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We examine whether the Phelps-Koopmans theorem is valid in models with nonconvex
production technologies. We show by example that a nonstationary path that converges to
a capital stock above the smallest golden rule may indeed be efficient. This finding has the
important implication that “capital overaccumulation” need not always imply inefficiency.
We provide general conditions on the production function under which all paths that have
a limit in excess of the smallest golden rule must be efficient, which proves a version of the
theorem in the nonconvex case. Finally, we show by example that a nonconvergent path
with limiting capital stocks bounded above (and away from) the smallest golden rule can
be efficient, even if the model admits a unique golden rule. Thus the Phelps-Koopmans
theorem in its general form fails to be valid.
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1. I

The phenomenon of inefficiency of intertemporal consumption streams has been tradi-
tionally identified with the overaccumulation of capital. In fact, this message is strongly
conveyed in two famous papers on efficiency by Malinvaud (1953) and Cass (1972).1

In the standard aggregative model of economic growth, the Phelps-Koopmans theorem
provides one of the most well-known sufficient conditions for inefficiency.2 This result
was conjectured by Phelps (1962), and its proof, based on a proof provided by Koopmans,
appeared in Phelps (1965). It states that if the capital stock of a path is above, and bounded
away from, the golden rule stock, from a certain time onward, then the path is inefficient.3

The purpose of this paper is to examine the validity of the Phelps-Koopmans theorem
in aggregative models which allow for non-convexity of the production set.4 Of course,
nonconvexity is no impediment to the existence of a golden rule provided that suitable
end-point conditions hold (which we shall assume). Indeed, there may be several; we will
refer to the smallest of them as the minimal golden rule. The Phelps-Koopmans theorem can
then be restated in three progressively stronger formats:

I. Every stationary path with capital stock in excess of the minimal golden rule is inefficient.

II. A path is inefficient if it converges to a limit capital stock in excess of the minimal golden
rule.

III. A path is inefficient if it is lies above (and bounded away from) the minimal golden rule
from a certain time onwards.

Obviously, version III nests II, which in turn nests version I.

It is very easy to see that the weakest version I of the Phelps-Koopmans theorem must be
true. Our first result (Proposition 1) shows that version II of the theorem is generally false.
We present an example of a path that converges to a limit stock that exceeds the minimal
golden rule, which is nevertheless efficient. This has the important implication that the
phenomenon of “overaccumulation of capital” need not always imply inefficiency.

Since this finding might appear somewhat surprising, we try to convey an intuition for the
result. Consider a setting with multiple golden rule stocks, and construct a path whose
capital stock converges to some non-minimal (and therefore, by version I, inefficient) golden
rule stock from above in such a way that at each period, the consumption level on the

1In fact, one might make a case that this message can be inferred from the titles of the two papers.
2In awarding the Prize in Economic Sciences in Memory of Alfred Nobel for 2006 to Edmund Phelps, the Royal
Swedish Academy of Sciences referred to this result as follows: “Phelps . . . showed that all generations may,
under certain conditions, gain from changes in the savings rate.”
3The expression “overaccumulation of capital” in this literature refers therefore to accumulation of capital in
excess of the golden rule capital stock in this precise sense. Thus, any stationary path with capital stock in excess
of the golden rule capital stock, overaccumulates capital and is inefficient. The Phelps-Koopmans theorem
generalizes this result to non-stationary paths.
4See Mitra and Ray (1984) for a description of the setting, which does not assume smoothness of the production
function, and does not place restrictions on the types of non-concavities allowed.
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path in every period exceeds golden rule consumption.5 If the path were inefficient, then
there would be a path starting from the same initial stock, which dominates it in terms of
consumption (in the efficiency ordering). This forces the capial stock of the dominating path
to go below (and stay below) the inefficient golden golden rule stock after a finite number
of periods. This is where the non-convexity in the production set comes into play.

