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1 Introduction

This paper is an impressionistic overview of some results on Markov processes that arise in

the study of a particular class of random dynamical systems. A random dynamical system is

described by a triplet (S,Γ, Q) where S is the state space (for example, a metric space), Γ an

appropriate family of maps on S into itself (interpreted as the set of all possible laws of motion)

and Q is a probability measure on (some σ-field of) Γ.

The evolution of the system can be described as follows: initially, the system is in some state

x; an element α1 of Γ is chosen randomly according to the probability measure Q and the system

moves to a state X1 = α1(x) in period one. Again, independently of α1, an element α2 of Γ

is chosen according to the probability measure Q and the state of the system in period two is

obtained as X2 = α2(α1(x)). In general, starting from some x in S, one has

Xn+1(x) = αn+1(Xn(x)), (1.1)

where the maps (αn) are independent with the common distribution Q. The initial point x can

also be chosen (independently of (αn)) as a random variable X0. The sequence Xn of states

obtained in this manner is a Markov process and has been of particular interest in developing

stochastic dynamic models in many disciplines. With specific assumptions on the structure of

S and Γ it has been possible to derive strong results on the asymptotic behavior of Xn.

Random dynamical systems have been particularly useful for modeling long run evolution of

economic systems subject to exogenous random shocks. The framework (1.1) can be interpreted

as a descriptive model ; but, one may also start with a discounted (stochastic) dynamic program-

ming problem, and directly arrive at a stationary optimal policy function, which together with

the exogenously given law of transition describes the optimal evolution of the states in the form

(1.1). Of particular significance are results on the “inverse optimal problem under uncertainty”

due to Mitra (1998) and Montrucchio and Privileggi (1999) which assert that a very broad class

of random systems (1.1) can be so interpreted.
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The literature exploring (1.1) is already vast and growing. Given the space limitations, this

review is primarily restricted to the case when S is an interval (non-degenerate) in R, or a closed

(nonempty) subset of Rℓ, and Γ is a family of monotone maps from S into S. Some extensions

to more general framework and applications are also outlined. Here I touch upon a few of the

issues and provide some references to definitive treatments.

(i) The existence, uniqueness and global stability of a steady state (an invariant distri-

bution) of random dynamical systems: Significant progress has been achieved when the laws of

motion satisfy either some “splitting” or “contraction”conditions (see, e.g., Dubins and Freed-

man (1966), Diaconis and Freedman (1999) Bhattacharya and Majumdar (1999, 2001) and the

review in B-M (2007, Chapter 3)). An awkward problem involving the existence question is

worth-noting. Consider S = [0, 1] or S = R+ and assume that γ(0) = 0 for all γ ∈ Γ. This

is a natural property of a law of motion in many population or economic models (viewed as a

production function, γ(0) = 0 means that zero input leads to zero output). The point mass

at 0 (the measure δ0) is obviously an invariant distribution. The challenge, then, is to find an

invariant distribution with support in (0, 1).

(ii) The nature of the invariant distribution. Suppose, for concreteness, that S is an

interval, and F is the distribution function on R of the unique invariant measure. Invoking a

standard decomposition property (see Loeve (1960, p. 130, 196), let (i) Fd be the step part (a

step function); (ii) Fac be the absolutely continuous part (with respect to the Lebesgue measure)

and (iii) FS be the singular part of F .

As a first step one would like to know whether (i) F is continuous (Fd ≡ 0) or whether (ii) F

is absolutely continuous or whether (iii) F is singular. At the next step, one would like to ask

questions of comparative statics : how does F (or the components (i) - (iii)) change if a parameter

in the model is allowed to change? Finally, one would like to compute (or approximate) F but

that typically requires more structure on the model.

All the questions are elusive. Take the standard approach of describing a Markov process

with state space S = R, and a transition function p(x,A). If for each x ∈ S, p(x, .) is absolutely
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continuous with respect to the Lebesgue measure, then if π is invariant under p(x,A), π is also

absolutely continuous with respect to the Lebesgue measure [see B-M (2007, Proposition 5.2 of

Chapter 5]. This result is to be contrasted with those in Section 6.2.

A study of (i.i.d) random iteration of quadratic maps (S = [0, 1], Γ = {f : f(x) = θx(1− x),

0 ≤ θ ≤ 4}, Q with a two point support) was initiated by Bhattacharya and Rao (1993). The

subsequent literature offers interesting examples on applications of splitting and open questions.

