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Abstract

An intriguing problem in stochastic growth theory is as follows: even when the return
on investment is arbitrarily high near zero and discounting is arbitrarily mild, long run
capital and consumption may be arbitrarily close to zero with probability one. In a
convex one-sector model of optimal stochastic growth with i.i.d. shocks, we relate this
phenomenon to risk aversion near zero. For a Cobb-Douglas production function with
multiplicative uniformly distributed shock, the phenomenon occurs with high discounting
if, and only if, risk aversion diverges to infinity sufficiently fast as consumption goes to
zero. We specify utility functions for which the phenomenon occurs even when discounting
is arbitrarily mild. For the general version of the model, we outline sufficient conditions
under which capital and consumption are bounded away from zero almost surely, as well
as conditions under which growth occurs almost surely near zero; the latter ensures a
uniform positive lower bound on long run consumption (independent of initial capital).
These conditions require the expected marginal productivity at zero to be above the
discount rate by a factor that depends on the degree of risk aversion near zero.
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1 Introduction.

An important concern in the economic theory of growth and capital accumulation is whether
positive consumption levels are sustained in the long run. Even though the technological
and resource base of an economy may make it feasible to sustain a path where consumption
is bounded away from zero, the actual economic incentive to accumulate may be low, so
that the decentralized "equilibrium path" of the economy may be one where capital stocks
and consumption are reduced to levels arbitrarily close to zero in the long run. This is
not necessarily a problem of market failure, for even in convex models of growth with no
externalities where the optimal and equilibrium paths coincide, eventual extinction may occur
if economic agents are sufficiently impatient relative to productivity (or, the rate of return
on investment). The problem is, however, significantly more complex in the presence of
technological uncertainty that generates randomness in the return to investment; a run of
"bad" shocks can lead to serious depletion of the capital stock from which recovery is costly
and time consuming, and as a result, consumption may be driven arbitrarily close to zero with
very high probability. Apart from impatience, the attitude towards risk plays an important
role in determining the incentive to accumulate near zero in such a stochastic framework.
This paper attempts to analyze the sustainability of positive consumption in the presence
of technological uncertainty, and to understand how it relates to economic fundamentals
including risk aversion, impatience and productivity.

Our analysis is carried out in the framework of the well known one sector model of optimal
stochastic growth with strictly concave production and utility functions (Brock and Mirman,
1972). In the deterministic version of this model1, positive consumption and capital are
sustained in the long run, and the economy expands near zero if (and only if) the marginal
productivity at zero exceeds the discount rate. Indeed, under the latter condition, there is
a unique non-zero optimal steady state (the modified golden rule), and from every strictly
positive initial stock the economy converges to this steady state. In particular, if the marginal
productivity at zero is infinite, then long run consumption and capital are bounded away from
zero no matter how heavily the future is discounted.

The situation is qualitatively different when the production technology is affected by
random shocks over time. In a striking example, Mirman and Zilcha (1976) show that even
if the technology is infinitely productive at zero with probability one, and even if the extent
of discounting is arbitrarily mild, optimal capital and consumption may be arbitrarily close
to zero in the long run. More specifically, they consider a strictly concave Cobb-Douglas
production function with multiplicative random shocks that are independent and uniformly
distributed on a positive non-degenerate interval (that can be arbitrarily small). Under this
technology, even the "worst" possible realization of the production function exhibits infinite
productivity at zero. They show that for each value of the discount factor δ ∈ (0, 1), there exists
a smooth, strictly concave "regular" utility function such that in the dynamic economy with
this utility function and the specified stochastic technology, capital and consumption always
decline under the worst realization of the shock; as a result, capital and consumption fall below
any strictly positive threshold infinitely often with probability one,2 and in particular, there
does not exist any invariant distribution (stochastic steady state) whose support is bounded
away from zero. This is particularly striking when we consider the fact that if the distribution

1 In this discussion and the rest of this paper, assume full depreciation of capital every period.
2See, Mitra and Roy (2007).
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of shocks is degenerate, for this production function, for any strictly concave increasing utility
function, and for any δ ∈ (0, 1), the economy necessarily expands from sufficiently small stocks
and every optimal path is bounded away from zero. This marks a fundamental qualitative
difference between deterministic and stochastic models of growth.3

For the same production technology as in the Mirman and Zilcha (1976) example, if the
utility function is logarithmic, then for every δ ∈ (0, 1), the optimal policy function is one
that ensures growth with probability one when the current stock is small enough, and long
run consumption is bounded away from zero with probability one.4 This indicates that in a
stochastic model, whether capital and consumption are bounded away from zero in the long
run depends, among other factors, on the nature of the utility function, even though in the
deterministic version of the model these issues are determined exclusively by the discount
factor and the productivity at zero.

There are two important questions that arise at this stage and that we proceed to address
in the paper. First, what specific properties or attributes of the utility function lead to the
indicated outcome in the Mirman-Zilcha example? This question acquires significance in view
of the fact that although Mirman and Zilcha (1976) show the existence of a utility function (for
each value of the discount factor) that leads to the indicated outcome, they do not explicitly
specify the utility function or characterize it. It is therefore difficult to understand the extent
of the problem and the economic significance of the example. Second, given any stochastic
technology, under what restrictions on preferences is long run consumption almost surely
bounded away from zero and, in particular, under what restrictions does the economy expand
near zero even under the worst circumstance so that independent of initial conditions, long
run consumption is almost surely uniformly bounded away from zero. The latter is important
for understanding the kind of restrictions needed to ensure that the limiting stochastic steady
state (if it exists) is bounded away from zero, and that poor economies experience growth.
These two questions are related in that deriving a reasonably tight sufficient condition for
avoidance of zero requires one to first understand the necessary conditions for the same.

The existing literature provides no answer to the first question. As for the second question
relating to sufficient conditions for sustaining positive consumption in the long run, existing
models of stochastic growth make strong assumptions to ensure that the limiting distribution
of capital is bounded away from zero.5 Brock and Mirman (1972) and Mirman and Zilcha
(1975) impose two conditions that ensure expansion of capital and consumption near zero even
under the worst realization of the stochastic technology. The two conditions are as follows:
marginal productivity at zero is infinite for all realizations of the random shock and there
is a strictly positive probability mass on the "worst" realization of the technology6. These

3The phenomenon described in Mirman and Zilcha (1976) is qualitatively different from that outlined by
Kamihigashi (2006) who shows that if the marginal product at zero is finite, then every feasible path (including,
therefore, any optimal path) converges almost surely to zero, provided the random shocks are “sufficiently
volatile”. The latter result is not driven by any property of the utility function.

4See, Mirman and Zilcha (1975).
5A number of papers impose conditions on endogenously determined elements such as the optimal policy

function, or the stochastic process of optimal capital stocks. For example, Boylan (1979) imposes conditions
that include a requirement that for each realization of the shock, the optimal capital stock next period is
concave in the current stock. Mendelssohn and Sobel (1980) impose conditions on the stochastic kernel of
the process of capital stocks generated by the optimal policy. It is not clear how these conditions relate to
properties of the fundamentals of the model.

6This is the production function corresponding to the lower bound of the support of the random shock if
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are clearly strong assumptions. For one thing, they do not allow for random shocks with
continuous distributions. Further, the requirement that the worst possible realization of the
production technology is infinitely productive at zero rules out economies where productivity
may not be high under bad realizations of the technology shock. In a more recent contribution,
Chatterjee and Shukayev (2008) weaken the productivity requirement by requiring that the
lowest possible marginal productivity at zero exceed the discount rate; they show that if,
in addition, the utility function is bounded below, then the economy is bounded away from
zero with probability one (though the economy may not necessarily grow near zero under the
worst realization of the productivity shock and, in particular, the almost sure lower bound
on long run consumption may depend on initial condition). The restriction that the utility
function is bounded below rules out a large class of CES utility functions that are widely
used in the macroeconomic growth literature7 (and for some of which, optimal paths have
been independently shown to be bounded away from zero for all δ ∈ (0, 1) and for particular
choices of the production technology). Finally, in many situations the economy may not
be sufficiently productive relative to the discount rate for bad realizations of the production
shock; unless the probability that such states occur is high, one may still expect the economy
to be bounded away from zero as long as they are balanced by high productivity in better
states of the world. What should matter is the behavior of some kind of suitably modified
version of "average" or expected productivity rather than the productivity in the worst case
scenario.

The literature on optimal harvesting of renewable resources under uncertainty contains
conditions under which resource stocks are bounded away from extinction. In a model that
allows for non-concave production functions, Mitra and Roy (2006) outline a joint restriction
on preferences and the production function that ensures growth near zero.8 However, the
analysis does not shed any light on the restriction such a condition implies on the class of
utility functions (for any given production function and discount factor).

In this paper, we begin by trying to understand the kind of conditions that generate the
phenomenon outlined in the example in Mirman and Zilcha (1976) where it is optimal for
the economy to always reduce its capital and consumption under the worst realization of
the shock and, as a result, the optimal capital and consumption are arbitrarily close to zero
infinitely often almost surely. We describe this as a situation where the economy is "nowhere
bounded away from zero". To understand specifically the conditions on preferences that
can give rise to this even when productivity is arbitrarily high near zero and discounting is
arbitrarily mild, we consider the stochastic technology used in the Mirman-Zilcha example i.e.,
a Cobb-Douglas production function with multiplicative and uniformly distributed shock. For
this given stochastic technology, we first outline verifiable sufficient conditions on the utility
function under which the economy is nowhere bounded away from zero provided the discount
factor δ is small enough. In particular, confining attention to utility functions that exhibit
decreasing relative risk aversion in a neighborhood of zero, we derive a tight necessary and
sufficient condition for the economy to be nowhere bounded away from zero (when discounting
is sufficiently strong). The condition requires that as consumption goes to zero, the Arrow-
Pratt measure of relative risk aversion diverges to infinity at a sufficiently fast rate. Thus,

the production functions are ordered by realizations of the shock.
7Examples include u(c) = ln c, u(c) = c1−σ

1−σ , σ > 1, where u(0) = −∞.
8Olson and Roy (2000) provide a similar condition for avoidance of extinction of a renewable resource in a

stochastic non-convex model where the utility depends on resource consumption as well as the resource stock.
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the source of the problem identified in the Mirman-Zilcha example lies in risk aversion and,
in particular, in the manner in which risk aversion explodes near zero. We illustrate this
condition using a family of utility functions. We then consider the situation where discounting
is arbitrarily mild and explicitly specify a utility function such that the economy is nowhere
bounded away from zero.

Next, we consider the general model of optimal stochastic growth and provide a set of
verifiable sufficient conditions under which the economy sustains positive consumption in the
long run. In particular, we provide conditions under which the optimal policy function exhibits
"growth near zero" under the worst realization of the production function so that independent
of initial capital, long run consumption is uniformly bounded below by a positive number. We
also provide conditions for a weaker form of avoidance of zero where capital and consumption
are bounded away from zero with probability one (though the bound may depend on initial
condition). Our general theoretical conditions are restrictions on the (limiting) behavior at
zero of the expected marginal productivity modified by a factor that involves the ratio of
marginal utilities of consumptions (that provides a verifiable bound on the marginal rate of
substitution between current consumption and future stochastic consumption). For any given
technology and discount factor, the behavior of this ratio of marginal utilities near zero is the
key restriction needed on the class of utility functions in order to ensure sustained positive
consumption. We show that the behavior of this ratio is closely related to the degree of
(Arrow-Pratt) relative risk aversion, and provide a condition that involves explicit restrictions
on the degree of risk aversion at zero. Higher the risk aversion at zero, higher the discounted
expected marginal productivity at zero needed to ensure sustained positive consumption. If
the expected marginal productivity at zero is infinite, sustained positive consumption is always
ensured as long as risk aversion is bounded.

For utility functions that are bounded below, we also provide sufficient conditions for
consumption to be bounded away from zero using the first elasticity of the utility function
near zero. Unlike some of the existing conditions, our conditions allow for the possibility that
for bad realizations of the random shock, the marginal productivity at zero may be lower than
the discount rate. We show that if utility is bounded below, under some mild restrictions
on the production function, infinite expected marginal productivity at zero is sufficient for
sustained positive consumption no matter how small the discount factor.

