i = x0, εi < g(x)). Thus even if g(x) = g(x̃), when x0 6= x̃0,

in general Med(εfi | X0i = x0, εi < g(x)) 6= Med(εfi | X0i = x̃0, εi < g(x̃)).

3.4 The Importance of Exclusion Restrictions

We now show that the model is not identified in general without an exclusion restric-

tion.9 Consider a simplified version of the model,

Ji =




f if g(Xi) − εi ≥ 0

h otherwise

Yfi = gf(Xi) + εfi

9An exception is Buera (2006), who allows for general functional forms and does not need an

exclusion restriction. Assuming wages are observed in both sectors, and making stronger use of the

independence assumption between the observables and the unobservables, he shows that the model

can be identified without exclusion restrictions.
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where εi is uniform (0,1) and (εi, εfi) is independent of Xi with distribution G and we

use the location normalization Med(εfi | Xi) = 0. As in Section 3.2, we observe Xi,

whether Ji = f or h, and if Ji = f then we observe Yfi.

We can think about estimating the model from the median regression

Med[Yfi|Xi = x] =gf (Xi) +Med[εfi|Xi = x]

=gf (Xi) +Med[εfi|g(Xi) > εi]

=gf (Xi) + h(g(Xi)) (3.13)

Under the assumption that Med(εfi | Xi) = 0 it must be the case that h(1) = 0, but

this is our only restriction on h and g. Thus the model above has the same conditional

median as an alternative model

Med[Yfi|Xi = x] =g̃f(Xi) + h̃(g(Xi)) (3.14)

where g̃f(Xi) = gf(Xi) + k(g(Xi)) and h̃(g(Xi)) = h(g(Xi)) − k(g(Xi)). Equations

(3.13) and (3.14) are observationally equivalent. Without an exclusion restriction, it

is impossible to tell if observed income from working varies with Xi because it varies

with gf or because it varies with the labor force participation rate and thus the extent

of selection. Thus the models in equations (3.13) and (3.14) are not distinguishable

using conditional medians.

To show the two models are indistinguishable using using the full joint distribution

of the data, consider an alternative data generating model with the same first stage,

but now Yfi is determined by

Yfi = g̃f(Xi) + ε̃fi

where ε̃fi is independent of Xi with Med(ε̃fi | Xi) = 0. Let G̃(εi, ε̃fi) be the joint

distribution of (εi, ε̃fi) in the alternative model. We will continue to assume that

in the alternative model g̃f(Xi) = gf(Xi) + k(g(Xi)). The question is whether the

alternative model to be able to generate the same data distribution.

In the true model

Pr(εi ≤ g(x), Yfi < y) = Pr(εi ≤ g(x), gf(x) + εfi ≤ y)

= G(g(x), y − gf(x))
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In the alternative model

Pr(εi ≤ g(x), Yfi < y) = Pr(εi ≤ g(x), g̃f(x) + ε̃fi ≤ y)

= G̃(g(x), y − g̃f(x))

Thus these two models generate exactly the same joint distribution of data and cannot

be separately identified as long as we define G̃ so that10

G̃(g(x), y − g̃f(x)) = G(g(x), y − gf(x))

= G(g(x), y − g̃f(x) + k(g(x))).

4 The Generalized Roy Model

We next consider the “Generalized Roy Model” (as defined in e.g. Heckman and Vyt-

lacil, 2007a). The basic Roy model assumes that workers only care about their income.

The Generalized Roy Model allows workers to care about non-pecuniary aspects of the

job as well. Let Ufi and Uhi be the utility that individual i would receive from being

a fisherman or a hunter respectively where for j ∈ {f, h},

Uji = Yji + ϕj(Zi, X0i) + νji. (4.1)

where ϕj(Zi, X0i) represents the non-pecuniary utility gain from observables Zi andX0i.

The variable Zi allows for the fact that there may be other variables that affect the taste

for hunting versus fishing directly, but do not affect wages in either sector.11 Note that

we are imposing separability between Yji and ϕj . In general we can provide conditions

in which the results presented here will go through if we relax this assumption but we

impose it for expositional simplicity. The occupation is now defined as

Ji =




f if Ufi > Uhi

h if Ufi ≤ Uhi

. (4.2)

10One cannot do this with complete freedom as one needs G̃ to be a legitimate c.d.f. That is, it

must be nondecreasing in both of its arguments. However, there will typically be many examples of

k for which G̃ is a cdf and the model is not identified. For example, if k is a nondecreasing function

G̃ will be a legitimate c.d.f.
11In principle some of the elements of Zi may affect ϕf and others may affect ϕh, but this distinction

will not be important here so we use the most general notation.
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We continue to assume that

Yfi = gf(Xfi, X0i) + εfi

Yhi = gh(Xhi, X0i) + εhi (4.3)

Yi =




Yfi if Ji = f

Yhi if Ji = h

. (4.4)

It will be useful to define a reduced form version of this model. Note that people

fish when

0 <Ufi − Uhi

=(Yfi + ϕf(Zi, X0i) + νfi) − (Yhi + ϕh(Zi, X0i) + νhi)

=gf(Xfi, X0i) + ϕf(Zi, X0i) − gh(Xhi, X0i) − ϕh(Zi, X0i) + εfi + νfi − εhi − νhi.

In the previous section we described how the choice model can only be identified up

to a monotonic transform and that assuming the error term is uniform is a convenient

normalization. We do the same thing here. Let F ∗ be the distribution function of

εhi + νhi − εfi − νfi. Then we define

νi ≡ F ∗ (εhi + νhi − εfi − νfi) (4.5)

ϕ(Zi, Xi) ≡ F ∗ (gf(Xfi, X0i) + ϕf (Zi, X0i) − gh(Xhi, X0i) − ϕh(Zi, X0i)) . (4.6)

As above, this normalization is convenient because it is straightforward to show that

Ji = f when ϕ(Zi, Xi) > νi

and that νi is uniformly distributed on the unit interval.

We assume that the econometrician can observe the occupations of the worker and

the wages that they receive in their chosen occupations as well as (Xi, Zi).

4.1 Identification

It turns out that the basic assumptions that allow us to identify the Roy model also

allow us to identify the generalized Roy model.

We start with the reduced form model in which we need two more assumptions.
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Assumption 4.1. (νi, εfi, εhi) is continuously distributed and is independent of (Zi, Xi).

Furthermore, νi is distributed uniform on the unit interval and the medians of both εfi

and εhi are zero.

Assumption 4.2. The support of ϕ(Zi, x) is [0, 1] for all x ∈ supp(Xi).

We also slightly extend the restrictions on the functions to include ϕf and ϕh.

Assumption 4.3. (Zi, Xi) = (Zi, Xfi, Xhi, X0i) can be written as

(Zc
i , Z

d
i , X

c
fi, X

d
fi, X

c
hi, X

d
hi, X

c
0i, X

d
0i) where the elements of (Zc

i , X
c
fi, X

c
hi, X

c
0i) are con-

tinuously distributed (no point has positive mass), and (Zd
i , X

d
fi, X

d
hi, X

d
0i) is distributed

discretely (all support points have positive mass).

Assumption 4.4. For any
(
zd, xd

f , x
d
h, x

d
0

)
∈ supp(Zd

i , X
d
fi, X

d
hi, X

d
0i), gf(x

c
f , x

d
f , x

c
0, x

d
0),

gh(x
c
h, x

d
h, x

c
0, x

d
0), ϕf(z

c, zd, xc
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d
0) and ϕh(z

c, zd, xc
0, x

d
0) are almost surely continuous

across

(zc, xc) ∈ supp(Zc
i , X

c
i |
(
Zd

i , X
d
i

)
=
(
zd, xd

)
).

Theorem 4.1. Under assumptions 4.1-4.4, ϕ, gf , gh and the joint distribution of (νi, εfi)

and of (νi, εhi) are identified from the joint distribution of (Ji, Yi) on a set X ∗ that has

measure 1 where (Ji, Yi) are generated by model (4.1)-(4.4).

(Proof in Appendix)

The intuition for identification follows directly from the intuition given for the basic

Roy model. We show this in 3 steps:

1. Identification of ϕ is like the “Step 1: identification of choice model” section.

We can only identify ϕ up to a monotonic transformation for exactly the same

reason given in that section. We impose the normalization that νi is uniform in

assumption 4.2. Given that assumption

Pr(Ji = f | Zi = z,Xi = x) = ϕ(z, x)

so identification of ϕ from Pr(Ji = f | Zi = z,Xi = x) comes directly.
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2. Identification of gf and gh are completely analogous to “Step 2: identification of

gf” in section 3.2. That is

lim
ϕ(z,x)→1

Med(Yi | Zi = z,Xi = x, Ji = f)

= gf(xf , x0) + lim
ϕ(z,x)→1

Med(εfi | Zi = z,Xi = x, Ji = f)

= gf(xf , x0) + lim
ϕ(z,x)→1

Med(εfi | νi ≤ ϕ(z, x))

= gf(xf , x0) +Med(εfi)

= gf(xf , x0).

The analogous argument works for gh when we send ϕ(z, x) → 0.

3. Identification of the joint distribution of (νi, εfi) and of (νi, εhi) are analogous to

the “Step 4: identification of G” discussion in the Roy model. That is if we let

Gν,εf
represent the joint distribution of (νi, εfi) then

Pr(Ji = f, Yfi ≤ y | (Zi, Xi) = (z, x)) = Pr(νi ≤ ϕ(z, x), gf (xf , x0) + εfi ≤ y)

= Gν,εf
(ϕ(z, x), y − gf(xf , x0)) .

The analogous argument works for the joint distribution of (νi, εhi).

Note that not all parameters are identified such as the non-pecuniary gain from

fishing ϕf − ϕh. To identify the “structural” generalized Roy model we make two

additional assumptions:

Assumption 4.5. The median of εhi + νhi − εfi − νfi is zero.

Assumption 4.6. For any value of (z, x0) ∈ supp(Zi, X0i), gf(Xfi, x0) − gh(Xhi, x0)

has full support (i.e. the whole real line).

Theorem 4.2. Under Assumptions 4.1-4.6, ϕf−ϕh, the distribution of (εhi + νhi − εfi − νfi, εfi),

and the distribution of (εhi + νhi − εfi − νfi, εhi) are identified.

(Proof in Appendix)

Note that Theorem 4.1 gives the joint distribution of (νi, εfi) while Theorem 4.2

gives the joint distribution of (εhi + νhi − εfi − νfi, εfi) . Since νi = F ∗ (εhi + νhi − εfi − νfi) ,

this really just amounts to saying that F ∗ is identified.
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Furthermore, whereas gf and gh are identified in Theorem 4.1, ϕf −ϕh is identified

in Theorem 4.2. Recall ϕf − ϕh is the added utility (measured in money) of being a

fisherman relative to a hunter. The exclusion restrictions Xfi and Xhi help us identify

this. These exclusion restrictions allow us to vary the pecuniary gains of the two

sectors, holding preferences ϕf − ϕh constant. Identification is analogous to the “Step

3: identification of gh” in the standard Roy model. To see where identification comes

from, for every (z, x0) think about the following conditional median

0.5 = Pr(Ji = f | Zi = z,Xi = x)

= Pr(εhi + νhi − εfi − νfi ≤ gf(xf , x0) + ϕf(z, x0) − gh(xh, x0) − ϕh(z, x0)).

Since the median of εhi + νhi − εfi − νfi is zero, this means that

gf(xf , x0) + ϕf (z, x0) − gh(xh, x0) − ϕh(z, x0) = 0,

and thus

ϕf(z, x0) − ϕh(z, x0) = gh(xh, x0) − gf(xf , x0).

Because gf and gh is identified, ϕf − ϕh is identified also. The argument above shows

that we do not need both Xfi and Xhi, we only need Xfi or Xhi.

Suppose there is no variable that affects earnings in one sector but not preferences

(Xfi or Xhi). An alternative way to identify ϕf − ϕh is to use a cost measured in

dollars. Consider the linear version of the model with normal errors and without

exclusion restrictions (Xhi, Xfi) so that

gh(x0) = x′0iγh

gf (x0) = x′0iγf

ϕf(z, x0) − ϕh(z, x0) = x′0β0 + z′βz.

The reduced form probit is:

Pr(Ji = f | Zi = z,Xi = x) = Φ

(
x′0i

γf − γh + β0

σ
+ z′i

βz

σ

)

where σ is the standard deviation of εhi +νhi−εfi−νfi. Theorem 4.1 above establishes

that the functions gf and gh (i.e., γf and γh) as well as the variance of εhi and εfi are

identified. We still need to identify β0, βz and σ. Thus we are able to identify

γf − γh + β0

σ
and

βz

σ
.
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If β0 and βz are scalars we still have three parameters (β0, βz, σ) and two restrictions

(
γf−γh+β0

σ
, βz

σ
). If they are not scalars, we still have one more parameter than restriction.

However suppose that one of the exclusion restrictions represents a cost variable that

is measured in the same units as Yfi − Yhi. For example in a schooling case suppose

that Yfi represents the present value of earnings as a college graduate, Yhi represents

the present value of high school graduate as a college graduate, and the exclusion

restriction, Zi, represents the present value of college tuition. In this case βz = −1

the coefficient on Zi is −1/σ, so σ is identified. Given σ it is very easy to show that

the rest of the parameters are identified as well. Heckman, Lochner, and Taber (1998)

provide an example of this argument using tuition as in the style above. In section 7.3

we discuss Heckman and Navarro (2007) who use this approach as well.

4.2 Lack of Identification of the Joint Distribution of (εfi, εhi)

In pointing out what is identified in the model it is also important to point out what is

not identified. Most importantly in the generalized Roy model we were able to identify

the joint distribution between the error terms in the selection equation and each of

the outcomes, but not the joint distribution of the variables in the outcome equation.

In particular the joint distribution between the error terms (εfi, εhi) is not identified.

Even strong functional form assumptions will not solve this problem. Fir example, it is

easy to show that in the joint normal model the covariance of (εfi, εhi) is not identified.

4.3 Are Functional Forms Innocuous? Evidence from Catholic

Schools

As the theorems above make clear, nonparametric identification requires exclusion

restrictions. However, completely parametric models typically do not require exclusion

restrictions. In specific empirical examples, identification could primarily be coming

from the exclusion restriction or identification could be coming primarily from the

functional form assumptions (or some combination between the two). When researchers

use exclusion restrictions in data, it is important to be careful about which assumptions

are important.

We describe one example from Altonji, Elder, and Taber (2005b). Based on Evans

and Schwab (1995), Neal (1997), and Neal and Grogger (2000) they consider a bivariate
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probit model of Catholic schooling and college attendance.

CHi = 1(X ′
iβ + λZi + ui > 0) (4.7)

Yi = 1(αCHi +X ′
iγ + εi > 0), (4.8)

where 1(·) is the indicator function taking the value one if its argument is true and

zero otherwise, CHi is a dummy variable indicating attendance at a Catholic school,

and Yi is a dummy variable indicating college attendance. Identification of the effect

of Catholic schooling on college attendance (or high school graduation) is the primary

focus of these studies. The question at hand is in practice whether the assumed func-

tional forms for ui and εi are important for identifying the α coefficient and thus the

effect of Catholic schools on college attendance.

The model in equations (4.7)-(4.8) is a minor extension of the generalized Roy

model. The first key difference is that the outcome variable in equation (4.8) is binary

(attend college or not), whereas in the case of the Generalized Roy model the outcomes

were continuous (earnings in either sector). The second key difference is that the

outcome equation for Catholic versus Non-Catholic school only differs in the intercept

(α). The error term (εi) and the slope coefficients (γ) are restricted to be the same.