For a review of results when Γ is the quadratic family (the typical γ(x) = θx(1 − x) does not

satisfy the monotonicity property that is central here but does have ‘piecewise monotonicity’

which has often been used to invoke the splitting conditions: see Athreya and Bhattacharya

(2000); further extensions are in Athreya (2004)).

The processes considered in this article particularly when Γ is finite are not in general Har-

ris irreducible (see, e.g., Orey (1971) for a definition of Harris irreducibility). Therefore, the

standard techniques used for the study of irreducible Markov processes in the literature are not

applicable to many of the cases reviewed. This point was explored in detail in Ellner (1984)

who concluded that “it is surprising and unfortunate that the large classical theory based on

compactness and/or irreducibility conditions generally give little information about (1.1) as a

population model.” The reader interested in this issue is referred to Ellner (1984, Section 5).

(iii) Applications of the theoretical results to a few topics :

(a) turnpike theorems in the literature on descriptive and optimal growth under un-

certainty: when each admissible law of motion is monotone increasing, and satisfies the appro-

priate Inada-type ‘end point’ condition, Theorem 4.1 can be applied directly.

(b) estimation of the invariant distribution: as noted above, an important implication

of the “splitting theorems” is an estimate of the speed of convergence. This estimate is used

in Section 5 to prove a result on
√
n-consistency of the sample mean as an estimator of the

expected long run equilibrium value (i.e., the value of the state variable with respect to the

invariant distribution).
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2 Random Dynamical Systems

We consider random dynamical systems. Let S be a metric space and S be the Borel σ-field of

S. Endow Γ with a σ-field Σ such that the map (γ, x)→ (γ(x)) on (Γ× S, Σ⊗S into (S,S) is

measurable. Let Q be a probability measure on (Γ,Σ). On some probability space (Ω,̥, P ) let

(αn)
∞
n=1 be a sequence of independent random functions from Γ with a common distribution Q.

For a given random variable X0 (with values in S), independent of the sequence (αn)
∞
n=1, define

X1 ≡ α1(X0) ≡ α1X0 (2.1)

Xn+1 = αn+1(Xn) ≡ αn+1αn...α1X0 (2.2)

We write Xn(x) for the case X0 = x; to simplify notation we write Xn = αn...α1X0 for the more

general (random) X0. Then Xn is a Markov process with the stationary transition probability

p(x, dy) given as follows: for x ∈ S, C ∈ S,

p(x, C) = Q({γ ∈ Γ : γ(x) ∈ C}) (2.3)

The stationary transition probability p(x, dy) is said to be weakly continuous or to have the

Feller property if for any sequence xn converging to x, the sequence of probability measures

p(xn, ·) converges weakly to p(x, ·). One can show that if Γ consists of a family of continuous

maps, p(x, dy) has the Feller property.

3 Evolution

To study the evolution of the process (2.2), it is convenient to define the map T ∗ [on the space

M(S) of all finite signed measures on (S, S)] by

T ∗µ(C) =

∫

S

p(x, C)µ(dx) =

∫

Γ

µ(γ−1C)Q(dγ), µ ∈M(S). (3.1)
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Let P(S) be the set of all probability measures on (S, S). An element π of P(S) is invariant

for p(x, dy) (or for the Markov process Xn) if it is a fixed point of T
∗, i.e.,

π is invariant iff T ∗π = π (3.2)

Now write p(n)(x, dy) for the n-step transition probability with p(1) ≡ p(x, dy). Then p(n)(x, dy)

is the distribution of αn.....α1x. Define T
∗n as the n-th iterate of T ∗:

T ∗nµ = T ∗(n−1)(T ∗µ) (n ≥ 2), T ∗1 = T ∗, T ∗0 = Identity (3.3)

Then for any C ∈ S,

(T ∗nµ)(C) =

∫

S

p(n)(x, C)µ(dx), (3.4)

so that T ∗nµ is the distribution of Xn when X0 has distribution µ. To express T
∗n in terms of

the common distribution Q of the i.i.d. maps (αn), let Γ
n denote the usual Cartesian product

Γ×Γ× ...×Γ (n terms), and let Qn be the product probability Q×Q× ...×Q on (Γn, S⊗n) where

S⊗n is the product σ-field on Γn. Thus Qn is the (joint) distribution of α = (α1, α2, ..., αn). For

γ = (γ1, γ2, ..., γn) ǫΓ
n let

∼
γ denote the composition

∼
γ := γnγn−1...γ1 (3.5)

We suppress the dependence of γ̃ on n for notational simplicity. Then, since T ∗nµ is the

distribution of Xn = αn...α1X0, one has (T
∗nµ)(A) =Prob(X0 ǫ

∼
α
−1
A), where

∼
α = αnαn−1....α1.

