Barrow, Lisa; Markham, Lisa; Rouse, Cecilia Elena

Working Paper

Technology's edge: The educational benefits of computer-aided instruction

Working Paper, No. 2007-17

Provided in Cooperation with:
Federal Reserve Bank of Chicago

Suggested Citation: Barrow, Lisa; Markham, Lisa; Rouse, Cecilia Elena (2007): Technology's edge: The educational benefits of computer-aided instruction, Working Paper, No. 2007-17, Federal Reserve Bank of Chicago, Chicago, IL

This Version is available at:
http://hdl.handle.net/10419/70497

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

Standard-Nutzungsbedingungen:
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.
Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.
Technology’s Edge: The Educational Benefits of Computer-Aided Instruction

Lisa Barrow, Lisa Markman, and Cecilia Elena Rouse

WP 2007-17
Technology’s Edge:
The Educational Benefits of Computer-Aided Instruction

By
Lisa Barrow
Federal Reserve Bank of Chicago

Lisa Markman
Princeton University

Cecilia Elena Rouse
Princeton University and NBER

October, 2007

We thank the many dedicated principals, teachers and staff of the school districts that participated in this project as well as Gadi Barlevy, Thomas Cook, Jonas Fisher, Jean Grossman, Brandi Jeffs, Alan Krueger, Lisa Krueger, Sean Reardon, Jesse Rothstein, Pei Zhu, and seminar participants at Columbia University, Duke University, the Federal Reserve Bank of Chicago, McMaster University, Queens University, and the University of Notre Dame for helpful conversations and comments. Benjamin Kaplan, Katherine Meckel, Kyung-Hong Park, Ana Rocca, and Nathan Wozny provided expert research assistance. Funding for this project was generously provided by the Education Research Section at Princeton University. Any views expressed in this paper do not necessarily reflect those of the Federal Reserve Bank of Chicago or the Federal Reserve System. Any errors are ours.
Abstract

Because a significant portion of U.S. students lacks critical mathematic skills, schools across the country are investing heavily in computerized curriculums as a way to enhance education output, even though there is surprisingly little evidence that they actually improve student achievement. In this paper we present results from a randomized study in three urban school districts of a well-defined use of computers in schools: a popular instructional computer program which is designed to teach pre-algebra and algebra. We assess the impact of the program using statewide tests that cover a range of math skills and tests designed specifically to target pre-algebra and algebra skills. We find that students randomly assigned to computer-aided instruction score at least 0.17 of a standard deviation higher on a pre-algebra/algebra test than students randomly assigned to traditional instruction. We hypothesize that the effectiveness arises from increased individualized instruction as the effects appear larger for students in larger classes and those in classes in which students are frequently absent.
I. INTRODUCTION

Mathematical achievement is arguably critical both to individuals and to the future of the U.S. economy. For example, research by Grogger (1996) and Murnane, Willet, and Levy (1995) suggests that math skills may account for a large portion of wage inequality including the African-American-white wage gap. And yet, in spite of recent progress, levels of proficiency remain dramatically low (U.S. Dept. of Education, 2006 – National Assessment of Educational Progress (NAEP) report). Compounding the problem of poor mathematics performance is the fact that many school districts report difficulty recruiting and retaining teachers, particularly in the fields of math and science, where schools must compete with (non-education) private sector salaries (Murnane and Steele 2007). While the evidence on the importance of teacher qualifications on student achievement is mixed in many subjects, the students of more qualified math teachers appear to perform better (See, e.g., Braswell et al. 2001, Boyd et al 2007).

In response policymakers, parents, and schools are actively seeking creative and effective approaches to improving students’ math skills. And, not surprisingly, many school districts are turning to advances in computer technology. By 2003 nearly all public schools had access to the internet, and the number of public school students per instructional computer with internet access had fallen from 12.1 in 1998 to 4.4.\(^1\) Despite this trend, research on the success of computer technology in the classroom has yielded mixed evidence at best. In economics most studies have focused on the impact of subsidies for schools to invest in computer technology. For example, Angrist and Lavy (2002) show a decrease in math achievement among 8\(^{th}\) graders after the introduction of a computer adoption program in Israeli schools. Goolsbee and Guryan (2006) study the impact of the E-rate – a program to subsidize school investment in the internet –

\(^1\) Table 416 of the Digest of Education Statistics: 2006.
and conclude that while it has substantially increased internet investment, it has had no significant impact on student achievement thus far. In contrast, Machin, McNally, and Silva (forthcoming) find that a government program to encourage investment in information and computer technology in schools in the United Kingdom led to improved performance in English and possibly science but not in math in primary schools. While it is important to understand whether and how public subsidies are used and whether they achieve their intended goals, because the use of computers by the schools in these studies is either unknown or vaguely defined, they do not provide direct evidence on the effectiveness of computer technology as an input in the education production function.

Other literature has studied the impact of computer technology on student achievement more directly.² A relatively recent study of the NELS88 data showed that multimedia and calculating aids had a strong positive correlation with math achievement while it had little to no effect in any other subject (Wang, Wang, and Ye 2002). In contrast, Wenglinsky (1998) finds that, on average, computer use in math instruction is negatively related to student math achievement in the 8th grade. A potential problem with this second group is that there are few studies that use a randomized controlled study design, or employ a credible strategy for controlling for factors such as individual teacher effects and student ability, that might be

² Kirkpatrick and Cuban (1998) define three uses of computers in instruction: computer-assisted instruction (CAI), computer-managed instruction (CMI), and computer-enhanced instruction (CEI). CAI provides drill exercises and tutorials. CMI is more elaborate in diagnosing areas in which students need more instruction, guiding students in their own learning, and recording progress for the teacher. CEI uses the Internet or other computer programs, such as graphics or word-processing, to enhance lessons and projects directed by the teacher. The type of computerized instruction we study is best characterized as computer-aided instruction, although it also contains elements of computer-managed instruction. We use the terms computer-aided instruction and computerized instruction interchangeably.
correlated with both use of computers in the classroom and student outcomes. For example, given that computer technology may be used either to help poorly performing students or to enhance the learning of high achievers, it is unclear whether selection bias would generate upward or downward biased estimates of the average impact of computers technology on student achievement in poorly designed studies.

Three notable exceptions include a randomized evaluation of computer-assisted instruction conducted in the late 1970s by the Educational Testing Service and the Los Angeles Unified School District that consisted of drill and practice sessions in mathematics, reading, and language arts (Ragosta et al., 1982); the study found educationally large effects in math and reading. More recently, using a randomized study design Banerjee et al. (2005) conclude that computer-assisted mathematics instruction boosted the math scores of fourth-grade students in Vadodara, India. In contrast, after randomly assigning students to be trained using a computer program known as *Fast ForWord*, which is designed to improve language and reading skills, Rouse and Krueger (2004) conclude that while use of the computer program may have improved some aspects of students’ language skills, such gains did not appear to translate into a broader measure of language acquisition or into actual reading skills. Overall, one can conclude that this literature is also mixed, although there may be more support for the effectiveness of computer technology in the instruction of math than in reading. Notably, however, few studies offer

3 In an oft-cited, and somewhat controversial, review of the literature, Cuban (2001) concludes, “When it comes to higher teacher and student productivity and a transformation of teaching and learning … there is little ambiguity. Both must be tagged as failures. Computers have been oversold and underused, at least for now.” (p. 179). Others argue for a more nuanced view of the literature that computers can be effective in certain situations, such as when used by teachers with skill and experience in using computers themselves (see, e.g., Brooks (2000)).
evidence on why the technology may help or hinder student achievement and the most recent evidence for math may not apply to U.S. students.

In this paper we present results from a new randomized study in three urban school districts in the U.S. of a well-defined use of computers in schools: a popular instructional computer program which is designed to improve pre-algebra and algebra skills. We assess the impact of the program using both statewide tests that cover a range of math skills and tests designed specifically to target pre-algebra and algebra skills. We find that students randomly assigned to classes using the computer lab score at least 0.17 of a standard deviation higher on tests of pre-algebra and algebra achievement than students assigned to traditional classrooms. The estimated effect rises to 0.25 of a standard deviation when we estimate the effect for students who actually use the computer-aided instruction. We find some evidence for the hypothesis that the effectiveness arises from increased individualized instruction as the effects appear larger for students in larger classes and those in classes in which students have poor attendance records.

In the next section we discuss why and in which circumstances CAI may be more effective than traditional instruction. Section III presents the empirical model, research design and data. Section IV presents the results, in Section V we evaluate the cost effectiveness of CAI, and Section VI concludes.

II. **WHY MIGHT CAI BE MORE EFFECTIVE THAN TRADITIONAL INSTRUCTION?**

A key question is why CAI may be more effective than traditional classroom teaching, on average. Some classroom research suggests computers can offer highly individualized instruction and allow students to learn at their own pace (e.g. Lepper and Gurtner 1989, Means
Other forms of self-paced instruction may offer a similar educational advantage. However, a very small, older, literature suggests that computerized self-paced instruction is more effective than other self-paced instruction. See, e.g., Enochs, Handley, and Wollenberg (1986) and Surber et al (1977) for randomized studies involving college-age students.

Further, we might expect CAI to be more effective for students with poorer rates of attendance. In a traditional classroom, students missing class will miss all of the material covered in class that day. In contrast, the computer always picks up where the student left off the last time she was in class regardless of whether it was the day before or 5 days before. Similarly, in classes in which many students have poor attendance records or in larger classes, we might expect a bigger effect of CAI as teachers would struggle to find the appropriate level at which to pitch lectures. Finally, one might think that individualized instruction provided by CAI avoids some of the disruption effects of having peers with poor attendance rates or being in larger classes as modeled by Lazear (2001).

More formally we can follow Brown and Saks (1984) and think of the teacher as allocating class time to different types of instruction. In the traditional classroom, the teacher divides class time between group instruction time, T_g, and individual instruction time, T_i, such that,

$$T_g + \sum_i T_i \leq \bar{T}, \tag{1}$$

4 Other forms of self-paced instruction may offer a similar educational advantage. However, a very small, older, literature suggests that computerized self-paced instruction is more effective than other self-paced instruction. See, e.g., Enochs, Handley, and Wollenberg (1986) and Surber et al (1977) for randomized studies involving college-age students.
where \bar{T} is the total class time available. Thus, total instruction time for student i equals

$$T_{\sigma} + T_i \leq \bar{T}.$$ \hspace{1cm} (2)

As long as other students in the class receive some individual instruction time, the total instruction time for student i is strictly less than the total class time available.

In the CAI classroom, the teacher also allocates class time between group and individual instruction, but computer-aided instruction effectively increases the productivity of individual instruction time. Namely, while the teacher spends time working with student j, student i can be working on the computer and receiving additional instruction. In contrast to individual instruction time, student i can receive an additional minute of CAI time (C_i) without reducing the total amount of instruction time available to student j. Total instruction time for student i equals

$$T_{\sigma} + T_i + C_i \leq \bar{T}.$$ \hspace{1cm} (3)

Let student achievement, S_i, be a function of instruction time and individual characteristics, Z_i, so that

$$S_i = f(T_{\sigma}, T_i, C_i, Z_i).$$ \hspace{1cm} (4)

and $f_1 \geq 0, f_2 \geq 0, \text{ and } f_3 \geq 0$. Since $f_3 \geq 0$, student i’s achievement in the CAI classroom will be greater than or equal to student i’s achievement in the traditional classroom for any given allocation of T_i and T_{σ}, i.e.,

$$f(T_i, T_{\sigma}, C_i, Z_i) \geq f(T_i, T_{\sigma}, 0, Z_i).$$ \hspace{1cm} (5)
Note that the relative advantage of computerized instruction will depend on the suitability of the curriculum for the students in question which will affect the magnitude of f_i. Suppose further that the teacher maximizes her utility by allocating each student the same amount of individual instruction time. For a class of N students,

$$T_i \leq \frac{(T^a - T_g)}{N}. \quad (6)$$

Thus, for a given time allocation to group instruction, T_g, T_i decreases as class size increases. In the CAI class this means that $C_i \leq \frac{(N-1)}{N} (T^a - T_g)$ so the potential gain in total instruction time for student i of moving from a traditional class to a CAI class is increasing in class size N.

Similarly, one might assume instead that individual instruction time (or at least some of it) is non-productive and related to the teacher needing to deal with individual student behavioral problems. Assuming that student j’s disruptive behavior reduces group instruction time and/or individual instruction time but does not also disrupt student i’s ability to work on the computer, the gain in total instruction time for student i of moving from a traditional class with a disruptive student to a CAI class with a disruptive student is greater than the gain from changing classroom types with a class with no disruptive students.

III. **Evaluating Computer-Aided Instruction (CAI)**

A. **The Empirical Model**
The primary research question we examine is whether mathematics instruction is more effective when delivered via computer programs or using traditional (“chalk and talk”) methods. In designing the study, we were concerned about two sources of bias that might arise using observational data in which we simply compared the outcomes of students taught using CAI to those taught using more traditional methods. The first is that principals and/or teachers may choose to put students they believed would particularly benefit from computerized instruction into the labs. This bias would overstate the effect of CAI relative to traditional instruction.