Suppose that the production function is such that the only golden rule stock below our
inefficient golden rule stock is the minimal golden rule stock. In other words, capital is
rather “unproductive” in this range between the two golden rules (although production
is still increasing in capital). Then, in order to keep consuming at higher than golden
rule consumption levels, the capital stock of the dominating path is forced to go below
the minimal golden rule stock after a finite number of periods. Now, the standard theory
applies: any path starting from below the minimal golden rule stock, and consuming at least
the golden rule consumption level every period becomes infeasible after a finite number of
periods. Thus, no dominating path can exist, and the constructed path must be efficient.

In view of the example it is natural to enquire whether there are general conditions on the
production function under which version II of the Phelps-Koopmans theorem can be shown
to be valid. Certainly, we would like to allow for situations in which multiple golden rule
stocks can exist,6 and we are specially interested in providing a testable condition on the
production function that guarantees version II without further qualifications.

Proposition 2 provides such a condition, which involves the comparative local behavior of
the production function across multiple golden rules. Loosely stated, the condition requires
that the marginal product of capital fall more slowly at the minimal golden rule than at any
of the other golden rules. It is therefore a condition which compares the local curvatures of
the production function at various golden rules. This condition is always satisfied when
the production function is concave, which is the focus of the traditional Phelps-Koopmans
theory.7

Finally, we examine version III of the theorem, which is the Phelps-Koopmans result in its
strongest form. We show that this version of the theorem is generally false with or without
the sufficient condition used to establish version II (Propositions 3 and 4). Indeed, we prove
that the version III is generally false even when there exists a unique golden rule. An
interesting research question is to describe conditions under which version III is valid. We
suspect that such conditions will involve strong restrictions on the production technology.
Whether those conditions usefully expand the subset of convex technologies remains an
open question.

5The consumption levels must, of course, converge to the golden rule consumption level over time.
6We know that in the case of an S-shaped production function, the theorem is valid (see Majumdar and Mitra
(1982)). However, in that setting, there is a unique golden rule stock, which occurs in the concave region of
the production function, so that the traditional argument (used in models with concave production functions)
applies.
7More precisely, the traditional Phelps-Koopmans theory assumes that the production function is strictly concave,
so that there is a unique golden rule. But the condition nevertheless holds for production functions which are
weakly concave.
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2. P

We begin by describing an aggregative model of growth. At every date, capital kt produces
output f (kt), where f : R → R is the production function. We assume throughout that f
satisfies the following restrictions:

[F.1] f is increasing and continuous, with f (0) = 0.

[F.2] There is K ∈ (0,∞) such that f (x) > x for all x ∈ (0,K) and f (x) < x for all x > K.

We refer to K as the maximum sustainable stock. Observe that f is permitted to be nonconcave.

A feasible path from κ ≥ 0 is a sequence of capital stocks {kt}with

k0 = κ and 0 ≤ kt+1 ≤ f (kt)

for all t ≥ 0. Associated with the feasible path {kt} from κ is a consumption sequence {ct},
defined by

ct = f (kt−1) − kt for t ≥ 1.

It is obvious that for every feasible path {kt} from κ, both kt and ct+1 are bounded above
by max{K, κ}. With no real loss of generality, we presume that κ ∈ [0,K], so that for every
feasible path {kt} from κ,

kt ≤ K for t ≥ 0 and ct ≤ K for t ≥ 1.

A feasible path {k′t} from κ dominates a feasible path {kt} from κ if

c′t ≥ ct for all t ≥ 1,

with strict inequality for some t.

A feasible path {kt} from κ is inefficient if there is a feasible path {k′t} from κwhich dominates it.
It is efficient if it is not inefficient. A capital stock k ∈ [0,K] will similarly be called inefficient
if the corresponding stationary feasible path with kt = k for all t is inefficient; otherwise it is
efficient.

Under [F.1] and [F.2] there is z ∈ (0,K) such that

f (z) − z ≥ f (x) − x for all x ≥ 0.

Then we call z a golden rule stock, or simply a golden rule. Certainly, there can be several
golden rule stocks, all in (0,K). Let G be the set of all golden rules. Obviously, G is nonempty
and compact and so has a minimal element, which we denote by γ. Golden rule consumption
is, of course, the same for all golden rules; it is given by [ f (z) − z] for z ∈ G, and is denoted
by c.