Therefore, by the independence of
∼
α and X0,

(T ∗nµ)(A) =

∫

Γn
µ(

∼
γ
−1
A)Qn(dγ) (AǫS, µ ǫP(S)). (3.6)

Finally, we come to the definition of stability. A Markov process Xn is stable in distribution

if there is a unique invariant probability measure π such that Xn(x) converges weakly (or, in
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distribution) to π irrespective of the initial state x, i.e., if p(n)(x, dy) converges weakly to the

same probability measure π for all x.

In what follows, if g is a bounded S-measurable real valued function on S, we write

Tg(x) =

∫

S

g(y) p(x, dy) (3.7)

4 Splitting

If S is a (nonempty) compact metric space and Γ consists of a family of continuous functions

from S into S, then a fixed point argument ensures that there is an invariant probability measure

π∗. However, when Γ consists of monotone maps on a suitable subset S of Rℓ (into S), stronger

results on uniqueness and stability can be derived by using a ‘splitting’ condition, first studied

by Dubins and Freedman (1966).

4.1 Splitting and Monotone Maps

Let S be a nondegenerate interval (finite or infinite, closed, semiclosed, or open) and Γ a set of

monotone maps from S into S; i.e., each element of Γ is either a nondecreasing function on S or

a nonincreasing function.

We assume the following splitting condition:

(H) There exist z0 ∈ S, χ̃ > 0 and a positive N such that

(1) P (αNαN−1...α1x ≤ z0∀x ∈ S) ≥ χ̃,

(2) P (αNαN−1...α1x ≥ z0∀x ∈ S) ≥ χ̃.

Note that conditions (1) and (2) in (H) may be expressed, respectively, as

QN({γ ∈ ΓN : γ̃−1[x ∈ S : x ≤ z0] = S}) ≥ χ̃, (4.1)
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and

QN({γ ∈ ΓN : γ̃−1[x ∈ S : x ≥ z0] = S}) ≥ χ̃. (4.2)

Recall that γ̃ = γNγN−1...γ1.

Denote by dK(µ, ν) the Kolmogorov distance on P(S). That is, if Fµ, Fν denote the distri-

bution functions (d.f.) of µ and ν, respectively, then

dK(µ, ν) : = sup
x∈R

|µ((−∞, x] ∩ S)− ν(−∞, x] ∩ S)|

≡ sup
x∈R

|Fµ(x)− Fν(x)| , µ, ν ∈ P((S)). (4.3)

Remark 4.1 First, it should be noted that convergence in the distance dK on P(S) implies

weak convergence in P(S). Secondly, (P(S), dK) is a complete metric space. (See B-M [2007,

Theorems 5.1 and C11.2(d) of Chapter 2]).�

Theorem 4.1 Assume that the splitting condition (H) holds.

Then

(a) the distribution T ∗nµ of Xn := αn...α1X0 converges to a probability measure π on S in

the Kolmogorov distance dK irrespective of X0. Indeed,

dK(T
∗nµ, π) ≤ (1− χ̃)[n/N ] ∀µ ∈ P(S) (4.4)

where [y] denotes the integer part of y.

(b) π in (a) is the unique invariant probability of the Markov process Xn.

Main Steps. Careful calculations using the splitting condition and monotonicity lead to

(see B-M (2007, Chapter 3, Theorem 5.1):

dK(T
∗µ, T ∗ν) ≤ dK(µ, ν) (4.5)
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and

dK(T
∗Nµ, T ∗Nν) ≤ (1− χ̃)dK(µ, ν) (µ, ν ∈ P(S)). (4.6)

That is, T ∗N is a uniformly strict contraction and T ∗ is a contraction. As a consequence,

∀n > N , one has

dK(T
∗nµ, T ∗nν) = dK(T

∗N (T ∗(n−N)µ), T ∗N(T ∗(n−N)ν))

≤ (1− χ̃)dK(T ∗(n−N)µ, T ∗(n−N)ν) ≤ ...

