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1 Introduction

This paper is dedicated to Leonid Hurwicz. Hurwicz (1944) was a contributor to the

literature on stochastic models of growth and cycles. In collaboration with Kenneth

Arrow he also set the tenor of research on multi-sector dynamic models [see Part

III of Arrow and Hurwicz (1977)]. We focus on a class of stochastic or random

dynamic processes that have been of particular interest in the context of optimiza-

tion problems in – to use his terminology – “non-classical” environments. A formal

statement of the main result is in Section 2. But we begin with a few informal

remarks to provide the motivation. The mathematical model of discounted stochas-

tic dynamic programming has become the basic tool in exploring optimal decision

making under uncertainty both at the micro and macro levels. In “classical” models,

by imposing appropriate (strict) convexity, continuity and monotonicity properties

on the primitives (technological constraints involved in specifying the law of motion,

return functions...), one is able to assert that the optimal policy function is monotone

and continuous. Once, however, one attempts to step out of the “classical” envi-

ronment (for example, to allow for a Knightian S-shaped production function that

exhibits an initial phase of increasing returns), the standard proof of continuity of

the optimal policy function fails. Indeed, even in a deterministic non-classical model

of intertemporal optimization, an example of discontinuity (in which the production

function is S-shaped, the return function is linear) was given in Majumdar and Mitra

(1983). However, in a large class of stochastic models one can still prove that there

is an optimal policy function that is monotonic (see Majumdar, Mitra and Nyarko

(1989) for an elaboration of the finer points of selection and a comprehensive account
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of dynamic optimization under uncertainty with non-concave production functions).

This monotonicity property turns out to be crucial in making significant progress in

understanding the evolution of an optimal process, and in establishing some long run

convergence properties. The analysis is simpler when the state space is an interval

(in the real line). Exploring the implications of monotonicity (with possible dis-

continuity) when the state space is a closed subset of a finite dimensional Euclidean

space is the point of departure of this paper. Consider a random dynamical system

(S,Γ, P ) where S is the state space (for example, a closed subset of R
k, Γ an appro-

priate family of maps on S into itself and P is a probability measure on (some σ-field

of) Γ.

The evolution of the system can be described as follows: initially, the system is

in some state x; an element α1 of Γ is chosen randomly according to the probability

measure P and the system moves to the state X1 = α1(x) in period one. Again,

independently of α1, an element α2 of Γ is chosen according to the probability mea-

sure P and the state of the system in period two is obtained as X2 = α2(α1(x)). In

general, starting from some x in S, one has

Xn+1(x) = αn+1(Xn(x)) (1.1)

where the maps (αn) are independent and identically distributed according to the

measure P . The initial point x can also be chosen (independently of (αn)) as a

random variable X0. The sequence Xn of states obtained in this manner is a Markov

process and has been of particular interest in economics (and other disciplines).

For describing “convergence to a long run steady state”, perhaps the most widely
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used results identify conditions under which there is some time invariant probability

measure π such that, no matter what the initial x0 is, Xn converges in distribution

to π. In this case we say that the (Markov) process is stable in distribution.

2 The Main Result

In this section we extend an important old result of Dubins and Freedman (1966) on

i.i.d. iterations of monotone maps to multi-dimensional state spaces, and improve

upon some recent results in Bhattacharya and Majumdar [(1999), (2007)], by dis-

pensing with the requirement of continuity of the maps. The state spaces of the

Markov process we consider is assumed to be a subset of R
k(k ≥ 1) satisfying the

following assumption:

(A.1) S is either a closed subset of R
k, or a Borel subset which can be made

homeomorphic to a closed subset of R
k, by means of a strictly increasing continuous

map on S into R
k.

It may be noted that every rectangle Xk
j=1Ij, where Ij’s are arbitrary nondegen-

erate sub-intervals of the real line R satisfies the assumption (A1). For, an interval

(a, b)(−∞ ≤ a < b ≤ ∞) is homeomorphic to (−∞,∞) by an appropriate strictly

increasing continuous map. An interval (a, b](−∞ ≤ a < b < ∞) is similarly

homeomorphic to (−∞, 0], etc.