The rest of the paper is organized as follows. Section 2 discusses the model and some
preliminary results. Section 3 discusses the problem of the economy being nowhere bounded
away from zero and provides necessary and sufficient conditions for this phenomenon for a
specific Cobb Douglas stochastic technology. Section 4 contains general theoretical results
providing sufficient conditions for the economy to exhibit growth near zero which ensures
a uniform positive lower bound on long run consumption independent of initial condition.
Section 5 discusses sufficient conditions for a slightly weaker property of the optimal policy
that also ensures sustained positive consumption in the long run. All proofs are contained in
the Appendix.

2 Model

We consider an infinite horizon one-good representative agent economy. Time is discrete and
is indexed by t = 0, 1, 2, .... The initial stock of output y0 > 0 is given. At each date t ≥ 0,
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the representative agent observes the current stock of output yt ∈ R+ and chooses the level
of current investment xt, and the current consumption level ct, such that

ct ≥ 0, xt ≥ 0, ct + xt ≤ yt

This generates yt+1, the output next period through the relation

yt+1 = f(xt, rt+1)

where f(., .) is the "aggregate" production function and rt+1 is a random production shock
realized at the beginning of period (t + 1). The capital stock depreciates fully every period.
Given current output y ≥ 0, the feasible set for consumption and investment is denoted by
Γ(y) i.e.,

Γ(y) = {(c, x) : c ≥ 0, x ≥ 0, c+ x ≤ y}
The following assumption is made on the sequence of random shocks:
(A.1) {rt}∞t=1 is an independent and identically distributed random process defined on a

probability space (Ω,F , P ), where the marginal distribution function is denoted by F. The
support of this distribution is a compact set A ⊂ R.

The production function f : R+ ×A→ R+ is assumed to satisfy the following:
(T.1) For all r ∈ A, f(x, r) is concave in x on R+.
(T.2) For all r ∈ A, f(0, r) = 0.
(T.3) f(x, r) is continuous in (x, r) on R+×A. For each r ∈ [a, b], f(x, r) is differentiable

in x on R++ and, further, f 0(x, r) = ∂f(x,r)
∂x >0 on R++ ×A.

Assumptions (T.1)-(T.3) are standard monotonicity, concavity and smoothness restrictions
on production. For any investment level x ≥ 0, let the upper and lower bound of the support
of output next period be denoted by f(x) and f(x), respectively. In particular,

f(x) = max
r∈A

f(x, r), f(x) = min
r∈A

f(x, r). (1)

It is easy to check that f(x) is continuous, concave and strictly increasing on R+.9 Further,
f(x) is continuous and strictly increasing on R+.

We assume that:
(T.4) lim supx→0[

f(x)
f(x) ] <∞.

Assumption (T.4) imposes a bound on the extent of fluctuation in output that can be
caused by the random shock. Note that (T.4) is always satisfied when the production shock
is multiplicative i.e., f(x, r) = rh(x) as long as A is a compact subset of R++. For the
production function:

f(x, r) = xr

with the random shock r having a non-degenerate distribution F with support A ⊂ (0, 1), it
is easy to check that as x→ 0, f(x,r)

f(x) → +∞ for each r < supA and that, in particular, (T.4)

is violated.
9Continuity follows from the maximum theorem. To see concavity observe that for any x1, x2 ∈ R+, λ ∈

[0, 1], f(λx1+(1−λ)x2) = f(λx1+(1−λ)x2, r) for some r ∈ A which is ≥ λf(x1, r)+(1−λ)f(x2, r) ≥ λf(x1)
+ (1− λ)f(x2).
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For each r ∈ A,the letD+f(0, r) denote the "limiting" marginal product at zero investment
where

D+f(0, r) = lim
x↓0

fx(x, r).

Using the concavity of f(x, r) in x and f(0, r) = 0

D+f(0, r) = lim
x↓0

f(x, r)

x
(2)

Let

ν = lim
x↓0

f(x)

x
. (3)

It is easy to check that
ν ≥ inf

r∈A
D+f(0, r).

ν = +∞ if the production function satisfies the well-known Uzawa-Inada condition at zero.
We assume that
(T.5) ν > 1 and lim supx→∞

f(x)
x < 1.

The first part of assumption (T.5) ensures that it is feasible for capital and output to grow
with probability one in a neighborhood of zero i.e., even under the most adverse realization
of the random shock. The second part of the assumption implies that the technology exhibits
bounded growth.

Let δ ∈ (0, 1) denote the time discount factor. Given the initial stock y0 > 0, the repre-
sentative agent’s objective is to maximize the discounted sum of expected utility from con-
sumption:

E

" ∞X
t=0

δtu(ct)

#
where u is the one period utility function from consumption.

Let R = R ∪ {−∞}. The utility function u : R+ → R satisfies the following restrictions:
(U.1) u is strictly increasing, continuous and strictly concave on R+ (on R++ if u(0) =

−∞);u(c)→ u(0) as c→ 0.
(U.2) u is twice continuously differentiable on R++;u0(c) > 0, u00(c) < 0,∀c > 0.
(U.3) limc→0 u0(c) = +∞.
Assumptions (U.1) and (U.2) are standard. Note that we allow the utility of zero con-

sumption to be −∞. (U.3) requires that the utility function satisfy the Uzawa-Inada condition
at zero and ensures that optimal consumption and investment lie in the interior of the feasible
set.

The partial history at date t is given by ht = (y0, x0, c0, . . . , yt−1, xt−1, ct−1, yt). A pol-
icy π is a sequence {π0, π1, . . .} where πt is a conditional probability measure such that
πt(Γ(yt)|ht) = 1. A policy is Markovian if for each t, πt depends only on yt. A Markovian
policy is stationary if πt is independent of t. Associated with a policy π and an initial state
y is an expected discounted sum of social welfare:

Vπ(y) = E
∞X
t=0

δtu(ct),
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where {ct} is generated by π, f in the obvious manner and the expectation is taken with
respect to P .

The value function V (y) is defined on R++ by:

V (y) = sup{Vπ(y) : π is a policy}.

Under assumption (T.5), it is easy to check that

−∞ < V (y) < +∞,∀y > 0.

A policy, π∗, is optimal if Vπ∗(y) = V (y) for all y. Standard dynamic programming argu-
ments imply that there exists a unique optimal policy, that this policy is stationary and that
the value function satisfies the functional equation:

V (y) = sup
x∈Γ(y)

[u(y − x) + δE[V (f(x, r)]]. (4)

It can be shown that V (y) is continuous, strictly increasing and strictly concave on R++.
Further, the maximization problem on the right hand side of (4) has a unique solution, denoted
by x(y). The stationary policy generated by the function x(y) is the optimal policy and we
refer to x(y) as the optimal investment function. c(y) = y− x(y) is the optimal consumption
function. Using standard arguments in the literature, (U.3) can be used to show that:

Lemma 1 For all y > 0, x(y) > 0 and c(y) > 0.

Lemma 2 x(y) and c(y) are continuous and strictly increasing in y on R+.

Lemma 1 implies that consumption is bounded away from zero along any realized path of
the economy if, and only if, capital and output are bounded away from zero. Further, Lemma
2 implies that between any two periods, consumption expands if, and only if, capital and
output expand.

Given initial stock y > 0, the stochastic process of optimal output {yt(y, ω)} evolves over
time according to the transition rule:

yt(y, ω) = f(x(yt−1(y, ω)), ωt) for t ≥ 1 (5)

and y0(y, ω) = y.
Next, we note that the stochastic Ramsey-Euler equation holds:

Lemma 3 For all y > 0,

u0(c(y)) = δE[u0(c(f(x(y), r)))f 0(x(y), r)]. (6)

Finally, let R(c) denote the Arrow-Pratt measure of relative risk aversion defined by:

R(c) = −cu
00(c)

u0(c)
for all c > 0. (7)

We state a useful lemma that provides an estimate of the marginal rate of substitution using
the Arrow-Pratt measure of relative risk aversion.
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Lemma 4 For any c > 0, η > 1, let R(c, η) = inf{R(z) : z ∈ [c, ηc]}, R(c, η) = sup{R(z) :
z ∈ [c, ηc]}.Then:

u0(ηc)
u0(c)

≤ (1
η
)R(c,η) (8)

u0(ηc)
u0(c)

≥ (1
η
)R(c,η) (9)

3 The economy may not be bounded away from zero.

The central focus of this paper is the possibility that consumption and capital may not be
bounded away from zero in the long run even when the marginal return to investment at zero
is "sufficiently large". In this section, we examine the extent of this problem and shed some
light on the economic factors that lead to this problem.

3.1 The problem.

To begin, consider the deterministic version of the stochastic growth model outlined in the
previous section; in particular, suppose that the probability distribution of f(x, r) is degen-
erate and

f(x) = f(x) = h(x),∀x ≥ 0.
This is the well known Cass-Koopmans discounted classical optimal growth model. As is
well-known, if

lim
x→0h

0(x) >
1

δ
(10)

i.e., the marginal productivity at zero exceeds the discount rate (the technology is "delta-
productive" at zero), the sequence of optimal capital stocks from every strictly positive initial
stock, converges monotonically to a unique strictly positive limit, the "modified golden rule"
capital stock x∗ defined by

h0(x∗) =
1

δ
. (11)

In other words, under (10), optimal capital and consumption are always bounded away from
zero and indeed, if 0 < y0 < h(x∗), capital and consumption exhibit growth over time.
Further, if

lim
x→0h

0(x) = +∞,

i.e., the technology satisfies the Uzawa-Inada condition, then (10) is satisfied for every δ ∈
(0, 1) so that positive consumption and capital are sustained in the long run no matter how
heavily the future is discounted.

The situation may, however, be qualitatively different in the stochastic model where the
probability distribution of the production function f(x, r) is non-degenerate. This was first
pointed out by Mirman and Zilcha (1976) in a striking example that we briefly summarize
now. Consider the stochastic aggregative growth model outlined in the previous section with
the following specific form of the production function:

f(x, r) = rx
1
2 (12)
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and assume that the distribution F of the random shocks is the uniform distribution on the
interval [α, β], 0 < α < β. Note that for the above production function, the (limiting) marginal
productivity at zero is infinite for all possible realizations of the random shock:

D+f(0, r) = +∞,∀r ∈ [α, β].
Mirman and Zilcha (1976) show that for each δ ∈ (0, 1), there exists a smooth "well-behaved"
utility function uδ satisfying, for instance, the assumptions on u outlined in the previous
section, such that the optimal investment policy function for the economy (uδ, f, δ, F ) denoted
by xδ(y) satisfies:

f(xδ(y)) < y,∀y > 0. (13)

The property (13) of the policy function implies that no matter what the current state of the
economy, capital, output and consumption necessarily decline under the worst realization of
the current technology. For the production function (12), this implies that capital and output
are not bounded away from zero in the long run and there is no invariant distribution whose
support is bounded away from zero.

This example illustrates a fundamental discrepancy between the stochastic and the de-
terministic growth models. For the production function (12), if the distribution of rt is
degenerate, for instance if α = β = 1, the optimal capital path from every y0 > 0 converges
to the modified golden rule capital stock x∗ = δ2

4 > 0, independent of the choice of utility
function u and discount factor δ ∈ (0, 1). The example shows that even with a little bit of
uncertainty in the production function and no matter how mildly one discounts the future,
there is some utility function for which capital and consumption may be driven arbitrarily
close to zero in the long run.

Now, in an economy with the same production function (12) as used in this example,
if the utility function is given by u(c) = ln c, then it is easy to check (see, for instance,
Mirman and Zilcha, 1975) that for every δ ∈ (0, 1), the optimal policy is one where the
economy expands near zero even under the worst realization of the production shock and
indeed, optimal capital stocks converge in distribution to a unique invariant distribution
whose support is bounded away from zero. Therefore, in the stochastic growth model (and
in contrast to the deterministic model), the nature of the utility function plays an important
role in determining the long run destiny of the economy and in particular, the possibility of
consumption and capital being bounded away from zero.