It is easy to prove that the minimal golden rule is efficient. It is also easy to see that
any capital stock that exceeds the minimal golden rule is inefficient. So version I of the
Phelps-Koopmans theorem (see Introduction) must be true.
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3. P-K V II: A E

In this section, we present an example in which (i) there is an inefficient stock that exceeds the
minimal golden rule, but (ii) there is an efficient path along which the capital stock converges
to this inefficient stock. This example shows that that it is possible to have higher capital
stocks for all time periods compared to the capital stocks of an inefficient path, and still be
efficient. Thus, version II of the Phelps-Koopmans theorem (see Introduction) breaks down,
and the overaccumulation of capital does not translate into consumption inefficiency.

It should be clear (and will become obvious in the analysis below) that the inefficient stock
in any such example must itself be a golden rule.

P 1. There exists a production function satisfying Conditions [F.1] and [F.2] and an
efficient path with capital stocks that converge to a limit strictly in excess of the minimal golden rule
for that function.

Proof. Consider the production function given by

(1) f (x) =


2x for 0 ≤ x ≤ 1
2 + (x − 1)2 for 1 < x ≤ 2
3 + (x − 2) for 2 < x ≤ 3
4 + 0.5(x − 3) for 3 < x

Clearly, f satisfies [F.1] and [F.2], and K = 5 (see Figure 1). The set of golden rule stocks is
given by

(2) G = {1, [2, 3]}

Golden rule consumption c is 1. As we’ve already observed, the minimal golden rule γ
(equal to 1 in this example) is efficient. All other golden rules are inefficient.

Consider the sequence {kt} defined by

k(t) = 2 + [1/(t + 1)] for all t ≥ 0

Then

f (kt) − kt+1 = 3 + [1/(t + 1)] − 2 − [1/(t + 2)]
= 1 + [1/(t + 1)(t + 2)]

for all t ≥ 0, so that {kt} is a feasible path from κ = 3. Associated consumption is given by

(3) ct+1 = 1 + [1/(t + 1)(t + 2)] for all t ≥ 0.

We claim that {kt} is efficient. Suppose, on the contrary, that there is a feasible path {k′t} from
κ = 3 that dominates {kt}. Define, for any k ≥ 0,

β(k) = [ f (γ) − γ] − [ f (k) − k]

Of course, β(k) ≥ 0; this is the “value loss” from operating at k.

Notice that kt is itself a golden rule at every t, so that

(4) ct+1 + kt+1 − kt = f (kt) − kt = c,
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F 1. T  f    (1)

while for {k′t}, we see that

(5) c′t+1 + k′t+1 − k′t = f (k′t) − k′t = c − βt

where βt ≡ β(k′t) for t ≥ 0.

Expression (4) tells us that for all T ≥ 0,

(6)
T∑

t=0

[ct+1 − c] = κ − kT+1

while (5) similarly informs us that

(7)
T∑

t=0

[c′t+1 − c] = κ − k′T+1 −

T∑
t=0

βt

Combining (6) and (7) and recalling that {k′t} dominates {kt}, we conclude that there is N ≥ 0
and α > 0 such that

(8) k′T+1 ≤ kT+1 − α for all T ≥ N.

Because kt → 2 as t→∞, (8) implies the existence of N′ ≥ 0 such that

(9) k′t < 2 for all t ≥ N′.

For such dates t, we must have

k′t+1 = f (k′t) − c′t+1 = [ f (k′t) − k′t] + k′t − c′t+1 ≤ 1 + k′t − c′t+1 < k′t
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where the first inequality follows from the fact that golden rule consumption equals 1, and
the second inequality from the fact that c′t+1 ≥ ct+1 > 1. So k′t decreases over time for t ≥ N′,
and so must converge to some k′ ∈ [0, 2), with associated c′t+1 converging to f (k′) − k′. But
c′t+1 > 1 for all t, so f (k′) − k′ ≥ 1. There is only one value of k ∈ [0, 2) for which this is true,
and that is γ = 1. We must therefore conclude that there exists N′′ > N such that

(10) 1 < k′t < 1.5 for all t ≥ N′′.