Nevertheless, the machinery to prove non-parametric identification of the Generalized

Roy model can be applied to this framework.12

Using data from the National Longitudinal Survey of 1972, Altonji, Elder, and

Taber (2005b) consider an array of instruments and different specifications for equations

(4.7) and (4.8) . In Table 1 we present a subset of their results. We show four different

models. The “Single Equation Model” gives results in which selection into Catholic

school is not accounted for. The first column gives results from a probit model (with

point estimates, standard errors, and marginal effects). The second column give results

from a Linear Probability model. Next we present the estimates of α from a Bivariate

Probit models with alternative exclusion restrictions. The final row presents the results

with no exclusion restrictions. Finally we also present results from an instrumental

variable linear probability model with the same set of exclusion restrictions.

12Following Matzkin (1992), we need a monotonic normalization on the outcome model (such as

assuming the error term is uniform). Once we have done this, proving identification of this model is

almost identical to the generalized Roy model and is easily done with an exclusion restriction with

sufficient support.
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Table 1

Estimated Effects of Catholic Schools on College Attendance:

From Linear and Nonlinear Specifications

Single Equation Models

Probit OLS

0.239 0.239

[0.640]

(0.198) (0.070)

Two Equation Models

Excluded Variable Bivariate Probit 2SLS

Catholic 0.285 -0.093

[0.761]

(0.543) (0.324)

Catholic×Distance 0.478 2.572

[1.333]

(0.516) (2.442)

None 0.446

[1.224]

(0.542)

Notes : Source: Altonji, Elder, Taber (2005b). Urban Non-Whites from NLS-72.

The first set of results come from simple probits and from OLS.

The further results come from Bivariate Probits and from two stage least squares.

We present the marginal effect of Catholic high school attendance on college attendance.

[Point Estimate from Probit in Brackets]

(Standard Errors in Parentheses)

One can see that the marginal effect from the single equation probit is very similar

to the OLS estimate. It indicates that college attendance rates are approximately 23.9

percentage points higher for Catholic high school graduates than for public high school
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graduates. The rest of the table presents results from three bivariate probit models

and two instrumental variables models using alternative exclusion restrictions. The

problem is clearest when the interaction between the student coming from a Catholic

school and distance to the nearest Catholic school is used as an instrument. The 2SLS

gives nonsensical results: a coefficient of 2.572 with an enormous standard error. This

indicates that the instrument has little power. However, the bivariate probit result is

more reasonable. It suggests that the true marginal causal effect is around 0.478 and

the point estimate is statistically significant. This seems inconsistent with the 2SLS

results which indicated that this exclusion restriction had very little power. However

it is clear what is going on when we compare this result to the model at the bottom of

the table without an exclusion restriction. The estimate is very similar with a similar

standard error. The linearity and normality assumptions drive the results.

The case in which Catholic religion by itself is used as an instrument is less prob-

lematic. The IV result suggests a strong amount of positive selection but still yields a

large standard error. The bivariate probit model suggests a marginal effect that is a bit

larger than the OLS effect. However, note that the standard error for the model with

and without an exclusion restriction are quite similar which seems inconsistent with the

idea that the exclusion restriction is providing a lot of identifying information. Further

note that the IV result suggests a strong positive selection bias while the bivariate

probit without exclusion restrictions suggests a strong negative bias. The bivariate

probit in which Catholic is excluded is somewhere between the two. This suggests that

both functional form and exclusion restrictions are important in this case. We should

emphasize the “suggests” part of this sentence as none of this is a formal test. It does,

however, make one wonder how much trust to put in the bivariate probit results by

themselves.

Another paper documenting the importance of functional form assumptions is Das

et al. (2003), who estimate the return to education for young Australian women. They

estimate equations for years of education, the probability of working, and wages. When

estimating the wage equation they address both the endogeneity of years of education

and also selection caused because we only observe wages for workers. They allow for

flexibility in the returns to education (where the return depends on years of education)

and also in the distribution of the residuals. They find that when they assume normality
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of the error terms, the return to education is approximately 12%, regardless of years

of education. However, once they allow for more flexible functional forms for the error

terms, they find that the returns to education decline sharply with years of education.

For example, they find that at 10 years of education, the return to education is over

15%. However, at 14 years, the return to education is only about 5%.

5 Treatment Effects

There is a very large literature on the estimation of treatment effects. For more com-

plete summaries see Heckman and Robb (1986), Heckman, Lalonde and Smith (1999),

Heckman and Vytlacil (2007a,2007b), Abbring and Heckman (2007), or Imbens and

Wooldridge (2009).13 DiNardo and Lee (2010) provide a discussion that is complemen-

tary to ours. Our goal in this section is not to survey the whole literature but provide

a brief summary and to put it into the context of identification of the Generalized Roy

Model.

The goal of this literature is to estimate the value of receiving a treatment defined

as:

πi = Yfi − Yhi. (5.1)

In the context of the Roy model, πi is the income gain from moving from hunting to

fishing. This income gain potentially varies across individuals in the population. Thus

for people who choose to be fishermen, πi is positive and for people who choose to be

hunters, πi is negative.

Estimation of treatment effects is of great interest in many literatures. The term

“treatment effect”makes the most sense in the context the medical literature. Choice

f could represent taking a medical treatment (such as an experimental drug) while h

could represent no treatment. In that case Yfi and Yhi would represent some measure

of health status for individual i with and without the treatment. Thus the treatment

effect πi is the effect of the drug on the health outcome for individual i.

The classic example in labor economics is job training. In that case, Yfi would

13There is also a substantial literature on the tradeoffs between different empirical approaches. Key

papers include Leamer (1983), Heckman (1979, 1999, 2000), Angrist and Imbens (1999), Rosenzweig

and Wolpin (2000), Deaton (2009), Heckman and Urzua (2009), Imbens (2009), Angrist and Pischke

(2010), Sims (2010).
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represent a labor market outcome for individuals who received training and Yhi would

represents the outcome in the absence of training.

In both the case of drug treatment and job training, empirical researchers have

exploited randomized trials. Medical patients are often randomly assigned either a

treatment or a placebo (i.e., a sugar pill that should have no effect on health). Likewise,

many job training programs are randomly assigned. For example, in the case of the

Job Training Partnership Act, a large number of unemployed individuals applied for

job training (see e.g. Bloom et. al., 1997). Of those who applied for training, some

were assigned training and some were assigned no training.

Because assignment is random and affects the level of treatment, one can treat

assignment as an exclusion restriction that is correlated with treatment (i.e., the prob-

ability that Ji = f) but is uncorrelated with preferences or ability because it is random.

In this sense, random assignment solves the selection problem that is the focus of the

Roy model. As we show below, exogenous variation provided by experiments allows the

researcher to cleanly identify some properties of the distribution of Yfi and Yhi under

relatively weak assumptions. Furthermore, the methods for estimating these objects

are simple, which adds to their appeal.

The treatment effect framework is also widely used for evaluating quasi-experimental

data as well. By quasi-experimental data, we mean data that are not experimental,

but exploit variation that is “almost as good as” random assignment.

5.1 Treatment Effects and the Generalized Roy Model

Within the context of the generalized Roy model note that in general

πi = gf (Xfi, X0i) − gh(Xhi, X0i) + εfi − εhi.

An important special case of the treatment effect defined in equation (5.1) is when

gf(Xfi, X0i) = gh(Xhi, X0i) + π0 (5.2)

εfi = εhi. (5.3)

In this case, the treatment effect πi = Yfi − Yhi = π0 is a constant across individuals.

Identification of this parameter is relatively straightforward. However, there is a sub-

stantial literature that studies identification of heterogeneous treatment effects. As we
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point out above, treatment effects are positive for some people and negative for others

in the context of the Roy model. Furthermore, there is ample empirical evidence that

the returns to job training are not constant, but instead vary across the population

(Heckman, LaLonde, and Smith, 1999).

In section 4.2 we explain why the joint distribution of (εfi, εhi) is not identified. This

means that the distribution of πi is not identified and even relatively simple summary

statistics like the median of this distribution is not identified in general. The key

problem is that even when assignment is random, we do not observe the same people

in both occupations.

Since the full generalized Roy model is complicated, hard to describe, and very de-

manding in terms of data, researchers often focus on a summary statistic to summarize

the result. The most common in this literature is the Average Treatment Effect (ATE)

defined as

ATE ≡ E(πi)

= E(Yfi) −E(Yhi).

From Theorem 4.1 we know that (under the assumptions of that theorem) the

distribution of Yfi and Yhi are identified. Thus, their expected values are also identified

under the one additional assumption that these expected values exist.

Assumption 5.1. The expected values of Yfi and Yhi are finite

Theorem 5.1. Under the assumptions of Theorem 4.1 and Assumption 5.1, the Av-

erage Treatment effect is identified.

(Proof in Appendix)

To see where identification of this object comes from, abstract from Xi so that

the only observable is Zi, which affects the non-pecuniary gain in utility from occu-

pation across occupations. With experimental data, Zi could be randomly generated

assignments to occupation. Notice that

lim
ϕ(z)→1

E(Yfi | Zi = z, Ji = f) − lim
ϕ(z)→0

E(Yhi | Zi = z, Ji = h)

= lim
ϕ(z)→1

E(Yfi | νi ≤ ϕ(z)) − lim
ϕ(z)→0

E(Yhi | νi > ϕ(z))

= E(Yfi) − E(Yhi).
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Thus the exclusion restriction is the key to identification. Note also that we need

groups of individuals where ϕ(Zi) ≈ 1 (who are always fishermen) and ϕ(Zi) ≈ 0 (who

are always hunters); thus “identification at infinity” is essential as well. For the reasons

discussed in the nonparametric Roy model above, if ϕ(Zi) were never higher than some

ϕ(zu) < 1 then E(Yfi) would not be identified. Similarly if ϕ(Zi) were never lower

then some ϕ(zℓ) > 0, then E(Yhi) would not be identified.

While one could directly estimate the the ATE using “identification at infinity,”

as described above this is not the common practice and not something we would ad-

vocate. The standard approach would be to estimate the full Generalized Roy Model

and then use it to simulate the various treatment effects. This is often done using a

completely parametric approach as in, for example, the classic paper by Willis and

Rosen (1979). However, there are quite a few nonparametric alternatives as well, in-

cluding construction of the Marginal Treatment effects as discussed in section 5.3 and

5.4 below.

As it turns out, even with experimental data, it is rarely the case that ϕ(Zi) is

identically one or zero with positive probability. In the case of medicine, some people

assigned the treatment do not take the treatment. In the training example, many

people who are offered subsidized training decide not to undergo the training. Thus,

when compliance with assignment is less than 100%, we cannot recover the ATE. In

Section 5.2 we discuss more precisely what we do recover when there is less than 100%

compliance.

It is also instructive to relate the ATE to instrumental variables estimation. Let Yi

be the outcome of interest

Yi =




Yfi if Ji = f

Yhi if Ji = h

,

and let Dfi be a dummy variable indicating whether Ji = f. Consider estimating the

model

Yi = β0 + β1Dfi + ui (5.4)

using instrumental variables with Zi as an instrument for Dfi. Assume that Zi is

correlated with Dfi but not with Yfi or Yhi. Consider first the constant treatment

effect model described in equations (5.2) and (5.3) so that πi = π0 for everyone in the
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population. In that case

Yi = YfiDfi + Yhi(1 −Dfi)

= Yhi +Dfi(Yfi − Yhi)

= Yhi +Dfiπ0.

Then two stage least squares on the model above yields

plimβ̂1 =
Cov(Zi, Yi)

Cov(Zi, Dfi)

=
Cov(Zi, Yhi +Dfiπ0)

Cov(Zi, Dfi)

=
Cov(Zi, Yhi)

Cov(Zi, Dfi)
+
Cov(Zi, π0Dfi)

Cov(Zi, Dfi)

= π0.

Thus in the constant treatment effect model, instrumental variables provides a con-

sistent estimate of the treatment effect. However, this result does not carry over to

heterogeneous treatment effects and the average treatment effects as Heckman (1997)

shows. Following the expression above we get

plimβ̂1 =
Cov(Zi, Yhi +Dfiπi)

Cov(Zi, Dfi)

=
Cov(Zi, Dfiπi)

Cov(Zi, Dfi)

6= ATE (5.5)

in general. In sections 5.2 and 5.3 below, we describe what instrumental variables

identifies.

In practice there are two potential problems with the assumptions behind Theorem

5.1 above

• The researcher may not have a valid exclusion restriction. We discuss some of

the options for this case in Sections 5.5, 5.6, and 5.7.

• Even if they do, the variable may not have full support. By this we mean that the

instrumental variable Zi may not vary enough so that for some observed values

of Zi everyone is always a fisherman and for other observed values of Zi everyone
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is always a hunter. We discuss what can be identified using exclusion restrictions

with limited support in Sections 5.2, 5.3, 5.4, and 5.6.

We discuss a number of different approaches some of which assumes an exclusion re-

striction but relaxes the support conditions and others that do not require exclusion

restrictions.

5.2 Local Average Treatment Effects

Imbens and Angrist (1994) and Angrist, Imbens, and Rubin (1996) consider identifica-

tion when the support of Zi takes on a finite number of points. They show that when

varying the instrument over this range, they can identify what they call a Local Aver-

age Treatment Effect. Furthermore, they show how instrumental variables can be used

to estimate it. It is again easiest to think about this problem after abstracting from Xi,

as it is straightforward to condition on these variables (see Imbens and Angrist, 1994,

for details). For simplicity’s sake, consider the case in which the instrument Zi is bi-

nary and takes on the values {0, 1}. In many cases not only is the instrument discrete,

but it is also binary. For example, in randomized medical trials, Zi = 1 represents

assignment to treatment, whereas Zi = 0 represents assignment to the placebo. In

job training programs, Zi = 1 represents assignment to the training program, whereas

Zi = 0 represents no assigned training.

It is important to point out that not all patients assigned treatment actually receive

the treatment. Thus Ji = f if the patient actually takes the drug and Ji = h if the

individual does not take the drug. Likewise, not all individuals who are assigned

training actually receive the training, so Ji = f if the individual goes to training and

Ji = h if she does not. The literature on Local Average Treatment Effects handles this

case as well as many others. However, we do require that the instrument of assignment

has power: Pr(Ji = f | Zi = 1) 6= Pr(Ji = f | Zi = 0). Without loss of generality we

will assume that Pr(Ji = f | Zi = 1) > Pr(Ji = f | Zi = 0).

Using the reduced form version of the generalized Roy model the choice problem is

Ji = f if ϕ(Zi) > νi (5.6)

where νi is uniformly distributed.
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The following six objects can be learned directly from the data:

Pr(Ji = f |Zi = 0) = Pr(νi ≤ ϕ(0))

Pr(Ji = f |Zi = 1) = Pr(νi ≤ ϕ(1))

E(Yfi | Zi = 0, Ji = f) = E(Yfi | νi ≤ ϕ(0))

E(Yhi | Zi = 0, Ji = h) = E(Yhi | νi > ϕ(0))

E(Yfi | Zi = 1, Ji = f) = E(Yfi | νi ≤ ϕ(1))

E(Yhi | Zi = 1, Ji = h) = E(Yhi | νi > ϕ(1)),

The above equations show that our earlier assumption that Pr(Ji = f |Zi = 1) >

Pr(Ji = f |Zi = 0) implies Pr(νi ≤ ϕ(1)) > Pr(νi ≤ ϕ(0)). This, combined with the

structure embedded in equation (5.6) means that

Pr(νi ≤ ϕ(1)|νi ≤ ϕ(0)) = 1, (5.7)

so then an individual who is a fisherman when Zi = 0 is also a fisherman when Zi = 1.