3.2 Nowhere bounded away from zero.

In what follows, we will refer to an economy where the optimal policy function is of the kind
described in the Mirman-Zilcha example as being nowhere bounded away from zero. More
precisely, define the lowest optimal transition function H(y) by:

H(y) = f(x(y)), y ≥ 0.
Thus, H(y) is the lower bound of the support of output next period when the current output is
y and the optimal investment policy function x(y) is used to determine the amount invested.

Definition 1 The economy (u, δ, f, F ) is nowhere bounded away from zero (NBZ) if the op-
timal policy satisfies:

H(y) < y,∀y > 0. (14)
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Using Proposition 2 in Mitra and Roy (2007), one can check that (14) implies that for
every initial stock y0 = y > 0, the stochastic process of optimal output {yt(y, ω)} defined by
(5) must satisfy the property:

Pr{ lim
t→∞ inf yt(y, ω) = 0} = 1

so that output and capital are arbitrarily close to zero infinitely often with probability one;
in particular, the Markov process {yt(y, ω)} has no invariant distribution whose support is
bounded away from zero.

The Mirman-Zilcha example described above shows that given a specific form of f and F,
for each δ ∈ (0, 1), there is some u (that potentially depends on δ) for which the economy
exhibits NBZ. This does not, however, shed any light on the qualitative properties of the utility
functions that can makes the economy exhibit NBZ (for any given stochastic technology). In
the rest of this section, we will attempt to address this issue. In particular, we consider
the Cobb-Douglas production function with uniformly distributed multiplicative shock and
outline verifiable necessary and sufficient conditions on the utility functions u under which
the economy exhibits NBZ if the discount factor δ is small.

Consider the production function:

f(x, r) = rxγ for all x ∈ R+ and r ∈ A (15)

where A = [α, β], with 0 < α < β < ∞ and γ ∈ (0, 1). The common distribution F is the
uniform distribution function given by:

F (r) =

⎧⎨⎩
0 for r < α

(r − α)/(β − α) for α ≤ r ≤ β
1 for r > β

(16)

Note that the production function considered in the Mirman-Zilcha example is a special case
of this where γ = 1

2 . Also, observe that D+f(0, r) = +∞, for all r ∈ [α, β]. We begin with a
sufficient condition for NBZ. Let

λ =
β

α
, ζ =

γ

1− γ
.

Clearly, λ > 1. Further,
1

ζ
=
1

γ
− 1.

so that 1
ζ is decreasing in γ, and is therefore directly related to the curvature or degree of

concavity of the production function and the rate at which marginal productivity goes to
infinity as investment tends to zero.

Proposition 1 Consider the stochastic technology (f, F ) described by (15) and (16). Suppose
that:

lim
c→0 sup

Z λ

1

∙
c−

1
ζ {u

0(μθc)
u0(c)

}
¸
dμ <∞ (17)

for some θ ∈ (0, 1). Then, there exists δ0 > 0 such that for every δ ∈ (0, δ0), the economy
(f, F, u, δ) is nowhere bounded away from zero.
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For the specific technology described above, Proposition 1 provides a verifiable sufficient
condition (17) on the utility function for the economy to be nowhere bounded away from
zero when the future is discounted sufficiently. The integrand on the left hand side of the
inequality in (17) consists of two terms. As γ ∈ (0, 1), 1ζ = 1

γ − 1 > 0 and therefore, as c→ 0,

c
1
ζ → 0 i.e., the term c−

1
ζ →∞ and the rate at which this occurs depends on γ. On the other

hand, the term u0(μθc)
u0(c) < 1 is the marginal rate of substitution between consumption in the

current and next time periods when the consumption next period grows by a factor μθ, where
μ actually reflects the ratio of the realized multiplicative shock r to α, the worst possible
shock; this term is actually an upper bound of the marginal rate of substitution between the
optimal consumption in the current and next periods when the current output y is in fact,
the largest fixed point, if any, of H(y). The condition (17) requires that this marginal rate of

substitution converge to zero as c→ 0 at a rate that outweighs the rate at which c
1
ζ → 0.

Observe that the ratio u0(μθc)
u0(c) depends on the curvature of the utility function and therefore,

the degree of risk aversion. The behavior of risk aversion near zero plays an important role
here; higher the degree of risk aversion, the smaller the ratio u0(μθc)

u0(c) . In lemma 4, we provide
explicit bounds on this ratio in terms of the Arrow-Pratt measure of relative risk aversion; if
this measure diverges to ∞ as c → 0, then the ratiou

0(μθc)
u0(c) → 0 and the rate at which this

occurs depends on the rate at which risk aversion becomes infinitely large at zero.
In what follows, we derive an explicit necessary and sufficient condition on the utility

function for the economy to be nowhere bounded away from zero for sufficiently low discount
factor. In order to obtain a simple condition that is easy to understand and verify, we impose
a further restriction: the utility function is assumed to satisfy decreasing relative risk aversion
in a neighborhood of zero

∃ s > 0 such that R(c) is non-increasing in c on (0, s). (18)

As we will see in Proposition 5 of the next section, if R(c) is bounded as c → 0, then
infinite expected marginal productivity at zero (as exhibited by the production function (15))
implies that the economy is always bounded away from zero. Therefore, for the economy to
exhibit NBZ, it is necessary that R(c) → ∞ as c → 0. The assumption (18) is therefore not
a very strong restriction.

Proposition 2 Consider the stochastic technology (f, F ) described by (15) and (16). Suppose
that the utility function u satisfies (18). If

lim
c→0 inf [R(c)c

1
ζ ] > 0, (19)

then there exists δ0 > 0 such that for every δ ∈ (0, δ0), the economy (u, δ, f, F ) is nowhere
bounded away from zero. Conversely, if there is some δ ∈ (0, 1) such that the economy
(u, δ, f, F ) is nowhere bounded away from zero, then (19) holds.

Condition (19) provides a tight characterization of the kind of utility function that can
lead to the phenomenon illustrated in the Mirman-Zilcha example. This condition brings out
explicitly the tension between marginal productivity becoming infinitely large at zero (at a
rate depending on γ) and the degree of risk aversion exploding as consumption goes to zero.

11



It requires that as c→ 0, risk aversion R(c)→∞ at a rate faster than the rate at which c
1
ζ =

c(
1
γ
−1) → 0.

Example 1 Consider the "expo-power" utility function:

u(c) = − exp(pc−q), c > 0
where p > 0, q > 0. It is easy to check that this utility function satisfies (U.1), (U.2), (U.3)
and (18). The Arrow-Pratt measure of relative risk-aversion for this utility function is given
by:

R(c) = 1 + q + pqc−q

so that
R(c)c

1
ζ = (1 + q)c

1
ζ + pqc−(q−

1
ζ
)

and therefore, (19)is satisfied if, and only if, q ≥ 1
ζ i.e.,

γ ≥ 1

1 + q
.

The results outlined above provide explicit and verifiable conditions on the utility function
under which the economy (with the Cobb-Douglas production function and multiplicative
shock) is nowhere bounded away from zero provided the future is discounted sufficiently i.e.,
δ is small enough. In their example, Mirman and Zilcha (1976) showed that for every δ ∈ (0, 1),
there exists some utility function for which the economy is nowhere bounded away from zero.
This leads us to the question about whether we can explicitly outline a utility function for
which the economy is nowhere bounded away from zero even when discounting is sufficiently
mild. The next proposition outlines such a condition.

Choose δ0 ∈ (0, 1). Consider the (uniform) distribution function F with support [α, β] as
described in (16). We impose the following restriction on the parameters of the distribution:

α = 1 < β <
2

(δ0)
1
4

− 1. (20)

Clearly, if β > 1 is chosen sufficiently close to 1, then (20) can be satisfied. The production
function f is given by:

f(x, r) = r
√
x, r ∈ [α, β], x ≥ 0. (21)

Finally, let the utility function u : R+ → R̄ be given by

u(c) =

½ −e(1/cν) if c > 0
−∞ if c = 0

, ν > 1. (22)

We will now impose a restriction on the parameter ν, given β. For t ∈ I ≡ (0, (1/β)), define:

φ(t) = 1− βt

(2− t)
(23)

Note that φ maps I to R++, and φ(t)→ 1 as t→ 0. Choose θ ∈ I such that:

(i) φ(θ) >
√
δ0

(ii) 2(1/θ) >
β2

(β − 1)

⎫⎬⎭ (24)
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Clearly, if θ is chosen sufficiently close to 0, then both conditions in (24) can be satisfied.10

Fix any such θ and set
ν = (1/θ). (25)

Proposition 3 Choose any δ0 ∈ (0, 1). Given δ0, consider the utility function u defined in
(22), the production function f defined in (21), and the distribution F for the random shocks
defined in (16) subject to parametric restrictions (20), (23), (24) and (25). Then, for every
δ ∈ (0, δ0), the economy (f, F, u, δ) is nowhere bounded away from zero.

Note that the restrictions on the parameters of the utility function u and the distribution
F in Proposition 3 depend on the given δ0, but not on the δ ∈ (0, δ0). For example, for
δ0 = 0.9801, by choosing β = 1.01 and θ = 0.01, we have a utility function u, a production
function f and a distribution F for the random shocks such that for every δ ∈ (0, 0.9801), the
economy (f, F, u, δ) is nowhere bounded away from zero.

4 Growth with Certainty Near Zero (GNZ).

4.1 The Concept.

In this section, we focus on a strong concept of sustaining positive consumption and avoidance
of zero. The concept requires that when current output is close enough to zero, the economy
expands even under the worst realization of the production technology. We shall refer to this
as growth with certainty near zero. Recall that H(y) = f(x(y)) is the lower bound of the
support of output next period when the current output is y and the optimal investment policy
function x(y) is used to determine the amount invested.

Definition 2 The economy (u, δ, f, F ) exhibits growth with certainty near zero (GNZ) if there
exists α > 0 such that

H(y) > y,∀y ∈ (0, α). (26)

Consider {yt(y, ω)}, the Markov process of optimal output from initial stock y > 0, defined
by (5). Let {ct(y, ω)}, be the Markov process of optimal consumption from initial stock y > 0
defined by

ct(y, ω) = c(yt(y, ω)).

(26) implies that f(x(y), r) > y i.e., y1(y, ω) > y0 = y almost surely. Indeed, for each
y ∈ (0, α),there exists T (y) ≥ 0

Pr{yt+1(y, ω) > yt(y, ω),∀t = 0, ..., T (y)} = 1
i.e., the economy grows with probability one for at least T (y) periods if the current stock
is small enough. Thus, GNZ ensures sufficiently poor economies experience growth almost
surely on their transition path. Indeed, GNZ implies that for all y > 0,

Pr{ lim
t→∞ inf yt(y, ω) > α} = 1

10Suppose we chooose δ0 = 0.9801.Then, (20) can be satisfied by choosing β = 1.01. Further, by choosing
θ = 0.01, both conditions in (24) are satisfied.
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i.e., independent of initial stock y, optimal output eventually exceeds α with probability one.
Using Lemma 2, we have then:

Pr{ lim
t→∞ inf ct(y, ω) > c(α)} = 1

i.e., independent of initial stock y, optimal consumption eventually exceeds c(α) > 0 with
probability one. Thus, GNZ ensures a uniform positive lower bound on long run consumption
that is independent of initial condition.

In their pioneering analysis of the optimal stochastic growth model, Brock and Mirman
(1972) impose strong conditions to ensure growth with certainty near zero (GNZ) and use
this to show the existence of a unique invariant distribution whose support is bounded away
from zero. The conditions they impose are as follows: the marginal productivity at zero is
infinite for all realizations of the random shock and there is a strictly positive probability
mass on the "worst" realization of the technology. These conditions rule out economies where
the production shock is continuously distributed and economies where productivity at zero
may be finite, at least for bad realizations of the technology shock. The subsequent literature
on stochastic growth theory has not developed any alternative set of conditions that ensures
GNZ. In this section, we develop sufficient conditions for GNZ that can be satisfied even
when the distribution of the random production shock has no mass point and when marginal
productivity is bounded.