For t ≥ N”, define εt ≡ k′(t) − 1. Let δt ≡ 1/(t + 1)(t + 2). Then we know from (3) that
c′t ≥ ct = 1 + δt, so that for t ≥ N′′,

(11) k′t+1 = f (k′t) − c′t+1 ≤ 2 + ε2
t − 1 − δt.

It follows that

(12) εt+1 ≤ ε
2
t for all t ≥ N′′.

Let q ≡ ε(N′′). Then (10) informs us that q ∈ (0, 0.5), and iteration on (12) yields

(13) εt ≤ q2(t−N′′) for all t ≥ N′′.

Using (13) in (11), we see that for t ≥ N′′,

(14) εt+1 ≤ ε
2
t − δt ≤ q4(t−N′′)

− δt.

Now δt ≥ 1/(t + 2)2 and q4t
≤ 1/24t for all t ≥ 0, so that for t ≥ N′′,

(15) 1/(t + 2)2
≤ δt ≤ (q4t/A) ≤ 1/(24t)A

where A ≡ q4N′′ . This implies that for all t ≥ N′′,

(16) A ≤
(t + 2)2

24t

But the right hand side of (16) converges to zero as t → ∞. This contradiction establishes
our claim.

4. P-K V II: A T

In view of the example discussed in the previous section, it is natural to enquire whether
there are general conditions on the production function under which version II of the Phelps-
Koopmans theorem can be shown to be valid. We want to allow for frameworks in which
multiple golden rule stocks can exist, and we are specifically interested in identifying a class
of production functions for which any convergent path with limit higher than the minimal
golden rule is necessarily inefficient. This motivates the following condition:

[C] For any golden rule k > γ, there is a golden rule k′ < k and a > 0 such that

(17) f (k′ + ε) − f (k′) ≥ f (k + ε) − f (k) for all ε ∈ (−a, a).

We describe two scenarios in which [C] holds.

1. Concave production function. If f is concave, and there is k ∈ G with k > γ, then [γ, k] ⊂ G.
Pick any k′ ∈ (γ, k), and pick 0 < a < min{k − k′, k′ − γ}. Then, for ε ∈ (−a, a), we have k′ + ε ∈
(γ, k), so that (k′+ε) ∈ G. Thus, f (k′+ε)− f (k′) = f (k′+ε)− (k′+ε)+k′+ε− f (k′) = c−c+ε = ε.
On the other hand, f (k + ε) − f (k) = f (k + ε) − (k + ε) + k + ε − f (k) ≤ c − c + ε = ε.



7

2. Smooth production function8 with [− f ′′(γ)] < [− f ′′(k)] for every k ∈ G with k > γ. Observe
that f ”(k) ≤ 0 at every golden rule k. So the condition described here means that the rate at
which the marginal product of capital is falling at the minimal golden rule is smaller than
the corresponding rate at any of the other golden rules.

We may verify [C] as follows. Pick any golden rule k > γ. There exists a > 0 such that

(18) [− f ′′(x)] < [− f ′′(z)] for all x ∈ B(k, a) and all z ∈ B(k′, a),

where B(y, ε) is the open ball of radius ε around y. Then, for ε ∈ (−a, a), we have

(19) f (γ + ε) − f (γ) = f ′(γ)ε + (1/2) f ′′(ξ)ε2 = ε + (1/2) f ′′(ξ)ε2

and

(20) f (k + ε) − f (k) = f ′(k)ε + (1/2) f ′′(ζ)ε2 = ε + (1/2) f ′′(ζ)ε2,

where ξ ∈ B(γ, ε), and ζ ∈ B(k, ε), as given by Taylor’s theorem. Since ξ ∈ B(γ, a) and
ζ ∈ B(k, a) as well, we can use (19) and (20) to conclude that

f (γ + ε) − f (γ) = ε + (1/2) f ′′(ξ)ε2 > ε + (1/2) f ′′(ζ)ε2 = f (k + ε) − f (k),

which establishes (17).

Note that if f is C2 and concave, the condition [− f ′′(γ)] < [− f ′′(k)] cannot hold for every
golden rule k , γ. For if f is concave, every stock in [γ, k] must be a golden rule stock as
well. It follows that for every k′ ∈ (γ, k), we have f ′′(k′) = 0, while f ′′(γ) ≤ 0, by definition
of a golden rule. Therefore, the two scenarios described above do not overlap when there
are multiple golden rules.