Similar reasoning implies Pr(νi ≤ ϕ(1)|ϕ(0) < νi ≤ ϕ(1)) = 1. Using this and Bayes

rule yields

Pr(νi ≤ ϕ(0) | νi ≤ ϕ(1)) =
Pr(νi ≤ ϕ(1) | νi ≤ ϕ(0))Pr(νi ≤ ϕ(0))

Pr(νi ≤ ϕ(1))

=
Pr(νi ≤ ϕ(0))

Pr(νi ≤ ϕ(1))
, (5.8)

Pr(ϕ(0) < νi ≤ ϕ(1) | νi ≤ ϕ(1)) =
Pr(νi ≤ ϕ(1) | ϕ(0) < νi ≤ ϕ(1))Pr(ϕ(0) < νi ≤ ϕ(1))

Pr(νi ≤ ϕ(1))

=
Pr(ϕ(0) < νi ≤ ϕ(1))

Pr(νi ≤ ϕ(1))
(5.9)

Using the fact that Pr(νi ≤ ϕ(1)) = Pr(νi ≤ ϕ(0)) + Pr(ϕ(0) < νi ≤ ϕ(1)), one can

show that

E(Yfi | νi ≤ ϕ(1)) =E(Yfi | νi ≤ ϕ(0))Pr(νi ≤ ϕ(0) | νi ≤ ϕ(1))

+ E(Yfi | ϕ(0) < νi ≤ ϕ(1))Pr(ϕ(0) < νi ≤ ϕ(1) | νi ≤ ϕ(1))

(5.10)
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Combining equation (5.10) with equations (5.8) and (5.9) yields

E(Yfi | νi ≤ ϕ(1)) =
E(Yfi | νi ≤ ϕ(0))Pr(νi ≤ ϕ(0))

Pr(νi ≤ ϕ(1))

+
E(Yfi | ϕ(0) < νi ≤ ϕ(1))Pr(ϕ(0) < νi ≤ ϕ(1))

Pr(νi ≤ ϕ(1))
(5.11)

Rearranging equation (5.11) shows that we can identify

E(Yfi | ϕ (0) ≤ νi < ϕ(1))

=
E(Yfi | Zi = 1, Ji = f)Pr(Ji = f | Zi = 1) − E(Yfi | Zi = 0, Ji = f)Pr(Ji = f | Zi = 0)

Pr(Ji = f | Zi = 1) − Pr(Ji = f | Zi = 0)

(5.12)

since everything on the right hand side is directly identified from the data.

Using the analogous argument one can show that

E(Yhi | ϕ (0) ≤ νi < ϕ(1))

=
E(Yhi | Zi = 0, Ji = h)Pr(Ji = h | Zi = 0) −E(Yhi | Zi = 1, Ji = h)Pr(Ji = h | Zi = 1)

Pr(Ji = f | Zi = 1) − Pr(Ji = f | Zi = 0)

is identified. But this means that we can identify

E(πi | ϕ (0) ≤ νi < ϕ(1)) = E(Yfi − Yhi | ϕ (0) ≤ νi < ϕ(1)) (5.13)

which Imbens and Angrist (1994) define as the Local Average Treatment Effect. This

is the average treatment effect for that group of individuals who would alter their

treatment status if their value of Zi changed. Given the variation in Zi, this is the only

group for whom we can identify a treatment effect. Any individual in the data with

νi > ϕ(1) would never choose Ji = f, so the data are silent about E(Yfi | νi > ϕ(1)).

Similarly the data is silent about E(Yhi | νi ≤ ϕ(0)).

Imbens and Angrist (1994) also show that the standard linear Instrumental Vari-

ables estimator yield consistent estimates of Local Average Treatment Effects. Consider

the instrumental variables estimator of equation (5.4)

Yi = β0 + β1Dfi + ui

In equation (5.5) we showed that

β̂1
p
→
Cov(Zi, Dfiπi)

Cov(Zi, Dfi)

=
E(πiDfiZi) − E (πiDfi)E (Zi)

E(DfiZi) − E (Dfi)E (Zi)
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Let Pz denote the probability that Zi = 1. The numerator of the above expression

is

E(πiDfiZi) − E (πiDfi)E (Zi)

= PzE(πiDfi | Zi = 1) − E (πiDfi)Pz

= PzE(πiDfi | Zi = 1) − [PzE(πiDfi | Zi = 1) + (1 − Pz)E(πi, Dfi | Zi = 0)]Pz

= Pz(1 − Pz) [E(πiDfi | Zi = 1) −E(πiDfi | Zi = 0)]

= Pz(1 − Pz)E(πi | ϕ(0) < νi ≤ ϕ (1))Pr(ϕ (0) < νi ≤ ϕ (1))

where the key simplification comes from the fact that

E(πiDfi | Zi = 1) = E (πi1 (νi ≤ ϕ(1)))

= E (πi [1 (νi ≤ ϕ(0)) + 1 (ϕ(0) < νi ≤ ϕ(1))])

= E(πiDfi | Zi = 0) + E(πi | ϕ(0) < νi ≤ ϕ (1))Pr(ϕ (0) < νi ≤ ϕ (1)).

Next consider the denominator

E(DfiZi) −E (Dfi)E (Zi)

= PzE(Dfi | Zi = 1) −E (Dfi)Pz

= PzE(Dfi | Zi = 1) − [PzE(Dfi | Zi = 1) + (1 − Pz)E(Dfi | Zi = 0)]Pz

= Pz(1 − Pz) [E(Dfi | Zi = 1) − E(Dfi | Zi = 0)]

= Pz(1 − Pz)Pr(ϕ (0) < νi ≤ ϕ (1))

Thus

β̂1
p
→
E(πiDfiZi) − E (πiDfi)E (Zi)

E(DfiZi) − E (Dfi)E (Zi)

=
Pz(1 − Pz)E(πi | ϕ(0) < νi ≤ ϕ (1))Pr(ϕ (0) < νi ≤ ϕ (1))

Pz(1 − Pz)Pr(ϕ (0) < νi ≤ ϕ (1))

= E(πi | ϕ(0) < νi ≤ ϕ (1))

Imbens and Angrist never explicitly use the generalized Roy model or the latent

index framework. Instead, they write their problem only in terms of the choice prob-

abilities. However, in order to do this they must make one additional assumption.

Specifically, they assume that if Ji = f when Zi = 0 then Ji = f when Zi = 1. Thus
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changing Zi = 0 to Zi = 1 never causes some people to switch from fishing to hunting.

It only causes people to switch from hunting to fishing. They refer to this as a mono-

tonicity assumption. Vytlacil (2002) points out that this is implied by the latent index

model when the index ϕ(Zi) is separable from νi as we assumed in equation (5.6). As is

implied by equation (5.7), increasing the index ϕ(Zi) will cause some people to switch

from hunting to fishing, but not the reverse.14

Throughout, we use the latent index framework that is embedded in the Generalized

Roy model, for three reasons. First, we can appeal to the identification results of the

Generalized Roy model. Second, the latent index can be interpreted as the added utility

from making a decision. Thus we can use the estimated model for welfare analysis.

Third, placing the choice in an optimizing framework allows us to test the restrictions

on choice that come from the theory of optimization.

As we have pointed out, not everyone offered training actually takes the training.

For example, in the case of the JTPA, only 60% of those offered the training actually

received it (Bloom et al., 1997). Presumably, those who took the training are those

who stood the most to gain from the training. For example, the reason that many

people do not take training is that they receive a job offer before training begins. For

these people, the training may have been of relatively little value. Furthermore, 2% of

those who applied for and were not assigned training program wind up receiving the

training (Bloom et al., 1997). Angrist, Imbens and Rubin (1996) refer to those who

were assigned training, but did not take the training as never-takers. Those who receive

the training whether or not they are assigned are always-takers. Those who receive the

training only when assigned the training are compliers. In terms of the latent index

framework, the never-takers are those for whom (νi ≥ ϕ(1)), the compliers are those

for whom (ϕ (0) ≤ νi < ϕ(1)), and the always-takers are those for whom (νi < ϕ(0)).

The monotonicity assumption embedded in the latent index framework rules out

the existence of a final group: the defiers. In the context of training, this would be

an individual who receives training when not assigned training but would not receive

training when assigned. At least in the context of training programs (and many other

contexts) it seems safe to assume that there are no defiers.

14However, he points out that the non-separable model Dfi = 1(f(Zi, νi) > 0) does not necessarily

give rise to monotonicity. All other differences between the latent variable framework and the LATE

framework are extremely technical and minor.
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5.3 Marginal Treatment Effects

Heckman and Vytlacil (1999, 2001, 2005, 2007b) develop a framework that is useful for

constructing many types of treatment effects. They focus on the marginal treatment

effect (MTE) defined in our context as

∆MTE(x, ν) ≡ E(πi | Xi = x, νi = ν).

They show formally how to identify this object. We present their methodology using

our notation.

Note that if we allow for regressors Xi, let the exclusion restriction Zi to take on

values beyond zero and one, then if (zℓ, x) and (zh, x) are in the support of the data,

then equation (5.12) can be rewritten as

E(Yfi | ϕ
(
zℓ, x

)
≤ νi < ϕ(zh, x), Xi = x)

=
E(Yfi | (Zi, Xi) = (zh, x), Ji = f)Pr(Ji = f | (Zi, Xi) = (zh, x))

Pr(Ji = f | (Zi, Xi) = (zh, x)) − Pr(Ji = f | (Zi, Xi) = (zℓ, x))

−
E(Yfi | (Zi, Xi) = (zℓ, x), Ji = f)Pr(Ji = f | (Zi, Xi) = (zℓ, x))

Pr(Ji = f | (Zi, Xi) = (zh, x)) − Pr(Ji = f | (Zi, Xi) = (zℓ, x))
(5.14)

for ϕ
(
zℓ, x

)
< ϕ(zh, x). Now notice that for any ν,

lim
ϕ(zℓ,x)↑ν,ϕ(zh,x)↓ν

E(Yfi | ϕ
(
zℓ, x

)
≤ νi < ϕ(zh, x), Xi = x) = E(Yfi | νi = ν,Xi = x).

Thus if (x, ν) is in the support of (Xi, ϕ(Zi, Xi)), then E(Yfi | νi = ν,Xi = x) is

identified. Since the model is symmetric, under similar conditions E(Yhi | νi = ν,Xi =

x) is identified as well. Finally since

∆MTE(x, ν) = E(πi | Xi = x, νi = ν)

= E(Yfi | νi = ν,Xi = x) − E(Yhi | νi = ν,Xi = x), (5.15)

the marginal treatment effect is identified.

The marginal treatment effect is interesting in its own right. It is the value of the

treatment for any individual with Xi = x and νi = ν. In addition, it is also useful

because the different types of treatment effects can be defined in terms of the marginal

treatment effect. For example

ATE =

∫ ∫ 1

0

∆MTE(x, ν)dνdG(x).
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One can see from this expression that without full support this will not be identified

because ∆MTE(x, ν) will not be identified everywhere.

Heckman and Vytlacil (2005) also show that the instrumental variables estimator

defined in equation (5.5) (conditional on x) is

∫ 1

0

∆MTE(x, ν)hIV (x, ν)dν

where they give an explicit functional form for hIV . It is complicated enough that we

do not repeat it here but it can be found in Heckman and Vytlacil (2005).

This framework is also useful for seeing what is not identified. In particular if

ϕ(Zi, x) does not have full support so that it is bounded above or below the average

treatment effect will not be identified. However, many other interesting treatment

effects can be identified. For example, the Local Average Treatment Effect in a model

with no regressors (x) is

LATE =

∫ ϕ(1)

ϕ(0)
∆MTE(ν)dν

ϕ(1) − ϕ(0)
. (5.16)

More generally, in this series of papers, Heckman and Vytlacil show that the

marginal treatment effect can also be used to organize many ideas in the literature.

One interesting case is policy effects. They define the policy relevant treatment effect

as the treatment resulting from a particular policy. They show that if the relation-

ship between the policy and the observable covariates is known, the policy relevant

treatment effect can be identified from the marginal treatment effects.

5.4 Applications of the Marginal Treatment Effects Approach

Heckman and Vytlacil (1999,2001,2005) suggest procedures to estimate the marginal

treatment effect. They suggest what they call “local instrumental variables.” Using

our notation for the generalized Roy model in which Ji = f when ϕ(Xi, Zi) − νi > 0

where νi is uniformly distributed, they show that

∆MTE(x, ν) =
∂E(Yi | Xi = x, ϕ(Xi, Zi) = ν)

∂ν
.
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To see why this is the same definition of MTE as in equation (5.15), note that

∂E(Yi | Xi = x, ϕ(Xi, Zi) = ν)

∂ν

=
∂ [E(Yfi | Xi = x, νi ≤ ν)Pr(νi ≤ ν) + E(Yhi | Xi = x, νi > ν)Pr(νi > ν)]

∂ν

=
∂
[∫ ν

0
E(Yfi | νi = ω,Xi = x)dω +

∫ 1

ν
E(Yhi | νi = ω,Xi = x)dω

]

∂ν

= E(Yfi | νi = ν,Xi = x) − E(Yhi | νi = ν,Xi = x)

= ∆MTE(x, ν).

Thus one can estimate the marginal treatment effect in three steps. First estimate

ϕ, second estimate E(Y | Xi = x, ϕ(Xi, Zi) = ν) using some type of nonparametric

regression approach, and third take the derivative.

Because as a normalization νi is uniformly distributed

ϕ(x, z) = Pr(νi ≤ ϕ(Xi, Zi) | Xi = x, Zi = z)

= Pr(Ji = f | Xi = x, Zi = z)

= E(Dfi | Xi = x, Zi = z).

Thus we can estimate ϕ(x, z) from a nonparametric regression of Dfi on (Xi, Zi).

A very simple way to do this is to use a linear probability model of Dfi regressed

on a polynomial of Zi. By letting the terms in the polynomial get large with the

sample size, this can be considered a nonparametric estimator. For the second stage

we regress the outcome Yi on a polynomial of our estimate of ϕ(Zi). To see how this

works consider the case in which both polynomials are quadratics. We would use the

following two stage least squares procedure:

Dfi = γ0 + γ1Zi + γ2Z
2
i + γxXi + ei, (5.17)

Yi = β0 + β1D̂fi + β2D̂fi

2
+ βxXi + ui, (5.18)

where D̂fi = γ̂0 + γ̂1Zi + γ̂2Z
2
i + γ̂xXi is the predicted value from the first stage. The

β2 coefficient may not be 0 because as we change D̂fi the instrument affects different

groups of people. The MTE is the effect of changing D̂fi on Yi. For the case above the

MTE is:
∂Yi

∂D̂fi

= β1 + 2β2D̂fi. (5.19)
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Although the polynomial procedure above is transparent, the most common technique

used to estimate the MTE is local linear regression.

French and Song (2010) estimate the labor supply response to Disability Insurance

(DI) receipt for DI applicants. Individuals are deemed eligible for DI benefits if they

are “unable to engage in substantial gainful activity”-i.e., if they are unable to work.

Beneficiaries receive, on average $12,000 per year, plus Medicare health insurance.

Thus, there are strong incentives to apply for benefits. They continue to receive these

benefits only if they earn less than a certain amount per year ($10,800 in 2007). For

this reason, the DI system likely has strong labor supply disincentives. A healthy DI

recipient is unlikely to work if that causes the loss of DI and health insurance benefits.

The DI system attempts to allow benefits only to those who are truly disabled.

Many DI applicants have their case heard by a judge who determines those who are

truly disabled. Some applicants appear more disabled than others. The most disabled

applicants are unable to work, and thus will not work whether or not they get the

benefit. For less serious cases, the applicant will work, but only if she is denied benefits.

The question, then, is what is the optimal threshold level for the amount of observed

disability before the individual is allowed benefits? Given the definition of disability,

this threshold should depend on the probability that an individual does not work,

even when denied the benefit. Furthermore, optimal taxation arguments suggest that

benefits should be given to groups whose labor supply is insensitive to benefit allowance.

Thus the effect of DI allowance on labor supply is of great interest to policy makers.

OLS is likely to be inconsistent because those who are allowed benefits are likely to

be less healthy than those who are denied. Those allowed benefits would have had low

earnings even if they did not receive benefits. French and Song propose an IV estimator

using the process of assignment of cases to judges. Cases are assigned to judges on a

rotational basis within each hearing office, which means that for all practical purposes,

judges are randomly assigned to cases conditional on the hearing office and the day.