4.2 General Sufficient Conditions for GNZ.

Recall the definition of f(x) and f(x) in (1). We begin by outlining a general sufficient
conditions for growth with certainty near zero.

Proposition 4 Suppose that

δ{ lim
x→0 inf E(

u0(f(x, r))
u0(f(x)− x)

f 0(x, r))} > 1. (27)

Then, the economy (u, δ, f, F ) exhibits growth with certainty near zero.

In the deterministic version of the model, growth near zero is ensured as long as the
discounted marginal productivity at zero exceeds 1. This is often referred to as a "delta-
productivity condition". One can view condition (27) as an expected "welfare-modified" delta-
productivity condition at zero that reflects the stochastic nature of our model. Fluctuation in
productivity always causes fluctuation in consumption next period and therefore, even if we
know the current stock and whether tomorrow’s stock lies above or below the current stock
in the worst state of nature, we still need to estimate the marginal utility of consumption
tomorrow in each state of nature in order to determine the value of marginal product. In
particular, the factor ( u0(f(x,r))

u0(f(x)−x)) in (27) reflects a bound on the marginal rate of substitution
between consumption in current and next period for each realization r of the random shock.
Note that the condition allows the marginal productivity at zero to be below the discount
rate for "bad" realizations of the random shock.

Next, define the function μ(r) on A by

μ(r) = lim
x→0 sup

f(x, r)

f(x)
(28)
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Let

λ = lim
x→0 sup

f(x)

f(x)
. (29)

Note that under assumption (T.4), λ <∞ and further,

1 ≤ μ(r) ≤ λ,∀r ∈ A.

For r ∈ A, define n(r) by

n(r) = μ(r)
ν

ν − 1 , if ν < +∞
= μ(r), if ν = +∞. (30)

Let n, n be defined by:

n = λ
ν

ν − 1 , if ν < +∞
= λ, if ν = +∞. (31)

n =
ν

ν − 1 , if ν < +∞
= 1, if ν = +∞. (32)

Then,
n(r) ≥ μ(r) ≥ 1,∀r ∈ A.

Further, n > n, and
n ≤ n(r) ≤ n,∀r ∈ A. (33)

Note that if the production function has the form:

f(x, r) = rh(x) (34)

where the random shock is multiplicative and

α = inf A > 0, β = supA > α,

then

μ(r) =
r

α
, λ =

β

α
.

If h0(0) = limx→0 h0(x) <∞, then

n(r) =
r

α

αh0(0)
αh0(0)− 1 , n =

β

α

αh0(0)
αh0(0)− 1 , n =

αh0(0)
αh0(0)− 1 .

If h0(0) =∞,
n(r) =

r

α
, n =

β

α
, n = 1.

The next result refines the sufficient condition in Proposition 4 and provides a more
transparent condition for GNZ.
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Corollary 1 Suppose that

δE[ lim
x→0 inf

u0(σn(r)(f(x)− x))

u0(f(x)− x)
f 0(x, r)] > 1. (35)

for some σ > 1.Then, the economy (u, δ, f, F ) exhibits growth with certainty near zero.

Condition (35) is also an expected welfare-modified delta productivity condition at zero
that has a somewhat clearer economic interpretation. (f(x)− x) is the level of consumption
that sustains current output y = f(x) under the worst realization of the random shock.
Following investment x, it can be shown that n(r)(f(x) − x) is the maximum consumption

next period for realization r of the random shock. The factor [
u0(σn(r)(f(x)−x))

u0(f(x)−x) ] in (35) is a

lower bound on the marginal rate of substitution between consumption in the current and
next periods for realization r of the random shock. Note that this ratio is essentially of the
form u0(pc)

u0(c) where p > 1, and the behavior of this ratio as c → 0 plays an important role in
(35). This, in turn, can be easily related to the curvature of the utility function near zero and
hence, to risk aversion near zero.

4.3 Risk Aversion and GNZ.

In this subsection, we outline sufficient conditions for growth with certainty near zero that
explicitly impose restrictions on the degree of risk aversion near zero. Our discussion in
Section 3 highlighted the important role played by risk aversion near zero in determining
the whether the economy is nowhere bounded away from zero in the long run. When the
production technology is stochastic, high risk aversion creates a disincentive to invest in an
intrinsically uncertain future prospect. This may overwhelm the incentive to invest resulting
from high productivity near zero.

Recall, that R(c) denotes the Arrow-Pratt measure of relative risk aversion defined by (7).

Proposition 5 Suppose that
R̄ ≡ [lim

c→0 supR(c)] <∞. (36)

Further, suppose that

δE[(
1

n(r)
)RD+f(0, r)] > 1. (37)

Then, the economy (u, δ, f, F ) exhibits growth with certainty near zero.

Proposition 5 provides a sufficient condition for GNZ for the class of utility function that
exhibit bounded relative risk aversion. Note that this includes utility functions that are
unbounded below. The sufficient condition (37) is an expected delta-productivity condition
modified by the factor ( 1

n(r))
R that reflects behavior towards risk. Note that 1

n(r) < 1 so that
lower the risk aversion at zero, easier it is for this condition to be satisfied. Further, n(r)
itself reflects the extent of variability in the technology, so that the condition is more easily
satisfied if the extent of variability is small.

Proposition 5 immediately yields the following useful corollary:
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Corollary 2 Suppose that
R̄ ≡ [lim

c→0 supR(c)] <∞.

Then, the economy (u, δ, f, F ) exhibits growth with certainty near zero if

E[D+f(0, r)] >
(n)R

δ

If, in particular, E[D+f(0, r)] = +∞, then for every δ ∈ (0, 1), the economy (u, δ, f, F )
exhibits growth with certainty near zero.

Corollary 2 provides a more easily verifiable sufficient condition for GNZ for bounded
relative risk aversion utility functions. It requires the expected marginal productivity at zero
be larger than the discount rate by a factor that depends on the degree of risk aversion and
the extent of variation in production created by the random shock. If the technology satisfies
the Uzawa-Inada condition in the sense that the expected marginal productivity at zero is
infinite (this is weaker than requiring the marginal productivity at zero to be infinite for
every realization of the random shock), then GNZ holds for all utility functions with bounded
relative risk aversion.

A widely used category of bounded relative risk aversion utility functions is the class of
constant relative risk aversion (CRRA) utility functions u where u : R++ → R given by:

u(c) =

(
c1−ρ
1−ρ if ρ 6= 1
ln c otherwise

with u(0) = limc→0 u(c) when ρ ∈ (0, 1), and u(0) = −∞ otherwise. For this family of
functions, relative risk aversion is given by the parameter ρ. From Corollary 2 it follows that:

Corollary 3 Suppose that the utility function u exhibits CRRA with ρ > 0 being the relative
risk aversion parameter. Further, suppose that

δE[D+f(0, r)] > 1

i.e., expected marginal productivity at zero is greater than the discount rate. Let bρ be defined
by bρ = ln δE[D+f(0, r)]

lnn

Then the economy (u, δ, f, F ) exhibits growth with certainty near zero if

ρ < bρ. (38)

Further, if E[D+f(0, r)] = +∞, then (38) is always satisfied and the economy exhibits growth
with certainty near zero no matter how high the level of relative risk aversion.

Corollary 2 indicates that if relative risk aversion is bounded and the production function
exhibits infinite expected productivity at zero, then the stochastic growth model generates
growth near zero independent of the level of risk aversion or indeed, of any other property
of intertemporal preference; this is qualitatively similar to the behavior of the economy in
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the deterministic version of the model (where, independent of the utility function, infinite
productivity at zero always ensures growth near zero). However, if marginal productivity is
bounded (in addition to risk aversion being bounded), then the possibility of growth near
zero depends on the level of risk aversion, and the stochastic growth model may generate
qualitatively different behavior near zero than that in the deterministic version of the model.
The sufficient condition (38) for growth near zero when utility function exhibits CRRA reflects
this role of risk aversion; in addition to δE[D+f(0, r)] > 1, the condition requires that relative
risk aversion be below bρ; smaller the discounted expected marginal productivity at zero,
smaller this upper bound bρ on risk aversion.

Corollary 3 does not provide any indication of how the economy behaves near zero (for
instance, whether or not growth near zero occurs) when risk aversion ρ exceeds this upper
bound bρ . While we are not able to provide any general characterization of the outcome
for high values ρ, the following example analyzed in Mitra and Roy (2010) provides some
indication that with bounded productivity, the economy gets arbitrarily close to zero with
probability one when risk aversion is large enough.

Example 2 (Mitra and Roy, 2010). Suppose the utility function satisfies CRRA with relative
risk aversion parameter ρ. Let

f(x, r) = rh(x) for all x ∈ R+ and r ∈ A

where A = [1, β], with 1 < β <∞, and:

h(x) = Ax/(1 + x) for all x ∈ R+
with A > 1. Let F be the uniform distribution on [1, β]. Assume

δ(Er)h0(0) = δ(Er)A > 1

It is assumed that δ(Er)h0(0) is close enough to 1.Then one can explicitly specify ρ0 > bρ (wherebρ is as defined in Corollary 3) such that for ρ > ρ0, h(x(y)) < y for all y > 0 and the economy
is nowhere bounded away from zero.

4.4 GNZ when utility is bounded below.

In this sub-section, we apply the general conditions derived in Section 4.2 to environments
where the utility function is bounded below and derive specific conditions under which growth
with certainty occurs near zero.

As we focus on utility functions that are bounded below, we may assume (without loss of
generality) that

U.4. u(0) = 0.
We first state a useful result due to Arrow:

Lemma 5 (Arrow, 1971)11 Assume U.4. Then,

lim
c→0 inf R(c) ≤ 1.

11See, Appendix [1] to Essay 3 ("Theory of Risk Aversion) in Arrow (1971).
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Using this lemma, it follows that if R(c) is monotonic in a neighborhood of zero so that
limc→0 supR(c) = limc→0 inf R(c), then under U.4, R̄ ≡ [limc→0 supR(c)] ≤ 1 and therefore,
using Proposition 5 and Corollary 2, we have the following result:

Proposition 6 Assume U.4. Further, suppose that there exists s > 0 such that R(c) is
monotonic (non-increasing or non-decreasing) on (0, s). The economy (u, δ, f, F ) exhibits
growth with certainty near zero if

δE[(
1

n(r)
)D+f(0, r)] > 1. (39)

A sufficient condition for (39) is given by:

E[D+f(0, r)] >
n

δ
.

If, in particular, E[D+f(0, r)] = +∞, then for every δ ∈ (0, 1) the economy (u, δ, f, F ) exhibits
growth with certainty near zero.

Proposition 6 provides transparent sufficient conditions for GNZ for utility functions that
are bounded below; these are modified expected delta-productivity conditions that do not
require knowledge of the degree of relative risk aversion near zero. Unfortunately, the propo-
sition also requires that risk aversion be monotonic in a neighborhood of zero. In the rest of
this section, we outline alternative conditions for GNZ that do not have such a requirement.
These conditions are in terms of the first elasticity of the utility function at zero.

Let

κ = lim
c→0 inf

u0(c)c
u(c)

(40)

K = lim
c→0 sup

u0(c)c
u(c)

. (41)

Then, κ,K ∈ [0, 1].We begin by establishing a set of weak inequalities.
Lemma 6 Assume U.4. Fix η > 1. Then,

lim
c→0 sup

u0(ηc)
u0(c)

≥ ηκ−1. (42)

lim
c→0 inf

u0(ηc)
u0(c)

≥ κ

K
ηκ−1, if K > 0. (43)

One implication of (43) is that if the limit of u0(c)c
u(c) as c → 0 is well defined and strictly

positive, then lim infc→0
u0(ηc)
u0(c) ≥ ηκ−1.The next proposition outlines a sufficient condition for

GNZ for utility functions that are bounded below.

Proposition 7 Assume U.4 and that K > 0. Suppose that

δ
κ

K
E[(n(r))κ−1D+f(0, r)] > 1, (44)

then the economy (u, δ, f, F ) exhibits growth with certainty near zero.
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The sufficient condition (44) for GNZ in the above proposition is, once again, a modified
expected delta-productivity condition at zero. As n(r) > 1, higher the first elasticity of the
utility function at zero, the more likely that this condition is satisfied. As κ ≤ 1, condition
(44) in the above proposition always holds as long as:

δ
κ

K
(n)κ−1E[D+f(0, r)] > 1.