We can now proceed to show that under Condition C, version II of the Phelps-Koopmans
theorem holds.

P 2. Suppose that [C] holds. If {kt} is a feasible path from κ with limt→∞ kt > γ, then
{kt} is inefficient.

Proof. Define k ≡ limt→∞ kt. First suppose that k lies in G.

By [C], there is a golden rule k′ < k and a > 0 such that (17) holds. Denote (k − k′) by δ,
min{a, k′} by b, and (kt − k) by εt for t ≥ 0. Then, one can find T ≥ 0 such that εt ∈ (−b, b)
for all t > T. Define k′t = kt for 0 ≤ t ≤ T, and k′t = k′ + εt for t > T. Then, we have k′t ≥ 0
for all t ≥ 0, and c′t+1 = f (k′t) − k′t+1 = f (kt) − kt+1 = ct+1 for all 0 ≤ t ≤ T − 1. Moreover,
c′t+1 = f (k′t) − k′t+1 = f (kt) − kt+1 + δ = ct+1 + δ > ct+1 for t = T. And for t > T, we have

c′t+1 = f (k′t) − k′t+1 = f (kt − δ) − (kt+1 − δ)
= f (kt − δ) − f (kt) + f (kt) − kt+1 + δ

= f (kt − δ) − f (kt) + ct+1 + δ

Thus, it is enough to show that f (kt − δ) − f (kt) + δ ≥ 0 for all t > T.

8To be exact, f is C2.
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Note that for t > T, we have εt ∈ (−b, b), so:

f (kt − δ) − f (kt) + δ = f (k′ + εt) − f (k′) + f (k′) − f (kt) + (k − k′)
= f (k′ + εt) − f (k′) + c − f (k + εt) + k
= f (k′ + εt) − f (k′) + f (k) − f (k + εt)
≥ 0

the last inequality following from (17).

This establishes the inefficiency of {kt}when k ∈ G.

If, on the other hand, k < G, then f (k) − k < c. Consequently, k(t) → f (k) − k < c as t → ∞.
Then one can easily dominate {k(t)} by switching to the minimal golden rule γ sufficiently
far in the future, and then staying at γ thereafter.

In the example of the previous section, the set of golden rule stocks is G = {1, [2, 3]}. Choosing
k = 2, we see that in order to verify [C], we must select k′ = γ. However, for all ε ∈ (0, 1), we
have f (k′ + ε) − f (k′) = ε2 < ε, while f (k + ε) − f (k) = ε. Thus, [C] is violated, as it must be if
both Propositions 1 and 2 are correct.

5. P-K V III

5.1. A Negative Result. Consider a production function f that satisfies [F.1] and [F.2], and
the following additional requirement:

[F.3] The function f ( f (k)) − k is uniquely maximized on [0,K] at some value a > γ.

The following propositions show that version III of the Phelps-Koopmans theorem (see
Introduction) does not extend to the case of nonconvex technologies, even if Condition C is
satisfied.

P 3. Whenever [F.1]–[F.3] are satisfied, there exists an efficient path {kt} from some initial
stock, with inft kt > γ.

Proof. Take a as given by [F.3], and define b ≡ f (a). It is clear that b > a > γ. Define
d = f ( f (a)) − a.

Consider the path {kt} from initial stock b, given by kt = b for all t even, and kt = a for all t
odd. Clearly, this path is feasible, and the associated consumption stream is given by ct = d
for t odd, and ct = 0 for t even. Note that inft kt > γ.

We claim that {kt} is efficient. Suppose not. Then there is a feasible path {k′t} from b with
associated consumption stream {c′t} such that c′t ≥ ct for all t, with strict inequality for some
t. Without loss of generality, we may presume that strict domination occurs in the very first
consumption period, so that c′1 > c1 = d. Define θ ≡ c′1 − c1 > 0. It is easy to see that at t = 1,

(21) k′t ≤ a − θ.