To define the Markov process, let Γ be a set of measurable monotone maps γ =

(γ1, γ2, ..., γk) on S into S, under the partial order : x≤ y if xj ≤ yj for 1 ≤ j ≤ k; x

= (x1, ..., xk), y = (y1, y2, ..., yk) ǫ R
k (or S). That is, either γ is monotone increasing :
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γ(x) ≤ γ(y) if x ≤ y, or γ is monotone decreasing : γ(y) ≤ γ(x) if x ≤ y; x, y

ǫ S. Let Γ be endowed with a σ-field C, and let Q be a probability measure on

(Γ, C). Consider a sequence of i.i.d. maps {αn : n ≥ 1} with common distribution

Q, defined on a probability space (Ω,ℑ, P ). For purposes of measurability, assume

that the map (γ,x) → γ(x) on ΓXS into S is measurable with respect to the product

σ-field C ⊗ B(S) on ΓXS and the Borel σ-field B(S) on S. For each y ǫ S, define

the Markov process {Xn : n ≥ 0} by

X0 = y, X1 = α1X0, ..., Xn = αnXn−1 = αnαn−1...α1X0, (2.1)

where αnαn−1...α1 denotes composition of maps in the indicated order. In general,

X0 can be any random variable with values in S, independent of the sequence {αn :

n ≥ 1}. The transition probability of the Markov process is p(x, B) = P (α1x ǫ

B) = Q({γǫΓ : γx ǫ B}). In general, the n-step transition probability is given by

the distribution of Xn(x) ≡ αnαn−1...α1x, and is denoted by p(n)(x, .). It may also

be expressed as

p(n)(x, B) = Qn({γ ǫ Γn : γ̃ x ǫ B}), (xǫS, BǫB(S)), n ≥ 1, (2.2)

where Qn is the product probability on the product space (Γn, C⊗n), and γ̃ is the

composition

γ̃ x = γnγn−1...γ1x (γ = (γ1, γ2, ..., γn) ǫ Γn). (2.3)

Recall that π is an invariant probability for the Markov process, or for the transition
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probability p, if π is a probability measure on (S,B(S)) satisfying

π(B) =

∫

p(x, B)π(dx) ∀BǫB(S). (2.4)

In turn, (2.4) implies that π(B) =
∫

p(n)(x, B)π(dx) ∀BǫB(S), and ∀n ≥ 1. If one

denotes the distribution of Xn as T ∗nµ, where µ is the distribution of X0, then T ∗n

is the n-fold composition of T ∗ : T ∗n = T ∗T ∗(n−1)(n ≥ 2), T ∗1 = T ∗. Note that T ∗

(as well as T ∗n) is a map on the space ℘(S) of all probability measures on (S,B(S)) :

(T ∗nµ)(B) =

∫

p(n)(x, B)µ(dx) (µǫ℘(S), BǫB(S)). (2.5)

Clearly, an invariant probability π is just a fixed point of T ∗ ≡ T ∗1, in which case it

is a fixed point of T ∗n for every n.

On the space ℘(S), define, for each a > 0, the metric

da(µ, ν) = sup
gǫGa

∣

∣

∣

∣

∫

gdµ−
∫

gdν

∣

∣

∣

∣

, (µ, ν ǫ ℘(S)), (2.6)

where Ga is the class of all Borel measurable monotone (increasing or decreasing)

functions g on S into [0, a]. It is simple to check that (i) da = ad1, and (ii)

the distance (2.6) remains the same if Ga is restricted to monotone increasing Borel

measurable functions on S into [0, a]. The following result is due to Chakraborty

and Rao (1998), who derived a number of interesting results on the metric space

(℘(S), da). One can show that convergence in the metric da implies weak convergence

if (A1) holds (see Bhattacharya and Majumdar (2007), pp. 287-288).
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Lemma 1 Under the hypothesis (A.1), (℘(S), da) is a complete metric space.

The following splitting condition generalizes that in Dubins and Freedman (1966).

To state it, let γ̃ be as in (2.3), but with n = N : γ̃ = γNγN−1...γ1 for γ =

(γ1, γ2, ..., γN) ǫ ΓN .

(A.2) There exist Fi ǫ C⊗N(i = 1, 2) for some N ≥ 1, such that

(i) δi ≡ QN(Fi) > 0 (i = 1, 2), and

(ii) for some x0ǫ S, one has

γ̃(x) ≤ x0 ∀xǫS, ∀γ ǫ F1,

γ̃(x) ≥ x0 ∀xǫS, ∀γ ǫ F2,

Also, assume that the set H+ = {γǫΓN : γ̃ is monotone increasing}ǫ C⊗N .

Readers interested in the verification of the splitting condition in dynamic models

in economics may turn to Bhattacharya and Majumdar (2007).

Our main result is the following:

Theorem 2 Let {αn : n ≥ 1} be a sequence of i.i.d. measurable monotone maps

with a common distribution Q. Assume (A.1), (A.2) hold. Then there exists a

unique invariant probability for the Markov process (2.1) and

sup
xǫS

d1(p
(n)(x, .), π) ≤ (1 − δ)[

n
N ](n ≥ 1), (2.7)

where δ = min{δ1, δ2}, and
[

n
N

]

is the integer part of n
N

.
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Proof. The proof uses Lemma (2.1) and two steps. The first involves detailed

calculations.