This immediately yields the following useful corollary:

Corollary 4 Assume U.4 and that κ > 0. Then, the economy (u, δ, f, F ) exhibits growth with
certainty near zero if

E[D+f(0, r)] > [
K

κ
(n)1−κ]

1

δ
(45)

Further, if E[D+f(0, r)] = +∞, then for every δ ∈ (0, 1) the economy (u, δ, f, F ) exhibits
growth with certainty near zero.

Corollary 4 provides an easily verifiable sufficient condition for GNZ for utility functions
that are bounded below. It requires the expected marginal productivity at zero be larger than
the discount rate by a factor that depends on the first elasticity of the utility function and
the extent of variation in production created by the random shock.

More generally, the results in this section indicate that if the expected marginal produc-
tivity at zero is infinite, then GNZ occurs for all utility functions that are bounded below as
long as their first elasticity is bounded away from zero or alternatively, relative risk aversion
is monotonic near zero.

5 Bounded away from zero (BAZ).

In the previous section, we focused on the concept of growth with certainty near zero under
which the economy expands even under the worst realization of the technology when current
output is sufficiently close to zero. As mentioned earlier, this implies almost sure uniform
positive lower bounds for long run capital and consumption independent of initial stock. While
this is certainly sufficient to ensure that from every initial stock, capital and consumption are
almost surely bounded away from zero, it is by no means necessary. In this section, we
discuss a weaker concept under which capital and consumption are bounded away from zero
from every positive initial stock, though the lower bounds may depend on the initial condition.

For y > 0, recall that {yt(y, ω)} be the Markov process of optimal output defined by (5).

Definition 3 We say that the economy is bounded away from zero (BAZ) if for every y > 0,
there exists α(y) > 0 such that

Pr{ lim
t→∞ inf yt(y, ω) ≥ α(y)} = 1. (46)

While the above definition of an economy being bounded away from zero (BAZ) is in terms
of the asymptotic behavior of the stochastic process of stocks generated by the optimal policy,
it is easier to visualize the nature of the optimal policy function that generates a stochastic
process {yt(y, ω)} that satisfies the above definition. To this end, consider the lowest optimal
transition function H(y) = f(x(y)), y ≥ 0.
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Lemma 7 Suppose there exists a sequence {yn}∞n=1 → 0, yn ∈ R++ such that
H(yn) ≥ yn,∀n.

Then, the economy is bounded away from zero.

Lemma 7 indicates that BAZ allows for the possibility that the lowest optimal transition
function H(y) may have infinite number of fixed points that converge to zero. Further, from
Lemma 7, it follows immediately, that growth with certainty near zero (GNZ) implies BAZ.
Therefore, the sufficient conditions for GNZ provided in the previous section are also sufficient
conditions for BAZ. However, BAZ may also be ensured under slightly weaker conditions. Note
that BAZ implies that if {ct(y, ω)} is the Markov process of optimal consumption from initial
stock y > 0, then

Pr{ lim
t→∞ inf ct(y, ω) ≥ c(α(y))} = 1.

where c(α(y)), the optimal consumption from stock α(y), is strictly positive but may depend
on the initial stock y.

Chatterjee and Shukayev (2008) provide sufficient conditions for BAZ (that do not neces-
sarily ensure GNZ). Their sufficient condition requires that (i) the utility function is bounded
below and (ii) D+f

0(0, r) > 1
δ ,∀r ∈ A. (i) is obviously a strong restriction as it does not allow

for some of the widely used utility functions in the macro growth literature (including those
of the CES family) where u(0) = −∞. Further, as we have shown in the previous section, if
the technology is sufficiently productive at zero, it is certainly possible to ensure GNZ (which
is stronger than BAZ) even when u(0) = −∞ if, for instance, risk aversion is bounded. (ii)
is also a strong condition in that it requires the technology to be delta-productive at zero
even under the worst realization of the production shock. As shown in the previous section,
it is possible to ensure GNZ (and therefore, BAZ) under conditions that require the expected
marginal productivity at zero to be large enough even if the productivity at zero is small
under the worst realization of the shock.

We begin by providing a general sufficient condition for the economy to be bounded away
from zero that allows for utility functions that are unbounded below and is in terms of expected
welfare-modified marginal productivity.

Proposition 8 Suppose that

δ{ lim
x→0 supE(

u0(f(x, r))
u0(f(x)− x)

f 0(x, r))} > 1. (47)

Then the economy (u, δ, f, F ) is bounded away from zero.

Observe that the sufficient condition (47) for BAZ in the above proposition is comparable
to and, in fact, a weaker version of the sufficient condition (27) for GNZ in Proposition 4.
This proposition can be used to derive a more transparent sufficient condition.

Recall the definition of μ(r) in (28).

Corollary 5 Assume that as x→ 0

f(x, r)

f(x)
→ μ(r) uniformly in r on A (48)
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If

δ lim
x→0 supE[

u0(σn(r)(f(x)− x))

u0(f(x)− x)
f 0(x, r))] > 1. (49)

for some σ > 1, then the economy (u, δ, f, F ) is bounded away from zero.

Note that (48) is always satisfied for the multiplicative shock production function described
in (34). The sufficient condition (49) for BAZ in the above result is a weaker version of the
sufficient condition (35) for GNZ in Corollary 5.

The next proposition outlines a more easily verifiable condition for the economy to be
bounded away from zero when the utility function is bounded below.

Proposition 9 Assume U.4 and that as x→ 0

f(x, r)

f(x)
→ μ(r) uniformly in r on A.

Suppose that
δE[D+f(0, r)] > (n)

1−κ. (50)

Then, the economy (u, δ, f, F ) is bounded away from zero. In particular, if E[D+f(0, r)] =
+∞, then for every δ ∈ (0, 1), the economy (u, δ, f, F ) is bounded away from zero.

The sufficient conditions for BAZ in Proposition 9 are weaker versions of and comparable
to the conditions for GNZ outlined in Proposition 7 and Corollary 4. However, unlike the
latter, Proposition 9 also requires that f(x,r)

f(x) converges uniformly in r as x→ 0.

APPENDIX.

Proofs of Lemmas 1, 2 and 3 are standard in the literature and hence omitted.

Proof of Lemma 4
Proof. For all z ∈ [c, ηc], we have:

−u00(z)z
u0(z)

≥ R(c, η)

This can be written as:

− d

dz
(lnu0(z)) ≥ R(c, η)

z

Integrating from c to ηc, we obtain:

− lnu0(ηc)− (− lnu0(c)) ≥ R(c, η) ln(ηc)−R(c, η) ln c

Thus,

ln
u0(c)
u0(ηc)

≥ ln (ηc)
R(c,η)

cR(c,η)
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and:
u0(c)
u0(ηc)

≥ ηR(c,η)

which establishes (8). The proof of (9) follows very similarly using the reverse inequality and
upper bound on risk aversion.

Proof of Proposition 1.
Proof. Let

ξ = [1/(1− γ)], ω = βξ.

Denote the left-hand side of (17) by B00. Pick B0 ∈ (B00,∞). Then, there is c0 ∈ (0, ω), such
that for all c ∈ (0, c0) :

M(c) =

Z λ

1

∙
u0(μθc)

c(1/ζ)u0(c)

¸
dμ < B0

The function M(c) is continuous in c on [c0, ω], and consequently, there is M ∈ (0,∞), such
that M(c) < M for all c ∈ [c0, ω]. Then, denoting max{B0,M} by B, we have that for all
c ∈ (0, ω]: Z λ

1

∙
u0(μθc)

c(1/ζ)u0(c)

¸
dμ < B, (51)

Define δ0 ∈ (0, 1) be defined by:

δ0 = min{ 1

λ(1/γ)
,
1

γλ

"
(λ1−θ − 1)
(λ(1/γ)−θ − 1)

#
,
(β − α)

γβα1/γ
1

B
} (52)

Consider any δ ∈ (0, δ0) and the economy (u, δ, f, F ) as described in the proposition. Fix the
economy in what follows. Suppose that contrary to the proposition, there is some ȳ > 0, such
that,

H(y) = α(x(y))γ ≥ y

Observe that for y > α
1

1−γ ,
α(x(y))γ ≤ αyγ < y. (53)

Thus, the function H(y) = α(x(y))γ has a strictly positive positive fixed point. Denote the
largest fixed point of H(y) by z; note that by (53) and continuity of H in y, there is a largest
fixed point of H(y).We now proceed to obtain a sequence of results that follow from this fact.
It is useful to separate the results into steps.

Step 1: [z < αξ].
Since z is a fixed point of H, we have:

α(z − c(z))γ = α(x(z))γ = z (54)

so that:
c(z) = z − (z/α)(1/γ) (55)

And, since c(z) > 0, we obtain:
z > (z/α)(1/γ) (56)

and this yields z < α[1/(1−γ)] = αξ.
Step 2: [z < (δλγ)ζαξ, using the Ramsey-Euler equation with initial stock z].
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With initial stock z, the Ramsey-Euler equation (6) yields:

u0(c(z)) =
δ

β − α

Z β

α
rγ(x(z))γ−1u0(c(r(x(z))γ))dr (57)

This can be rewritten as:

(x(z))1−γ

δγ
=

1

β − α

Z β

α
r
u0(c(r(x(z))γ))

u0(c(z))
dr (58)

Substituting the information from (54) into (58), we obtain:

(z/α)(1−γ)/γ

δγ
=

1

β − α

Z β

α
r
u0(c((r/α)z)
u0(c(z))

dr (59)

Since c is strictly increasing, and r > α for all r ∈ (α, β], we have c((r/α)z) > c(z) for all
r ∈ (α, β], and so:

u0(c((r/α)z)
u0(c(z))

< 1 for all r ∈ (α, β] (60)

and consequently,
(z/α)(1−γ)/γ

δγ
<

1

β − α

Z β

α
rdr =

α+ β

2
(61)

so that:
(z/α)(1−γ)/γ

δγ
< β (62)

This implies that (z/α)(1/ζ) < (δβγ) = (δλγ)α and so:

z < (δλγ)ζα(ζ+1) = (δλγ)ζαξ (63)

This becomes a particularly useful bound in the next step.
Step 3: [A lower bound on the consumption function.]
The principal difficulty in deriving additional properties of z is that we have very little

information about the optimal consumption function for output levels beyond z (other than
that 0 < c(y) < y and c is increasing in y). What one would like is to have the optimal
consumption function bounded below by a function, whose behavior is known for output
levels beyond z. Define m : R+ → R by:

m(y) = y − (y/α)(1/γ) (64)

Note that, by (55) and (64), m(z) = c(z) > 0, so that m(z) is the optimal consumption when
the stock is z. We would like to show that c(y) ≥ m(y) > 0 for y ∈ [z, λz], so that c(y) is
bounded below by the positive function m(y) for y ∈ [z, λz].

We first note that:

m0(y) = 1− (1/α(1/γ)γ)y(1−γ)/γ
= 1− [y(1/ζ)/α(1/γ)γ] (65)
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Thus, we have, using (63) in (65),

m0(z) = 1− [z(1/ζ)/α(1/γ)γ]
> 1− δλ (66)

Since δλ < 1 (using (52) and δ < δ0), we must have m0(z) > 0.
As z is the largest fixed point of H(y), we have:

H(y) = α(x(y))γ < y for all y > z (67)

so that:
c(y) > y − (y/α)1/γ = m(y) for all y > z (68)

The information in (68) is, of course, not useful unless we know that m(y) > 0. We now
proceed to show that m0(y) > 0, and m(y) > m(z) > 0 for all y ∈ (z, λz].