Some judges are much more lenient than others. For example, the least lenient 5%

of all judges allow benefits to less than 45% of the cases they hear, whereas the most

lenient 5% of all judges allow benefits to 80% of all the cases they hear. Although

some of those who are denied benefits appeal and get benefits later, most do not. If

assignment of cases to judges is random then the instrument of judge assignment is a
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plausibly exogenous instrument. Furthermore, and as long as judges vary in terms of

leniency and not ability to detect individuals who are disabled,15 the instrument can

identify a MTE.

French and Song use a two stage procedure. In the first stage they estimate the

probability that an individual is allowed benefits, conditional on the average judge

specific allowance rate. They estimate a version of equation (5.17) where Dfi is an

indicator equal to 1 if case i was allowed benefits and Zi is the average allowance rate

of the judge who heard case i. In the second stage they estimate earnings conditional on

whether the individual was allowed benefits (as predicted by the judge specific allowance

rate). They estimate a version of equation (5.18) where Yi is annual earnings 5 years

after assignment to a judge. Figure 1 shows the estimated MTE (using the formula

in equation (5.19)) using several different specifications of polynomial in the first and

second stage equations. Assuming that the treatment effect is constant (i.e., β2 = 0),

they find that annual earnings 5 years after assignment to a judge are $1,500 for those

allowed benefits and $3,900 for those denied benefits, so the estimated treatment effect

is $2,400. This is the MTE-linear case in Figure 1. However, this masks considerable

heterogeneity in the treatment effects. They find that when allowance rates rise, the

labor supply response of the marginal case also rises. When allowing for the quadratic

term β2 to be non-zero, they find that less lenient judges (who allow 45% of all cases)

have a MTE of a $1,800 decline in earnings. More lenient judges (who allow 80% of

all cases) have a MTE of $3,200 decline in earnings. Figure 1 also shows results when

allowing for cubic and quartic terms in the polynomials in the first and second stage

equations. This result is consistent with the notion that as allowance rates rise, more

healthy individuals are allowed benefits. These healthier individuals are more likely to

work when not receiving DI benefits, and thus their labor supply response to DI receipt

is greater.

One problem with an instrument such as this is that the instrument lacks full

support. Even the most lenient judge does not allow everyone benefits. Even the

strictest judge does not deny everyone. However, the current policy debate is whether

the thresholds should be changed by only a modest amount. For this reason, the MTE

15If judges vary in terms of ability to detect disability, then a case that is allowed by a low allowance

judge might be denied by a high allowance judge. This would violate the monotonicity assumption

shown in equation (5.7).
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Figure 1: Marginal Treatment Effect

on the support of the data is the effect of interest, whereas the ATE is not.

Doyle (2007) estimates the Marginal Treatment Effect of foster care on future earn-

ings and other outcomes. Foster care likely increases earnings of some children but

decreases it for others. For the most serious child abuse cases, foster care will likely

help the child. For less serious cases, the child is probably best left at home. The

question, then, is at what point should the child abuse investigator remove the child

from the household? What is the optimal threshold level for the amount of observed

abuse before which the child is removed from the household and placed into foster care?

Only children from the most disadvantaged backgrounds are placed in foster care.

They would have had low earnings even if they were not placed in foster care. Thus,

OLS estimates are likely inconsistent. To overcome this problem, Doyle uses IV. Case

investigators are assigned to cases on a rotational basis, conditional on time and the
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location of the case. Case investigators are assigned to possible child abuse cases

after a complaint of possible child abuse is made (by the child’s teacher, for example).

Investigators have a great deal of latitude about whether the child should be sent into

foster care. Furthermore, some investigators are much more lenient than others. For

example, one standard deviation in the case manager removal differential (the difference

between his average removal rate and the removal rate of other investigators who handle

cases at the same time and place) is 10%. Whether the child is removed from the home

is a good predictor of whether the child is sent to foster care. So long as assignment of

cases to investigators is random and investigators only vary in terms of leniency (and

not ability to detect child abuse) then the instrument of investigator assignment is a

useful and plausibly exogenous instrument.

Doyle uses a two stage procedure where in the first stage he estimates the probability

that a child is placed in foster care as a function of the investigator removal rate. In the

second stage he estimates adult earnings as a function of whether the child was placed

in foster care (as predicted by the instrument). He finds that children placed into

foster care earn less than those not placed into foster care over most of the range of the

data. Two stage least squares estimates reveal that foster care reduces adult quarterly

earnings by about $1000, which is very close to average earnings. Interestingly, he finds

that when child foster care placement rates rise, earnings of the marginal case fall. For

example, earnings of the marginal child handled by a lenient investigator (who places

only 20% of the children in foster care) are unaffected by placement. For less lenient

investigators, who place 25% of the cases in foster care, earnings of the marginal case

decline by over $1500.

Carneiro and Lee (2009) estimate the counterfactual marginal distributions of wages

for college and high school graduates, and examine who enters college. They find that

those with the highest returns are the most likely to attend college. Thus, increases

in college cause changes in the distribution of ability among college and high school

graduates. For fixed skill prices, they find that a 14% increase in college participation

(analogous to the increase observed in the 1980s), reduces the college premium by 12%.

Likewise, Carneiro, Heckman and Vytlacil (2010) find that while the conventional IV

estimate of the return to schooling (using distance to a college and local labor market

conditions as the instruments) is 0.095, the estimated marginal return to a policy that
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expands each individual’s probability of attending college by the same proportion is

only 0.015.

5.5 Selection on Observables

Perhaps the simplest and most common assumption is that assignment of the treat-

ment is random conditional on observable covariates (sometimes referred to as uncon-

foundedness). The easiest way to think about this is that the selection error term is

independent of the other error terms:

Assumption 5.2.

Ji = f when ϕ(Xi) > νi

where νi is independent of (εfi, εhi).

We continue to assume that Yfi = gf(Xfi, X0i) + εfi and Yhi = gh(Xhi, X0i) + εhi.

Note that we have explicitly dropped Zi from the model as we consider cases in which

we do not have exclusion restrictions. The implication of this assumption is that

unobservable factors that determine one’s income as a fisherman do not affect the

choice to become a fisherman. That is while it allows for selection on observables in a

very general way, it does not allow for selection on unobservables.

Interestingly, this is still not enough for us to identify the Average Treatment Effect.

If there are values of observable covariates Xi for which Pr(Ji = f | Xi = x) = 1 or

Pr(Ji = f | Xi = x) = 0 the model is not identified. If Pr(Ji = f | Xi = x) = 1 then

it is straight forward to identify E(Yfi | Xi = x), but E(Yhi | Xi = x) is not identified.

Thus we need the additional assumption

Assumption 5.3. For almost all x in the support of Xi,

0 < Pr(Ji = f | Xi = x) < 1

Theorem 5.2. Under assumptions 5.2 and 5.3 the Average Treatment Effect is iden-

tified

(Proof in Appendix)
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Estimation in this case is relatively straightforward. One can use matching16 or

regression analysis to estimate the average treatment effect.

5.6 Set Identification of Treatment Effects

In our original discussion of identification we defined Ψ(Θ(P )) as “the set of values of

ψ that are consistent with the data distribution P .” We said that ψ was identified if

this set was a singleton. However, there is another concept of identification we have

not discussed until this point which is set identification. Sometimes we may be inter-

ested in a parameter that is not point identified, but this does not mean we cannot

say anything about it. In this subsection we consider the case of set identification (i.e.

trying to characterize the set Ψ(Θ(P ))) focusing on the case in which ψ is the Average

Treatment Effect. Suppose that we have some prior knowledge (possibly an exclusion

restriction that gives us a LATE). What can we learn about the ATE without making

any functional form assumptions? In a series of papers Manski (1989,1990,1995,1997)

and Manski and Pepper (2000,2009) develop procedures to derive set estimators of

the Average Treatment Effect and other parameters given weak assumptions. By “set

identification” we mean the set of possible Average Treatment Effects given the as-

sumptions placed on the the data. Throughout this section we will continue to assume

that the structure of the Generalized Roy model holds and we derive results under these

assumptions. In many cases the papers we mentioned did not impose this structure

and get more general results.

Following Manski (1990) or Manski (1995), notice that

E (Yfi) = E(Yfi | Ji = f)Pr(Ji = f) + E(Yfi | Ji = h)Pr(Ji = h) (5.20)

E (Yhi) = E(Yhi | Ji = h)Pr(Ji = h) + E(Yhi | Ji = f)Pr(Ji = f). (5.21)

We observe all of the objects in equations (5.20) and (5.21) except E(Yfi | Ji = h)

and E(Yhi | Ji = f). The data are completely uninformative about these two objects.

However, suppose we have some prior knowledge about the support of Yfi and Yhi. In

particular, suppose that the support of Yfi and Yhi are bounded above by yu and from

16Our focus is on identification rather than estimation. Thus we avoid a discussion of matching

estimators. See Heckman, Lalonde, and Smith (1999), Imbens and Wooldridge (2009), or Dinardo

and Lee (2010) for discussion.
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below by yℓ. Thus, by assumption yu ≥ E(Yfi | Ji = h) ≥ yℓ and yu ≥ E(Yhi | Ji =

f) ≥ yℓ. Using these assumptions and equations (5.20) and (5.21) we can establish

that

E(Yfi |Ji = f)Pr(Ji = f) + yℓPr(Ji = h)

≤ E (Yfi) ≤ E(Yfi | Ji = f)Pr(Ji = f) + yuPr(Ji = h) (5.22)

E(Yhi |Ji = h)Pr(Ji = h) + yℓPr(Ji = f)

≤ E (Yhi) ≤ E(Yhi | Ji = h)Pr(Ji = h) + yuPr(Ji = f). (5.23)

Using these bounds and the definition of the ATE

ATE = E (Yfi) − E (Yhi) (5.24)

yields

(
E(Yfi | Ji = f)Pr(Ji = f) + yℓPr(Ji = h)

)
−

(
E(Yhi | Ji = h)Pr(Ji = h) + yuPr(Ji = f)

)

≤ATE ≤
(
E(Yfi | Ji = f)Pr(Ji = f) + yuPr(Ji = h)

)
−

(
E(Yhi | Ji = h)Pr(Ji = h) + yℓPr(Ji = f)

)

In practice the bounds above can yield wide ranges and are often not particularly

informative. A number of other assumptions can be used to decrease the size of the

identified set.

Manski (1990,1995) shows that one method of tightening the bounds is with an

instrumental variable. We can write the expressions (5.20) and (5.21) conditional on

Zi = z for any z ∈ supp(Zi) as for each j ∈ {f, h} ,

E (Yji|Zi = z) = E(Yji | Ji = f, Zi = z)Pr(Ji = f | Zi = z)

+ E(Yji | Ji = h, Zi = z)Pr(Ji = h | Zi = z) (5.25)

Since Zi is, by assumption, mean independent of Yfi and Yhi (it only affects the proba-

bility of choosing one occupation versus the other), then E (Yfi|Zi = z) = E (Yfi) and

E (Yhi|Zi = z) = E(Yhi). Assume there is a binary instrumental variable, Zi, which

equals either 0 or 1. We can then follow exactly the same argument as in equations
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(5.22) and (5.23), but conditioning on Zi and using equation (5.25) yields

E(Yfi | Ji = f, Zi = 1) Pr(Ji = f | Zi = 1) + yℓPr(Ji = h | Zi = 1)

≤E (Yfi) ≤

≤ E(Yfi | Ji = f, Zi = 1) Pr(Ji = f | Zi = 1) + yuPr(Ji = h | Zi = 1) (5.26)

E(Yhi | Ji = h, Zi = 0)Pr(Ji = h | Zi = 0) + yℓPr(Ji = f | Zi = 0)

≤E (Yhi) ≤

E(Yhi | Ji = h, Zi = 0)Pr(Ji = h | Zi = 0) + yuPr(Ji = f | Zi = 0). (5.27)

Thus we can bound ATE = E(Yfi)−E(Yhi) from below by subtracting (5.27) from

(5.26):

E(Yfi | Ji = f, Zi = 1)Pr(Ji = f | Zi = 1) + yℓPr(Ji = h | Zi = 1)

−E(Yhi | Ji = h, Zi = 0)Pr(Ji = h | Zi = 0) + yuPr(Ji = f | Zi = 0)

≤ATE ≤

E(Yfi | Ji = f, Zi = 1)Pr(Ji = f | Zi = 1) + yuPr(Ji = h | Zi = 1)

−E(Yhi | Ji = h, Z = 0)Pr(Ji = h | Zi = 0) + yℓPr(Ji = f | Zi = 0). (5.28)

Our choice of a binary value of Zi can be trivially relaxed. In the cases in which

Zi takes on many values one could choose any two values in the support of Zi to get

upper and lower bounds. If our goal is to minimize the size of the set we would choose

the values zℓ and zh to minimize the difference between the upper and lower bounds

in (5.28):
(
yu − yℓ

) [
Pr(Ji = h | Zi = zh) + Pr(Ji = f | Zi = zℓ)

]

The importance of support conditions once again becomes apparent from this ex-

pression. If we could find values zℓ and zhsuch that

Pr(Ji =h | Zi = zh) = 0

Pr(Ji =f | Zi = zℓ) = 0

then this expression is zero and we obtain point identification of the ATE. When

Pr(Ji = h | Zi = z) or Pr(Ji = f | Zi = z) are bounded from below we are only
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able to obtain set estimates. A nice aspect of this is that it represents a nice middle

point between identifying LATE versus claiming the ATE is not identified. If the

identification at infinity effect is not exactly true, but approximately true so that one

can find values of zℓ and zh so that Pr(Ji = h | Zi = zh) and Pr(Ji = f | Zi = zℓ) are

small, then the bounds will be tight. If one cannot find such values, the bounds will

be far apart.

In many cases these bounds may be wide. Wide bounds can be viewed in two ways.

One interpretation is that the bounding procedure is not particularly helpful in learning

about the true ATE. However, a different interpretation is that it shows that the data,

without additional assumptions, is not particularly helpful for learning about the ATE.

Below we discuss additional assumptions for tightening the bounds on the ATE, such as

Monotone treatment response, Monotone treatment selection, Monotone instruments.

In order to keep matters simple, below we assume that there is no exclusion restriction.

However, if a exclusion restriction is known, this allows us to tighten the bounds.

Next we consider the assumption of Monotone Treatment Response introduced in

Manski (1997) which we write as

Assumption 5.4. Monotone Treatment Response

Yfi ≥ Yhi

with probability one.

In the fishing/hunting example this is not a particularly natural assumption, but

for many applications in labor economics it is. Suppose we are interested in knowing

the returns to a college degree, and Yfi is income for individual i if a college graduate

whereas Yhi is income if a high school graduate. It is reasonable to believe that the

causal effect of school or training cannot be negative. That is, one could reasonably

assume that receiving more education can’t causally lower your wage. Thus, Monotone

Treatment Response seems like a reasonable assumption in this case. This can lower

the bounds above quite a bit because now we know that

E(Yfi | Ji = h) ≥ E(Yhi | Ji = h) (5.29)

E(Yhi | Ji = f) ≤ E(Yfi | Ji = f). (5.30)

From this Manski (1997) shows that

0 ≤ ATE
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Another interesting assumption that can also help tighten the bounds is the Monotone

Treatment Selection assumption introduced in Manski and Pepper (2000). In our

framework this can be written as

Assumption 5.5. Monotone Treatment Selection: for j = f or h,

E(Yji | Ji = f) ≥ E(Yji | Ji = h)

Again this might not be completely natural for the fishing/hunting example, but

may be plausible in many other cases. For example it seems like a reasonable as-

sumption in schooling if we believe that there is positive sorting into schooling. Put

differently, suppose the average college graduate is a more able person than the average

high school graduate and would earn higher income, even if she did not have the college

degree. If this is true, then the average difference in earnings between college and high

school graduates overstates the true causal effect of college on earnings. This also helps

to further tighten the bounds as this implies that

ATE ≤ E(Yfi | Ji = f) −E(Yhi | Ji = h).