Let d′ ≡ max f ( f (x)) − x on the domain 0 ≤ x ≤ a − θ. Because a is the unique maximizer of
this function on the fully unrestricted domain, it follows that ε ≡ d − d′ > 0.
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We now claim that at any odd date t, if (21) holds, then

(22) k′t+2 ≤ k′t − ε.

To prove this claim, note that k′t+1 ≤ f (k′t), so that

f (k′t+1) ≤ f ( f (k′t)).

At the same time,
c′t+2 = f (k′t+1) − k′t+2 ≥ ct+2 = d,

so that combining these two pieces of information,

(23) f ( f (k′t)) − k′t+2 ≥ d.

Because k′t ≤ a− θ, we know that f ( f (k′t))− k′t ≤ d′ = d− ε. Combining this information with
(23), we obtain (22).

Recall that (21) holds when t = 1. Thus applying the claim repeatedly, we see that capital
stocks along {k′t}must become negative in finite time, which contradicts feasibility.

It remains to show that the class described by [F.3] is nonempty. Indeed, we show below that
there exist functions that satisfy [F.3] and have a unique golden rule. (In particular, Condition
C is satisfied.)

P 4. There exists a function f that satisfies [F.1]—[F.3] and besides, exhibits a unique
golden rule stock.

Proof. Pick numbers a1, a2, b1 and b2 such that the following conditions are met:

(i) ai > 1 and 0 < bi < 1 for i = 1, 2.

(ii) aib j > 1 for i = 1, 2 and j = 1, 2.

(iii) a1 > a2, but (a1 − 1)(1 + b1) < (a2 − 1)(1 + b2).

It is easy to see that these conditions are mutually consistent (see remarks at the end of the
proof).

Choose ε > 0 and small enough so that the following conditions are satisfied:

(24)
a1 − b1

1 − b1
− ε > a1,

(25) a1 − 1 > (a2 − 1) + (1 − b1)ε.

By condition (i), (24) holds when ε = 0, and by condition (iii), (25) holds when ε = 0. So
there is ε > 0 such that (24) and (25) both hold.

Define θ = [(a1 − b1)/(1 − b1)] − ε. Note that by (24), θ > a1 > 1. Define a function f by

(26) f (k) =


a1k for 0 ≤ k ≤ 1(zone1)
a1 + b1(k − 1) for 1 < k ≤ θ (zone 2)
f (θ) + a2(k − θ) for θ < k ≤ θ + 1(zone 3)
f (θ) + a2 + b2(k − θ − 1) for k > θ + 1(zone 4)
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x

f (x)

1 θ θ + 1 K

F 2. T  f     P 3

(See Figure 2 for a diagrammatic depiction.)

By condition (i), there are only two candidates for a golden rule, the stocks 1 and θ + 1.
Evaluated at the former, f (k)−k = a1−1. Evaluated at the latter, f (k)−k = (a2−1)+[ f (θ)−θ] =
(a2 − 1) + (1 − b1)ε < a1 − 1, by (25). So the unique golden rule stock is k = 1.

Now we show that f satisfies [F.3]. Consider the problem: maxk≥0 f ( f (k)) − k. In what
follows, numbered “zones” refer to the capital stock regions demarcated in (26).

If k lies in zone 1, f (k) must lie in zone 1 or in the interior of zone 2. [To prove this,
simply observe that f (1) = a1 < θ, by (24).] Therefore, it is easy to see that f ( f (k)) =
min{a2

1k, a1 + b1(a1k − 1)} − k, which by (i) and (ii) is strictly increasing on zone 1.

Next, suppose that k lies in zone 2. If f (k) lies in the interior of zone 2, then f ( f (k)) − k =
a1 + b1[a1 + b1(k − 1) − 1] − k, which is decreasing in k.

There are some stocks k in zone 2 for which f (k) lies in zone 3. It is easy to verify that
these stocks must lie in the subinterval of zone 2 given by [θ − ε(1 − b1)/b1, θ]. Within this
subinterval condition (ii) assures us that f ( f (k)) − k is increasing in k.9

If k lies in zone 3, then f (k) must lie in zones 3 or 4. For k in zone 3, then,

f ( f (k)) − k = f (θ) + min
{
a2[ f (θ) + a2(k − θ) − θ], a2 + b2[ f (θ) + a2(k − θ) − θ − 1]

}
− k,

9In this zone, f ( f (k)) − k = f (θ) + a2[a1 + b1(k − 1) − θ] − k, which is increasing in k because a2b1 > 1, by (ii).
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which is increasing in k by conditions (i) and (ii).