For y ∈ [z, λz], we have, using (63),

y ≤ λz ≤ λ(δλγ)ζαξ = (δλ(1/γ)γ)ζαξ (69)

and:
[y(1/ζ) ≤ (δλ(1/γ)γ)α(1/γ)

so that [y(1/ζ)/α(1/γ)γ] ≤ δλ(1/γ). Using this in (65), we get:

m0(y) = 1− [y(1/ζ)/α(1/γ)γ] ≥ 1− δλ(1/γ) > 0 for all y ∈ [z, λz] (70)

since δλ(1/γ) < 1 (follows from (52) and δ < δ0). This implies, of course that:

m(y) > m(z) = c(z) > 0 for all y ∈ (z, λz]. (71)

Step 4: [The Basic Ramsey-Euler Inequality]
Since we have for all y ∈ (z, λz], c(y) > m(y) > 0, we have for all r ∈ (α, β],

c((r/α)z) > m((r/α)z) = (r/α)z − [(r/α)(z/α)](1/γ) > 0 (72)

and so:
u0(c((r/α)z)) < u0((r/α)z − [(r/α)(z/α)](1/γ)) (73)

Using (73) in the Ramsey-Euler equation (59), one obtains:

(z/α)(1−γ)/γ

δγ
<

1

β − α

Z β

α
r
u0((r/α)z − [(r/α)(z/α)](1/γ))

u0(z − (z/α)(1/γ)) dr

and this yields the basic Ramsey-Euler inequality:

(z/α)(1−γ)/γ

δγ
<

1

β − α

Z β

α
r
u0(μz − μ(1/γ)(z/α)(1/γ))

u0(z − (z/α)(1/γ)) )dr (74)

where μ is short-hand for the function μ(r) = (r/α) for r ∈ [α, β].
Step 5: [Another Lower Bound]

25



We know from (52) and δ < δ0 that:

(λ1−θ − 1)
(λ(1/γ)−θ − 1) > δγλ (75)

We show that:

μz − μ(1/γ)(z/α)(1/γ) > μθz − μθ(z/α)(1/γ) = μθ[z − (z/α)(1/γ)] for all μ ∈ (1, λ] (76)

The consumption level at which the marginal utility is evaluated in the numerator of the
marginal rate of substitution in (74) is μz − μ(1/γ)(z/α)(1/γ), and (76) places a convenient
lower bound on this consumption.

To establish (76), define:

L(μ) =
(μ1−θ − 1)
(μ(1/γ)−θ − 1) for all μ > 1 (77)

Then, we have L0(μ) < 0 iff:

(μ(1/γ)−θ − 1)(1− θ)μ−θ < (μ1−θ − 1)((1/γ)− θ)μ(1/γ)−θ−1

This inequality can be written as:

(μ(1/γ)−θ − 1)(1− θ) < (μ1−θ − 1)((1/γ)− θ)μ(1/γ)−1

= ((1/γ)− θ)μ(1/γ)−θ − ((1/γ)− θ)μ(1/γ)−1

= ((1/γ)− 1)μ(1/γ)−θ + μ(1/γ)−θ(1− θ)− ((1/γ)− θ)μ(1/γ)−1

Canceling common terms, we then obtain:

−(1− θ) < ((1/γ)− 1)μ(1/γ)−θ − ((1/γ)− θ)μ(1/γ)−1 (78)

In order to determine whether (78) holds, we define the function:

f(μ) = ((1/γ)− 1)μ(1/γ)−θ − ((1/γ)− θ)μ(1/γ)−1 + (1− θ) for all μ ≥ 1

Note that:
f(1) = ((1/γ)− 1)− ((1/γ)− θ) + (1− θ) = 0 (79)

Further, we have:

f 0(μ) = ((1/γ)− θ)((1/γ)− 1)μ(1/γ)−θ−1 − ((1/γ)− θ)((1/γ)− 1)μ(1/γ)−2
= ((1/γ)− θ)((1/γ)− 1)μ(1/γ)−1[(1/μθ)− (1/μ)]

Thus, f 0(1) = 0, and f 0(μ) > 0 for all μ > 1, since θ ∈ (0, 1). This implies that f(μ) > f(1)
for all μ > 1, and so f(μ) > 0 for all μ > 1 by (79). Thus, the inequality (78) must hold for
all μ > 1, and so L0(μ) < 0 for all μ > 1. That is, L is decreasing on (1,∞), and so it attains
a minimum at λ on the interval (1, λ]. This means:

L(μ) ≥ (λ1−θ − 1)
(λ(1/γ)−θ − 1) for all μ ∈ (1, λ]
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and consequently, given (75), we have:

(μ1−θ − 1)
(μ(1/γ)−θ − 1) = L(μ) ≥ δγλ for all μ ∈ (1, λ]

Using (63), we also have:
z(1−γ)/γ

α(1/γ)
=

z(1/ζ)

α(ξ/ζ)
< δλγ

Thus, we obtain, for all μ ∈ (1, λ],
(μ1−θ − 1)
(μ(1/γ)−θ − 1) >

z(1−γ)/γ

α(1/γ)
(80)

We can rewrite (80) as:

(μ1−θ − 1)α(1/γ) > (μ(1/γ)−θ − 1)z(1−γ)/γ (81)

Multiplying through in (81) by μθz, we obtain for all μ ∈ (1, λ]
(μ− μθ)α(1/γ)z > (μ(1/γ) − μθ)z(1/γ)

so that:
(μ− μθ)z > (μ(1/γ) − μθ)(z/α)(1/γ) (82)

Transposing terms in (82), we have for all μ ∈ (1, λ],
μz − μ(1/γ)(z/α)(1/γ) > μθz − μθ(z/α)(1/γ) = μθ[z − (z/α)(1/γ)] (83)

This establishes our claim.
Step 6: [The Refined Ramsey-Euler Inequality]
Using (76) in the Ramsey-Euler inequality (74), we obtain:

(z/α)(1−γ)/γ

δγ
<

1

β − α

Z β

α
r
u0(μθc(z))
u0(c(z))

dr (84)

Note that the marginal rate of substitution inside the integral in (84) is now in the form
u0(ηc)/u0(c), with η a function of r.

Step 7: [The Final Step]
From (84):

1

δ
< γα(1−γ)/γ

1

β − α

Z β

α
r

u0(μθc(z))
z(1−γ)/γu0(c(z))

dr (85)

isolating the role of the discount factor. Further, using the fact that in the integral on the
right hand side of (85), r ≤ β, and z > c(z), we obtain:

1

δ
<

γβα(1−γ)/γ

(β − α)

Z β

α

u0(μθc(z))
c(z)(1−γ)/γu0(c(z))

dr (86)

Writing c for c(z), we finally obtain:

1

δ
<

γβα(1−γ)/γ

(β − α)

Z β

α

u0(μθc)
c(1/ζ)u0(c)

dr (87)
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Making the change of variable μ = (r/α) in (87), we obtain:

1

δ
<

γβα1/γ

(β − α)

Z λ

1

u0(μθc)
c(1/ζ)u0(c)

dμ

But given (52) and δ < δ0, this contradicts (51) and establishes the Proposition.
Proof of Proposition 2

Proof. First, we show that if (19) holds then there exists δ0 > 0 such that for every δ ∈ (0, δ0),
the economy (u, δ, f, F ) is nowhere bounded away from zero. Let θ ∈ (0, 1) be given, and
denote [(1 − θ)/θ] by θ0. Note that since R(c) is decreasing in c on (0, s), condition (19)
implies:

R(c) ↑ ∞ as c ↓ 0 on (0, s). (88)

Thus, we can find c0 ∈ (0, s
λθ
), such that:

R(λθc)− θ0 − 1 > (1
2
)R(λθc) for all c ∈ (0, c0) (89)

Our analysis that follows is for c ∈ (0, c0). In view of Proposition 1, it suffices to show that:

lim
c→0 sup

Z λ

1

∙
u0(μθc)

c(1/ζ)u0(c)

¸
dμ <∞ (90)

In order to show (90), we evaluate the integral:

I(c) =

Z λ

1

∙
u0(μθc)
u0(c)

¸
dμ (91)

for all c ∈ (0, c0). Pick an arbitrary c ∈ (0, c0). Using Lemma 4 and the fact that for c ∈ (0, c0),
R(.) is non-increasing on [c, λθc] , we have that for all μ ∈ (1, λ]:∙

u0(μθc)
u0(c)

¸
≤ 1

μθR(μθc)
(92)

while for μ = 1, the inequality in (92) holds trivially. Thus, (92) holds for all μ ∈ [1, λ], and
so:

I(c) =

Z λ

1

∙
u0(μθc)
u0(c)

¸
dμ ≤

Z λ

1

∙
1

μθR(μθc)

¸
dμ = J(c) (93)

To evaluate J(c), define t = μθ for all μ ∈ [1, λ], and denote λθ by λ0. Then, the change of
variable rule yields:

J(c) =

Z λ0

1

∙
1

θt[R(tc)−θ0]

¸
dt =

Z λ0

1

∙
1

θtρ(tc)

¸
dt (94)

where ρ(tc) ≡ R(tc)− θ0 > 1 for all t ∈ [1, λ0] by choice of c ∈ (0, c0). Since ρ is decreasing in
its argument, we have:

θJ(c) =

Z λ0

1

∙
1

tρ(tc)

¸
dt ≤

Z λ0

1

∙
1

tρ(λ
0c)

¸
dt = K(c) (95)
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Now, since a(c) ≡ ρ(λ0c) is not itself a function of t, and a(c) > 1, the integral K(c) can be
evaluated as:

K(c) =
1

(a(c)− 1) −
1

(a(c)− 1)(λ0)a(c)−1 ≤
1

(a(c)− 1) (96)

Thus, we obtain for an arbitrary c ∈ (0, c0),

I(c) ≤ J(c) ≤ K(c)

θ
≤ 1

θ(a(c)− 1) ≤
2

θR(λ0c)
(97)

by using (89). Then, for an arbitrary c ∈ (0, c0),Z λ

1

∙
u0(μθc)

c(1/ζ)u0(c)

¸
dμ =

I(c)

c(1/ζ)
≤ (2/θ)

c(1/ζ)R(λ0c)

=
(λ0)(1/ζ)(2/θ)
(λ0c)(1/ζ)R(λ0c)

(98)

Let
Q = lim

c→0 inf [R(c)c
1
ζ ].

Then, (19) implies Q > 0 and we can find c00 < c0, such that for all c ∈ (0, c00),
c(1/ζ)R(c) ≥ (Q/2) (99)

Thus, for all c ∈ (0, c00
λ0 ), we have λ

0c < c00, and so by (99),

(λ0c)(1/ζ)R(λ0c) ≥ (Q/2)
Also, for all c ∈ (0, c00/λ0), we have c ∈ (0, c0) and so (98) holds. Consequently, for all
c ∈ (0, c00

λ0 ), Z λ

1

∙
u0(μθc)

c(1/ζ)u0(c)

¸
dμ ≤ (λ0)(1/ζ)(2

θ
)(
2

Q
)

which establishes (90), given θ ∈ (0, 1). This establishes the first part of the proposition.
Next, we show that if there is some δ ∈ (0, 1) such that the economy (u, δ, f, F ) is nowhere

bounded away from zero, then (19) holds. Suppose to the contrary that there exists δ ∈ (0, 1)
such that the economy (u, δ, f, F ) is nowhere bounded away from zero but:

lim
c→0 inf [R(c)c

(1/ζ)] = 0 (100)

Proposition 8 in Section 5 provides a sufficient condition (47) for the economy to be bounded
away from zero (BAZ), a property that violates NBZ. Since the economy (u, δ, f, F ) exhibits
NBZ, (47) cannot hold and therefore:

δ
γ

β − α
[ lim
x→0 sup{

Z β

α

u0(rxγ)
u0(αxγ − x)x1−γ

rdr}] ≤ 1

and setting μ = r
α , λ =

β
α , we have :

lim
x→0 sup

Z λ

1

∙
u0(μαxγ)

x1−γu0(αxγ − x)

¸
dμ <∞ (101)
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Given x > 0, we write the integral in (101) as:

I(x) =

Z λ

1

∙
u0(μαxγ)

x1−γu0(αxγ)

¸ ∙
u0(αxγ)

u0(αxγ − x)

¸
dμ (102)