Note that by combining the MTR and MTS assumption, one can get the tighter bounds:

0 ≤ ATE ≤ E(Yfi | Ji = f) − E(Yhi | J = h).

Manski and Pepper (2000) also develop the idea of a monotone instrumental vari-

able. An instrumental variable is defined as one for which for any two values of the

instrument za and zb,

E(Yji | Zi = za) = E(Yji | Zi = zb).

In words, the assumption is that the instrument does not directly affect the outcome

variable Yji. It only affects one’s choices. Using somewhat different notation, but their

exact wording they define a monotone instrumental variable in the following way

Assumption 5.6. Let Z be an ordered set. Covariate Zi is a monotone instrumental

variable in the sense of mean-monotonicity if, for j ∈ {f, h},each value of x, and all

(zb, za) ∈ (Z × Z) such that zb ≥ za,

E(Yji | Xi = x, Zi = zb) ≥ E(Yji | Xi = x, Zi = za).
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This is a straight generalization of the instrumental variable assumption, but im-

poses much weaker requirements for an instrument. It does not require that the instru-

ment be uncorrelated with the outcome, but simply that the outcome monotonically

increase with the instrument. An example is that parental income has often been used

as an instrument for education. Richer parents are better able to afford a college degree

for their child. However, it seems likely that the children of rich parents would have

had high earnings, even in the absence of a college degree.

They show that this implies that

∑

z∈Z

Pr(Zi = z)

{
sup
za≤z

[
E (Yi | Zi = za, Ji = f) Pr (Ji = f | Zi = za) + yℓ Pr (Ji = h | Zi = za)

]}

−
∑

z∈Z

Pr(Zi = z)

{
inf
zb≥z

[E (Yi | Zi = zb, Ji = h) Pr (Ji = h | Zi = zb) + yu Pr (Ji = f | Zi = zb)]

}

≤ ATE ≤

∑

z∈Z

Pr(Zi = z)

{
inf
zb≥z

[E (Yi | Zi = zb, Ji = f) Pr (Ji = f | Zi = zb) + yu Pr (Ji = h | Zi = zb)]

}

−
∑

z∈Z

Pr(Zi = z)

{
sup
za≤z

[
E (Yi | Zi = za, Ji = h) Pr (Ji = h | Zi = za) + yℓ Pr (Ji = f | Zi = za)

]}

One can obtain tighter bounds by combining the Monotone Instrumental Variable as-

sumption with the Monotone Treatment Response assumption but we do not explicitly

present this result.

Blundell et al. (2007) estimate changes in the distribution of wages in the United

Kingdom using bounds to allow for the impact of non-random selection into work.

They first document the growth in wage inequality among workers over the 1980s and

1990s. However, they point out that rates of non-participation in the labor force have

grown on the UK over the same time period. Nevertheless, they show that selection

effects alone cannot explain the rise in inequality observed among workers: the worst

case bounds establish that inequality has increased. However, worst case bounds are

not sufficiently informative to understand such questions as whether most of the rise in

wage inequality is due to increases in wage inequality within education groups versus

across education groups. Next, they add in additional assumptions to tighten the

bounds. First, they assume the probability of work is higher for those with higher

wages, which is essentially the Monotone Treatment Selection assumption shown in

Assumption 5.5. Second, they make the Monotone Instrumental Variables assumption
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shown in Assumption 5.6. They assume that higher values out of work benefit income

are positively associated with wages. They show that both of these assumptions tighten

the bounds considerably. They find that when these additional restrictions are made,

then they can show that both within group and between group inequality has increased.

5.7 Using Selection on Observables to Infer Selection on Un-

observables

Altonji, Elder, and Taber (2005a) suggest another approach which is to use the amount

of selection on observable covariates as a guide to the potential amount of selection on

unobservables. To motivate this approach, consider an experiment in which treatment

status is randomly assigned. The key to random assignment is that it imposes that

treatment status be independent of the unobservables in the treatment model. Since

they are unobservable, one can never explicitly test whether the treatment was truly

random. However, if randomization was carried out correctly, treatment should also

be uncorrelated with observable covariates. This is testable and applying this test is

standard in experimental approaches.

Researchers use this same argument in non-experimental cases as well. If a re-

searcher wants to argue that his instrument or treatment is approximately randomly

assigned, then it should be uncorrelated with observable covariates as well. Even if

this is strictly not required for consistent estimates of instrumental variables, readers

may be skeptical of the assumption that the instrument is uncorrelated with the un-

observables if it is correlated with the observables. Researchers often test for this type

of relationship as well.17 The problem with this approach is that simply testing the

null of uncorrelatedness is not that useful. Just because you reject the null does not

mean it isn’t approximately true. We would not want to throw out an instrument with

a tiny bias just because we have a data set large enough to detect a small correlation

between it and an observable. Along the same lines, just because you fail to reject the

null does not mean it is true. If one has a small data set with little power one could fail

to reject the null even though the instrument is poor. To address these issues, Altonji,

Elder, and Taber (2005a) design a framework that allows them to describe how large

the treatment effect would be if “selection on the unobservables is the same as selection

17Altonji, Elder, and Taber (2005a) discuss a number of studies that do so.
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on the observables.”

Their key variables are discrete, so they consider a latent variable model in which

a dummy variable for graduation from high school can be written as

Gi =





1 Y ∗
i ≥ 0

0 Y ∗
i < 0

where Y ∗
i can be written as

Y ∗
i = β0 + αDfi +

K∑

j=1

Wijβj

= β0 + αDfi +

K∑

j=1

SjWijβj +

K∑

j=1

(1 − Sj)Wijβj

= β0 + αDfi +X ′
iβ + νi.

Wij represent all covariates, both those that are observable to the econometrician and

those that are unobservable, the variable Sj is a dummy variable representing whether

the covariate is observable to the empirical researcher, X ′
iβ =

∑K
j=1 SjWijβj represents

the observable part of the index, and νi =
∑K

j=1(1−Sj)Wijβj denotes the unobservable

part.

Within this framework, one can see that different assumptions about what dictates

which observables are chosen (Sj) can be used to identify the model. Their specific

goal is to quantify what it means for “selection on the observables to be the same as

selection on the unobservables.” They argue that the most natural way to formalize

this idea is to assume that Sj is randomly assigned so that the unobservables and

observables are drawn from the same underlying distribution.

The next question is what this assumption implies on the data that can be useful

for identification. They consider the projection:

proj(Zi | X
′
iβ, νi) = φ0 + φX ′

iβ + φενi

where Zi can be any random variable. They show that if Sj is randomly assigned,

φ ≈ φε.

This restriction is typically sufficient to insure identification of α.18

18In some cases it is not point identification, but either 2 or 3 different points.
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Altonji, Elder and Taber (2005) argue that for their example this is an extreme

assumptions and the truth is somewhere in between this assumption and the assump-

tion that Zi is uncorrelated with the unobservables which would correspond to φε = 0.

They assume that when φ > 0,

0 ≤ φε ≤ φ.

There are at least three arguments for why selection on unobservables would be ex-

pected to be less severe than selection on observables (as it is measured here). First,

some of the variation in the unobservable is likely just measurement in the dependent

variable. Second, data collectors likely collect the variables that are likely to be corre-

lated with many things. Third, there is often a time lapse between the time the baseline

data is collected (the observables) and when the outcome is realized. If unanticipated

events occur in between these two time periods, that would lead to the result.

Notice that if φ = 0 then assuming φε = φ is the same as assuming φε = 0. However,

if φ were very large the two estimates would be very different which would shed doubt

on the assumption of random assignment. Since φ essentially picks up the relationship

between the instrument and the observable covariates, the bounds would be wide when

there is a lot of selection on observables and will be tight when there is little selection

on observables.

Altonji, Elder, and Taber consider the case of whether the decision to attend

Catholic high school affects outcomes such as test scores and high school graduation

rates. Those who attend Catholic schools have higher graduation rates than those

who do not attend Catholic schools. However, those who attend Catholic may be very

different than those who do not. They find that (on the basis of observables) while

this is true in the population, it is not true when one conditions on the individuals

who attend Catholic school in eighth grade. To formalize this, they use their approach

and estimate the model under the two different assumptions. In their application the

projection variable, Zi, is the latent variable determining whether an individual at-

tends Catholic school. First they estimate a simple probit of high school graduation

on Catholic high school attendance as well as many other covariates. This corresponds

to the φε = 0 case. They find a marginal effect of 0.08 meaning that Catholic school

raises high school graduation by eight percentage points. Next they estimate a bivari-

ate probit of Catholic high school attendance and high school graduation subject to the

60



constraint that φε = φ. In this case they find a Catholic high school effect of 0.05. The

closeness of these two estimates strongly suggests that the Catholic high school effect

is not simply a product omitted variable bias. The tightness of the two estimates arose

both because φ was small and because they use a wide array of powerful explanatory

variables.

6 Duration Models and Search Models

In this section we relate the previous discussion to the competing risks model and the

search model. We show that the competing risk model can be written in a way that

is almost identical to the Roy model. We also show how the basic ideas of exclusion

restrictions can be used to identify a version of a search model.

6.1 Competing Risks Model

With duration data a researcher observes the elapsed time until some event occurs.

The prototypical example in labor economics is the duration of unemployment and we

focus on that example. We explain why identification of this model is almost identical

to identification of the Roy model. Let Ti denote the length of an unemployment spell.

There are (at least) four different ways to characterize the distribution of Ti. The first

is the cumulative distribution function F (t) ≡ Pr(t > Ti), which in the context of

unemployment durations is the probability the individual found a job. The second is

the density function f . The third is the survivor function defined as

S(t) ≡ Pr(Ti > t) = 1 − F (t).

The fourth is the hazard function, which is the job finding rate at time t, given that

the individual was unemployed at time t:

h(t) ≡ lim
δ→0

Pr(Ti ≤ t+ δ | Ti ≥ t)

δ

=
f(t)

S(t)
.
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The link between the hazard rate and survivor function is:

h(t) =
f(t)

S(t)
=

dF (t)/dt

S(t)

=
−dS(t)/dt

S(t)

=
−dlogS(t)

dt
. (6.1)

There is a large literature on identification of duration models. Heckman and Taber

(1994), Van den Berg (2001), and Abbring (2010) provide excellent surveys of this

literature.19 Rather than survey the full literature here we relate it to our previous

discussion. Given that Ti must be positive, it is natural to model Ti using the basic

framework we have been using all along:

log(Ti) = g(Xi) + εi.

Clearly if we could observe the distribution of log(Ti) conditional on Xi, identification

of g and the distribution of εi would be straightforward.

However, often we cannot observe the full duration of Ti because the spell (or our

observation of it) is truncated before the worker is re-employed. For example, the

worker may die, be lost from the data, or the survey may end. In the classic medical

example we might want to estimate the duration until a patient has a heart attack, but

if she dies from cancer we never observe this event. Hence the name “competing risk

model.” To put this in the context of our Roy model example, suppose an unemployed

worker would take the first offer they received and they can get an offer as a fisherman

or a hunter. Define the model as

log(Tfi) = gf(Xi) + εfi (6.2)

log(Thi) = gh(Xi) + εhi (6.3)

where Tfi and Thi are the amount of time it would take until the worker received an offer

as a fisherman or as a hunter, Xi denotes observable variables that are independent

of the unobservables (εfi, εhi).
20 The econometrician can observe whether the worker

19Key papers include Elbers and Ridder (1982), Heckman and Singer (1984a,b), Ridder (1990),

Honoré (1993), and Abbring and Ridder (2009).
20We do not need to make use of exclusion restrictions here so we do not distinguish between

observables that may enter differently.
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becomes a fisherman or a hunter and the length of the unemployment spell. However,

notice that as Heckman and Honoré (1990) point out, this is just another version of

the Roy model. Rather than observe the maximum of Yfi and Yhi, the econometrician

observes the minimum of log(Tfi) and log(Thi).

The specification (6.2) and (6.3) above is not the way that many researchers choose

to model duration data. Often they model the hazard function directly as it is some-

times easier to interpret. Moreover, if the observable covariates change over time, the

hazard model is a more reasonable way to model the durations. The most common

specification is the mixed proportional hazard model

h(t | Xi = x) = ξ(t)φ(x)ωi (6.4)

where ξ(t) is referred to as the baseline hazard, ωi is an unobservable variable which is

independent of the observables, and Xi denotes observable characteristics. Most stud-

ies find that the hazard rate for finding a job tends to decline with the unemployment

duration. The model above allows for two possible interpretations of this empirical reg-

ularity. First, it could be that as unemployment durations lengthen, skills depreciate,

making it harder to find a job. This is captured by ξ(t). Second, it could be that some

people are just less able to find a job than others in ways not captured by observables.

This is captured in ωi. Van den Berg (1999) provides a thorough discussion of this

model.

Heckman and Honoré (1989) show how to map the hazard specification into a

framework that is similar to what we use in our analysis of the Roy model. The

transformation is simplest is when ξ(t) = 1. In that case one can write the survivor

function as

Pr(Ti > t | Xi = x, ωi = ω) = e−tφ(x)ω. (6.5)

It is straightforward to derive equation (6.4) using the survivor function (6.5) and

equation (6.1). Define g(·) = − log(φ(·)) and Fω to be the distribution of ωi. In

order to obtain the cumulative density function of unemployment durations we must

63



integrate over the distribution of unemployed individuals:

Pr(Ti ≤ t | Xi = x) =

∫
1 − e−tφ(x)ωidFω

=

∫
1 − exp(−exp(log(t) − g(x) + log(ωi)))dFω

≡ Fω̃(log(t) − g(x)) (6.6)

where Fω̃ is defined implicitly by this relationship. Note that Fω̃ is a legitimate CDF,

as it is strictly increasing from 0 to 1.21 Thus one can think of the data generating

process as

log(Ti) = g(Xi) + ω̃i

where ω̃i is distributed according to Fω̃ and is independent of Xi.

In the more general case in which ξ(t) is not constant, it is well known that one

can write the survivor function as

e−Ξ(t)φ(Xi)ωi (6.7)

where Ξ is the integrated hazard

Ξ(t) ≡

∫ t

0

ξ(t)dt.

Equation (6.7) differs from equation (6.5) by the term Ξ(t) instead of t. Thus replacing

t with Ξ(t) in equation (6.6) yields

log(Ξ(Ti)) = g(Xi) + ω̃i.

Heckman and Honoré (1989) use a more general framework to think about the

competing risks model in which the probability of not getting a fishing job by time tf

and not getting a hunting job by time th, S(tf , th | Xi = x), can be written as

S(tf , th | Xi = x) = K(exp{−Ξf(tf )φf(x)}, exp{−Ξh(th)φh(x)})

where φj(x) = exp(−gj(x)) for j = f, h. This is a generalization of a model in which

log(Ξf(Tfi)) = gf(Xi) + ω̃fi

log(Ξh(Thi)) = gh(Xi) + ω̃hi

21It is the distribution of a convolution between log (ωi) and an extreme value.
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because

S(tf , th | Xi = x) = Pr[log(Ξf (Tfi)) > log(Ξf (tf)), log(Ξh(Thi)) > log(Ξh(th)) | Xi = x]

= Pr[gf(x) + ω̃fi > log(Ξf (tf)), gh(x) + ω̃hi > log(Ξh(th))]

= Pr[−ω̃fi < − log(Ξf (tf)) + gf(x),−ω̃hi < − log(Ξh(th)) + gh(x)]

= F−ω̃fi−ω̃hi
(− log(Ξf(tf)) + gf(x),− log(Ξh(th)) + gh(x))

≡ K(exp{−Ξf (tf)φf(x)}, exp{−Ξh(th)φh(x)}) (6.8)

where F−ω̃fi−ω̃hi
is the joint CDF of (−ω̃∗

fi,−ω̃
∗
hi), and K is defined implicitly as

K(a, b) = F−ω̃fi−ω̃hi
(− log(− log(a)),− log(− log(b))).

Heckman and Honoré (1989), Theorem 1 contains the following result. We repro-

duce their result, only altering the notation.