Finally, if k lies in zone 4 , so must f (k), and it is easy to see, using condition (i), that f ( f (k))−k
is decreasing in this zone.10

These arguments show that there are only two possible candidates that solve the problem
max f ( f (k))− k, and these are the stocks k = 1 and k = θ+ 1. Recall that f (1) = a1 < θ, so that

(27) f ( f (1)) − 1 = a1 + b1(a1 − 1) − 1 = (a1 − 1)(1 + b1).

Similarly,

f ( f (θ + 1)) − (θ + 1) = f (θ) + a2 + b2[ f (θ) + a2 − θ − 1] − (θ + 1)
=

{
f (θ) − θ

}
+ b2

[{
f (θ) − θ

}
+ (a2 − 1)

]
+ (a2 − 1)

= (1 − b1)(1 + b2)ε + (a2 − 1)(1 + b2)
> (a2 − 1)(1 + b2).(28)

Compare (27) and (28), and use condition (iii) to complete the proof.

Remarks.

(i) We have assumed that f (k) > k for all k ∈ (0,K), where K is the maximum sustainable
stock. If we are willing to weaken this assumption to f (k) ≥ k for all k ∈ (0,K) (with strict
inequality somewhere), then we can set ε = 0 in the construction above and the argument is
made much simpler.

(ii) The following values satisfy all the requirements in the proof of the proposition: a1 = 17,
a2 = 13, b1 = 1/4, b2 = 5/6, and ε = 1. Then θ = 64/3, and f ( f (1)) − 1 = 20, while
f ( f (θ + 1)) − (θ + 1) ' 23.38.

5.2. A Positive Result for Nonconvergent Paths. Given the results of the preceding
subsection, it appears difficult to make a general positive statement for nonconvergent paths.
However, the following restatement of the Phelps-Koopmans theorem is valid even when
the production set is nonconvex. This restatement is equivalent to the standard statement
of the theorem when the production function is strictly concave.

In this section, we assume

[F.4] f is twice continuously differentiable, with f ′(k) > 0 for all k.

Say that a feasible path {kt} from κ is interior if inft≥0 kt > 0.

P 5. Assume [F.1], [F.2] and [F.4]. Suppose that {kt} is an interior path from κ > 0 with

(29) lim sup
t→∞

f ′(kt) < 1.

Then {kt} is inefficient.

10In this region, f ( f (k)) − k = f (θ) + a2 + b2[ f (θ) + a2 + b2(k − θ − 1) − θ − 1] − k, which is decreasing in k, by (i).
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Proof. Given (1), we have for t ≥ 1,
∞∑

t=1

t−1∏
s=0

f ′(kt) < ∞,

so by following the method of Cass (1972, pp. 218–220), and noting that concavity of f is
nowhere required, {kt} is inefficient.

Remarks.

(i) This proof has been used in Majumdar and Mitra (1982, p.111,Theorem 3.2), under the
assumption that f is “S-shaped”.

(ii) Suppose f satisfies [F.1], F.2], and [F.4], and moreover is strictly concave. Then there is a
unique golden-rule γ. If {kt} is a feasible path from κ > 0 with

lim inf
t→∞

kt > γ,

then {kt} is an interior path from κ > 0 which satisfies (29), so that {kt} is inefficient. This is
the standard version of the Phelps-Koopmans theorem.

(ii) In the example of Proposition 2, f ′(kt) = 1 for all t ≥ 0, so (29) does not hold. Thus
Proposition 5 is not applicable to (a smoothened version of) the example.

(iv) When f is smooth, [F.3] implies that

f ′(b) f ′(a) = 1

where b ≡ f (a). Consequently, a path which exhibits the period two cycle (b, a, b, a, ....) must
violate (29). Thus, the theorem above is not applicable in a smoothened version of the
framework considered in Proposition 3.
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