A second source of bias is that more (or less) motivated teachers may be more willing to try computerized instruction than their less (or more) motivated peers who would prefer to continue teaching using traditional methods. Thus, a key concern with the existing literature on the effectiveness of computer-aided instruction is that the students taught by teachers willing to teach using the computerized instruction would have outperformed their classmates who were taught by other teachers, regardless of whether or not the students had been in the computer lab. That is, the previous researchers may have confounded a teacher effect with the effectiveness of the computer program.

To control for both types of selection bias, we implemented a within-school random assignment design at the classroom level. We randomly assigned classrooms of students (in which the classroom is the group of students taught by a particular teacher during a particular class period in a particular school) to be taught in the computer lab or using “chalk and talk.”

5 Note that randomly assigning students to be taught in the computer lab or not answers a slightly different question: whether being taught in the computer lab – regardless of how classes are typically formed within schools – would generate improvement relative to traditional instruction. Our approach of randomly assigning classes comes much closer to the policy question faced by school principals and superintendents, which is whether instruction for a particular class should
Because classes (with the assigned teacher) will have been randomly assigned, the observed – and unobserved – characteristics of the students and teachers assigned to the computer lab will be identical to those that were not, on average.

Our first empirical model that takes advantage of the randomization generates estimates of the “intent to treat” effect of using computerized instruction. In these models, the test scores of students in classes randomly assigned to the computer lab are compared to the test scores of students in classes randomly assigned to the control group, whether or not the students remained in their original class assignments. To estimate the intent-to-treat effect, we estimate ordinary least squares (OLS) regressions of the following model:

$$Y_{ikj} = \alpha + X_i \beta + \gamma R_{ikj} + \rho_j + \epsilon_{ikj}$$ \hspace{1cm} (7)

where Y_{ikj} represents student i with teacher k in period j’s score on one of the follow-up tests, R_{ikj} indicates whether the student was assigned to a class that was randomly assigned to a computer lab, X_i represents a vector of student characteristics (including, in most specifications, the student’s baseline test scores), ρ_j is the randomization pool\(^6\), ϵ_{ikj} is a random error term, and α, β, and γ represent coefficients to be estimated. The coefficient γ represents the “intent to treat”

\(^6\) As described below, in most cases the randomization pool is the class period of the class (within a particular school).
An issue that can arise in studies of this kind is that the teachers and associated staff are unfamiliar with the intervention and therefore not properly trained to use it effectively. All three districts had been using this CAI program on a small scale before our study began (Districts 2 and 3).

As noted, above, because we randomly select classrooms, our research strategy should generate estimates of the intent-to-treat effect that are not affected by potential self-selection of teachers into the lab. However, this is only strictly true in large samples and so one might also be concerned that – by chance – the more (or less) motivated teachers ended up in the computer lab. If more motivated teachers ended up being selected to teach in the computer lab, then OLS estimates of the effect of CAI on student outcomes will be biased upwards. One could control for this bias by comparing the achievement of students with teachers who teach both in and out of the lab. That is, one can control for a teacher fixed effect. Indeed, in their meta analysis of the research, Kulik and Kulik (1991) concluded that studies in which the same teacher taught both the computer-aided class and the comparison class, the differences in achievement were much lower than when the two types of classes had different teachers which is consistent with teacher selection bias.

At the same time, this result – that the effect of CAI is lower in the presence of teacher fixed effects – would also obtain if there are spillovers in teaching techniques such that teachers import lessons learned from the lab to their traditional classes. In this case, the spillover will attenuate the estimated impact of computerized instruction. In our study some of the participating teachers taught both in a computer lab and using traditional methods while others taught exclusively in the lab or exclusively out of the lab. This variation allows us to control for

\footnote{An issue that can arise in studies of this kind is that the teachers and associated staff are unfamiliar with the intervention and therefore not properly trained to use it effectively. All three districts had been using this CAI program on a small scale before our study began (Districts 2 and 3).}
the quality of the teacher (by including a teacher fixed effect) and to compare results with and without the teacher fixed effects.

A potential problem with the intent-to-treat estimation is that school staff may “contaminate” the experiment by assigning students from the control group (or from outside of the study) to a CAI lab class. Or, they may assign students originally in a computerized class to a traditionally-taught class. While throughout the study we emphasized the importance of maintaining the original student assignments and the principals and teachers indicated that they understood this importance, some contamination did occur. While the intent-to-treat effect represents the gains that a policymaker can realistically expect to observe with the program (since one cannot fully control whether students initially assigned to a class in the lab actually remain in that class), it does not necessarily represent the effect of the program for those who actually complete it.

Therefore, we also implement instrumental variables (IV) models in which we used whether the student was in a class randomly assigned to a computer lab as an instrumental variable for actual participation. The random assignment is correlated with actual participation in a computer lab but uncorrelated with the error term in the outcome equation (since it was

3 for at least one year before our study, and District 1 since 1995), and therefore some of the teachers had already been trained and were familiar with the program. Further, all CAI teachers received training and support from both the company and district support staff throughout the study.

Unfortunately, if we find that the estimated impact of CAI is smaller when we control for fixed effects than when we do not, we will not be able to distinguish whether this is due to more motivated teachers having been selected to be in the lab or to the existence of spillovers from the CAI instruction to traditional instruction. Obviously, if we find that the impact is larger in the presence of teacher fixed effects, we might conclude that, at a minimum, the less motivated teachers were assigned to the lab, by chance, and that this effect was not outweighed by any potential spillovers.
determined randomly). In this case, the second-stage (outcome) equation is represented by models such as,

\[Y_{ikj} = \alpha' + X_{ij}\beta' + \delta CAI_{ikj} + \rho'_{j} + \epsilon'_{ikj} \]

(8)

where \(CAI_{ikj} \) indicates whether the student completed at least one lesson in a computer lab, \(\delta \) indicates the effect of being taught through computerized instruction on student outcomes, and the other variables and coefficients are as before. Through the use of instrumental variables one can generate a consistent estimate of the effect of computerized instruction on student outcomes.

Note that random assignment occurred at the classroom level even though we have data available for each student. Therefore, we adjust our standard errors to account for the fact that the randomization occurred at the classroom level.9

B. Computer-Aided Instruction

We study the effectiveness of computer-aided instruction by focusing on a group of computer programs known as \(I \text{ Can Learn} \)© (or “Interactive Computer Aided Natural Learning”) distributed by JRL Enterprises. The system is composed of both a software and hardware computer package that is designed to deliver instruction through technology on a one-on-one basis to every student; the curricula is designed to meet the National Council of Teachers of Mathematics (NCTM) standards. In addition to the interactive teaching system, the software...

9 In addition, we have estimated our models using data aggregated to the classroom level, and using classroom random effects, with similar results.
package also includes a classroom management tool for educators and the company provides on-site support for administrators and teachers.

The CAI program allows students to study math concepts while advancing at their own pace, enabling them to spend the necessary time on each subject lesson. Each lesson has five independent parts – a pretest, a review (of prerequisites needed for the lesson), the lesson, a cumulative review, and comprehensive tests. Students that do not pass the pretest or review are made to repeat the lesson until they receive a certain degree of mastery. Each student’s performance is recorded in a grade book and teachers can monitor students’ progress through a series of reports. The teacher’s role in this environment is to provide targeted help to students when they need additional assistance. In addition, the computer program covers many administrative aspects such as lesson planning, grading and homework assignment so that teachers may spend more time on individual instruction with struggling students. Previous quasi-experimental studies of the effectiveness of this group of computer programs have yielded mixed results (see, e.g. Brooks 2000, Kerstyn 2001, Kirby 1995, and Kirby 2004).

C. The Research Design

1. The Sites

We conducted the study in three large urban school districts: one in the northeast, one in the midwest and one located in the south. Each of these districts had slightly different demographics but suffer similar problems in the areas of underachievement and teacher recruitment. As shown in Table 1, these districts have a high proportion of minority students who are considerably poorer than the national average. District 1 has a student enrollment of
The schools were given the option of eliminating particular teachers and/or classes from the study before the randomization. The extent to which the schools exercised this option varied. That said, the schools claimed that the process by which they assigned students was basically random. We have assessed this claim by comparing the standard deviation of baseline test scores within the observed classes with the mean standard deviation that one would obtain if students were assigned to classes randomly (within a particular level). Consistent with the schools’ claims, we found that the observed variation in baseline “ability” within classes was similar to that which would obtain if students were randomly assigned. Similarly, the spread of baseline test scores was much larger than what one would have expected if students were strictly “tracked.”

2. Implementation

To implement our randomized design, near the beginning of the academic year the participating schools provided us with their schedule of pre-algebra and algebra classes. We then randomly selected the treatment classes (taught using CAI) and the control classes (taught traditionally). Officials in the schools were not informed of the outcome of our randomization until they had finished assigning students to classes to protect against students being assigned to classes on the basis of whether it would be taught using traditional methods or in the computer lab. Once students were assigned to classes, we informed the schools which classes should use CAI and which should be taught using a traditional method.

We conducted the study during the 2004-2005 school year in 8 high schools and 2 middle schools in District 1; and during the 2003-2004 school year in 4 high schools in District 2 and in

10 The schools were given the option of eliminating particular teachers and/or classes from the study before the randomization. The extent to which the schools exercised this option varied.

11 That said, the schools claimed that the process by which they assigned students was basically random. We have assessed this claim by comparing the standard deviation of baseline test scores within the observed classes with the mean standard deviation that one would obtain if students were assigned to classes randomly (within a particular level). Consistent with the schools’ claims, we found that the observed variation in baseline “ability” within classes was similar to that which would obtain if students were randomly assigned. Similarly, the spread of baseline test scores was much larger than what one would have expected if students were strictly “tracked.”
3 high schools in District 3. As shown in Table 2, the demographic characteristics of students in the schools in our study in District 1 had a slightly higher percentage of African American students (97%) compared to the schools in the district; the study schools in District 2 were roughly similar to those in all schools in the district; and the schools in District 3 had a larger percentage of African American students (93%) and a smaller percentage of Hispanic students (1.2%) compared to the district average. In most cases, the students in the classes within the schools that participated in the study were representative of the students in the schools (with the exception that in District 1 the average percentage of students that were African American in the study was smaller than that in the schools (88% vs. 97%).

As shown in Appendix Table 1, our study originally included a total of 17 schools, 147 classes, and 61 teachers. These 147 classes were grouped into 60 “randomization pools” which represented the groups of classes from which we randomly selected candidates for the treatment and control groups. These pools mostly represented a class period, although in a few cases, there were not enough classes from which to randomly pick one to go into the lab and so we combined classes from two periods. Because of mobility, our analysis sample – which is limited to students with follow-up test scores using our main outcome (that on a specially designed algebra test, see below) – is comprised of 17 schools, 141 classes, 59 teachers, and 60 randomization pools.

12 Typically there was only one or two computer labs in each school (one school had three labs) such that there were more math classes than labs available in any one period.

13 When we further limit the sample to students with baseline test scores on our main outcome we have 17 schools, 137 classes, 57 teachers, and 60 randomization pools, as shown in Appendix Table 1.
D. Data

1. Academic Outcomes

We primarily assess the impact of CAI on student achievement using test instruments. First, we sought an exam that was closely aligned with the material in the mathematics courses.14 Thus, we contracted with the Northwest Evaluation Association (NWEA), a non-profit organization that has partnered with more than 2,300 school districts (serving more than 2 million students) to provide assessments, reports, classroom resources and professional development. NWEA designed a customized paper and pencil exam that targeted specific pre-algebra and algebra skills outlined in the district’s course objectives and the CAI curriculum. (In theory, the CAI curriculum was adapted to meet each district course objectives.) NWEA created a 30-item multiple choice exam for both pre-algebra and algebra. The same exams were created for Districts 2 and 3. Slightly different exams were created for District 1 to match the district’s standards. However, the exams in District 1 were designed to match the exams used in the other two districts to allow for pooled analysis.

We observe post-test scores for 1,872 students across all three districts (1,165 in District 1, 477 in District 2, and 230 in District 3). However, in some analyses we also control for the student’s pre-test. Thus, in the sample that includes both pre- and post-NWEA tests we have 1,585 students (973 in District 1, 412 in District 2, and 200 in District 3). Further, we convert

14 Note that we did not administer the Terra Nova algebra test, a common nationally-normed mathematics test, because many of the district officials were concerned it does not contain sufficient items related to pre-algebra and lower-level algebra.
the baseline and follow-up test scores to standard deviation units using the standard deviation of the baseline test score.15

We also assess the impact of CAI using the statewide tests administered by each state. In District 1, we only have post-treatment state test data for the students in the 8th grade; we use the district-administered Iowa Test of Basic Skills (ITBS) from the 7th grade as the pretest. At the time of our study, students in Districts 2 and 3 were tested in mathematics on state-wide tests in 4th, 8th and 10th grades. Since in these districts the students in the study were primarily in 9th grade, we use the 8th grade statewide test as the pre-test and the 10th grade test as the post-test. The mean of the (standardized) baseline statewide test in District 1 is 9.2; that in District 2 is 6.7; and that in District 3 is 16.7. Again, the test scores were standardized to have a baseline standard deviation of one within each district.16

15 We standardize using the standard deviation of the baseline test score for all students across the three districts which is 9.20. We have also used “national” standard deviations which range from 16.7 for 8th grade students to 17.4 for grades 10 and higher. Not surprisingly, this cuts the estimated effect sizes by roughly one-half. We chose to present the effects using the standard deviation within the study for two reasons. First, we have also estimated the effects using “growth norm” gains – the effect of CAI on the expected one-year growth in test scores (this norming takes into account that initially-low scoring students typically make larger yearly gains than initially higher-scoring students). Translated, these estimates are more similar to the effect sizes using the district standard deviation than the national standard deviation, reflecting that our sample of students are by-and-large initially low achieving. As such, the study standard deviation better reflects the population in question. In addition, we only have district (or study) standard deviations for some of the outcomes such that the results are more consistently presented across outcomes when we use the district or study standard deviation. The results using both the growth-norms and national standard deviation are available on request.