Step 1. T ∗N is a uniformly strict contraction on (℘(S), d1)

Let Fi+ = Fi ∩ H+, Fi− = Fi ∩ H−, where H+ is defined in (A.2), and H− =

ΓN\H+(i = 1, 2). Define, for any given g ǫG1, the functions

hi+(x) =

∫

Fi+\(Fi+∩Fj)

g(γ̃x)QN(dγ),

hi−(x) =

∫

Fi−\(Fi−∩Fj)

g(γ̃x)QN(dγ), (i = 1, 2; j 6= i);

h3+(x) =

∫

H+∩(F1∪F2)c

g(γ̃x)QN(dγ),

h3−(x) =

∫

H−∩(F1∪F2)c

g(γ̃x)QN(dγ),

h4(x) =

∫

F1∩F2

g(γ̃x)QN(dγ). (2.8)

Then the functions hi±(i = 1, 2, 3), are monotone. To see this, let g be monotone

increasing, then hi+(i = 1, 2, 3) are monotone increasing while hi−(i = 1, 2, 3) are

monotone decreasing. If g is monotone decreasing, then the reverse holds. Now,

8



for g monotone increasing (g ǫG1),

h1+(x) ≤ g(x0)(Q
N(F1+) − QN (F1+ ∩ F2)) ≡ a1+,

h1−(x) ≤ g(x0)(Q
N(F1−) − QN (F1− ∩ F2)) ≡ a1−,

h2+(x) ≥ g(x0)(Q
N(F2+) − QN (F2+ ∩ F1)),

h2−(x) ≥ g(x0)(Q
N(F2−) − QN (F2− ∩ F1)),

h3+(x) ≤ QN(H+ ∩ (F1 ∪ F2)
c) ≡ a3+,

h3−(x) ≤ QN(H− ∩ (F1 ∪ F2)
c) ≡ a3−. (2.9)

Also, write

h
′

2+(x) =

∫

F2+\(F2+∩F1)

(1 − g(γ̃x))QN (dγ),

h
′

2−(x) =

∫

F2−\(F2−∩F1)

(1 − g(γ̃x))QN(dγ). (2.10)

Then h
′

2±(x) are monotone and satisfy

h
′

2+(x) ≤ (1 − g(x0))(Q
N(F2+) − QN (F2+ ∩ F1)) ≡ a2+,

h
′

2−(x) ≤ (1 − g(x0)(Q
N(F2−) − QN (F2− ∩ F1)) ≡ a2−. (2.11)

Thus h1±ǫGa1±, h
′

2±ǫGa2±
, h3±ǫGa3±

. Also,

∣

∣

∣

∣

∫

h2±(x)µ(dx) −
∫

h2±(x)ν(dx)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

h
′

2±(x)µ(dx) −
∫

h
′

2±(x)ν(dx)

∣

∣

∣

∣

, (2.12)
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and
∫

h4(x)µ(dx) −
∫

h4(x)ν(dx) = 0, (µ, νǫ℘(S)). (2.13)

The last relation follows from the fact that h4(x) = g(x0)Q
N(F1 ∩ F2), a constant

function on S. For, on F1 ∩ F2, γ̃(x) = x0∀xǫS. Hence

∣

∣

∣

∣

∫

gd(T ∗Nµ) −
∫

gd(T ∗Nν)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

3
∑

i=1

[

∫

hi+(x)µ(dx) −
∫

i

hi+(x)ν(dx) +

∫

hi−(x)µ(dx) −
∫

hi−(x)ν(d(x)]

∣

∣

∣

∣

∣

(2.14)

≤
∑

i=1,3

∣

∣

∣

∣

∫

hi+(x)µ(dx) −
∫

hi+(x)ν(dx)

∣

∣

∣

∣

+
∑

i=1,3

∣

∣

∣

∣

∫

hi−(x)µ(dx) −
∫

hi−(x)ν(dx)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

h
′

2+(x)µ(dx) −
∫

h
′

2+(x)ν(dx)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

h
′

2−(x)µ(dx) −
∫

h
′

2−(x)ν(dx)

∣

∣

∣

∣

≤ (a1+ + a1− + a2+ + a2− + a3+ + a3−)d1(µ, ν) ≡ b̄d1(µ, ν), say.