The second term in the integral in (102) does not involve μ, and we proceed to find a positive
lower bound for it. To this end, we make some preliminary observations. Note that since
R(c) is decreasing in c on (0, s) we must have [−u00(c)] also decreasing in c on (0, s). Further,
defining x0 = (α/2)ξ, we see that for all x ∈ (0, x0),

x1−γ ≤ (α/2) (103)

Finally, defining z = (α/2)xγ for all x > 0, we note by (100), that we can find x00 ∈ (0, x0)
such that for all x ∈ (0, x00),

βxγ < s.

and
[R(z)z(1/ζ)][

2

α
](1/γ) < (1/2) (104)

For x ∈ (0, x00), we evaluate:

J(x) =
u0(αxγ − x)

u0(αxγ)
=
[u0(αxγ − x)− u0(αxγ)] + u0(αxγ)

u0(αxγ)

= 1 +
[−u00(m)]x
u0(αxγ)

(105)

where αxγ − x ≤ m ≤ αxγ is given by the mean value theorem. Since [−u00(c)] is decreasing
in c on (0, βxγ ], (105) yields:

J(x) ≤ 1 +
[−u00(αxγ − x)]x

u0(αxγ)
= 1 +

[−u00(αxγ − x)]x

u0(αxγ − x)

∙
u0(αxγ − x)

u0(αxγ)

¸
= 1 +

[−u00(αxγ − x)]x

u0(αxγ − x)
J(x) = 1 +

[−u00(αxγ − x)](αxγ − x)

u0(αxγ − x)

∙
x

(αxγ − x)

¸
J(x)

= 1 +R(αxγ − x)J(x)

∙
x

(αxγ − x)

¸
(106)

Now, note that by (103),

(αxγ − x) = (α/2)xγ + [(α/2)xγ − x]

≥ (α/2)xγ (107)

So, using (107) in (106), we get:

J(x) ≤ 1 +R(αxγ − x)J(x)

∙
x

(αxγ − x)

¸
≤ 1 +R(αxγ − x)J(x)x1−γ

∙
xγ

(αxγ − x)

¸
≤ 1 +R(αxγ − x)J(x)x1−γ(2/α) (108)

Further, since R(c) is decreasing in c on (0, βxγ ], we can use (107) in (108) to write:

J(x) ≤ 1 +R((α/2)xγ)J(x)x1−γ(2/α) (109)
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Since z = (α/2)xγ , we have x = (2/α)(1/γ)z(1/γ) and so:

x1−γ = (2/α)(1/ζ)z(1/ζ) (110)

Using (110) in (109), we get:

J(x) ≤ 1 +R(z)z(1/ζ)(2/α)(1/γ)J(x)

≤ 1 + (1/2)J(x) (111)

the last line of (111) following from (104). Thus,

J(x) ≤ 2 (112)

and so:

2I(x) ≥
Z λ

1

∙
u0(μαxγ)

x1−γu0(αxγ)

¸
dμ (113)

Using (113) in (101), we get:

lim
x→0 sup

Z λ

1

∙
u0(μαxγ)

x1−γu0(αxγ)

¸
dμ <∞ (114)

Denoting αxγ by t, we see that x = t(1/γ)α(1/γ), and so

x1−γ = t(1/ζ)α(1/ζ) (115)

Using (115) in (114), we get:

lim
t→0 sup

Z λ

1

∙
u0(μt)

t(1/ζ)u0(t)

¸
dμ <∞. (116)

Using Lemma 4 and the fact that R(c) is decreasing in c on (0, βxγ ] we have:

lim
t→0 sup

Z λ

1

∙
1

t(1/ζ)μR(t)

¸
dμ <∞ (117)

Using Corollary 2 and the fact that for the chosen production function (15), E[D+f(0, r)] =
∞, we have that since the economy is nowhere bounded away from zero,

lim
c→0 supR(c) =∞.

So, since R(c) is decreasing in c on (0, s], we must have:

R(c) ↑ ∞ as c ↓ 0 on (0, s). (118)

It follows from (118) that we can find x̄ ∈ (0, x00), such that for all x ∈ (0, x̄), we have:

(i) R(αxγ) > 1

(ii) λR(αx
γ)−1 > 2

(119)
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Confining our attention then to x ∈ (0, x̄), and continuing to denote αxγ by t, we see that:

K(t) ≡
Z λ

1

∙
1

t(1/ζ)μR(t)

¸
dμ =

1

t(1/ζ)

Z λ

1

∙
1

μR(t)

¸
dμ

=
1

t(1/ζ)

"
1

[R(t)− 1] −
1

[R(t)− 1]λR(t)−1
#
≥ 1

t(1/ζ)

∙
1

2[R(t)− 1]
¸

≥ 1

2R(t)t(1/ζ)
(120)

the first inequality in (120) following from (119). Combining (117) and (120), we obtain:

lim
t→0 sup

∙
1

2R(t)t(1/ζ)

¸
≤ lim

t→0 sup
Z λ

1

∙
1

t(1/ζ)μR(t)

¸
dμ <∞

which implies that:
lim
t→0 inf [R(t)t

(1/ζ)] > 0

This contradicts (100) and establishes the second part of the Proposition.

Proof of Proposition 3
Proof. Fix δ ∈ (0, δ0).It is sufficient to show that in the economy (f, F, u, δ),the optimal
consumption policy function, c satisfies:

f(y − c(y), α) = (y − c(y))
1
2 < y for all y > 0 (121)

Suppose, contrary to (121), that there is some y > 0, such that:

(y − c(y))
1
2 ≥ y

Note that for y > β2, we have (y − c(y))
1
2 ≤ y

1
2 < βy

1
2 < y. Thus, we have:

z ≡ sup{y > 0 : (y − c(y))
1
2 ≥ y} (122)

to be well-defined. The definition of z in (122) entails that:

(y − c(y))
1
2 < y for all y > z. (123)

and continuity of c implies that:
(z − c(z))

1
2 ) = z (124)

From (123) and (124),
(i) c(y) > y − y2 for all y > z
(ii) c(z) = z − z2

¾
(125)

We now break up the proof into several steps.
Step 1: (Ramsey -Euler equation with z as initial stock):
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Evaluating the Ramsey-Euler equation (6) at y = z, we have:

u0(c(z)) = δ

Z β

α
u0(c(f(x(z), r)))f 0(x(z), r)]dF (r)

=
δ

2(β − 1)
Z β

1
u0(c(r(z − c(z))

1
2 )))

r

(z − c(z))
1
2

d(r)

Using (124), we obtain:
1

δ
=

1

2z(β − 1)
Z β

1
r
u0(c(rz))
u0(c(z))

)dr (126)

Step 2: [An upper bound on the largest fixed point of the map H(y, α) = f(x(y), α) =

(y − c(y))
1
2 ]

Using (126), and noting that g(rz) ≤ g(z) for all r ∈ [1, β], we get:

1

δ
≤ 1

2z(β − 1)
Z β

1
rdr =

β + 1

4z
. (127)

This yields the following upper bound on z :

z ≤ δ(β + 1)

4
<

δ0(β + 1)
4

=
√
δ0
[(β + 1)

√
δ0]

4
<
√
δ0

1

(β + 1)

<
φ(θ)

(β + 1)
(128)

the third inequality in (128) following from (20), and the last inequality in (128) following
from (24)(i).

Step 3: [A lower bound on the optimal consumption function]
We show that the optimal consumption function c has the following lower bound:

c(rz) > rθ(z − z2) for all r ∈ J ≡ (1, β] (129)

Pick any r ∈ J, and define:

w(x) = rx for all x ≥ 0 (130)

Clearly, w is a convex function of x, and so we have:

r1+θ − r = w(1 + θ)− w(1) ≤ w0(r1+θ)θ
= r1+θθ ln r (131)

and:

r2 − rθ = w(2)−w(θ) ≥ w0(θ)(2− θ)

= rθ(2− θ) ln r (132)
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Using (131) and (132), we obtain:

r1+θ − r

r2 − rθ
≤ rθ

(2− θ)
≤ βθ

(2− θ)
(133)

Now, note that:

(r − rθ)(r + 1)

r2 − rθ
=

r2 − r1+θ + r − rθ

r2 − rθ

=
r2 − rθ

r2 − rθ
− r1+θ − r

r2 − rθ
= 1− r1+θ − r

r2 − rθ

≥ 1− βθ

(2− θ)
= φ(θ) (134)

where the inequality on the last line of (134) follows from (133). Thus, we get:

(r − rθ)

r2 − rθ
≥ φ(θ)

(r + 1)
≥ φ(θ)

(β + 1)
(135)

Combining (128) and (135), we have:

z <
φ(θ)

(β + 1)
≤ (r − rθ)

(r2 − rθ)
for all r ∈ J (136)

Noting that (r2 − rθ) > 0, this can be rewritten as:

(r2z − rθz) = (r2 − rθ)z < (r − rθ) (137)

Multiplying through by z > 0, we get (r2z2 − rθz2) < (rz − rθz) which, after transposing
terms, yields:

rθ(z − z2) < (rz − r2z2) (138)

Now, using (125)(i) and (138), we have for all r ∈ J,

g(rz) > (rz − r2z2) > rθ(z − z2)

establishing claim (129).
Step 4: [The Ramsey-Euler Inequality]
Using (126), (125)(ii) and claim (129), we obtain:

1

δ
<

1

2(β − 1)z
Z β

1
r
u0(rθ(z − z2))

u0(z − z2)
dr

<
1

2(β − 1)
Z β

1
r

u0(rθ(z − z2))

(z − z2)u0(z − z2)
dr

=
1

2(β − 1)
Z β

1
r
u0(rθc)
cu0(c)

dr (139)

where c ≡ z − z2.
Step 5: [Evaluating an Integral]
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The idea now, given Step 4, is to show that the right hand side of (139) is actually less
than one, by choice of θ in (24)(ii). This would be a contradiction to (139) since the left-hand
side of (139) is clearly greater than one. This contradiction would establish (121) and hence
the Proposition.

To show that the right hand side of (139) is less than one, we evaluate the integral ap-
pearing in it. Recall that ν = (1/θ) > 1. Define the function ψ(r) as follows:

ψ(r) = −e(1/cν)((1/r)−1) for all r ≥ 1 (140)

Note that:

ψ0(r) =
∙
1

r2

¸ ∙
1

cν

¸
e(1/c

ν)((1/r)−1) (141)

Thus, we can write:

1− e(1/c
ν)((1/β)−1) = ψ(β)− ψ(1) =

Z β

1
ψ0(r)dr

=

Z β

1

∙
1

r2

¸ ∙
1

cν

¸
e(1/c

ν)((1/r)−1)dr (142)

which yields: Z β

1

"
e(1/c

ν)((1/r)−1)

r2cν

#
dr < 1 (143)

Now returning to the integral appearing in the right-hand side of (139), we have:

ru0(rθc)
u0(c)

=
νe(1/rc

ν)

rθcν+1
cν+1

νe(1/cν)
=

e(1/c
ν)((1/r)−1)

rθ
(144)

Using (144), we obtain:Z β

1

ru0(rθc)
cu0(c)

dr =
1

c

Z β

1

ru0(rθc)
u0(c)

dr =
1

c

Z β

1

e(1/c
ν)((1/r)−1)

rθ
dr

=
cν

c

Z β

1
r2−θ

e(1/c
ν)((1/r)−1)

r2−θcνrθ
dr ≤ cν−1β2−θ

Z β

1

e(1/c
ν)((1/r)−1)

r2cν
dr

< cν−1β2−θ (145)

the last line of (145) following from (143). Using (145) in (139), we get:

1

δ
<

1

2(β − 1)
Z β

1
r
u0(rθc)
cu0(c)

dr

<
cν−1β2−θ

2(β − 1) <
cν−1β2

2(β − 1) <
β2

2ν(β − 1)
< 1 (146)

the last but one inequality in (146) following from the fact that (using (23) and (128)),

0 < c = z − z2 < z < 1/(β + 1) < (1/2)
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and ν > 1, while the last inequality in (146) follows from (24)(ii). Since δ ∈ (0, 1), (146) yields
a contradiction, establishing (121) and hence the Proposition.