≤ (1− χ̃)[n/N ]dK(T ∗(n−[n/N ]N)µ, T ∗(n−[n/N ]N)ν)

≤ (1− χ̃)[n/N ]dK(µ, ν). (4.7)

Now, by appealing to the contraction mapping theorem, T ∗N has a unique fixed point π in P(S),

and T ∗N(T ∗π) = T ∗(T ∗Nπ) = T ∗π. Hence T ∗π is also a fixed point of T ∗N . By uniqueness

T ∗π = π. Hence, π is a fixed point of T ∗. Any fixed point of T ∗ is a fixed point of T ∗N . Hence

π is the unique fixed point of T ∗. Now take ν = π in (4.7) to get the desired relation (4.4).

The following remarks clarify the role of the splitting condition.

Remark 4.2 Let S = [a, b] and αn(n ≥ 1) a sequence of i.i.d. continuous nondecreasing

maps on S into S. Suppose that π is the unique invariant distribution of the Markov process.

If π is not degenerate, then the splitting condition holds [Dubins and Freedman (1966, Theorem

5.17); for relaxing continuity, see B-M (2007, Lemma CS.2 of Chapter 3)].�

Remark 4.3 Suppose that αn are strictly monotone a.s. Then if the initial distribution µ is

nonatomic (i.e., µ({x}) = 0 ∀x or, equivalently the d.f. of µ is continuous), µ o γ−1 is nonatomic

∀γ ∈ Γ (outside a set of zero Q-probability). It follows that if X0 has a continuous d.f., then so

has X1 and in turn X2 has a continuous d.f., and so on. Since, by Theorem 4.1, this sequence

of continuous d.f.s (of Xn(n ≥ 1)) converges uniformly to the d.f. of π, the latter is continuous.

Thus π is nonatomic if αn are strictly monotone a.s.�

Example 4.1 Let S = [0, 1] and Γ be a family of monotone nondecreasing functions from
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S into S. As before, for any z ∈ S, let

Xn(z) = αn...α1z.

One can verify the following two results:

[R.1] P [Xn(0) ≤ x] is nonincreasing in n and converges for each x ∈ S.

[R.2] P [Xn(1) ≤ x] is nondecreasing in n and converges for each x ∈ S.

Write

F0(x) ≡ lim
n−→∞

P (Xn(0) ≤ x).

F1(x) ≡ lim
n−→∞

P (Xn(1) ≤ x).

Note that F1(x) ≤ F0(x) for all x. Consider the case when Γ ≡ {f}, where

f(x) =






1
4
+ x

4
if 0 ≤ x < 1

3
,

1
3
+ x

3
if 1
3
≤ x ≤ 2

3
,

1
3
+ x

2
if 2
3
< x ≤ 1.

Verify that f is a monotone increasing map from S into S, but f is not continuous. One can

calculate that

F0(x) =






0 if 0 ≤ x < 1
3
,

1 if 1
3
≤ x ≤ 1.

F1(x) =






0 if 0 ≤ x < 2
3
,

1 if 2
3
≤ x ≤ 1.

Neither F0 nor F1 is a stationary distribution function.�

Example 4.2 Let S = [0, 1] and Γ = {f1, f2}. In each period f1 is chosen with probability
1
2
. f1 is the function f defined in Example 4.1, and f2(x) =

1
3
+ x

3
, for x ∈ S.

Then

F0(x) = F1(x) =






0 if 0 ≤ x < 1
2
,

1 if 1
2
≤ x ≤ 1.

and F0(x) is the unique stationary distribution. Note that f1(
1
2
) = f2(

1
2
) = 1

2
, i.e., f1 and f2
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have a common fixed point. Examples 4.1 and 4.2 are taken from Yahav (1975).�

We now turn to the case where the state space is a subset of Rℓ(ℓ ≥ 1) satisfying the following

assumption:

(A.1) S is a closed subset of Rℓ.

Let Γ be a set of monotone maps γ on S into S, under the partial order : x≤ y if xj ≤ yj

for 1 ≤ j ≤ ℓ; x = (x1, ..., xℓ), y = (y1, y2, ..., yℓ) ǫR
ℓ (or S). That is, either γ is monotone

increasing : γ(x) ≤ γ(y) if x ≤ y, or γ is monotone decreasing : γ(y) ≤ γ(x) if x ≤ y; x, y ǫ S.

On the space P(S), define, for each a > 0, the metric

da(µ, ν) = sup
gǫGa

∣∣∣∣

∫
gdµ−

∫
gdν

∣∣∣∣ , (µ, ν ǫP(S)), (4.8)

where Ga is the class of all Borel measurable monotone (increasing or decreasing) functions g

on S into [0, a]. The following result is due to Chakraborty and Rao (1998), who derived a

number of interesting results on the metric space (P(S), da). One can show that convergence in

the metric da implies weak convergence if (A.1) holds (see B-M (2007, pp. 287-288)).