Theorem 6.1. Assume that (Tfi, Thi) has the joint survivor function as given in (6.8).

Then Ξf ,Ξh, φf , φh, and K are identified from the identified minimum of (Tfi, Thi)

under the following assumptions

1. K is continuously differentiable with partial derivatives K1 and K2 for i = 1, 2

the limit as n→ ∞ of Ki(η1n, η2n) is finite for all sequences of η1n, η2n for which

η1n → 1 and η2n → 1 for n → ∞. We also assume that K is strictly increasing

in each of its arguments in all of [0, 1] × [0, 1].

2. Ξf (1) = 1,Ξh(1) = 1, φf(x0) = 1 and φh(x0) = 1 for some fixed point x0 in the

support X.

3. The support of {φf(x), φh(x)} is (0,∞) × (0,∞).

4. Ξf and Ξh are nonnegative, differentiable, strictly increasing functions, except

that we allow them to be ∞ for finite t.

(Proof in Heckman and Honoré, 1989 )

Since the model is almost identical to the Roy model, the intuition for identification

is very similar so we don’t review it here. We do mention a few things about these

assumptions. First note that assumption (2) in Theorem 6.1 is just a normalization

as one cannot separate the scales of φf ,Ξf , and νf . The more notable difference

between this and the theorem we presented in the Roy model section above is the lack
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of exclusion restrictions. What is crucial in being able to do this is the assumptions

about K in assumption (1). In their proof they show that for any x in the support of

Xi,

lim
t→0

∂Pr(Tfi<t,Thi>Tfi|Xi=x)

∂t

∂Pr(Tfi<t,Thi>Tfi|Xi=x0)

∂t

= φf(x).

One could in principle use this form of identification for the Roy model, but it is

somewhat less natural in the Roy framework as taking the limit as t → 0 corresponds

to taking limits as the log of wages become arbitrarily large. It also makes heavy use of

the independence assumption which is not necessary for identification of gf when one

has exclusion restrictions. Finally, the basic approach will not expand to the “labor

supply” model in which we only observe wages in one sector and to the generalized

Roy model in the same way that exclusion restrictions do.

Abbring and van den Berg (2003) extends Heckman and Honoré’s (1989) results

on the mixed proportional hazards competing risk models in a few ways including

generalizing the assumptions for identification somewhat and considering identification

in the case in which researchers observe multiple spells.

6.2 Search Models

Eckstein and van den Berg (2007) present a nice survey of Empirical Search models.

We avoid a general discussion, but rather combine the proportional hazard model with

a search model. In a well known result Flinn and Heckman (1982) show that the search

model is not fully identified. They use the Lippman and McCall (1976) search model

in which workers search for jobs until their wage exceeds their reservation wage. In this

model, one essentially assumes that the worker stays at the job forever. All workers

are assumed to be ex-ante identical and face the same distribution of offered wages

which we denote by F . The reservation wage wr is the point at which the individual

is indifferent between taking the job and continued search. It is defined implicitly by

the formula

c+ wr =
λ

r

∫ ∞

wr

(x− wr)dF (x)

where c is search cost, r is the interest rate, and λ is the hazard rate of finding a job.

Flinn and Heckman (1982) assume that one observes the time until finding a job

(Ti) and the wage a worker receives conditional on finding the job. The only source of
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heterogeneity in the model comes from the timing of the job offers and the draw from

the wage offer distribution. Clearly one can identify the distribution of accepted wage

offers which is the distribution of observed wages. The reservation wage is the lowest

acceptable wage, so a one can identify wr as the minimum observed wage. Then they

can identify
f(x)

1 − F (wr)
for x ≥ wr.

They can also identify the hazard rates of job finding which is

λ(1 − F (wr)).

However, this is all that can be identified. In particular, one cannot separate λ from

(1 − F (wr)). Furthermore, the distribution of wage offers below the reservation wage

is not identified. This is quite intuitive. Since nobody works at a salary below the

reservation wage, we do not have any information from the data on what that distri-

bution might look like.22 Furthermore, identification of the model above relies on the

strong assumption that people are identical. All dispersion in observed wages comes

from identical people with identical skills being offered different wages. It also implies

a constant hazard rate of finding jobs λ, which is at odds with the data.

By using exclusion restrictions and using some of the ideas from the Roy model with

the arguments from the mixed proportional hazard model, most of the components of

the model can be identified. In particular let the arrival rate of job offers be

λi = φ(Xλi, X0i)ωi (6.9)

where now Xλi is an exclusion restriction that influences the arrival rate, but not any

other aspect of the model. We assume that search cost is defined as

log(Ci) = gh(Xhi, X0i) + εhi. (6.10)

Finally we assume the wage offer that individual i would receive at time t is

log(Wfit) = gf(Xfi, X0i) + εfit. (6.11)

22Of course this raises an interesting question. What does it mean for a firm to make an offer that

it knows no worker would ever take? In most wage posting models, a firm would never post a wage

that no worker would take (see e.g. Burdett and Mortensen, 1998). However, if there is a job match

component, one can also write down a model in which one could define the counterfactual wage at

which a worker would be paid at a job in which he would never take (whether that offer is actually

“extended” or not is largely a semantic issue).
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The complicated aspect of this model is that workers may reject the first offer they

receive, and then receive a second different offer. Thus we need the time subscript

on εfit to denote that this draw can be different. The second issue is that one would

expect the distribution of offered εfit to not be identical across workers. We assume

that the distribution of εfit is individual specific coming from distribution Fiεf
. That

is each time a worker gets a new offer it is a draw from the distribution of Fiεf
. As

above Xi is observable and independent of (νi, εfit, εhi).

Using the Lippman and McCall (1976) model, define W ∗
i as the solution to the

equation

Ci +W ∗
i =

λi

r

∫ ∞

log(W ∗

i )−gf (Xfi,X0i)

(egf (Xfi,X0i)+εfit −W ∗
i )dFiεf

(εfit). (6.12)

The reservation wage is defined as

W r
i ≡ max{W ∗

i , 0} (6.13)

If search costs are sufficiently high, W ∗
i could be negative. But because the distribution

of wages is bounded below at 0, the reservation wage would be 0.

The added assumptions to identify the model are completely analogous to those we

used for the Roy model earlier

Assumption 6.1. (εfit, εhi, νi) is continuously distributed with support R
3, and is in-

dependent of Xi.

Assumption 6.2. supp(φ(Xλi, X0i), gf(Xfi, x0), gh(Xhi, x0)) = R
+ × R

2 for all x0 ∈

supp(X0i).

Assumption 6.3. The marginal distributions of εfit,εhi, and νi have expected values

equal to zero. Moreover, the expected value of eεfit is finite.

Assumption 6.4. Xi = (Xfi, Xhi, Xλi, X0i) can be written as

(Xc
fi, X

d
fi, X

c
hi, X

d
hi, X

c
λi, X

d
λi, X

c
0i, X

d
0i) where the elements of Xc = (Xc

fi, X
c
hi, X

c
λi, X

c
0i)

are continuously distributed (no point has positive mass), and Xd = (Xd
fi, X

d
fi, X

d
λi, X

d
0i)

is distributed discretely (all support points have positive mass).

Assumption 6.5. For any
(
xd

f , x
d
h, x

d
λ, x

d
0

)
∈ supp(Xd

fi, X
d
hi, X

d
λi, X

d
0i), gf(x

c
f , x

d
f , x

c
0, x

d
0),

gh(x
c
h, x

d
h, x

c
0, x

d
0), and φ(xc

λ, x
d
λ, x

c
0, x

d
0) are almost surely continuous across (xc) ∈ supp(Xc

i |

Xd
i = xd).
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Theorem 6.2. Under assumptions 6.1- 6.5 and that φ and the distribution of ωi satisfy

the assumptions in Heckman and Honoré (1989), given that we observe Ti and wfiTi

from the model determined by equations (6.9)-(6.13), we can identify φ and gf on their

support, and gh up to location on a set X ∗ that has measure 1.

(Proof in Appendix)

Unlike some of the other models, we have not completely identified the error structure

(or the location of gh). This is probably not surprising given the complexity of Fiεf

and the relatively modest data conditions.23

We conclude this section after making three comments. First, it is not clear that

one cares about the location of gh.

That is, for many interesting policy counterfactuals, identification of the aspects

above should be sufficient. Second, with more structure, more features of the model

should be identified.24 Third, if a researcher observes multiple spells on the same

worker, this can add much identifying information. The identification problem arises

because if we see one worker making more than another we do not know if it is because

the first worker is more productive or if they just happened to get a fortunate draw

from offer distribution. With panel data, if we see that the first worker consistently

earns more money across many employers, this would suggest that the difference has

more to do with ability than with draws from the offer distribution.

We have barely scratched the surface of identification of search models. Many

papers being estimated today are based on equilibrium models such as Mortensen and

Pissarides (1994), Burdett and Mortensen (1998), or Postel-Vinay and Robin (2002).

We think there is much work to be done on identification in these models.25

23Some aspects of the distribution of wages can be identified. For example identification of the

marginal distribution of ωi is straightforward. Describing the distribution of Fiεf
is difficult because

it is a distribution of distributions. Given the cost in setting up notation to discuss this, we do not try

to characterize this distribution. A typical assumption would be that we could write εfit = ǫfi + ζfit

where ǫfi is an individual specific term that does not vary across wages and ζfit is i.i.d.
24Proving identification in nonlinear models such as this one is often quite difficult. This might

not be problematic in practice as researchers can search for multiple solutions in the data. If there

are multiple solutions, all can be reported. If only one solution exists, this should give a consistent

estimate of the truth.
25Canals-Cerda (2010) provides a recent example which adds measurement error in wages to the

Flinn and Heckman (1982) framework. Barlevy (2008) shows how to non-parametrically identify the

wage offer distribution in the presence of measurement error in wages and unobserved heterogeneity

in skills.

69



7 Forward Looking Dynamic Models

In this section we discuss an extension of the generalized Roy model into a dynamic

framework with uncertainty and forward looking behavior. We show that the basic

identification ideas presented above can be generalized to dynamic models. The iden-

tification results for the simple models on which we focus can be extended to more

complicated environments. We begin with a two period model which in which there

are three choices made over two periods. We then discuss some general issues with

identifying the components of the Bellman Equation. Finally we present a dynamic

Generalized Roy model that one can use for dynamic treatment effect evaluation. Once

again, we do not provide a full review of the literature, but focus on expanding the

generalized Roy model into a forward looking dynamic model. Abbring (2010) includes

a more complete discussion.26

7.1 Two period Discrete Choice Dynamic Model

We begin with the framework of Taber (2000) who considers a simple version of a

dynamic model. To think of this model as an extension of the basic Roy model we

go from two occupational choices to three. While we could modify the fishing/hunting

example to a dynamic context, it is easiest to think about this in terms of an education

model as Taber does. In particular, a student first decides whether to graduate from

high school or not. After graduating from high school, she decides whether to attend

college or enter the labor market directly. Extending beyond 3 choices is straightfor-

ward, but as in Taber we stick to the 3 choice model for expositional purposes. We

focus on identification of the choice model and ignore data on earnings until section

7.3.

First consider the case in which there was no uncertainty or dynamics. We specify

the model using the three value functions

Vci = gc(Xci, X0i) + εci

Vdi = gd(Xdi, X0i) + εdi

Vhi = 0

26Recent papers that cover aspects of identification not discussed here include Kasahara and Shi-

motsu (2009) and Hu and Shum (2009).
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where Vci is the value function for a college student, Vhi the value function for an

individual with exactly a high school degree, and Vdi the value function for high school

dropout. Individuals choose the option with the highest value function. That is

Ji = argmax {Vdi, Vhi, Vci}.

If there were no uncertainty in this model it would be a simple polychotomous choice

model. Matzkin (1993) considers identification a general class of polychotomous choice

modes under a number of different assumptions. One result is that since choices are

only identified up to monotonic transformations, Vhi = 0 is a location normalization

that we impose at this point. Adding dynamics and uncertainty does not change this

result.

Our goal now is to add dynamics and uncertainty to the model. The timing can be

seen in the following figure
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In the first period the agent chooses whether to graduate from high school. If she

graduates in the first period, she then chooses whether to go to college in the second.

The key aspect of the model is that information will be revealed between the first and

second period. The agent’s preferences are summarized by lifetime reward function

Vji at each terminal state j ∈ {c, h, d}. Taber defines Vdi so that it is known at the

time the high school graduation choice is made. Then in period two, Vci and Vhi are

known when the choice between c and h is made. That is, in period one the agent

does not know Xci or εci. The first period information is assumed to be contained in

(X0i, X1i, ε1i) where X1i is observable in period one and will be informative about Xci

while ε1i is unobservable and informative about εci. We assume that decisions are made

in order to maximize expected lifetime reward. Thus the reward function at node g in
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the first period takes the value

Vg(x1, xd, x0, ǫ1) ≡ E[max{Vci, Vhi} | (X1i, Xdi, X0i) = (x1, xd, x0) , ε1i = ǫ1].

The agent chooses node d if Vdi > Vg(X1i, Xdi, X0i, ε1i) and chooses node g otherwise.

If she chooses g in the first period she chooses node c in the second if Vci > Vhi and

node h otherwise.

We let G(Xci | (X1i, Xdi, X0i) = (x1, xd, x0)) denote the distribution of Xci condi-

tional on (X1i, Xdi, X0i) = (x1, xd, x0). We can summarize the information structure as

follows

Known to the Agent Learned by the Agent Observed by

at time one at time two the Econometrician

ε1i, εdi εci X0i, X1i, Xdi

X0i, X1i, Xdi Xci Xci

G(Xci | (X1i, Xdi, X0i) = (x1, xd, x0)) Ji

We first consider identification of gc and gd up to monotonic transformations. We

follow Taber (2000) closely except that we use our notation and use stronger assump-

tions than he does to avoid adding more notation.27

Assumption 7.1. For any (xc, x0) ∈supp{Xci, X0i} ,

supp{εdi} = R = supp{gd(Xdi, x0) | (Xci, X0i) = (xc, x0)}

supp{εci} = R

This assumption is analogous to what we have been assuming all along. In order

to estimate the full model, we need full support of gd conditional on (Xci, X0i).

Assumption 7.2. For any (xd, x0) ∈supp{Xdi, X0i} , y ∈ R, and a ∈ (0, 1) , there

exists a set X1(xf , x0, y, a) with positive measure such that for x1 ∈ X1(xf , x0, y, a),

(a) Pr (gc(Xci, x0) < y | (X1i, Xdi, X0i) = (x1, xd, x0)) > a

27Taber (2000) allows for the possibility that the support of the error term could be bounded which

allows for weaker support condition on the observables.
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(b) The distribution of gc(Xci, x0) conditional on (X1i, Xdi, X0i) = (x1, xd, x0) is

stochastically dominated by the unconditional distribution of gc(Xci, x0).

This is a stochastic analogue of a support condition. In the case in which Xci

were known at time one so that X1i = Xci, this would be implied be a standard

support condition. However, is general enough to allow for the distribution of Xci to

not be known at time one, but we still need a time one variable X1i that is useful in

forecasting Xci. For example Xci could be a variable like family income while the child

is in college while X1i is a variable like family income while the child is in high school.

This assumption states that we can condition on the value of this variable so that

the conditional probability that the agent chooses option c in the second period can

become arbitrarily small. In the family income example this means we could condition

on families whose income while the child is in high school are sufficiently low that

college seems like a very unlikely outcome for the child.

Assumption 7.3. (ε1i, εdi, εci) is independent of (X1i, Xdi, Xci, X0i), for any ǫ1 ∈

supp(ε1i),

E(|εci| | ε1i = ǫ1) <∞

and for any (x1, xd, x0) ∈ supp(X1i, Xdi, X0i),

E (|gc (Xci, x0)| | (X1i, Xdi, X0i) = (x1, xd, x0)) <∞

Assumption 7.3 is the separable independent assumption that we have been making

throughout this chapter. We also need to assume that the stochastic components have

finite expectations so that Vg is finite.