Note that

a1 + a1− = g(x0)(Q
N(F1) − QN (F1 ∩ F2)),

a2 + a2− = (1 − g(x0))(Q
N(F2) − QN(F1 ∩ F2)),

a3+ + a3− = QN((F1 ∪ F2)
c) = 1 − QN (F1) − QN(F2) + QN (F1 ∩ F2),

so that, adding these terms, one gets

b̄ = 1 − [(1 − g(x0))Q
N(F1) + g(x0)Q

N(F2)]

≤ 1 − min{QN (F1), QN (F2)} = 1 − δ. (2.15)
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Taking the supremum over all monotone increasing g ǫG1 on the left in (2.14), one

arrives at the inequality

d1(T
∗Nµ, T ∗Nν) ≤ (1 − δ)d1(µ, ν), ∀µ, νǫ℘(S). (2.16)

Note that, the supremum in (2.6) over all of Ga is the same as the supremum over

the subset of all monotone increasing functions in Ga, since a − g ǫGa and is mono-

tone increasing if g is monotone decreasing, g ǫGa. Thus T ∗N is a uniformly strict

contraction on (℘(S), d1).

Step 2. Application of the Contraction Mapping Theorem.

From (2.16) and Lemma 2.1, it follows by the contraction mapping theorem that

T ∗N has a unique fixed point π in ℘(S) and that, writing n =
[

n
N

]

N + r, one has

d1(T
∗nµ, π) = d1(T

∗[ n
N ]NT ∗rµ, T ∗[ n

N ]Nπ)

≤ (1 − δ)[
n
N ]d1(T

∗rµ, π) ≤ (1 − δ)[
n
N ] ∀µ, νǫ℘(S). (2.17)

In particular, (2.7) follows by letting µ = δ{x}− the Dirac measure at x in (2.17).

Note that T ∗N(T ∗π) = T ∗(T ∗Nπ) = T ∗π, so that T ∗π is also a fixed point of T ∗N .

By uniqueness of the fixed point T ∗π = π.

Remark 2.1. In order to derive confidence regions of (or tests for) useful func-

tionals of π (e.g., the mean or dispersion), based on a finite set of observations

Xj(1 ≤ j ≤ n), one needs to derive asymptotic distributions of the corresponding

functionals of the empirical distribution 1
n

∑n

j=1 δXj
. As in Bhattacharya and Ma-

jumdar [(2007), Sections 5.3, 5.4], one can show that, under the assumptions (A.1),
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(A.2), for every bounded function g on S which may be expressed as the difference

g1 − g2 of two bounded measurable monotone functions (or, equivalenty, for every

finite linear combination of monotone functions), the central limit theorem (CLT)

holds for its empirical mean 1
n

∑n

j=1 g(Xj), whatever the initial state. That is,

√
n(

1

n

n
∑

j=1

g(Xj) −
∫

gdπ)
L→

n→∞
N(0, σ2), (2.18)

where
L→ denotes convergence in law, or distribution, and N(0, σ2) is the Normal

distribution with mean 0 and variance σ2. The variance parameter may be expressed

as

σ2 =

∫

f 2(y)π(dy) −
∫

(Tf)2(y)π(dy), (2.19)

where T is the transition operator : Th(x) =
∫

h(y)p(x, dy) and f solves the Poisson

equation in L2(S, π)

(I − T )f = g −
∫

gdπ. (2.20)

Here L2(S, π) is the Hilbert space of functions on S which are square integrable

(with respect to π). See Bhattacharya and Majumdar [(2007), Chapter 5] for more

details on this general theme. In the case S is non-compact and g is unbounded

(e.g., g(x) = xj for x = (x1, ..., xk)), one requires that there exist a solution f to the

Poisson equation (2.20). Certain broad conditions for this solvability may be found

in Bhattacharya and Lee (1988), for the case of i.i.d. monotone increasing maps.

Remark 2.2. Instead of the metric d1, one may use a somewhat weaker metric
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dA defined by

dA(µ, ν) = sup
AǫA

|µ(A) − ν(A)| (µ, ν ǫ ℘(S)), (2.21)

where A comprises all sets of the form

A = {y ǫ S : ϕ(y) ≤ x}, x ǫ S, ϕ monotone measurable. (2.22)

One may prove the completeness of (℘(S), dA) more or less following the steps of the

proof of Lemma C5.1, p. 287, in Bhattacharya and Majumdar (2007), where A is

restricted to the class of sets A in (2.22) with ϕ continuous and monotone increasing.

The analog of Theorem 2.2, with dA in place of d1, may then be proved roughly along

the lines of the proof of Corollary 5.1, pp. 257-258, in Bhattacharya and Majumdar

(2007).
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