Lemma 4.1 Under the hypothesis (A.1), (P(S), da) is a complete metric space.

Consider the following splitting condition (H′). To state it, let γ̃ be as in (3.5), but with

n = N : γ̃ = γNγN−1...γ1 for γ = (γ1, γ2, ..., γN) ǫ Γ
N .

(H′) There exist Fi ǫ
∑⊗N(i = 1, 2) for some N ≥ 1, such that

(i) δi ≡ QN(Fi) > 0 (i = 1, 2), and

(ii) for some x0ǫ S, one has

γ̃(x) ≤ x0 ∀xǫS, ∀γ ǫ F1,

γ̃(x) ≥ x0 ∀xǫS, ∀γ ǫ F2,

Also, assume that the set H+ = {γǫΓN : γ̃ is monotone increasing}ǫ
∑⊗N .
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Theorem 4.2 Let {αn : n ≥ 1} be a sequence of i.i.d. measurable monotone maps with a

common distribution Q. Assume (A.1) and (H′) hold. Then there exists a unique invariant

probability measure for the Markov process (2.1) and

sup
xǫS

d1(p
(n)(x, .), π) ≤ (1− δ)[ nN ](n ≥ 1), (4.9)

where δ = min{δ1, δ2}, and
[
n
N

]
is the integer part of n

N
.

Proof. The proof uses Lemma 4.1 and is spelled out in Bhattacharya and Majumdar (2007).

As in the case of Theorem 4.1, we prove:

Step 1. T ∗N is a uniformly strict contraction on (P(S), d1)

In other words,

d1(T
∗Nµ, T ∗Nν) ≤ (1− δ)d1(µ, ν), ∀µ, νǫ℘(S). (4.10)

Now, Step 2. Apply the Contraction Mapping Theorem.

For earlier related results see Bhattacharya and Lee (1988).

4.2 An Extension and Some Applications

An extension of Theorems 4.1 - 4.2 [proved in Bhattacharya and Majumdar (1997)] is useful for

applications. Recall that S is the Borel σ-field of the state space S. Let A ⊂ S, define

d(µ, ν) := sup
AǫA

|µ(A)− ν(A)| (µ, νǫP(S)). (4.11)

(1) Consider the following hypothesis (H1) :

(P(S), d) is a complete metric space; (4.12)
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(2) there exists a positive integer N such that for all γ ǫΓN , one has

d(µ γ̃−1, νγ̃−1) ≤ d(µ, ν) (µ, νǫP(S)) (4.13)

(3) there exists δ > 0 such that ∀AǫA, and with N as in (2), one has

P (α̃−1(A) = S or φ) ≥ δ > 0 (4.14)

Theorem 4.3 Assume the hypothesis (H1). Then there exists a unique invariant probability π

for the Markov process Xn := αn...α1X0, where X0 is independent of {αn := n ≥ 1}. Also, one

has

d(T ∗nµ, π) ≤ (1− δ)[n/N ] (µǫP(S)) (4.15)

where T ∗nµ is the distribution of Xn when X0 has distribution µ, and [n/N ] is the integer part

of n/N .

Remark 4.4 For applications of Theorem 4.3 to derive a Doeblin-type convergence theorem,

and to the study of non-linear autoregressive processes see B-M (2007).�

4.3 Extinction and Growth

Some light has been thrown on the possibilities of growth and extinction. To review these results

(see Ellner (1984) for proofs and other related results), let us assume that S = [0,∞), and Γ

consists of a family of maps f : S → S satisfying

C.1 f(x) is continuously differentiable and strictly increasing on [0,∞)

C.2 d
dx
[x−1f(x)] < 0 for x > 0 (concavity)

C.3 There is some K > 0 such that f(K) < K for all f ∈ Γ (note that K is independent

of f)

Then we have the following:

Theorem 4.4 Suppose 0 < X0 < K with probability one. Then:
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a) Xn converges in distribution to a stationary distribution;

b) The stationary distribution is independent of X0 and its df has F (0
+) = 0 or 1 [F (0+) =

1 means that Xn
w→ 0, which is extinction of the population].

It is often useful to study the non-linear stochastic difference equation written in formally as:

Xn+1 = f(Xn, θn+1)

where (θn) is a sequence of independent, identically distributed random variables taking values

in a (nonempty) finite set A ⊂ R++. Here f : R+ × A → R+ satisfies, for each θ ∈ A the

conditions (C.1) - (C.2). Write R(x, θ) = x−1f(x, θ) for x > 0.