16 Before we standardize the test scores, the standard deviation of the baseline statewide test in District 1 is 23.3; that in District 2 is 31.7; and that in District 3 is 39.1. For District 1 we standardize the 8th grade follow-up test score using the standard deviation of the 8th grade test for the study 9th graders because the pre- and post tests are not the same test. The standard deviation of the 9th graders’ 8th grade test is 44.7.
In addition, pre-algebra students in District 1 took mini-math exams – benchmark pre-algebra exams – throughout the semester. These tests were intended for use by the teacher and district to track students’ progress. The initial benchmark test has a mean of 18.7 and a standard deviation of 5.7. We standardize the initial benchmark test to have a standard deviation of one and also standardized the 2nd and 3rd quarter benchmark tests using the initial test score standard deviation.

Because we do not have a way of standardizing the state tests across the districts, we analyze these data separately by district. The sample size of students in District 1 with both pre- and post-tests is 237; that in District 2 is 341, and that in District 3 is 199. Further, the sample size for the benchmark tests in District 1 is 230. We emphasize that while the state tests have the advantage of being high-stakes and therefore of great importance to the districts, as little as 10% of the state exams in mathematics contain test items related to pre-algebra and/or algebra. As such, they may have low power to detect effects of a pre-algebra/algebra intervention.17

Despite the fact that only a fraction of the state tests focuses on pre-algebra and algebra, the three test assessments are reasonably highly correlated. For example, the correlation between the baseline NWEA test and the state math tests range from 0.30 (in District 1) to 0.73 (in District 2). Further in District 1 the correlation between the baseline algebra test and the baseline benchmark test is 0.57 and that between the state math test and the baseline benchmark

17 In one of the districts we were able to identify individual test items that were related to pre-algebra and algebra. Not surprisingly, our estimates were quite noisy given that there were very few test items on which to measure the students’ performance.
pre-algebra test is 0.62. Thus, while two of our three assessments are not based on nationally normed exams, they nonetheless appear to be correlated with the high-stakes state tests.

2. Other Data

The statistical office in each district also provided us with administrative data on students. The data included student identifiers, limited characteristics (such as the student’s sex, race/ethnicity, and eligibility for a free or reduced-price lunch). In two of the three districts we also obtained data on the number of days the students attended school the previous year and the year in which we conducted the study; and we have limited information on in- and out-of-school suspensions. In addition, we gauge each student’s engagement with the program and the time-on-task through tracking data that comes with the computerized program. Importantly, these data allow us to determine which students ever actually trained in the computer lab versus in a traditional classroom for the analysis estimating the effect of the treatment on the treated.

IV. Results

A. Descriptive Statistics

The first order of business is to determine if assignment to the computer lab appears random. Table 3 shows the mean of student characteristics by whether or not the student’s class was assigned to the CAI lab or was assigned to receive traditional instruction. The top panel

18 For comparison, Figlio and Rouse (2006) report that in a subset of Florida districts the correlation between student performance on a nationally-normed test (the NRT) and the FCAT curriculum-based assessments (known as the Sunshine State Standards (FCAT-SSS) examinations) is approximately 0.8.
uses the full sample of students who were randomly assigned at the beginning of the academic year. We see that the proportion of female, African American, and Hispanic students are quite similar using the full sample. Further, the baseline test scores are identical.

However, there is significant mobility among students in the districts such that we were unable to post-test all of the students. A major concern is that the attrition between the beginning and end of the study was uneven between the treatment group and the control group thereby introducing statistical bias into the analysis. We therefore compare the observable characteristics of the students in the treatment and control groups using the sample of students for whom we also have both the baseline and follow-up data on the NWEA test in the bottom panel. Again, there is no difference in the baseline pre-algebra/algebra test score, however there are small differences in the percentage of students that are African American and Hispanic that are statistically significant at the 6% level.\footnote{We note, however, that these differences in race and ethnicity arise in only one district (District 2).} As a result, in most specifications we control for the sex, race and ethnicity of the student.

B. Overall Intent-to-Treat and Treatment-on-the-Treated Estimates

Table 4a presents the OLS estimates of the intent-to-treat effects of CAI represented by equation (1) as well as an instrumental variables (IV) estimate of the effect of treatment-on-the-treated using the NWEA test as an outcome. Column (1) presents the straightforward mean difference in the post-test between students learning algebra using CAI and those learning in a traditional classroom adjusted only for dummy variables representing the randomization pool.
The standard errors reported allow for within-classroom correlation. We estimate that, on average, students in CAI scored 0.17 of a standard deviation higher on the post-test than did those in a traditional classroom, and this difference is statistically significant at the 5% level. When we add controls for the sex and race/ethnicity of the student, in column (2), the random assignment effect does not change.

In column (3) we present the same specification as that in column (1) but restrict the sample to those students who also had a pre-test. The basic effect of CAI is slightly higher – 21% of a standard deviation – among the subset of students with baseline test scores, although the estimate is within a standard error of that in column (1).20 Note that the coefficient estimate falls slightly when we include the baseline test score (columns (4) and (5)), although this difference is not statistically different from that in column (3). Thus, we estimate that the effect of being placed in a CAI classroom relative to a traditional classroom is an educationally and statistically significant 0.17 of a standard deviation. To interpret this effect differently, when we use the growth-normed test scores, we find that students assigned to a CAI classroom achieve 26% of a grade-level more than their peers at the end of the semester.

However, if some contamination occurred in the study, these OLS estimates will understate the potential educational gains by students who are actually taught in the lab. To the extent that students assigned to classrooms to be taught using traditional methods spent time in the lab and students assigned to the lab did not receive their algebra instruction there, the intent-to-treat estimates may be too small. Table 5 shows the number of lessons students were

20 Further, when we regress whether the student is missing the baseline test score on a variety of student characteristics, none of the characteristics significantly differ between those with and without baseline test scores.
expected to complete given the course taken; the percentage of students completing no lessons, more than 10 lessons and more than 20 lessons in the CAI; the number of lessons the student actually completed; and the number of lessons completed as a fraction of the CAI course expectations by whether the student was assigned to the treatment group or the control group.

Note, first, that there is no difference in the number of CAI lessons that students would have been expected to complete based on the level of their math class and the school’s schedule. However, there is evidence of some, although not extensive, contamination. For example, 84% of students assigned to the lab completed at least 10 lessons in the lab; 15% of those assigned to classes to be taught using traditional instruction completed at least 10 lessons in the lab as well. Similarly, while treatment students completed an average of 33 lessons using CAI, the control group students completed an average of 5.6 lessons. And, while the treatment students appear to have completed about 64% of the lessons they would have been expected to complete using CAI, the control students completed 10%.

We address this contamination by using IV to estimate equation (2), the results of which are in column (6). In this specification we identify students who were “treated” as those who completed at least one lesson in the computer lab and instrument for this indicator with the random assignment of the student’s class.21 This strategy provides a consistent estimate of the effect of “treatment-on-the-treated.” We estimate that students who actually receive instruction using CAI score 0.25 of a standard deviation higher than those who received instruction in a traditional classroom, and the difference is statistically significant.

21 We have used alternative definitions of students receiving treatment, such as whether the student completed at least 5 lessons in the lab and whether the student completed at least 10 lessons in the lab. The results were robust to these alternative definitions.
As noted above, although we have nearly 60 teachers who participated in the analysis, we also sought to understand whether these impacts result because we, by chance, selected more motivated teachers to teach in the lab. Thus, we exploit the fact that just over one-half of the teachers taught both in and out of the computer lab and include teacher fixed effects in the analysis. These results are presented in Table 4b which is otherwise identical in layout to Table 4a. The within-teacher coefficient estimates are uniformly greater than those without teacher fixed effects. Thus, we estimate that, controlling for (time invariant) teacher quality, the effect of being assigned to a computer lab increases student math achievement. The intent-to-treat effect is nearly 30% of a standard deviation; when we adjust for non-compliance using IV the effect of CAI increases to 40% of a standard deviation. These effects are educationally large and statistically significant and (translated) suggest that students who actually completed lessons in the lab gained roughly 50 percent of a year more than those taught in a traditional classroom.\footnote{Part of the reason for the larger estimated coefficients in Table 4b derive from the fact that the intent-to-treat effect of CAI is larger when we limit the sample to the subset of teachers who taught both in- and out- of the lab (i.e., those observations from which the fixed effects analysis is identified). When we conduct the analysis on this subsample of teachers and do not include teacher fixed effects the intent-to-treat effect (similar to that in column (4) in Table 4a) is 0.27 and the IV estimate (similar to that in column (6) in Table 4a) is 0.44.}

We next consider whether we detect similar effects of CAI on student math achievement using other math test instruments. Because these instruments were not standardized across the districts, we present the results separately by district. Table 6a shows the intent-to-treat effect of CAI in which we use four outcomes in District 1. The first (column (1)) is the pre-algebra and algebra test developed by NWEA that was also used as the outcome in Tables 4a and 4b; the second and third are the second and third quarter benchmark tests conducted by the district...
(columns (2) and (3)); and the final column (column (4)) is the statewide math test. We present the results in two panels: the top panel uses the maximum available sample for each outcome and the lower panel constrains the sample to be constant across them.

In District 1, when we allow for the maximum possible sample, the intent-to-treat effect using the NWEA pre-algebra/algebra test is approximately 0.23 of a standard deviation. We see a larger gain of 0.4 of a standard deviation using the 2nd quarter benchmark test and a gain of 0.6 of a standard deviation using the 3rd quarter benchmark test. Importantly, we also detect an effect of 0.26 on the state mathematics test. All of these gains are educationally large and statistically significant at the 5\% level. Further, the coefficient estimates in the bottom panel suggest that the gains are not simply driven by changes in the sample size across the specification as they are even larger.

Analogous results for Districts 2 and 3 are presented in Table 6b (note that benchmark tests were not administered in these districts). Columns (1) and (3) show the effect of CAI using the NWEA test; those in columns (2) and (4) report the effect using the statewide test for each of the districts. In District 2 we detect an effect of 0.2 of a standard deviation using the algebra test with a p-value of 0.13; the effect is much smaller on the state test – less than 10\% of a standard deviation – and not statistically different from zero. That said, these results are not unexpected given that most of the state math test is not geared towards pre-algebra and algebra. Note that the results do not appear to depend on whether or not the sample is restricted to be the same in both specifications. In contrast, we estimate a negative intent-to-treat effect of CAI on student achievement in District 3 using both the NWEA test and the state math test, although neither
We have also estimated IV models by district for all of the outcomes. In general the coefficient estimates are larger but not qualitatively different from the OLS estimates. These results are available on request.

This inference is based on a combined regression in which we interact the intent-to-treat effect with dummy variables indicating the school district. The subsequent results are qualitatively similar with or without this one randomization pool in District 3. A complete set of results without the randomization pool are available on request.

While the magnitude of the intent-to-treat effect is largest in District 1, the effect (based on the algebra test) is not statistically distinguishable from that in District 2. Further, we note that the negative effect in District 3 is driven by the results from only one randomization pool. If we exclude this pool from the analysis the point estimate in column (3) of the top panel of Table 6b rises to 24 percent of a standard deviation and that in column (4) rises to 15 percent of a standard deviation. These estimates are not statistically different from those estimated in Districts 1 and 2. In addition, in the districts in which CAI appears most effective, the test improves student achievement on more than simply one math test.

C. Empirical Evidence on Why is CAI More Effective

The discussion in Section II suggested that CAI may more effective for some students than others and in classes in which individualized instruction may be particularly advantageous. In the following tables, we look for patterns of impacts that are consistent with this

23 We have also estimated IV models by district for all of the outcomes. In general the coefficient estimates are larger but not qualitatively different from the OLS estimates. These results are available on request.

24 This inference is based on a combined regression in which we interact the intent-to-treat effect with dummy variables indicating the school district.

25 The subsequent results are qualitatively similar with or without this one randomization pool in District 3. A complete set of results without the randomization pool are available on request.
interpretation. In Table 7 we estimate whether the effect of CAI is different for pre-algebra versus algebra or students of different ability as measured by baseline (NWEA) test scores. Each column of the table represents estimates of the effect of CAI for a different subset of the analysis sample. We present estimates for the three districts combined (column (1)), districts 1 and 3 combined (column (2)), and district 1, 2, and 3 separately in columns (3), (4), and (5), respectively. The top panel estimates differential effects by pre-algebra and algebra and the bottom panel estimates the CAI effect by student ability as measured by the baseline test score quartile.