Theorem 7.1. Under assumption 7.1,7.2, and 7.3, from data on (X1i, Xdi, Xci, X0i, Ji)

gd and gc are identified up to monotonic transformation.

(Proof in Taber, 2000)

The basic strategy used in this proof is a stochastic extension of “identification

at infinity.” This should not be surprising as this looks very much like the type of

selection problem we have discussed throughout this chapter: we can not observe the

choice between c and h unless individuals have already rejected d.
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We identify gc in almost exactly the same was as we identified gf as presented for

the Roy Model. With an exclusion restriction we can condition on gd arbitrarily low

so that the probability of selecting node d is close to zero. This leaves us with a simple

binary choice model in which the agents choose between h and c. The type of exclusion

restriction used here is a variable that enters gd, but does not influence gc directly. One

can see this in the following expression

lim
gd(xd,x0)→−∞

Pr(Ji = c | Xi = x)

= lim
gd(xd,x0)→−∞

Pr[gd(xd, x0) + εdi ≤ Vg(x1, xd, x0, ε1i), gc(xc, x0) + εci > 0]

= Pr[gc(xc, x0) + εci > 0].

Using standard identification strategies for the binary choice model described in the

first step of identification of the Roy model, gc is identified.

Identification of gd is somewhat trickier but one can use essentially the same idea.

In a static model one could use an identification at infinity argument by eliminating

c as an option and could compare the binary choice of d versus h. In this stochastic

case this is can not be done because the value of Xci is not known at time 1. Thus we

need a somewhat different type of exclusion restriction, a variable known at time one

that does not enter gd directly, but does have predictive power for the distribution of

gc above and beyond Xdi. To see how this works, suppose we have a variable X1i that

satisfies these conditions and that as x1 gets small the conditional distribution of gc

shifts to the left. In this case

lim
x
1
→−∞

E [max (gc(Xci, x0) + εci, 0) | (X1i, Xdi, X0i) = (x1, xd, x0) , ε1i = ǫ1] = 0,

so that,

lim
x1→−∞

Pr(Ji = d | Xi = x)

= lim
x1→−∞

Pr[gd(xd, x0) + εdi > E [max (Vci, 0) | (X1i, Xdi, X0i) = (x1, xd, x0) , ε1i = ǫ1]]

=Pr[gd(xd, x0) + εdi > 0].

From this piece we can identify gd up to a monotonic transformation. This type of

variable will satisfy assumption 7.2. Note that the type of exclusion restriction we
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need here is something that is known at time 1, is useful in forecasting Xci, but does

not affect Vdi.

Taber (2000) goes on to consider identification of the distribution of the error terms.

The most general version of the full model above can not be identified without further

assumptions so he instead studies a few interesting cases. Identification of the error

terms requires a different kind of exclusion restriction. His key assumption requires

variation in gc(xc) holding x1 fixed. Thus we need some uncertainty from the point of

view of the agents. The full model is not identified if agent’s have perfect information

about future values of Xci. A natural way to satisfy this exclusion restriction is with

time varying observables. The details can be found in Taber (2000).

7.2 Identification of the Components of the Bellman Equation

While the model above is dynamic, we have not used Bellman’s equation. A natural

way to parameterize the model would be to define period specific utility functions

uh (Xhi, X0i, εhi) , uc (Xci, X0i, εci) , and ug(X1i, X0i, ε1i) in each of the three nodes above

other than the dropout node. If we think of the model as a two period model we can

define ud(t, Xdi, X0i, εdi) to be the period specific utility of individual i if she drops out

at time t. Conditional on graduating, she enters college if

uc (Xci, X0i, εci) > uh (Xhi, X0i, εhi) .

The Bellman equation for the high school graduate is

Vg(x1, xd, x0, ǫ1) ≡ ug(x1, x0, ǫ1)

+ βE[max{uc (Xci, X0i, εci) , uh (Xhi, X0i, εhi)} | (X1i, Xdi, X0i) = (x1, xd, x0) , ε1i = ǫ1]

Mapping back to the notation in the subsection above, the rest of the value functions

are defined as

Vdi =ud(1, Xdi, X0i, εdi) + βud(2, Xdi, X0i, εdi)

Vhi =ug(X1i, X0i, ε1i) + βuh (Xhi, X0i, εhi)

Vci =ug(X1i, X0i, ε1i) + βuc (Xci, X0i, εci) .

An obvious question arises as to whether one can separately identify the components

of the value functions β, uh, uc, and ud. Unfortunately, in general one can not do this.
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Consider a full certainty version of the model. In this case the decision of which

occupation to enter would depend on Vdi, Vhi, and Vci only. One can choose any β > 0

and any ug, but then always find a value of uc and uh to leave Vci and Vhi unchanged.

For a simple model such as the one Taber (2000) presents, parameterizing the model

in terms of the terminal value functions (i.e. Vdi, Vhi, and Vci) avoids this problem as

one does not need to decompose them into their components.

However, Taber’s parameterization is clearly not feasible for an infinitely lived

model. Furthermore, it is not convenient in an finite time model with many periods

and state variables. It does not take advantage of the dimension reducing advantages

of the Bellman formulation: the functions would depend on the whole history of state

variables rather than just the current set.

Next we consider Rust’s (1994) model. Note that we use his notation exactly even

though it is inconsistent with our previous notation. Let Si represents the current state

and Di represents the discrete choice. In general Si will contain elements that are both

observed and unobserved by the econometrician. He writes the Bellman equation as

v(s, d) = u(s, d) + β

∫
max

D′

i
∈D(S′

i
)
[v(S ′

i, D
′
i)]p(dS

′
i | Si = s,Di = d)

where v is the value function, u is the period specific utility function, β is the discount

rate, D(s) is the choice set in state of the world s, and p is the transitional probability

distribution of the state variables. Rust (1994) shows that one can not separately

identify the model above from an alternative with the same β and p, but with

ū(s, d) = u(s, d) + f(s) − β

∫
f(S ′

i)p(ds
′ | Si = s,Di = d).

Intuitively this is close to the discussion above in the simple model in which you can

change the timing at which the innovation to utility takes place, without changing the

value function.

Magnac and Thesmar (2002) discuss this issue in much greater detail. They not only

show that the model is not identified, but document the extent of underidentification.

They additionally assume that one can write

u(Si, d) = ud(Xi) + εdi

where Xi is the observable part of the state space and the unobservable εdi is mean

independent of x and independent across periods (conditional on x and d). That is Si
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represents the state space, so if one knows Si, they also know Xi and εdi. They show

that given knowledge of β and the joint distribution of the εdi, one can identify

Ud(x) ≡ ud(x)+β

∫
max

D′

i
∈D(D′

i
)
[v(S ′

i, D
′
i)]p(dS

′
i | Xi = x,Di = d) − uk(x)

+ β

∫
max

D′

i
∈D(S′

i
)
[v(S ′

i, D
′
i)]p(dS

′
i | Xi = x,Di = k)

where k is one of the elements of D(s). They further explore the model with additional

identifying information and correlated random effects.

How problematic it is that the model is not fully identified? The answer to this

question depends on the purpose of the model. That is, even if the model is not fully

identified, one may still be able to identify policy counterfactuals of interest. Ichimura

and Taber (2002) provide one example of a case in which the policy counterfactual

can be identified. They start with the model of Keane and Wolpin (2001) and show

how one can estimate a semiparametric reduced form version of this model and use it

to evaluate the effect of a tuition subsidy on college enrollment. They key is having

enough structure on the model to map variation in the data to the counterfactual

tuition subsidy.

Aguirregabiria (2010) presents a different and somewhat more general example of

policy evaluation in a finite time dynamic discrete choice model. We do not get into

the details as it is different from the types of labor models we study here, but he shows

that despite the fact that his full model is not identified, the welfare effect function

resulting from the policy change can be identified. Thus one can do welfare analysis

even though the full model is not identified.

7.3 Dynamic Generalized Roy Model

Heckman and Navarro (2007) provide another example showing that one can identify

interesting counterfactuals even when the full model is not identified. Their study

complements the discussion in this chapter as it extends the work on identification in

dynamic discrete choice models into the treatment effects literature discussed in section

5 above. They consider a finite time optimal stopping problem. Using the notation

used above in section 7.2, Di is either zero or one, and once it is one it remains 1

forever. Their main example is a schooling model in which students decide at which

time to leave school (assuming that after leaving they cannot come back). The model
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is essentially a dynamic generalized Roy model. Let Tia and Lia respectively denote

the level of schooling and a dummy for whether individual i is out of school at age a.

Using a somewhat modified version of their notation we can write time a earnings as

Yi,a,t,ℓ = µ(a, t, ℓ,Xi) + εi,a,t,ℓ

where t and ℓ represent potential outcomes of Ti,a and Li,a. Heckman and Navarro

(2007) also assume that the cost of schooling can be written as

Ci,t = Φ(t, Xi, Zi) + ωi,t.

In order to keep our notation complete and consistent across sections we will assume

that random variable Θi,a summarizes all information (both observables and unobserv-

ables) that individual i has at age a. This means that if we know Θi,a we also know

(Xi, Zi, Ti,a, Li,a, εi,a,t,l, ωi,t), so when we condition on Θi,a = θ, we are conditioning on

(Xi, Zi, Ti,a, Li,a, εi,a,t,l, ωi,t) = (x, z, t, ℓ, ǫa,t,ℓ, ωt). We will make use of this notation

below.

Once a student leaves school they make no further decisions, so if a student leaves

school at age a with t years of schooling, lifetime utility discounted to the time one

leaves school is written as

R(a, t, θ) = E

(
T̄∑

j=0

(
1

1 + r

)j

Yi,a+j,t,1 | Θi,a = θ

)
.

The only decision that agents make is whether they will drop out of school or not.

For a student at age a with t years of schooling the value function when they make

this decision is written as

V (a, t, θ) = max{R(a, t, θ),

µ(a, t, 0, x) + ǫa,t,0 − Φ(t, x, z) − ωt +

(
1

1 + r

)
E [V (a+ 1, t+ 1,Θi,a+1 | Θi,a = θ]}.

This is basically a dynamic version of the generalized Roy model. Identification follows

by essentially combining the arguments used by Taber (2000) for the dynamic aspects

of the model with the arguments for identification of the generalized Roy model. Heck-

man and Navarro (2007) use higher level assumptions to avoid the use of exclusion
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restrictions.28 They also use a factor structure on the distribution of the error term

to reduce dimension. We refer readers interested in these generalizations and in the

details of their proof to their paper. Here we attempt to give an intuitive feel for iden-

tification of this model and show how it is related to identification of the generalized

Roy model presented in section 3.3.

Identification of reduced form choice model

In this case they do not derive an explicit reduced form, but note that

Pr(Ti,a = t | Xi = x, Zi = z)

can be identified directly from the data.

Identification of the Earnings Equation µ

With exclusion restrictions this can be done in exactly the same way as in the static

model. Assuming that εi,a,t,ℓ has a zero mean,

lim
Pr(Ti,a=t|(Xi,Zi)=(x,z))→1

E [Yi,a+j,t,1 | (Xi, Zi) = (x, z)] = µ(a+ j, t, 1, x).

lim
Pr(Ti,a>t|(Xi,Zi)=(x,z))→1

E [Yi,a,a,0 | (Xi, Zi) = (x, z)] = µ(a, a, 0, x).

Thus this is a version of an “identification at infinity argument.” Heckman and Navarro

(2007) do not use this explicit argument because they avoid exclusion restrictions with

a higher order assumption. However, they do use identification at infinite.

Identification of Φ

Next consider the identification of the cost of schooling function Φ. The best way

to think about identification in these types of models is to start with the final period

and work backward.

Since the maximum length of schooling is T̄ , the final decision is made when the

individual has T̄ − 1 years of schooling. At that point the student decides whether to

attend the final year of school or not. Heckman and Navarro (2007) use an “identifi-

cation at infinity” argument so that Pr(Ti > T̄ − 2 | Xi = x, Zi = z) ≈ 1. Then the

28This relates back to our discussion of identification and exclusion restrictions in the sample

selection model at the very end of section 3. Exclusion restrictions prevent one from setting

g̃f (x) = gf (x) + h(g(x)) but shape restrictions on g and gf can do this as well. Their “higher

level assumptions” are essentially assuming that we make restrictions on gf so that we can not add

h(g(x)) to it and remain in the permissible class of gf functions.
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problem becomes analogous to a static problem.29 That is

lim
Pr(Ti>T̄−2|Xi=x,Zi=z)→1

Pr(TiT̄ = T̄ | Xi = x, Zi = z)

= Pr
(
R(T̄ − 1, T̄ − 1,Θi,T̄−1) < µ(T̄ − 1, T̄ − 1, 0, x) + εi,T̄−1,T̄−1,0

−Φ(T̄ − 1, x, z) − ωi,T̄−1 +

(
1

1 + r

)
E
[
R(T̄ , T̄ ,ΘiT̄ ) | Θi,T̄−1

]
| Xi = x, Zi = z

)
.

This is analogous to identification of the gh function in the Roy model.30

Now one can just iterate backward given knowledge of all variables at T̄ and T̄ − 1.

That is, the distribution of
(

1
1+r

)
E
[
V (T̄ − 1, T̄ − 1,Θi,T̄−1 | Θ ¯i,T−2

]
has been identified

so once again we can use the identification approach of the static problem and can use

the same basic style of proof. That is we can condition on a set of variables so that

Pr(t > T̄ − 2 | Xi = x, Zi = z) ≈ 1 so that identification is analogous to the static

problem. Consider the decision with T̄ − 2 years of schooling.

lim
Pr(Ti>T̄−3|Xi=x,Zi=z)→1

Pr(Ti,T̄−1 = T̄ − 1 | Xi = x, Zi = z)

= Pr
(
R(T̄ − 2, T̄ − 2,Θi,T̄−2) < µ(T̄ − 2, T̄ − 2, 0, x) + εi,T̄−2,T̄−2,0 − Φ(T̄ − 2, x, z)

−ωi,T̄−2 +

(
1

1 + r

)
E
[
V (T̄ − 1, T̄ − 1,Θi ¯,T−1 | Θi ¯,T−2

]
| Xi = x, Zi = z

)
.

One can keep iterating on this procedure so that Φ is identified in all periods.

Identification of the Distribution of the Error Terms

Heckman and Navarro (2007) impose a factor structure so that

εi,a,t,ℓ = α
′

a,t,ℓτi + εi,a,t,ℓ

ωi,t = λ
′

tτi + ξi,t

where τi is a vector random variable, the ε′s and ξ′s are all independently distributed,

and the α and λ terms are factor loadings. Given this structure and that the other

components of the model have been identified, identification of the distribution of the

29Once again, Heckman and Navarro (2007) use higher order assumptions that do not require

exclusion restrictions. For example they allow for either an exclusion restriction or a cost variable to

identify the scale (such as tuition described in section 4 above).
30Note that we have violated one convention in this chapter which is to make conditioning explicit

such as E(· | Xi = x). When we condition on Θi,T̄−1 we cannot do this explicitly because while the

expectation inside the expression conditions on its outcome, the probability expression (immediately

after the = sign) treats Θi,T̄−1 as a random variable.
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error terms and factor loadings can be done by varying the indices in much the same

way as in the static model. We do not show this explicitly.

8 Conclusions

In this chapter we have presented identification results for models of the labor market.

The main issue in all of these models is the issue of sample selection bias. We start

with the classic Roy model and devote much space to explaining how this model can be

identified. We then show how these results can be extended to more complicated cases,

the generalized Roy model, treatment effect models, duration data, search models,

and forward looking dynamic models. We show the importance of both exclusion

restrictions and support conditions for all of these models.

Technical Appendix

Proof of Theorem 2.1

Let X ∗ be the set of points (xc, xd) at which g is continuous in xc. For any (xc, xd) ∈ X ∗

and δ > 0, E
(
Yi | ‖X

c
i − xc‖ < δ,Xd

i = xd
)

is identified directly from the data.