Proof of Proposition 4
Proof. Suppose not. Then, there exists a sequence {yn}∞n=1 → 0, yn ∈ R++ such that

f(x(yn)) ≤ yn,∀n. (147)

Let xn = x(yn). Then, using Lemma 1 and(147)

0 < xn < yn, f(xn) ≤ yn,∀n ≥ N. (148)

Further, {xn}→ 0. Using (6), (148) and strict concavity of u, for all n ≥ N,

u0(f(xn)− xn) ≥ u0(yn − xn) = u0(c(yn))
= δE[u0(c(f(xn, r)))f 0(xn, r)] ≥ δE[u0(f(xn, r))f 0(xn, r)]

so that

δE[
u0(f(xn, r))

u0(f(xn)− xn)
f 0(xn, r)] ≤ 1,∀n ≥ N.

As {xn}→ 0 and xn > 0,∀n, we obtain a contradiction to (27). The proof is complete

Proof of Corollary 1
Proof. Observe that

lim
x→0 sup

f(x, r)

f(x)− x
= lim

x→0 sup
f(x, r)

f(x)

f(x)

f(x)− x

= lim
x→0 sup

f(x, r)

f(x)

f(x)

x
f(x)

x − 1
= n(r).

Since σ > 1, for each r ∈ A, there exists y(r) > 0 such that for all x ∈ (0, y(r))
f(x, r)

f(x)− x
< σn(r)

so that
u0(f(x, r))
u0(f(x)− x)

f 0(x, r)) >
u0(σn(r)(f(x)− x))

u0(f(x)− x)
f 0(x, r),∀x ∈ (0, y(r)).

In particular, therefore,

lim
x→0 inf

u0(f(x, r))
u0(f(x)− x)

f 0(x, r)) ≥ lim
x→0 inf

u0(σn(r)(f(x)− x))

u0(f(x)− x)
f 0(x, r). (149)

Choose any sequence {xk}→ 0. For each k, let gk(r) be the function:

gk(r) =
u0(f(xk, r))

u0(f(xk)− xk)
f 0(xk, r)
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Observe that for each k, gk(r) ≥ 0 and is integrable (with respect to the probability measure
corresponding to the distribution function F ). Using Fatou’s lemma12:

lim
k→∞

inf

Z
gk(r)dF (r) ≥

Z
[ lim
k→∞

inf gk(r)]dF (r)

so that

δ lim
k→∞

inf E[
u0(f(xk, r))

u0(f(xk)− xk)
f 0(xk, r)] ≥ δE[ lim

k→∞
inf

u0(f(xk, r))
u0(f(xk)− xk)

f 0(xk, r)]

≥ δE[ lim
k→∞

inf
u0(f(x, r))
u0(f(x)− x)

f 0(x, r)]

and as this holds for every sequence {xk}→ 0 we have that

δ lim
x→0 inf E[

u0(f(x, r))
u0(f(x)− x)

f 0(x, r)] ≥ δE[ lim
x→0 inf

u0(f(x, r))
u0(f(x)− x)

f 0(x, r)].

≥ δE[ lim
x→0 inf

u0(σn(r)(f(x)− x))

u0(f(x)− x)
f 0(x, r)],using (149)

> 1, using (35).

Thus,(27) holds and the result follows from Proposition 4. QED.

Using Corollary 1, we can derive the following lemma which is useful in the proof of other
results.

Lemma 8 Let g(η) : (1,∞)→ [0, 1] be a continuous and non-increasing function such that:

lim
c→0 inf

u0(ηc)
u0(c)

≥ g(η),∀η > 1

Suppose
δE[g(n(r))D+f(0, r)] > 1. (150)

Then, the economy exhibits growth with certainty near zero.
Suppose, further, that g(n) > 0. Then, a sufficient condition for growth with certainty

near zero is given by

δE[D+f(0, r)] >
1

g(n)
. (151)

If, in particular, E[D+f(0, r)] = +∞, then the economy exhibits growth with certainty near
zero for every δ ∈ (0, 1).

Proof. Under (150) and using continuity of g, there exists σ > 1 such that

δE[g(σn(r))D+f(0, r)] > 1 (152)

12See, for example, Theorem 3.3 in Bhattacharya and Waymire (1990).
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Since,

lim
x→0 inf

u0(σn(r)(f(x)− x))

u0(f(x)− x)
≥ g(σn(r))

for any � > 0, there exists h > 0 such that for all x ∈ (0, h),
u0(σn(r)(f(x)− x))

u0(f(x)− x)
≥ g(σn(r))− �,

so that

δE[ lim
x→0 inf

u0(σn(r)(f(x)− x))

u0(f(x)− x)
f 0(x, r)] ≥ δE[{g(σn(r))− �} lim

x→0 inf f
0(x, r)]

= δE[{g(σn(r))− �}D+f
0(0, r)]

and since � > 0 is arbitrary

δE[ lim
x→0 inf

u0(σn(r)(f(x)− x))

u0(f(x)− x)
f 0(x, r)] ≥ δE[g(σn(r))D+f

0(0, r)]

> 1 using (152).

Thus, (35) holds and from Corollary 1, we have that economy exhibits growth with certainty
near zero. Using the fact that n(r) ≤ n,∀r ∈ A and that g(.) is non-increasing, it follows
that if g(n) > 0,(151) implies (150). If, in addition, E[D+f(0, r)] = +∞, (151) is satisfied for
every δ ∈ (0, 1). This completes the proof.

Proof of Proposition 5
Proof. Using (33), we have from (37) that there exists k > 1 such that

δE[(
1

n(r)
)kRD+f(0, r)] > 1 (153)

Then, we can find ε > 0, such that for all c ∈ (0, ε), we have:
R(c) ≤ kR. (154)

For any η > 1, for all c ∈ (0, εη ), ηc < ε so that, using Lemma 4, we have

u0(ηc)
u0(c)

≥ (1
η
)kR.

Defining

g(η) = (
1

η
)kR,

we can check that g(η) : (1,∞)→ [0, 1] is a continuous and non-increasing function such that:

lim
c→0 inf

u0(ηc)
u0(c)

≥ g(η),∀η > 1

and, using (153),
δE[g(n(r))D+f(0, r)] > 1.
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The proposition now follows from Lemma 8.
Proof of Lemma 6

Proof. Choose any b < 1. Using (40), there exists h > 0 such that for all z ∈ (0, h),
u0(z)z
u(z)

≥ bκ

so that
d

dz
[lnu(z)] ≥ bκ

z
= bκ

d

dz
[ln z]. (155)

Choose any c0 ∈ (0, hη ). Then, ηc0 < h,and integrating both sides of (155) from c0 to ηc0 we
have:

lnu(ηc0)− lnu(c0) ≥ bκ ln η

so that
u(ηc0)
u(c0)

≥ ηbκ,∀c0 ∈ (0, h
η
). (156)

First, we establish (42). Define v(c) = u(ηc) for all c ≥ 0. Then v(0) = u(0) = 0. By
the generalized law of mean13 (also known as the Cauchy Mean Value Theorem), we have
ξ ∈ (0, c0) such that:

v(c0)− v(0)

u(c0)− u(0)
=

v0(ξ)
u0(ξ)

(157)

Given the definition of v, we have v0(c) = u0(ηc)η for all c > 0. Thus, (157) can be written as:

u(ηc0)
u(c0)

=
u0(ηξ)η
u0(ξ)

(158)

since u(0) = v(0) = 0. Using (156) in (158), we have:

u0(ηξ)
u0(ξ)

> η−1
u(ηc0)
u(c0)

≥ ηbκ−1.

Thus, for any c0 ∈ (0, hη ), there exists ξ ∈ (0, c0) such that

u0(ηξ)
u0(ξ)

≥ ηbκ−1

so that

lim
c→0 sup

u0(ηc)
u0(c)

≥ ηbκ−1. (159)

As (159) holds for arbitrary b < 1, we have (42).
Next, we establish (43). Choose any c ∈ (0, hη ). Then,

u0(ηc)
u0(c)

= [
u0(ηc)ηc
u(ηc)

][
u0(c)c
u(c)

]−1[
u(ηc)

u(c)
]
1

η

≥ [
u0(ηc)ηc
u(ηc)

][
u0(c)c
u(c)

]−1[
1

η
ηbκ], using (156),

13See, for example, Goldberg (1964), Theorem 7.7C, p.182.
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so that:

lim
c→0 inf

u0(ηc)
u0(c)

≥ lim
c→0 inf[

u0(ηc)ηc
u(ηc)

u0(c)c
u(c)

]ηbκ−1

≥ κ

K
ηbκ−1, using (40), (41) and K > 0,

and as this holds for every b < 1, we have

lim
c→0 inf

u0(ηc)
u0(c)

≥ κ

K
ηκ−1

yielding (43).

Proof of Proposition 7
Proof. Defining

g(η) =
κ

K
ηκ−1,

we can check that g(η) : (1,∞) → [0, 1] is a continuous and non-increasing function where
(using Lemma 6):

lim
c→0 inf

u0(ηc)
u0(c)

≥ g(η),∀η > 1

Under (44), κ > 0 and
δE[g(n(r))D+f(0, r)] > 1.

The proposition now follows from Lemma 8.
Proof of Lemma 7

Proof. Choose any initial stock y > 0. There exists N ≥ 1, such that yN < y. Set α(y) = yN .
Let {eyt}∞t=0 be the deterministic sequence defined by: ey0 = y, eyt+1 = H(eyt), t ≥ 0. Then,

Pr{yt(y, ω) ≥ eyt,∀t ≥ 0} = 1.
Further, as f, x(.) are non-decreasing in y, H(y) is non-decreasing in y. One can check by
induction, that eyt+1 = H(eyt) ≥ f(x(α(y))) ≥ α(y),∀t ≥ 0. This concludes the proof.

Proof of Proposition 8
Proof. Suppose not. Then, there exists �1 > 0 such that

f(x(y)) < y,∀y ∈ (0, �1). (160)

Using (6), and strict concavity of u, for every y ∈ (0, �2),

u0(c(y)) = δE[u0(c(f(x(y), r)))f 0(x(y), r)]
≥ δE[u0(f(x(y), r))f 0(x(y), r)]

and since, using (160), c(y) = y − x(y) > f(x(y))− x(y) > 0,∀y ∈ (0, �2), we have

u0(f(x(y))− x(y)) > δE[u0(f(x(y), r))f 0(x(y), r)],∀y ∈ (0, �2),

40



As x(y) > 0 and continuous in y, this implies that

u0(f(x)− x) > δE[u0(f(x, r))f 0(x, r)],∀x ∈ (0, x(�2)),

that contradicts (47). The proof is complete.

Proof of Corollary 5
Proof. Observe that

f(x, r)

f(x)− x
=

f(x, r)

f(x)

f(x)

x
f(x)

x − 1
Since σ > 1 and f(x,r)

f(x) → μ(r) uniformly in r on A as x → 0, there exists � > 0, such that

∀x ∈ (0, �),∀r ∈ A,

f(x, r)

f(x)

f(x)

x
f(x)

x − 1
< σn(r),

so that
u0(f(x, r))
u0(f(x)− x)

f 0(x, r) >
u0(σn(r)(f(x)− x))

u0(f(x)− x)
f 0(x, r).

and therefore,

lim
x→0 sup δE[

u0(f(x, r))
u0(f(x)− x)

f 0(x, r)] ≥ lim
x→0 sup δE[

u0(σn(r)(f(x)− x))

u0(f(x)− x)
f 0(x, r)]

> 1, using (49).

Thus, (47) holds. The result follows from Propositions 8. QED.
Proof of Proposition 9

Proof. Under (50), there exists σ > 1 such that

δ(σn)κ−1E[D+f(0, r)] > 1.

Then,

δ lim
x→0 supE[

u0(σn(r)(f(x)− x))

u0(f(x)− x)
f 0(x, r))] ≥ δ lim

x→0 sup{
u0(σn(f(x)− x))

u0(f(x)− x)
}E[f 0(x, r)]

≥ δ(σn)κ−1 lim
x→0 supE[f

0(x, r)], using (42),

= δ(σn)κ−1E[D+f(0, r)] > 1.

From Corollary 5, we have that the economy is bounded away from zero.
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