We have study students in algebra and pre-algebra classes in all three districts with roughly 23 percent in pre-algebra classes. Pooling all three districts we estimate that the effect

26 We have conducted all of the subsequent analysis using the statewide tests rather than the NWEA pre-algebra and algebra test designed for this study. The biggest problem is that the sample sizes are much smaller generating results that are quite imprecise. However, many of them are qualitatively similar to those presented in the paper. These results are available from the authors on request.

27 We have also tested whether the effectiveness of CAI differs by sex or race/ethnicity and find no systematic differences. The results are available from the authors on request.

28 Each column in each panel represents a separate regression.

29 Test score quartiles for all specifications are defined within district and algebra level. All specifications additionally control for student demographic characteristics as described above and indicators for the randomization pool. The top panel also includes the baseline test score while the bottom panel includes, instead, indicators for the baseline test score quartile. We also include main effects for the level of math class in the top panel. We emphasize that these results are qualitatively similar when use growth-normed scores suggesting that they are not an artifact of the test score scaling and the possibility that students at different parts of the distribution would naturally have differential gains over the course of the year.

30 In the analysis sample, 30 percent of District 1 students are in pre-algebra, 12 percent of District 2 students are in pre-algebra, and 9 percent of District 3 students are in pre-algebra.
of CAI for pre-algebra students is significantly larger than the effect for algebra students (the p-value of the difference between the two effects equals 0.001). Pre-algebra students in CAI score 0.48 standard deviations higher than pre-algebra students in traditional classes while algebra students in CAI score less than 1 percent of a standard deviation higher and the effect is not statistically different from zero. Note, however, that the effect of CAI for algebra students is being driven toward zero by the negative effect of CAI for algebra students in districts 2 and 3. That said, even in District 1 we find evidence that CAI has a larger effect among pre-algebra students than algebra students. In District 1 we estimate that CAI pre-algebra students score 0.44 standard deviations higher than traditionally taught pre-algebra students while CAI algebra students score only 0.13 standard deviations higher than traditionally taught algebra students. For each district the p-value for the test that the pre-algebra effect of CAI equals the algebra effect of CAI is less than 0.07.31 Thus, this CAI treatment appears more effective for pre-algebra students than for algebra students.

In the bottom panel we allow the effect of CAI to differ by prior student math achievement.32 A promised benefit of CAI is that the instruction is completely individualized in the sense that students can move at their own pace in covering the material. In contrast, students in a traditional classroom cover all lessons at the same pace. This could mean that CAI is

31 Statistically, we can reject that the effectiveness of CAI for algebra students is the same in district 2 or 3 as in district 1. The effectiveness of CAI for pre-algebra students in district 2 is very similar to and not statistically different from that in district 1, and although the estimated CAI effect for pre-algebra students in district 3 is larger than in district 1, we also cannot reject that it is same as in district 1.

32 In the bottom part of this table and in the subsequent tables we combine pre-algebra and algebra students to increase our statistical power. The results are qualitatively similar if we limit the sample to pre-algebra students. Such results are available on request.
differentially effective for students of different math ability. For example, suppose traditional classroom teachers always teach pre-algebra and algebra at the pace that is appropriate for the highest ability students in the class. In this case, we might expect to see that high ability students do equally well in CAI and traditional classrooms while those with lower math ability do better in CAI because they can take more time to cover each lesson and therefore learn the material better even if they do not cover as many lessons. Alternatively, if traditional classroom teachers always teach pre-algebra and algebra at the pace that is appropriate for the lowest ability students then high ability students may do better in CAI because they can cover more material than covered in a traditional classroom. While a possibility, when we pool either all three districts (column (1)) or Districts 1 and 2 (column (2)) we estimate that CAI is roughly equally effective for students with the lowest and highest prior math achievement students (p-value>0.60). Thus, we find no evidence that CAI is more or less effective for students with stronger or weaker backgrounds in math as measured by the baseline algebra test.

Tables 8a and 8b test for different CAI effects by attendance characteristics of individual students and for the class based on attendance data from the prior academic year. As noted earlier, we only have data on student attendance for Districts 2 and 3. While the pooled data suggest that, indeed, CAI is more effective for students with worse attendance rates we cannot reject that there are no differences at standard levels of significance. We find some statistically significant differences by attendance quartile using District 3 alone, but the pattern of results are not fully consistent with hypothesis that the individualized instruction of CAI mitigates the negative effects of poor attendance rates.
Table 8b presents estimates allowing the effect of CAI to differ with the average attendance rate of the students in the classroom.33 For Districts 2 and 3 either pooled or individually we find a larger CAI effect for classrooms with lower average attendance rates. For students in a classroom with average attendance rates, the CAI effect is less than 6 percent of a standard deviation and not statistically different from zero. In contrast, the CAI effect for students in a classroom with attendance rates one standard deviation below the mean is 0.35 of a standard deviation (p-value equals 0.08).

Next, we examine whether CAI is more effective for larger classes. Here we measure class size based on the initial class assignment rosters used for random assignment; thus, class size is available for all three districts. The average class sizes in these districts range from 24 to 29 students. Pooling all three districts, we find that the CAI effect is larger for larger classrooms; unfortunately this marginal effect is not statistically significant at standard levels (p-value equals 0.19). However, pooling only Districts 1 and 2 we find that the CAI effect is about twice as large and statistically significant at the 10\% level (the p-value is 0.067). Based on this estimate, for a classroom of 25 students the effect of CAI is 0.21 of a standard deviation (p-value < 0.001). For a class of 15 students there is no difference between CAI and traditional instruction (0.01 of a standard deviation with a p-value of 0.89). Class size effects are positive for District 1 (p-value = 0.09) and District 2 (p-value = 0.80), individually. The coefficient estimate is very small and negative with a large standard error in District 3. We cautiously

33 For each student we calculate the average attendance rate of her classmates using attendance data for the prior year and excluding her own attendance rate from the calculation.
conclude there is some evidence CAI is more effective in larger classes, consistent with the idea that the main benefit of CAI is the individualization of the instruction.

Finally, we examine whether CAI effects are larger in classrooms with greater heterogeneity in terms of baseline math achievement. Specifically, we allow the CAI effect to depend on the baseline test score standard deviation for the class. The top panel of Table 10 presents overall results. While the estimate of the coefficient on the interaction term for District 1 is negative, those for Districts 2 and 3 individually, are positive, consistent with the idea that the benefit of CAI is through individualized instruction. However, regardless of sample, none of the coefficients on the interaction between CAI and baseline standard deviation are statistically significant.

One potential explanation for the results only being weakly supportive of the importance of individualized instruction is that heterogeneity, in-and-of itself, may not hinder effective teaching. Rather, in certain circumstances – such as in small classrooms – heterogeneity in student ability may be quite manageable in a traditional classroom. In this case, the relative advantage of CAI (and hence more individualized instruction) may only become apparent in large and heterogenous classes. To test this hypothesis, in the second panel of Table 10 we add a third level interaction – that between CAI, the baseline standard deviation in student test scores, and an indicator for whether the class is “large” (defined as more than 24 students).34 We now find there is a large, statistically significant, relative advantage to being assigned to CAI for

34 The results are robust to small changes in the definition of a large class. For example, the result is similar if we define large classes as those with more than 20 students (the 30th percentile based on classrooms), but they are not similar at the 60th percentile (more than 26 students). We also obtain qualitatively similar results when we define class size as a continuous variable.
large, heterogeneous classes which is consistent with the hypothesis that CAI benefits primarily accrue through increased individualization of instruction.

V. **Cost-Benefit Simulation**

Of course, gains from computerized instruction do not come for free as the computer labs required for CAI are costly and are dedicated to CAI. In our example, a 30-seat lab costs $100,000 with an additional $150,000 for pre-algebra, algebra, and classroom management software and roughly $17,000 per year for training, support, and maintenance of the lab.\(^{35}\) According to the company’s website a lab lasts 7-10 years so a CAI lab may cost nearly $53,000 per year.\(^{36}\)

Given that providing instruction through CAI may serve as a substitute for reduced class sizes, one way to evaluate its cost effectiveness is to compare its cost to the compensation cost of hiring additional teachers to reduce class size. Using pre-algebra/algebra test scores measured in national standard deviation units we find that a student in an average-sized class (24 pupils) using CAI in our largest district (District 1) scores 11 percent of a standard deviation higher than a student in a similarly-sized traditional classroom. Because the gains from CAI are larger for larger classes, the benefit of CAI equals zero when the average class size is reduced to 13

\(^{35}\) Information on the cost of a CAI lab comes from one of the districts in our study.

\(^{36}\) The company estimates the annual cost per pupil at just over $100. However, we can only get close to this per-pupil estimate if we assume that the lab would serve 400 students per year over a 7 year period and that the district would not pay for training, support, and maintenance cost after the initial three years. We generate our own estimates because we believe this cost per pupil to be unrealistically low.
We only report estimates using the analysis sample in District 1 because we have a good understanding of the typical number of periods in each school; we must make more assumptions when we using our entire analysis sample. That said, the estimated annual cost per pupil of CAI would be about $274 using the entire analysis sample and the estimated cost of reducing class size to 13 students would be about $246.

The cost of reducing class size in this simulation is much lower than the estimates of the cost of class size reduction for elementary schools as in Tennessee STAR (e.g., nearly $5000 per pupil in Schanzenbach 2006). This is primarily because when class sizes are reduced at the elementary school level, it is for all subjects, not just algebra and pre-algebra.

37 We only report estimates using the analysis sample in District 1 because we have a good understanding of the typical number of periods in each school; we must make more assumptions when we using our entire analysis sample. That said, the estimated annual cost per pupil of CAI would be about $274 using the entire analysis sample and the estimated cost of reducing class size to 13 students would be about $246.

38 The cost of reducing class size in this simulation is much lower than the estimates of the cost of class size reduction for elementary schools as in Tennessee STAR (e.g., nearly $5000 per pupil in Schanzenbach 2006). This is primarily because when class sizes are reduced at the elementary school level, it is for all subjects, not just algebra and pre-algebra.
than the estimated cost of class size reduction. More generally, the per pupil cost of CAI is estimated to be less than or equal to the cost of class size reduction as long as the district increases the average class size in the lab to between 27 and 30 pupils.

For individual schools in District 1 with larger average class sizes, our estimates of the cost of implementing CAI are less than our compensation cost estimates of reducing class size, even without increasing the average class size in the lab. For example, School B has an average class size of 26.8. In this case, cutting the average class size in half costs roughly $278 per pupil compared to $245 per pupil to implement CAI without changing the average class size. The benefits of CAI are the most attractive in School A where the cost of reducing class sizes is over $100 more per student than that of adopting CAI.

In general our calculations suggest that the costs of reducing pre-algebra and algebra classes to 13 students and adopting CAI are quite comparable. However, we suspect that our estimates of the cost of class size reduction are more severely underestimated compared to those for CAI. The reason is that they only reflect increased costs in terms of teacher compensation while, in fact, there would likely be additional costs such as recruiting costs and capital expenditures that have not been taken into account. As a result, CAI may be the more cost-effective way for school districts to raise mathematics achievement. Furthermore, in urban and rural districts that have difficulty hiring highly qualified mathematics teachers, CAI may be much easier to implement than a drastic reduction in class size.

VI. Conclusion
Our results suggest that CAI may increase student achievement in pre-algebra and algebra by at least 0.17 of a standard deviation, on average, with somewhat larger effects for students in larger classes. Put differently, students learning pre-algebra and algebra through CAI are 26% of a school year ahead of their classmates in traditional classrooms after one year. In interpreting these results, one must keep in mind that the outcomes were measured relatively soon after the intervention ended such that we do not know how long they would “last.” At the same time, it is not clear to us how one might measure such longer run outcomes, particularly since mathematics is not necessarily cumulative at the secondary school level, students in the control group may go on to use CAI, and all of the students may have been involved in other enrichment programs. In addition, this represents only one use of computers for teaching pre-algebra and algebra and not all CAI hardware and software may be equally effective. That said, this study suggests that CAI has the potential to significantly enhance student mathematics achievement in middle and high school, that the gains are comparable to those achieved with drastic class size reduction, and that the costs are likely somewhat lower than the full cost of reducing the average class size for all algebra and pre-algebra classes. At the very least, our results suggest that CAI deserves additional rigorous evaluation and policy attention, particularly since it may be much easier for schools and districts to implement than large scale class size reduction.
Simulation Appendix

In this appendix we present more detailed information on the cost calculations for CAI and class size reduction using information on all algebra and pre-algebra classes for two schools in District 1. We also present the same calculations for all District 1 algebra and pre-algebra classes in the analysis sample.\(^{39}\) Thus the top panel of the table presents cost estimates for implementing CAI while the bottom panel presents cost estimates for reducing class size to 13 students. The cost estimates vary because of differences across the schools in the average class size.