Since g is continuous at (xc, xd),

lim
δ↓0

E
(
Yi | ‖X

c
i − xc‖ < δ,Xd

i = xd
)

= g(xc, xd),

so g(xc, xd) is identified on X ∗. By assumption 2.2, X ∗ has measure one.

Proof of Theorem 3.1

Let X ∗ be the set of points (xc
f , x

d
f , x

c
h, x

d
h, x

c
0, x

d
0) at which gh and gf are continuous in

xc.

First notice that for any x = (xc
f , x

d
f , x

c
h, x

d
h, x

c
0, x

d
0) ∈ X ∗,

lim
δ↓0

Pr(Ji = f | ‖Xc
i − xc‖ < δ,Xd

i = xd) ≡ Pr(Ji = f | Xi = x)

= g(x)

is identified.
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Thus we have thus established that we can write the model as Ji = f if and only if

g(Xi) > εi where εi is uniform [0, 1] and that g is identified.

Next consider identification of gf at the point (xf , x0). This is basically the standard

selection problem. As long as g is continuous on the continuous covariates at this point,

we can identify

lim
δ↓0
Med(Yi |

∥∥Xc
fi − xc

f

∥∥ < δ,Xd
fi = xd

f , ‖X
c
0i − xc

0‖ < δ,Xd
0i = xd

0, |1 − g(Xi)| < δ, Ji = f).

=gf(xf , x0)+

lim
δ↓0

Med(εfi |
∥∥Xc

fi − xc
f

∥∥ < δ,Xd
fi = xd

f , ‖X
c
0i − xc

0‖ < δ,Xd
0i = xd

0, |1 − g(Xi)| < δ, Ji = f)

=gf(xf , x0).

Thus gf is identified. Note that having an exclusion restriction with strong sup-

port conditions is necessary to guarantee that the measure of the set of Xi satisfying

|1 − g(Xi)| < δ is not zero.

Next we show how to identify gh. Note that for any (xh, x0) where g is continuous

in the continuous covariates and δ > 0 we can identify the set

X (xh, x0, δ) ≡
{
x̃ ∈ X ∗ : ‖x̃c

h − xc
h‖ < δ, x̃d

h = xd
f , ‖x̃

c
0 − xc

0‖ < δ, x̃d
0i = xd

0, |0.5 − g(x̃)| < δ
}

where x̃ = (x̃f , x̃h, x̃0). Under our assumptions it has positive measure.

The median zero assumption guarantees that

lim
δ↓0

X (xh, x0, δ) = {x̃ ∈ X ∗ : x̃h = xh, x̃0 = x0, 0.5 = Pr(Ji = F | Xi = x̃)}

= {x̃ ∈ X ∗ : x̃h = xh, x̃0 = x0, 0.5 = Pr(εhi − εfi ≤ gf(x̃f , x0) − gh(xh, x0))}

= {x̃ ∈ X ∗ : x̃h = xh, x̃0 = x0, g(x̃f , x0) = gh(xh, x0)}

is identified. Since g(x̃f , x0) is identified, gh is identified.

Finally consider identification of G given gf and gh. Note that from the data one

can identify

lim
δ↓0

Pr(Ji = f, log(Yfi) < s | ‖Xc
i − xc‖ < δ,Xd

i = xd)

= lim
δ↓0

Pr(gh(Xhi, X0i) + εhi ≤ gf(Xfi, X0i) + εfi, gf(Xfi, X0i) + εfi ≤ s | ‖Xc
i − xc‖ < δ,Xd

i = xd)

= Pr(εhi − εfi ≤ gf(xf , x0) − gh(xh, x0), εfi ≤ s− gf(xf , x0))
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which is the cumulative distribution function of (εhi − εfi, εfi) evaluated at the point

(gf(xf , x0) − gh(xh, x0), s − gf(xf , x0)). By varying the point of evaluation one can

identify the joint distribution of (εhi − εfi, εfi) from which one can derive the joint

distribution of (εfi, εhi).

Proof of Theorem 4.1

As in the proof of Theorem 3.1, let X ∗ be the set of points (zc, zd, xc
f , x

d
f , x

c
h, x

d
h, x

c
0, x

d
0)

at which gh, gf , ϕh and ϕf are continuous in (zc, zd, xc
f , x

d
f , x

c
h, x

d
h, x

c
0, x

d
0).

First notice that for any (z, x) = (zc, zd, xc
f , x

d
f , x

c
h, x

d
h, x

c
0, x

d
0) ∈ X ∗,

lim
δ↓0
Pr(Ji = f | ‖Xc

i − xc‖ < δ, ‖Zc
i − zc‖ < δ,

(
Zd

i , X
d
i

)
=
(
zd, xd

)
)

= Pr(νi ≤ ϕ(z, x))

= ϕ(z, x).

Thus ϕ is identified on the relevant set. Next consider gf and the joint distribution of

(νi, εfi). Note that for all (z, xf , xh, x0) ∈ X ∗ and any y ∈ R, we can identify

lim
δ↓0
Pr(Ji = f, Yfi ≤ y | ‖Xc

i − xc‖ < δ, ‖Zc
i − zc‖ < δ,

(
Zd

i , X
d
i

)
=
(
zd, xd

)
)

= Pr(νi ≤ ϕ(z, x), gf (xf , x0) + εfi ≤ y)

which is the joint distribution of (νi, gf(xf , x0)+ εfi) evaluated at (ϕ(z, x), y). Holding

(xf , x0) constant and varying (ϕ(z, x), y) we can estimate this joint distribution. Since

the median of εfi is zero, gf is identified and given gf the joint distribution of (νi, εfi)

is identified. Since the model is symmetric in h and f , gh and the joint distribution of

(νi, εhi) are identified using the analogous argument.

Proof of Theorem 4.2

The first part is analogous to step three of identification of the Roy model presented

in the text. Note that for any (z, x0) and δ we can identify the set

X (z, x0, δ) ≡
{
(z̃, x̃) ∈ X ∗ : ‖z̃c − zc‖ < δ, z̃d = zd, ‖x̃c

0 − xc
0‖ < δ, x̃d

0 = xd
0, |0.5 − ϕ(z̃, x̃))| < δ

}
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and it has positive measure where the elements of (z̃, x̃) are defined in the obvious way.

The median zero assumption guarantees that

lim
δ↓0

X (z, x0, δ) = {(z̃, x̃) ∈ X ∗ : z̃ = z, x̃0 = x0, 0.5 = Pr(Ji = F | (Zi, Xi) = (z̃, x̃))}

= {(z̃, x̃) ∈ X ∗ : z̃ = z, x̃0 = x0, 0.5 = Pr(εhi − εfi ≤ gf(x̃f , x0) + ϕ(z, x0) − gh(x̃h, x0)) − ϕ(z, x0)}

= {(z̃, x̃) ∈ X ∗ : z̃ = z, x̃0 = x0, ϕf(z, x0) − ϕh(z, x0) = gh(x̃h, x0) − gf(x̃f , x0)}

Since gh and gf are identified by Theorem 4.1, ϕf(z, x0) − ϕh(z, x0) is also iden-

tified. Given this we can identify the distribution of (εhi + νhi − εfi − νfi, εfi) and

(εhi + νhi − εfi − νfi, εhi) since in general

lim
δ↓0

Pr(Ji = f, Yfi ≤ y | ‖Zc
i − zc‖ < δ, Zd

i = zd, ‖Xc
i − xc‖ < δ,Xd

i = xd
0)

= Pr(εhi + νhi − εfi − νfi ≤ gf(xf , x0) + ϕf (z, x0) − gh(xh, x0) − ϕh(z, x0), εfi ≤ y − gf(xf , x0)),

and

lim
δ↓0

Pr(Ji = r, Yhi ≤ y | ‖Zc
i − zc‖ < δ, Zd

i = zd, ‖Xc
i − xc‖ < δ,Xd

i = xd
0)

= Pr(− (εhi + νhi − εfi − νfi) ≤ gh(xh, x0) + ϕh(z, x0) − gf(xf , x0) − ϕf(z, x0), εhi ≤ y − gh(xh, x0)).

Proof of Theorem 5.1

Theorem 4.1 shows that the marginal distributions of εfi and εhi are identified. Since

their expectations are finite, E(εfi) and E(εhi) are identified. We also showed that gf

and gh are identified over a set of measure 1. Note that E(πi) = E(Yfi) − E(Yhi) =

E(gf(Xfi, X0i) + εfi) −E(gh(Xhi, X0i) + εhi) = gf(Xfi, X0i) − gh(Xhi, X0i) +E(εfi) −

E(εhi). Because all the components of E(πi) are identified, E(πi) is identified as well.

Proof of Theorem 5.2

The marginal distribution ofXi, the joint distribution of (Xi, Yfi) conditional on Ji = f

and the joint distribution of (Xi, Yhi) conditional on Ji = h are identified directly from

the data. Assumption 5.2 guarantees that for both fishing and hunting (j ∈ {f, h}),
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the conditional distribution of Yji conditional on Xi and Ji = j is the same as the

conditional distribution of Yji conditional on Xi alone. From each of these conditional

distributions and the marginal distribution of Xi, one can identify E(Yji) and thus the

average treatment effect is identified by taking the difference between the two.

Proof of Theorem 6.2

Let X ∗ be the set of points (xc, xd) at which the functions are all continuous in xc.

First note that in this model the hazard rate of finding for any individual can be

written as

φ(Xλi, X0i)νi[1 − Fiεf
(log(W r

i ) − gf (Xfi, X0i))].

Our first goal is for any (xf , xλ,x0) ∈ X ∗, to identify the values of xh that send gh(xh, x0)

arbitrarily large so that all offers are accepted. Since the reservation wage is strictly

decreasing in gh, the hazard rate is strictly increasing in gh, we can do this by fix-

ing (Xfi, X0i) within some neighborhood of (xf , x0) and finding the value of xh that

minimizes the job finding rate.

More formally for any (xf , xλ, x0) and δ, define

xh(δ) ≡ argminE(Ti |
∥∥Xc

i − (xc
f , x

c
h(δ), x

c
λ, x

c
0)
∥∥ < δ, (Xd

i = (xd
f , x

d
h(δ), x

d
λ, x

d
0))).

Note that this minimum will be such that as δ → 0, W r
i → 0 so that

lim
δ↓0

Pr(log(Ti) < t, log(Wfit) < w |
∥∥Xc

i − (xc
f , x

c
h(δ), x

c
λ, x

c
0)
∥∥ < δ,Xd

i = (xd
f , x

d
h(δ), x

d
λ, x

d
0))

= Gω∗,ε(t+ log(φ(xλ, x0)), w − gf(xf , x0))

where G is the joint distribution between a convolution of ωit and an extreme value and

of εfit. Given G, applying the identification arguments for the mixed proportional haz-

ard model one can identify φ. Furthermore, gf can be identified through the standard

argument for identification of the regression model.

Finally, recovering gh can be done in an analogous was as for the Roy model. Notice

that the reservation wage is scalable so that if we increase both Ci and Wit by 10%,

then the reservation wage increases by 10% and the probability of job acceptance does

not change. That is for any δ > 0 if w∗
i solves

egh(Xhi,X0i)+εhi + w∗
i =

λi

r

∫ ∞

log(w∗

i )−gf (Xfi,X0i)

(egf (Xfi,X0i)+εfit − w∗
i )dFiεf

(εfit)
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then w∗
i e

δ solves

egh(Xhi,X0i)+δ+εhi + w∗
i e

δ =
λi

r

∫ ∞

log(w∗

i )−gf (Xfi,X0i)

(egf (Xfi,X0i)+δ+εfit − w∗
i e

δ)dFiεf
(εfit),

but the probability of accepting a job and thus the expected duration remains the

same.

Thus as in the identification of the slope that we discuss in Step 2 of identification

of the Roy model, for any (xh, x0) and (x̃h, x̃0) suppose we want to identify gh (xh, x0)−

gh (x̃h, x̃0) . Fix xλ and x̃λ so that φ(xλ, x0) = φ(x̃λ, x̃0). Then the key here is finding

values xf and x̃f so that

lim
δ↓0

E(log(Z(Ti)) | ‖X
c
i − xc‖ < δ,Xd

i = xd) = lim
δ↓0

E(log(Z(Ti)) | ‖X
c
i − x̃c‖ < δ,Xd

i = x̃d)

But if this is the case it must be that

gf(xf , x0) − gh(xh, x0) = gf(x̃f , x̃0) − gh(x̃h, x̃0)

but then

gh(xh, x0) − gh(x̃h, x̃0) = gf(xf , x0) − gf(x̃f , x̃0)

where the right hand side has already been identified. Thus gh is identified up to

location on the set X ∗.
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Heckman, J. and B. Honoré, 1989, “The identifiability of the competing risks model,”

Biometrika 76, 32530.

Heckman, J., R. LaLonde, and J. Smith, 1999, “The Economics and Econometrics

of Active Labor Market Programs,” in Ashenfelter and Card, Handbook of Labor

Economics, vol. 3A, North-Holland, New York, 1865-2097.

Heckman, J., Lochner, L., and Taber, C., 1998, “Explaining Rising Wage Inequality:

Explorations with a Dynamic General Equilibrium Model of Labor Earnings with

Heterogeneous Agents,” Review of Economic Dynamics.

Heckman, J., and S. Navarro, 2007, “Dynamic Discrete Choice and Dynamic Treat-

ment Effects,” Journal of Econometrics, 136, 341-396.

Heckman, J., and R. Robb, 1986, “Alternative Methods for Evaluating the Impact of

Interventions,” Longitudinal Analysis of Labor Market Data, Heckman and Singer

eds., Cambridge University Press, New York, 156-245.

Heckman, J., and B. Singer, 1984a, “The Identifiability of the Proportional Hazard

Model,” Review of Economic Studies, 51, 231-241.

Heckman, J., and B. Singer, 1984b, “A Method for Minimizing the Impact of Distri-

butional Assumptions in Econometric Models for Duration Data,” Econometrica,

52, 271-320.

90



Heckman, J. and C. Taber, 1994, “Econometric Mixture models and More General

Models for Unobservables in Duration Analysis, Statistical Methods in Medical

Research, Vol. 3 No. 3, 279-299.

Heckman, J. and C. Taber, 2008, ”Roy model.” The New Palgrave Dictionary of

Economics Second Edition, Eds. Durlauf and Blume, Palgrave Macmillan.

Heckman, J., and S. Urzua, “Comparing IV with Structural Models: What Simple

IV Can and Cannot Identify,” forthcoming Journal of Econometrics.

Heckman, J. and E. Vytlacil, 1999, “Local Instrumental Variables and Latent Variable

Models for Identifying and Bounding Treatment Effects,” Proceedings of the

National Academy of Sciences 96, 4730-4734.

Heckman, J. and E. Vytlacil, 2001, “Local instrumental variables,” in Hsiao C.,

Morimune K. and Powell J. (eds), Nonlinear Statistical Inference: Essays in

Honor of Takeshi Amemiya, Cambridge University Press, Cambridge, pp. 145.

Heckman, J. and E. Vytlacil, 2005, “Structural equations, treatment effects and econo-

metric policy evaluation,” Econometrica, Vol. 73, pp. 669738.

Heckman, J. and E. Vytlacil, 2007a, “Econometric Evaluation of Social Programs,

Part I: Causal Models, Structural Models and Econometric Policy Evaluation,”

Handbook of Econometrics, Heckman and Leamer eds., North Holland, Amster-

dam, 4779-4874.

Heckman, J. and E. Vytlacil, 2007b, “Econometric Evaluation of Social Programs,

Part II: Using the Marginal Treatment Effect to Organize Alternative Economet-

ric Estimators to Evaluate Social Programs, and to Forecast their Effects in New

Environments,” Handbook of Econometrics, Heckman and Leamer eds., North

Holland, Amsterdam, 4875-5143.
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