The first three columns are identical in each panel and represent the total number of pre-algebra and algebra classes, total number of students, and the average class size, respectively. Column (4) lists the number of periods the lab is in use (top panel) or the teacher is teaching (bottom panel). For CAI we assume that the average class size is equal to the observed average class size or a maximum of 30 students (column (5) in the top panel). For class size reduction, we assume that classes are reduced to 13 students. Column (5) in the bottom panel equals the total number of new classes required to generate an average class size of 13. Column (6) then presents the number of labs the school (district) needs to put all algebra and pre-algebra classes in CAI (top panel) or the number of additional teachers needed to reduce algebra and pre-algebra class size to 13 given the assumption that the new teachers teach for 6 of the 8 periods in the day. Finally, we assume the lab involves a fixed cost of $250,000 for hardware and software and $50,000 for 3 years of support, training, and maintenance and that the lab is good for 7 years. For

\(^{39}\) As noted in the text, we only present results using the analysis sample in District 1 because we have specifics about the structure of the school day. To use the entire analysis sample we must make more assumptions.
the compensation cost of each teacher we use the salary of a new teacher in district 1 with zero years of experience and further assume that salary is 70 percent of the total compensation cost.

For a large school in our sample (School A), the cost of CAI is $218 per pupil compared to $329 per pupil to reduce class size to 13 students. For a smaller school in our sample (School B), the cost per pupil is roughly $245 for CAI compared to $278 for class size reduction. The final row in each panel presents cost estimates using information for all algebra and pre-algebra classes in District 1 that are represented in the analysis sample. In this case, our per pupil cost of CAI is nearly $280 compared to a per pupil cost of reducing class size that is closer to $240.

When we consider the analysis sample for all three districts, we assume that teachers typically teach 6 out of a total of 8 class periods during the day in all three districts and that teacher salaries are the same as in District 1. Thus, since the average class size for all classes in the analysis sample (23.9) is quite similar to the average for District 1 classes (23.5), the estimates of the cost of CAI and the cost of class size reduction are quite similar to the estimates for District 1, $274 per pupil for CAI and $246 per pupil for class size reduction. This is likely an overestimate for CAI and an under estimate for class size reduction. For some of the schools in districts 2 and 3, it appears that teachers may actually teach fewer than 6 classes per day, and some schools may actually have more than 8 possible periods during the day. Also, teacher salaries may be somewhat higher in District 2 than in Districts 1 and 3.

\footnote{Most of schools in District 1 operate on a block schedule; however, classes could be organized either in 4 blocks for 1 semester or 8 periods over 1 year. For simplicity we assume classes are organized into 8 periods over 1 year for all schools.}
References

Schanzenbach, Diane Whitmore. What Have Researchers Learned from Project STAR? Harris School Working Paper Series 06.06. (August 2006)

<table>
<thead>
<tr>
<th>Average # of students in a district (all grades)</th>
<th>United States 100 Largest Districts</th>
<th>3 Districts Combined</th>
<th>District 1</th>
<th>District 2</th>
<th>District 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average # of students in a district (all grades)</td>
<td>112,807</td>
<td>~63,000</td>
<td>~68,000</td>
<td>~22,000</td>
<td>~97,000</td>
</tr>
<tr>
<td>% Female</td>
<td>48.8</td>
<td>49.4</td>
<td>49.7</td>
<td>48.8</td>
<td>49.3</td>
</tr>
<tr>
<td>% African American</td>
<td>28.1</td>
<td>69.5</td>
<td>93.6</td>
<td>40.3</td>
<td>59.4</td>
</tr>
<tr>
<td>% Hispanic</td>
<td>34.1</td>
<td>16.2</td>
<td>1.1</td>
<td>54.3</td>
<td>18.0</td>
</tr>
<tr>
<td>% Native American</td>
<td>0.6</td>
<td>0.5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.9</td>
</tr>
<tr>
<td>% Asian</td>
<td>7.1</td>
<td>3.1</td>
<td>1.9</td>
<td>0.8</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations based on the National Center for Education Statistics Common Core of Data, 2003-2004 school year, 100 largest districts by total enrollment. Percentages are based only on schools reporting. (Data on sex are missing for Knox County, Memphis City, Nashville-Davidson County, Philadelphia City, Portland, and Shelby County School Districts. Data on race and ethnicity are missing for Memphis City, Nashville-Davidson County, and Shelby County School Districts.) Demographic characteristics for the 3 districts combined are enrollment-weighted averages of the individual district means.
Table 2: Schools and Students in Study Compared to the Overall District Averages

<table>
<thead>
<tr>
<th></th>
<th>District 1</th>
<th></th>
<th></th>
<th>District 2</th>
<th></th>
<th></th>
<th>District 3</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevant Schools</td>
<td>29,603</td>
<td>8,148</td>
<td>973</td>
<td>5,270</td>
<td>4,476</td>
<td>412</td>
<td>27,572</td>
<td>3,540</td>
<td>200</td>
</tr>
<tr>
<td>Students in Study</td>
<td>604</td>
<td>815</td>
<td>97</td>
<td>659</td>
<td>1119</td>
<td>103</td>
<td>484</td>
<td>1180</td>
<td>67</td>
</tr>
<tr>
<td>% grade 8</td>
<td>19.3</td>
<td>16.8</td>
<td>40.4</td>
<td>2.3</td>
<td>0.0</td>
<td>0.0</td>
<td>1.4</td>
<td>0.0</td>
<td>3.5</td>
</tr>
<tr>
<td>% grade 9</td>
<td>18.0</td>
<td>18.3</td>
<td>47.2</td>
<td>38.0</td>
<td>40.0</td>
<td>52.7</td>
<td>35.6</td>
<td>40.0</td>
<td>91.5</td>
</tr>
<tr>
<td>% grade 10</td>
<td>15.1</td>
<td>17.8</td>
<td>9.9</td>
<td>22.0</td>
<td>23.2</td>
<td>31.8</td>
<td>23.3</td>
<td>25.1</td>
<td>3.0</td>
</tr>
<tr>
<td>% female</td>
<td>50.5</td>
<td>49.0</td>
<td>52.0</td>
<td>48.4</td>
<td>48.2</td>
<td>46.7</td>
<td>49.9</td>
<td>47.6</td>
<td>47.7</td>
</tr>
<tr>
<td>% African American</td>
<td>94.2</td>
<td>97.2</td>
<td>87.8</td>
<td>43.6</td>
<td>42.0</td>
<td>47.1</td>
<td>61.1</td>
<td>92.5</td>
<td>94.5</td>
</tr>
<tr>
<td>% Hispanic</td>
<td>1.0</td>
<td>0.8</td>
<td>0.8</td>
<td>50.1</td>
<td>51.2</td>
<td>44.7</td>
<td>15.2</td>
<td>1.2</td>
<td>0.5</td>
</tr>
<tr>
<td>% white</td>
<td>2.6</td>
<td>0.4</td>
<td>0.1</td>
<td>5.5</td>
<td>5.9</td>
<td>6.6</td>
<td>18.3</td>
<td>4.0</td>
<td>1.5</td>
</tr>
<tr>
<td>% Native American</td>
<td><0.1</td>
<td><0.1</td>
<td>0.0</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>1.1</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>% Asian</td>
<td>2.2</td>
<td>1.6</td>
<td>1.8</td>
<td>0.7</td>
<td>0.8</td>
<td>0.5</td>
<td>4.5</td>
<td>1.9</td>
<td>3.0</td>
</tr>
<tr>
<td>% missing</td>
<td>9.6</td>
<td></td>
<td></td>
<td>0.2</td>
<td></td>
<td></td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

demographic data |

Source: Authors’ calculations based on the National Center for Education Statistics, Common Core of Data, 2003-2004 school year. There are 49 “relevant” schools in District 1, 8 in District 2, and 57 in District 3. Relevant schools in District 1 are defined as schools
in the CCD with a level of middle school, high school, or other; relevant schools in District 2 and District 3 have a level of high school or other. We drop middle schools in District 1 for which the highest grade offered is less than grade 8. There are 10 schools in the study in District 1, 4 schools in District 2, and 3 schools in District 3. Characteristics on the students in the study come from data made available to the authors by the school districts.
Table 3: Randomization of Treatment and Control Using Full and Analysis Samples

<table>
<thead>
<tr>
<th>Random Assignment</th>
<th>Traditional Instruction</th>
<th>Computer-Assisted Instruction</th>
<th>p-value of difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full Sample</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline algebra test score</td>
<td>24.7</td>
<td>24.7</td>
<td>0.494</td>
</tr>
<tr>
<td>Percent female</td>
<td>47.2</td>
<td>47.1</td>
<td>0.637</td>
</tr>
<tr>
<td>Percent African American</td>
<td>80.0</td>
<td>83.2</td>
<td>0.561</td>
</tr>
<tr>
<td>Percent Hispanic</td>
<td>15.9</td>
<td>13.5</td>
<td>0.195</td>
</tr>
<tr>
<td>Class size</td>
<td>25.8</td>
<td>25.7</td>
<td>0.860</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>1133</td>
<td>1145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analysis Sample</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline algebra test score</td>
<td>24.7</td>
<td>24.8</td>
<td>0.304</td>
</tr>
<tr>
<td>Percent female</td>
<td>51.1</td>
<td>48.9</td>
<td>0.148</td>
</tr>
<tr>
<td>Percent African American</td>
<td>81.9</td>
<td>84.0</td>
<td>0.060</td>
</tr>
<tr>
<td>Percent Hispanic</td>
<td>13.8</td>
<td>12.1</td>
<td>0.061</td>
</tr>
<tr>
<td>Class size</td>
<td>25.8</td>
<td>26.2</td>
<td>0.549</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>785</td>
<td>800</td>
<td></td>
</tr>
</tbody>
</table>

Notes: All test scores are scaled scores converted to standard deviation units. The test for a difference in mean characteristic by random assignment is based on a regression of the characteristic on an indicator for random assignment and randomization pool fixed effects allowing for correlation in standard errors at the classroom level. We report the p-value for the t-test that the coefficient on the random assignment indicator equals zero.
Table 4a: Ordinary Least Squares and Instrumental Variable Estimates of the Effect of Computer-Assisted Instruction (CAI) on Algebra Achievement (without Teacher Fixed Effects)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAI</td>
<td>0.173</td>
<td>0.172</td>
<td>0.212</td>
<td>0.172</td>
<td>0.173</td>
<td>0.249</td>
</tr>
<tr>
<td></td>
<td>(0.076)</td>
<td>(0.074)</td>
<td>(0.077)</td>
<td>(0.060)</td>
<td>(0.059)</td>
<td>(0.086)</td>
</tr>
<tr>
<td>Baseline algebra test score</td>
<td></td>
<td>0.500</td>
<td>0.493</td>
<td>0.491</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.035)</td>
<td>(0.034)</td>
<td>(0.034)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0.081</td>
<td></td>
<td>0.095</td>
<td></td>
<td>0.087</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.044)</td>
<td></td>
<td>(0.041)</td>
<td></td>
<td>(0.041)</td>
<td></td>
</tr>
<tr>
<td>African American</td>
<td>-0.671</td>
<td></td>
<td>-0.506</td>
<td></td>
<td>-0.498</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.180)</td>
<td></td>
<td>(0.137)</td>
<td></td>
<td>(0.138)</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>-0.540</td>
<td></td>
<td>-0.390</td>
<td></td>
<td>-0.370</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.211)</td>
<td></td>
<td>(0.159)</td>
<td></td>
<td>(0.159)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>1872</td>
<td>1872</td>
<td>1585</td>
<td>1585</td>
<td>1585</td>
<td>1585</td>
</tr>
</tbody>
</table>

Notes: Each column represents a separate regression. Test scores are scaled scores converted to standard deviation units. Each regression also controls for the randomization pool as well as an indicator equal to one if sex is missing and an indicator equal to 1 if race/ethnicity is missing for those regressions that include demographic information. For the IV estimates of the effect of treatment on the treated we define treatment as completing at least one lesson in computerized algebra instruction. We report standard errors that allow for correlation within classroom in parentheses.
Table 4b: Ordinary Least Squares and Instrumental Variable Estimates of the Effect of Computer-Assisted Instruction (CAI) on Algebra Achievement (with Teacher Fixed Effects)

<table>
<thead>
<tr>
<th></th>
<th>OLS</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>CAI</td>
<td>0.373</td>
<td>0.367</td>
</tr>
<tr>
<td></td>
<td>(0.071)</td>
<td>(0.067)</td>
</tr>
<tr>
<td>Baseline algebra test score</td>
<td>0.483</td>
<td>0.477</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.034)</td>
</tr>
<tr>
<td>Female</td>
<td>0.108</td>
<td>0.125</td>
</tr>
<tr>
<td></td>
<td>(0.041)</td>
<td>(0.041)</td>
</tr>
<tr>
<td>African American</td>
<td>-0.619</td>
<td>-0.449</td>
</tr>
<tr>
<td></td>
<td>(0.155)</td>
<td>(0.129)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>-0.498</td>
<td>-0.351</td>
</tr>
<tr>
<td></td>
<td>(0.185)</td>
<td>(0.154)</td>
</tr>
<tr>
<td>Observations</td>
<td>1872</td>
<td>1872</td>
</tr>
</tbody>
</table>

Notes: Each column represents a separate regression. Test scores are scaled scores converted to standard deviation units. Each regression also controls for the randomization pool, an indicator equal to one if sex is missing, and an indicator equal to 1 if race/ethnicity is missing for those regressions that include demographic information, and teacher fixed effects. For the IV estimates of the effect of treatment on the treated we define treatment as completing at least one lesson in computerized algebra instruction. We report standard errors that allow for correlation within classroom in the parentheses. The p-values of the F-tests on the statistical significance of the teacher effects equal zero for all specifications.
Table 5: Amount of Time in the Computer Lab by the Random Assignment of the Student’s Class

<table>
<thead>
<tr>
<th></th>
<th>Random Assignment</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Traditional</td>
<td>CAI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Instruction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of lessons students</td>
<td>52.7</td>
<td>55.3</td>
<td></td>
</tr>
<tr>
<td>are expected to complete</td>
<td>(14.4)</td>
<td>(15.3)</td>
<td></td>
</tr>
<tr>
<td>based on the course level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent of students</td>
<td>80.1</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>completing no lessons in</td>
<td>(39.9)</td>
<td>(28.8)</td>
<td></td>
</tr>
<tr>
<td>CAI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent of students</td>
<td>14.8</td>
<td>83.8</td>
<td></td>
</tr>
<tr>
<td>completing more than 10</td>
<td>(35.5)</td>
<td>(36.9)</td>
<td></td>
</tr>
<tr>
<td>lessons in CAI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent of students</td>
<td>10.3</td>
<td>70.3</td>
<td></td>
</tr>
<tr>
<td>completing more than 20</td>
<td>(30.4)</td>
<td>(45.7)</td>
<td></td>
</tr>
<tr>
<td>lessons in CAI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of lessons</td>
<td>5.6</td>
<td>33.0</td>
<td></td>
</tr>
<tr>
<td>completed in CAI</td>
<td>(15.2)</td>
<td>(23.9)</td>
<td></td>
</tr>
<tr>
<td>Number of CAI lessons</td>
<td>10.0</td>
<td>64.5</td>
<td></td>
</tr>
<tr>
<td>completed as a percent of</td>
<td>(27.8)</td>
<td>(50.4)</td>
<td></td>
</tr>
<tr>
<td>course expectations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of observations</td>
<td>785</td>
<td>800</td>
<td></td>
</tr>
</tbody>
</table>

Notes: District 1 has 62 school days in the study while classes in districts 2 and 3 generally have 180 days in the study. One exception is that a few classes in district 3 meet only one-half of the schools days.
Table 6a: Ordinary Least Squares Estimates of the Effect of Computer-Assisted Instruction (CAI) on Algebra and Mathematics Achievement in District 1 Using Different Tests

<table>
<thead>
<tr>
<th>CAI</th>
<th>Algebra Scale Score (1)</th>
<th>2nd Qtr Benchmark Algebra Test (2)</th>
<th>3rd Qtr Benchmark Algebra Test (3)</th>
<th>State Mathematics Test (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.226)</td>
<td>(0.381)</td>
<td>(0.604)</td>
<td>(0.260)</td>
</tr>
<tr>
<td></td>
<td>(0.071)</td>
<td>(0.127)</td>
<td>(0.286)</td>
<td>(0.119)</td>
</tr>
<tr>
<td>Observations</td>
<td>973</td>
<td>230</td>
<td>239</td>
<td>454</td>
</tr>
</tbody>
</table>

Constraining sample students to be the same across specification

<table>
<thead>
<tr>
<th>CAI</th>
<th>Algebra Scale Score (1)</th>
<th>2nd Qtr Benchmark Algebra Test (2)</th>
<th>3rd Qtr Benchmark Algebra Test (3)</th>
<th>State Mathematics Test (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.374)</td>
<td>(0.462)</td>
<td>(0.946)</td>
<td>(0.381)</td>
</tr>
<tr>
<td></td>
<td>(0.168)</td>
<td>(0.173)</td>
<td>(0.482)</td>
<td>(0.139)</td>
</tr>
<tr>
<td>Observations</td>
<td>185</td>
<td>185</td>
<td>185</td>
<td>185</td>
</tr>
</tbody>
</table>

Notes: Standard errors that allow for correlation within classroom are in parentheses. The dependent variable in the first column is the normalized scale score for the algebra test; that in the second column is the 2nd quarter district-wide 8th-grade math test score; that in the third column is the 3rd quarter district-wide 8th-grade math test score; and that in the fourth column is the state mathematics test. All test scores are scale scores converted to standard deviation units. Each regression also includes controls for baseline test scores, the randomization pool, demographic characteristics, and an indicator equal to one if sex is missing, and an indicator equal to 1 if race/ethnicity is missing. The algebra and state mathematics tests were administered in the spring. The baseline algebra tests were given in the beginning of the academic year. The baseline benchmark algebra test was given in the 1st quarter of the academic year. The baseline state test was given in the spring of the preceding academic year.
Table 6b: Ordinary Least Squares Estimates of the Effect of Computer-Assisted Instruction (CAI) on Algebra and Mathematics Achievement in Districts 2 and 3 Using Different Tests

<table>
<thead>
<tr>
<th></th>
<th>District 2</th>
<th>District 3</th>
<th></th>
<th>District 2</th>
<th>District 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Algebra</td>
<td>State</td>
<td></td>
<td>Algebra</td>
<td>State</td>
</tr>
<tr>
<td></td>
<td>Scale Score</td>
<td>Mathematics Test</td>
<td></td>
<td>Scale Score</td>
<td>Mathematics Test</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>CAI</td>
<td>0.200</td>
<td>0.089</td>
<td>-0.124</td>
<td>-0.062</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.130)</td>
<td>(0.094)</td>
<td>(0.122)</td>
<td>(0.118)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>412</td>
<td>341</td>
<td>200</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>CAI</td>
<td>0.400</td>
<td>0.082</td>
<td>0.031</td>
<td>-0.202</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.171)</td>
<td>(0.112)</td>
<td>(0.182)</td>
<td>(0.109)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>229</td>
<td>229</td>
<td>107</td>
<td>107</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Standard errors that allow for correlation within classroom are in parentheses. The dependent variable in the first and third columns is the normalized scale score for the algebra test; those in the second and fourth column results are the respective state mathematics test. All test scores are scale scores converted to standard deviation units. Each regression also includes controls for baseline test scores, the randomization pool, demographic characteristics, and an indicator equal to one if sex is missing, and an indicator equal to 1 if race/ethnicity is missing. The algebra tests were administered in the spring. The baseline algebra tests were given in the beginning of the fall. For district 2 the state mathematics test was administered in the spring of the students’ 10th grade year. For district 3 the state mathematics test was administered in the fall of the students 10th grade year. For both districts, the baseline state tests were given in the fall of the students’ 8th grade year.
Table 7: Differential Intent to Treat Effects of the Computerized Instruction on Pre-Algebra and Algebra Achievement by Class Type and Baseline Test Score Quartile

<table>
<thead>
<tr>
<th></th>
<th>All 3 Districts</th>
<th>Districts 1 and 2</th>
<th>District 1</th>
<th>District 2</th>
<th>District 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>CAI effect for Algebra</td>
<td>0.005</td>
<td>0.069</td>
<td>0.130</td>
<td>-0.307</td>
<td>-0.230</td>
</tr>
<tr>
<td></td>
<td>(0.059)</td>
<td>(0.065)</td>
<td>(0.066)</td>
<td>(0.218)</td>
<td>(0.100)</td>
</tr>
<tr>
<td>CAI effect for pre-Algebra</td>
<td>0.481</td>
<td>0.453</td>
<td>0.442</td>
<td>0.513</td>
<td>1.360</td>
</tr>
<tr>
<td></td>
<td>(0.119)</td>
<td>(0.120)</td>
<td>(0.155)</td>
<td>(0.187)</td>
<td>(0.690)</td>
</tr>
<tr>
<td>CAI effect for bottom baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>test score quartile</td>
<td>0.216</td>
<td>0.288</td>
<td>0.280</td>
<td>0.136</td>
<td>-0.199</td>
</tr>
<tr>
<td></td>
<td>(0.091)</td>
<td>(0.095)</td>
<td>(0.095)</td>
<td>(0.235)</td>
<td>(0.287)</td>
</tr>
<tr>
<td>CAI effect for 2nd baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>test score quartile</td>
<td>0.242</td>
<td>0.273</td>
<td>0.343</td>
<td>0.150</td>
<td>-0.090</td>
</tr>
<tr>
<td></td>
<td>(0.100)</td>
<td>(0.104)</td>
<td>(0.115)</td>
<td>(0.212)</td>
<td>(0.282)</td>
</tr>
<tr>
<td>CAI effect for 3rd baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>test score quartile</td>
<td>0.171</td>
<td>0.199</td>
<td>0.090</td>
<td>0.522</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>(0.105)</td>
<td>(0.117)</td>
<td>(0.125)</td>
<td>(0.260)</td>
<td>(0.161)</td>
</tr>
<tr>
<td>CAI effect for top quartile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.155</td>
<td>0.245</td>
<td>0.218</td>
<td>0.358</td>
<td>-0.436</td>
</tr>
<tr>
<td></td>
<td>(0.106)</td>
<td>(0.112)</td>
<td>(0.124)</td>
<td>(0.237)</td>
<td>(0.259)</td>
</tr>
<tr>
<td>Number of observations</td>
<td>1585</td>
<td>1385</td>
<td>973</td>
<td>412</td>
<td>200</td>
</tr>
</tbody>
</table>

Notes: Each column of each panel represents a separate regression. All test scores are scale scores converted to standard deviation units. Regressions in the top panel also includes baseline test scores. Each regression also controls for the randomization pool, demographic characteristics, an indicator equal to one if sex is missing, and an indicator equal to 1 if race/ethnicity is missing. Baseline test score quartiles are defined within district and class type (algebra or pre-algebra). We report standard errors that allow for correlation within classroom in the parentheses.
Table 8a: Differential Intent to Treat Effects of the Computerized Instruction on Pre-Algebra and Algebra Achievement by Individual Attendance Rates

<table>
<thead>
<tr>
<th></th>
<th>Districts 2 and 3</th>
<th>District 2</th>
<th>District 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAI effect for bottom quartile</td>
<td>0.439</td>
<td>0.112</td>
<td>0.797</td>
</tr>
<tr>
<td></td>
<td>(0.287)</td>
<td>(0.395)</td>
<td>(0.353)</td>
</tr>
<tr>
<td>CAI effect for 2nd quartile</td>
<td>-0.221</td>
<td>-0.136</td>
<td>-0.578</td>
</tr>
<tr>
<td></td>
<td>(0.208)</td>
<td>(0.328)</td>
<td>(0.267)</td>
</tr>
<tr>
<td>CAI effect for 3rd quartile</td>
<td>-0.051</td>
<td>-0.053</td>
<td>-0.068</td>
</tr>
<tr>
<td></td>
<td>(0.175)</td>
<td>(0.256)</td>
<td>(0.293)</td>
</tr>
<tr>
<td>CAI effect for top quartile</td>
<td>-0.020</td>
<td>-0.119</td>
<td>0.146</td>
</tr>
<tr>
<td></td>
<td>(0.197)</td>
<td>(0.313)</td>
<td>(0.255)</td>
</tr>
<tr>
<td>Number of observations</td>
<td>372</td>
<td>221</td>
<td>151</td>
</tr>
</tbody>
</table>

Notes: Each column and panel represents a separate regression. Test scores are scaled scores converted to standard deviation units. Each regression also controls for the randomization pool, the baseline test scores, demographic characteristics, an indicator equal to one if sex is missing, and an indicator equal to 1 if race/ethnicity is missing. We report standard errors that allow for correlation within classroom in the parentheses. Each student’s attendance rate is calculated as the percent of enrolled days that the student is in attendance. Attendance quartiles are calculated within district.
Table 8b: Differential Intent to Treat Effects of the Computerized Instruction on Pre-Algebra and Algebra Achievement by Class Characteristic: Attendance

<table>
<thead>
<tr>
<th></th>
<th>District 2 and District 3</th>
<th>District 2</th>
<th>District 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAI</td>
<td>2.131 (1.017)</td>
<td>2.261 (1.220)</td>
<td>2.808 (1.970)</td>
</tr>
<tr>
<td>CAI × Average class attendance</td>
<td>-0.025 (0.012)</td>
<td>-0.025 (0.014)</td>
<td>-0.034 (0.022)</td>
</tr>
<tr>
<td>Mean (std. deviation) of class attendance rate</td>
<td>83.287 (11.803)</td>
<td>82.513 (13.605)</td>
<td>84.695 (7.307)</td>
</tr>
<tr>
<td>Number of observations</td>
<td>564</td>
<td>364</td>
<td>200</td>
</tr>
</tbody>
</table>

Notes: See notes for table 9a. Average class attendance is based on individual student attendance data for the year preceding the year of the experiment.
Table 9: Differential Intent to Treat Effects of the Computerized Instruction on Pre-Algebra and Algebra Achievement by Class Size

<table>
<thead>
<tr>
<th></th>
<th>All 3 Districts</th>
<th>Districts 1 and 2</th>
<th>District 1</th>
<th>District 2</th>
<th>District 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>CAI</td>
<td>-0.097</td>
<td>-0.281</td>
<td>-0.266</td>
<td>-0.035</td>
<td>-0.033</td>
</tr>
<tr>
<td></td>
<td>(0.215)</td>
<td>(0.254)</td>
<td>(0.250)</td>
<td>(0.920)</td>
<td>(0.694)</td>
</tr>
<tr>
<td>CAI × Class size</td>
<td>0.010</td>
<td>0.020</td>
<td>0.019</td>
<td>0.011</td>
<td>-0.004</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.011)</td>
<td>(0.011)</td>
<td>(0.042)</td>
<td>(0.022)</td>
</tr>
<tr>
<td>Number of observations</td>
<td>1585</td>
<td>1385</td>
<td>973</td>
<td>412</td>
<td>200</td>
</tr>
</tbody>
</table>

Notes: Each column represents a separate regression. Test scores are scaled scores converted to standard deviation units. Each regression also controls for the randomization pool, the baseline test scores, demographic characteristics, an indicator equal to one if sex is missing, and an indicator equal to 1 if race/ethnicity is missing. We report standard errors that allow for correlation within classroom in the parentheses.
Table 10: Differential Intent to Treat Effects of the Computerized Instruction on Pre-Algebra and Algebra Achievement by Class Baseline Test Score Standard Deviation

<table>
<thead>
<tr>
<th></th>
<th>All 3 Districts</th>
<th>Districts 1 and 2</th>
<th>District 1</th>
<th>District 2</th>
<th>District 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>CAI × baseline standard deviation for the class</td>
<td>0.110 (0.391)</td>
<td>-0.064 (0.387)</td>
<td>-0.118 (0.443)</td>
<td>0.600 (0.921)</td>
<td>0.583 (0.934)</td>
</tr>
<tr>
<td>CAI × baseline standard deviation for the class</td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
<td>(9)</td>
<td>(10)</td>
</tr>
<tr>
<td>CAI × class baseline standard deviation × I(large class)</td>
<td>-1.100 (0.560)</td>
<td>-0.620 (0.529)</td>
<td>-0.559 (0.594)</td>
<td>-0.514 (1.352)</td>
<td>-3.804 (0.369)</td>
</tr>
<tr>
<td>Mean class baseline standard deviation (standard deviation)</td>
<td>1.512 (0.892)</td>
<td>0.688 (0.870)</td>
<td>0.485 (0.907)</td>
<td>9.257 (2.085)</td>
<td>4.136 (0.711)</td>
</tr>
<tr>
<td>Number of observations</td>
<td>1585</td>
<td>1385</td>
<td>973</td>
<td>412</td>
<td>200</td>
</tr>
</tbody>
</table>

Notes: See notes for table 10. The coefficients in top and bottom panels are from different specifications. The median class size in the overall sample is 24 students. A large class is defined as having more than 24 students. A small class is defined as having 24 or fewer students.
Appendix Table 1: Numbers of Schools Classes, Teachers, and Randomization Pools

<table>
<thead>
<tr>
<th></th>
<th>Combined</th>
<th>District 1</th>
<th>District 2</th>
<th>District 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of schools</td>
<td>17</td>
<td>10</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Number of randomization pools</td>
<td>60</td>
<td>31</td>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>Number of classes</td>
<td>151</td>
<td>81</td>
<td>46</td>
<td>24</td>
</tr>
<tr>
<td>Number of teachers</td>
<td>61</td>
<td>39</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>Number of students</td>
<td>3541</td>
<td>1870</td>
<td>1062</td>
<td>609</td>
</tr>
<tr>
<td>Analysis Sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of schools</td>
<td>17</td>
<td>10</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Number of randomization pools</td>
<td>60</td>
<td>31</td>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>Number of classes</td>
<td>141</td>
<td>74</td>
<td>44</td>
<td>23</td>
</tr>
<tr>
<td>Number of teachers</td>
<td>57</td>
<td>36</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>Number of students</td>
<td>1585</td>
<td>973</td>
<td>412</td>
<td>200</td>
</tr>
</tbody>
</table>
Appendix Table 2a: Randomization of Treatment and Control (Using Full Sample)

<table>
<thead>
<tr>
<th></th>
<th>Random Assignment</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Traditional Instruction</td>
<td>Computerized Instruction</td>
<td>p-value of difference</td>
</tr>
<tr>
<td>District #1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baseline algebra test score</td>
<td>24.6</td>
<td>24.7</td>
<td>0.285</td>
</tr>
<tr>
<td></td>
<td>Baseline state test score 9.2</td>
<td>9.2</td>
<td>9.2</td>
<td>0.990</td>
</tr>
<tr>
<td></td>
<td>Baseline district test score 3.0</td>
<td>3.7</td>
<td>3.7</td>
<td>0.107</td>
</tr>
<tr>
<td></td>
<td>Female 51.5</td>
<td>47.8</td>
<td>0.128</td>
<td></td>
</tr>
<tr>
<td></td>
<td>African American 98.0</td>
<td>97.8</td>
<td>0.260</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hispanic 0.6</td>
<td>0.8</td>
<td>0.821</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Class size 25.3</td>
<td>25.5</td>
<td>0.949</td>
<td></td>
</tr>
<tr>
<td>District #2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baseline algebra test score</td>
<td>24.6</td>
<td>24.7</td>
<td>0.823</td>
</tr>
<tr>
<td></td>
<td>Baseline state test score 6.6</td>
<td>6.7</td>
<td>6.7</td>
<td>0.558</td>
</tr>
<tr>
<td></td>
<td>Female 43.9</td>
<td>44.8</td>
<td>0.561</td>
<td></td>
</tr>
<tr>
<td></td>
<td>African American 51.3</td>
<td>44.8</td>
<td>0.566</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hispanic 42.6</td>
<td>48.1</td>
<td>0.204</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Class size 24.1</td>
<td>24.6</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>District #3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baseline algebra test score</td>
<td>25.0</td>
<td>24.9</td>
<td>0.904</td>
</tr>
<tr>
<td></td>
<td>Baseline state test score 16.7</td>
<td>16.7</td>
<td>16.7</td>
<td>0.992</td>
</tr>
<tr>
<td></td>
<td>Female 43.2</td>
<td>48.2</td>
<td>0.482</td>
<td></td>
</tr>
<tr>
<td></td>
<td>African American 92.7</td>
<td>95.6</td>
<td>0.126</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hispanic 0.7</td>
<td>0.8</td>
<td>0.792</td>
<td></td>
</tr>
<tr>
<td>Class size</td>
<td>30.4</td>
<td>28.0</td>
<td>0.547</td>
<td></td>
</tr>
</tbody>
</table>

Notes: All test scores are scaled scores converted to standard deviation units. The test for a difference in mean characteristic by random assignment is based on a regression of the characteristic on an indicator for random assignment and randomization pool fixed effects allowing for correlation in standard errors at the classroom level. We report the p-value for the t-test that the coefficient on the random assignment indicator equals zero. For district #1: baseline algebra test scores are available for 700 treatment students and 624 controls; baseline state test scores are available for 474 treatment students and 387 controls; baseline district test scores are available for 110 treatment students and 147 controls; and demographic data are available for 831 treatment students and 689 controls. For district #2: baseline algebra test scores are available for 280 treatment students and 351 controls; baseline state test scores are available for 243 treatment students and 348 controls; and demographic data are available for 397 treatment students and 556 controls. For district #3: baseline algebra test scores are available for 165 treatment students and 158 controls; baseline state test scores are available for 151 treatment students and 172 controls; and demographic data are available for 249 treatment students and 287 controls.
Appendix Table 2b:
Assessing Random Assignment with the Analysis Sample

<table>
<thead>
<tr>
<th>Random Assignment</th>
<th>Traditional Instruction</th>
<th>Computerized Instruction</th>
<th>p-value of difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>District #1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline algebra test score</td>
<td>24.7</td>
<td>24.7</td>
<td>0.487</td>
</tr>
<tr>
<td>Baseline state test score</td>
<td>9.3</td>
<td>9.5</td>
<td>0.854</td>
</tr>
<tr>
<td>Baseline district test score</td>
<td>3.2</td>
<td>3.7</td>
<td>0.093</td>
</tr>
<tr>
<td>Female</td>
<td>53.6</td>
<td>50.6</td>
<td>0.092</td>
</tr>
<tr>
<td>African American</td>
<td>96.9</td>
<td>97.2</td>
<td>0.239</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.7</td>
<td>1.1</td>
<td>0.977</td>
</tr>
<tr>
<td>Class size</td>
<td>26.0</td>
<td>26.8</td>
<td>0.481</td>
</tr>
<tr>
<td>District #2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline algebra test score</td>
<td>24.7</td>
<td>25.0</td>
<td>0.274</td>
</tr>
<tr>
<td>Baseline state test score</td>
<td>6.7</td>
<td>6.9</td>
<td>0.200</td>
</tr>
<tr>
<td>Female</td>
<td>48.0</td>
<td>45.1</td>
<td>0.634</td>
</tr>
<tr>
<td>African American</td>
<td>49.3</td>
<td>44.5</td>
<td>0.061</td>
</tr>
<tr>
<td>Hispanic</td>
<td>43.7</td>
<td>46.2</td>
<td>0.054</td>
</tr>
<tr>
<td>Class size</td>
<td>23.5</td>
<td>24.0</td>
<td>0.353</td>
</tr>
<tr>
<td>District #3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline algebra test score</td>
<td>25.1</td>
<td>25.0</td>
<td>0.320</td>
</tr>
<tr>
<td>Baseline state test score</td>
<td>16.9</td>
<td>16.8</td>
<td>0.437</td>
</tr>
<tr>
<td>Female</td>
<td>48.0</td>
<td>47.5</td>
<td>0.808</td>
</tr>
<tr>
<td>African American</td>
<td>94.0</td>
<td>94.9</td>
<td>0.290</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.0</td>
<td>1.0</td>
<td>0.161</td>
</tr>
<tr>
<td>Class size</td>
<td>30.2</td>
<td>27.1</td>
<td>0.462</td>
</tr>
</tbody>
</table>
Appendix Table 3: Cost Comparisons

The cost of CAI

<table>
<thead>
<tr>
<th>School</th>
<th>Number of Classes</th>
<th>Total number of Students</th>
<th>Class size</th>
<th>Periods</th>
<th>CAI class size</th>
<th>CAI labs needed</th>
<th>Annual cost per lab</th>
<th>Cost per student</th>
</tr>
</thead>
<tbody>
<tr>
<td>School A</td>
<td>22</td>
<td>730</td>
<td>33.2</td>
<td>8</td>
<td>30.0</td>
<td>3.0</td>
<td>$52,381</td>
<td>$218</td>
</tr>
<tr>
<td>School B</td>
<td>12</td>
<td>321</td>
<td>26.8</td>
<td>8</td>
<td>26.8</td>
<td>1.5</td>
<td>$52,381</td>
<td>$245</td>
</tr>
<tr>
<td>District 1 analysis sample</td>
<td>74</td>
<td>1736</td>
<td>23.5</td>
<td>8</td>
<td>23.5</td>
<td>9.3</td>
<td>$52,381</td>
<td>$279</td>
</tr>
</tbody>
</table>

The cost of reducing class size to 13 students

<table>
<thead>
<tr>
<th>School</th>
<th>Number of Classes</th>
<th>Total number of Students</th>
<th>Class size</th>
<th>Periods</th>
<th>New total math classes</th>
<th>New teachers required</th>
<th>Salary + benefits per teacher</th>
<th>Cost per student</th>
</tr>
</thead>
<tbody>
<tr>
<td>School A</td>
<td>22</td>
<td>730</td>
<td>33.2</td>
<td>6</td>
<td>56.2</td>
<td>5.7</td>
<td>$42,143</td>
<td>$329</td>
</tr>
<tr>
<td>School B</td>
<td>12</td>
<td>321</td>
<td>26.8</td>
<td>6</td>
<td>24.7</td>
<td>2.1</td>
<td>$42,143</td>
<td>$278</td>
</tr>
<tr>
<td>District 1 analysis sample</td>
<td>74</td>
<td>1736</td>
<td>23.5</td>
<td>6</td>
<td>133.5</td>
<td>9.9</td>
<td>$42,143</td>
<td>$241</td>
</tr>
</tbody>
</table>

Notes: The information on number of classes and number of students for schools A and B apply to all algebra and pre-algebra classes in the school while the information on the number of classes and students for the analysis samples only applies to classes that are
represented in our analysis sample. The number of CAI labs needed equals the total number of students divided by the number of
students each lab serves each day. We assume that the computer lab can be used for the number of periods specified in column (4) of
the top panel and that each CAI class is equal to average class size with a maximum of 30 students (column 5). We assume the cost of
the lab equals $250,000 in fixed costs plus $50,000 every 3 years for training, support, and maintenance and that the lab will be good
for 7 years. New total math classes in column (5) of the bottom panel equals the number of math classes needed for an average class
size of 13 students. Assuming each teacher teaches the number of periods in column (4), column (6) represents the number of new
teachers needed to reduce class size to 13 students. Salary is based on the salary schedule for teachers in district 1 with no experience.
We assume that salary equals 70 percent of total compensation costs.
Working Paper Series

A series of research studies on regional economic issues relating to the Seventh Federal Reserve District, and on financial and economic topics.

Standing Facilities and Interbank Borrowing: Evidence from the Federal Reserve’s New Discount Window
Craig Furfine

Netting, Financial Contracts, and Banks: The Economic Implications
William J. Bergman, Robert R. Bliss, Christian A. Johnson and George G. Kaufman

Real Effects of Bank Competition
Nicola Cetorelli

Finance as a Barrier To Entry: Bank Competition and Industry Structure in Local U.S. Markets?
Nicola Cetorelli and Philip E. Strahan

The Dynamics of Work and Debt
Jeffrey R. Campbell and Zvi Hercowitz

Fiscal Policy in the Aftermath of 9/11
Jonas Fisher and Martin Eichenbaum

Merger Momentum and Investor Sentiment: The Stock Market Reaction To Merger Announcements
Richard J. Rosen

Earnings Inequality and the Business Cycle
Gadi Barlevy and Daniel Tsiddon

Platform Competition in Two-Sided Markets: The Case of Payment Networks
Sujit Chakravorti and Roberto Roson

Nominal Debt as a Burden on Monetary Policy
Javier Díaz-Giménez, Giorgia Giovannetti, Ramon Marimon, and Pedro Teles

On the Timing of Innovation in Stochastic Schumpeterian Growth Models
Gadi Barlevy

Policy Externalities: How US Antidumping Affects Japanese Exports to the EU
Chad P. Bown and Meredith A. Crowley

Sibling Similarities, Differences and Economic Inequality
Bhashkar Mazumder

Determinants of Business Cycle Comovement: A Robust Analysis
Marianne Baxter and Michael A. Kourapisas

The Occupational Assimilation of Hispanics in the U.S.: Evidence from Panel Data
Maude Toussaint-Comeau
Working Paper Series (continued)

Reading, Writing, and Raisinets: Are School Finances Contributing to Children’s Obesity?
Patricia M. Anderson and Kristin F. Butcher
WP-04-16

Learning by Observing: Information Spillovers in the Execution and Valuation of Commercial Bank M&As
Gayle DeLong and Robert DeYoung
WP-04-17

Prospects for Immigrant-Native Wealth Assimilation: Evidence from Financial Market Participation
Una Okonkwo Osili and Anna Paulson
WP-04-18

Individuals and Institutions: Evidence from International Migrants in the U.S.
Una Okonkwo Osili and Anna Paulson
WP-04-19

Are Technology Improvements Contractionary?
Susanto Basu, John Fernald and Miles Kimball
WP-04-20

The Minimum Wage, Restaurant Prices and Labor Market Structure
Daniel Aaronson, Eric French and James MacDonald
WP-04-21

Betcha can’t acquire just one: merger programs and compensation
Richard J. Rosen
WP-04-22

Not Working: Demographic Changes, Policy Changes, and the Distribution of Weeks (Not) Worked
Lisa Barrow and Kristin F. Butcher
WP-04-23

The Role of Collateralized Household Debt in Macroeconomic Stabilization
Jeffrey R. Campbell and Zvi Hercowitz
WP-04-24

Advertising and Pricing at Multiple-Output Firms: Evidence from U.S. Thrift Institutions
Robert DeYoung and Evren Örs
WP-04-25

Monetary Policy with State Contingent Interest Rates
Bernardino Adão, Isabel Correia and Pedro Teles
WP-04-26

Comparing location decisions of domestic and foreign auto supplier plants
Thomas Klier, Paul Ma and Daniel P. McMillen
WP-04-27

China’s export growth and US trade policy
Chad P. Bown and Meredith A. Crowley
WP-04-28

Where do manufacturing firms locate their Headquarters?
J. Vernon Henderson and Yukako Ono
WP-04-29

Monetary Policy with Single Instrument Feedback Rules
Bernardino Adão, Isabel Correia and Pedro Teles
WP-04-30
Working Paper Series (continued)

Firm-Specific Capital, Nominal Rigidities and the Business Cycle
David Altig, Lawrence J. Christiano, Martin Eichenbaum and Jesper Linde
WP-05-01

Do Returns to Schooling Differ by Race and Ethnicity?
Lisa Barrow and Cecilia Elena Rouse
WP-05-02

Derivatives and Systemic Risk: Netting, Collateral, and Closeout
Robert R. Bliss and George G. Kaufman
WP-05-03

Risk Overhang and Loan Portfolio Decisions
Robert DeYoung, Anne Gron and Andrew Winton
WP-05-04

Characterizations in a random record model with a non-identically distributed initial record
Gadi Barlevy and H. N. Nagaraja
WP-05-05

Price discovery in a market under stress: the U.S. Treasury market in fall 1998
Craig H. Furfine and Eli M. Remolona
WP-05-06

Politics and Efficiency of Separating Capital and Ordinary Government Budgets
Marco Bassetto with Thomas J. Sargent
WP-05-07

Rigid Prices: Evidence from U.S. Scanner Data
Jeffrey R. Campbell and Benjamin Eden
WP-05-08

Entrepreneurship, Frictions, and Wealth
Marco Cagetti and Mariacristina De Nardi
WP-05-09

Wealth inequality: data and models
Marco Cagetti and Mariacristina De Nardi
WP-05-10

What Determines Bilateral Trade Flows?
Marianne Baxter and Michael A. Kouparitsas
WP-05-11

Intergenerational Economic Mobility in the U.S., 1940 to 2000
Daniel Aaronson and Bhashkar Mazumder
WP-05-12

Differential Mortality, Uncertain Medical Expenses, and the Saving of Elderly Singles
Mariacristina De Nardi, Eric French, and John Bailey Jones
WP-05-13

Fixed Term Employment Contracts in an Equilibrium Search Model
Fernando Alvarez and Marcelo Veracierto
WP-05-14

Causality, Causality, Causality: The View of Education Inputs and Outputs from Economics
Lisa Barrow and Cecilia Elena Rouse
WP-05-15
Working Paper Series (continued)

Competition in Large Markets
Jeffrey R. Campbell
WP-05-16

Why Do Firms Go Public? Evidence from the Banking Industry
Richard J. Rosen, Scott B. Smart and Chad J. Zutter
WP-05-17

Clustering of Auto Supplier Plants in the U.S.: GMM Spatial Logit for Large Samples
Thomas Klier and Daniel P. McMillen
WP-05-18

Why are Immigrants’ Incarceration Rates So Low? Evidence on Selective Immigration, Deterrence, and Deportation
Kristin F. Butcher and Anne Morrison Piehl
WP-05-19

Constructing the Chicago Fed Income Based Economic Index – Consumer Price Index: Inflation Experiences by Demographic Group: 1983-2005
Leslie McGranahan and Anna Paulson
WP-05-20

Universal Access, Cost Recovery, and Payment Services
Sujit Chakravorti, Jeffery W. Gunther, and Robert R. Moore
WP-05-21

Supplier Switching and Outsourcing
Yukako Ono and Victor Stango
WP-05-22

Do Enclaves Matter in Immigrants’ Self-Employment Decision?
Maude Toussaint-Comeau
WP-05-23

The Changing Pattern of Wage Growth for Low Skilled Workers
Eric French, Bhashkar Mazumder and Christopher Taber
WP-05-24

U.S. Corporate and Bank Insolvency Regimes: An Economic Comparison and Evaluation
Robert R. Bliss and George G. Kaufman
WP-06-01

Redistribution, Taxes, and the Median Voter
Marco Bassetto and Jess Benhabib
WP-06-02

Identification of Search Models with Initial Condition Problems
Gadi Barlevy and H. N. Nagaraja
WP-06-03

Tax Riots
Marco Bassetto and Christopher Phelan
WP-06-04

The Tradeoff between Mortgage Prepayments and Tax-Deferred Retirement Savings
Gene Amromin, Jennifer Huang, and Clemens Sialm
WP-06-05

Why are safeguards needed in a trade agreement?
Meredith A. Crowley
WP-06-06
Working Paper Series (continued)

Taxation, Entrepreneurship, and Wealth
Marco Cagetti and Maria Cristina De Nardi

WP-06-07

A New Social Compact: How University Engagement Can Fuel Innovation
Laura Melle, Larry Isaak, and Richard Mattoon

WP-06-08

Mergers and Risk
Craig H. Furfine and Richard J. Rosen

WP-06-09

Two Flaws in Business Cycle Accounting
Lawrence J. Christiano and Joshua M. Davis

WP-06-10

Do Consumers Choose the Right Credit Contracts?
Sumit Aggarwal, Souphala Chomsisengphet, Chunlin Liu, and Nicholas S. Souleles

WP-06-11

Chronicles of a Deflation Unforetold
François R. Velde

WP-06-12

Female Offenders Use of Social Welfare Programs Before and After Jail and Prison: Does Prison Cause Welfare Dependency?
Kristin F. Butcher and Robert J. LaLonde

WP-06-13

Eat or Be Eaten: A Theory of Mergers and Firm Size
Gary Gorton, Matthias Kahl, and Richard Rosen

WP-06-14

Do Bonds Span Volatility Risk in the U.S. Treasury Market? A Specification Test for Affine Term Structure Models
Torben G. Andersen and Luca Benzoni

WP-06-15

Transforming Payment Choices by Doubling Fees on the Illinois Tollway
Gene Amromin, Carrie Jankowski, and Richard D. Porter

WP-06-16

How Did the 2003 Dividend Tax Cut Affect Stock Prices?
Gene Amromin, Paul Harrison, and Steven Sharpe

WP-06-17

Will Writing and Bequest Motives: Early 20th Century Irish Evidence
Leslie McGranahan

WP-06-18

How Professional Forecasters View Shocks to GDP
Spencer D. Krane

WP-06-19

Evolving Agglomeration in the U.S. auto supplier industry
Thomas Klier and Daniel P. McMillen

WP-06-20

Mortality, Mass-Layoffs, and Career Outcomes: An Analysis using Administrative Data
Daniel Sullivan and Till von Wachter

WP-06-21
The Agreement on Subsidies and Countervailing Measures: Tying One’s Hand through the WTO.
Meredith A. Crowley
WP-06-22

How Did Schooling Laws Improve Long-Term Health and Lower Mortality?
Bhashkar Mazumder
WP-06-23

Manufacturing Plants’ Use of Temporary Workers: An Analysis Using Census Micro Data
Yukako Ono and Daniel Sullivan
WP-06-24

What Can We Learn about Financial Access from U.S. Immigrants?
Una Okonkwo Osili and Anna Paulson
WP-06-25

Bank Imputed Interest Rates: Unbiased Estimates of Offered Rates?
Evren Ors and Tara Rice
WP-06-26

Welfare Implications of the Transition to High Household Debt
Jeffrey R. Campbell and Zvi Hercowitz
WP-06-27

Last-In First-Out Oligopoly Dynamics
Jaap H. Abbring and Jeffrey R. Campbell
WP-06-28

Oligopoly Dynamics with Barriers to Entry
Jaap H. Abbring and Jeffrey R. Campbell
WP-06-29

Risk Taking and the Quality of Informal Insurance: Gambling and Remittances in Thailand
Douglas L. Miller and Anna L. Paulson
WP-07-01

Fast Micro and Slow Macro: Can Aggregation Explain the Persistence of Inflation?
Filippo Altissimo, Benoît Mojon, and Paolo Zaffaroni
WP-07-02

Assessing a Decade of Interstate Bank Branching
Christian Johnson and Tara Rice
WP-07-03

Debit Card and Cash Usage: A Cross-Country Analysis
Gene Amromin and Sujit Chakravorti
WP-07-04

The Age of Reason: Financial Decisions Over the Lifecycle
Sumit Agarwal, John C. Driscoll, Xavier Gabaix, and David Laibson
WP-07-05

Information Acquisition in Financial Markets: a Correction
Gadi Barlevy and Pietro Veronesi
WP-07-06

Monetary Policy, Output Composition and the Great Moderation
Benoît Mojon
WP-07-07

Estate Taxation, Entrepreneurship, and Wealth
Marco Cagetti and Mariacristina De Nardi
WP-07-08
Working Paper Series (continued)

Conflict of Interest and Certification in the U.S. IPO Market
Luca Benzoni and Carola Schenone

The Reaction of Consumer Spending and Debt to Tax Rebates – Evidence from Consumer Credit Data
Sumit Agarwal, Chunlin Liu, and Nicholas S. Souleles

Portfolio Choice over the Life-Cycle when the Stock and Labor Markets are Cointegrated
Luca Benzoni, Pierre Collin-Dufresne, and Robert S. Goldstein

Nonparametric Analysis of Intergenerational Income Mobility with Application to the United States
Debopam Bhattacharya and Bhashkar Mazumder

How the Credit Channel Works: Differentiating the Bank Lending Channel and the Balance Sheet Channel
Lamont K. Black and Richard J. Rosen

Labor Market Transitions and Self-Employment
Ellen R. Rissman

First-Time Home Buyers and Residential Investment Volatility
Jonas D.M. Fisher and Martin Gervais

Establishments Dynamics and Matching Frictions in Classical Competitive Equilibrium
Marcelo Veracierto

Technology’s Edge: The Educational Benefits of Computer-Aided Instruction
Lisa Barrow, Lisa Markman, and Cecilia Elena Rouse