For each θ ∈ A, let

R(0, θ) = lim
x→0+

R(x, θ)

and

R(∞, θ) = lim
x→∞

R(x, θ) ≡ f ′(x, θ)

Define the growth rates

v0 = E[(log R(0, θ)]

and

v∞ = E[(log R(∞, θ)]

By C.2 v0 and v∞ are well-defined.

Theorem 4.5 Under assumptions C.1 - C.2 and 0 < X0 <∞ with probability one,

a) if v0 ≤ 0, Xn → 0 with probability one

b) if v∞ ≥ 0, Xn →∞ with probability one

c) if v0 > 0, v∞ < 0, Xn converges weakly (independently of the distribution of X0) to a

distribution with support in (0,∞).
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5 Invariant Distributions: Computation and Estimation

The problem of deriving analytical properties of invariant distributions has turned out to be

difficult and elusive. In this section we provide an example of a class of Markov processes in

which the unique invariant distribution can be completely identified.

Let Z1, Z2..., be a sequence of non-negative i.i.d. random variables. Consider the Markov

Chain {Xn : n = 0, 1, 2...} on the state space S = R++ defined by

Xn+1 = Zn+1 + [1/Xn] n ≥ 0

where X0 is a strictly positive random variable independent of the sequence {Zi}. We first

summarize the dynamic behavior of the sequence {Xn}.

Theorem 5.1 Assume that {Zi} are non-degenerate. Then the Markov chain {Xn, n = 0, 1}

on S = R++ has a unique invariant probability π, and dk(T
∗nµ, π) converges to zero exponentially

fast, irrespective of the initial distribution µ and the invariant probability π is non-atomic.

Proof. The main step in the proof is to represent Xn as

Xn = αn.αn−1....α1(X0)

where αn(x) = Zn + 1/x, n ≥ 1. The maps αn are monotone decreasing on S. The splitting

condition can also be verified (see Goswami 2004, Theorem 4.1). Hence Theorem 3.1 can be

applied directly.

Suppose that the common distribution of Zi is a Gamma distribution. Recall that the

Gamma distribution with parameters λ > 0 and a > 0 is the distribution on R++ given by the

density function

γλ,a(z) =






aλ

Γ(λ)
zλ−1e−az if zǫR++

0 otherwise

15



where Γ(·) is the gamma function:

Γ(β) =

∫ ∞

0

xβ−1e−xdx

Theorem 5.2 Suppose that the common distribution of the i.i.d. sequence {Zi} is a Gamma

distribution with parameters λ and a. Then the invariant probability π on (0,∞) is absolutely

continuous with density function

gλ,a(x) = (2Kλ(2a))
−1xλ−1e−a(x+

1

x
), xǫR++

where Kλ(·) denotes the Bessel function, i.e., Kλ(z) =
1
2

∫∞
0
xλ−1e−

1

2
z(x+ 1

x
)dx.

Another interesting example corresponds to Bernoulli Zi : P(Zi = 0) = p, P(Zi = 1) =

1 − p (0 < p < 1). In this case the unique invariant distribution π is singular with respect

to Lebesgue measure, and has full support on S = (0,∞). An explicit computation of the

distribution function of π, involving the classical continued fraction expansion of the argument,

may be found in Goswami (2002, Theorem 5.2).

5.1 An Estimation Problem

Consider a Markov chain Xn with a unique stationary distribution π. Some of the celebrated

results on ergodicity and the strong law of large numbers hold for π-almost every initial condition.

However, even with [0, 1] as the state space, the invariant distribution π may be hard to compute

explicitly when the laws of motion are allowed to be non-linear, and its support may be difficult

to characterize or may be a set of zero Lebesgue measure. Moreover, in many economic models,

the initial condition may be historically given, and there may be little justification in assuming

that it belongs to the support of π.

Consider, then, a random dynamical system with state space [c, d] (without loss of generality

for what follows choose c > 0). Assume Γ consists of a family of monotone maps from S with S,
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and the splitting condition (H ) hold. The process starts with a given x. There is, by Theorem

4.1, a unique invariant distribution π of the random dynamical system, and (4.4) holds. Suppose

we want to estimate the equilibrium mean
∫
S
yπ(dy) by sample means 1

n

n−1∑

j=0

Xj . We say that the

estimator 1
n

∑

j=0

Xj is
√
n-consistent if

1

n

n−1∑

j=0

Xj =

∫
yπ(dy) +OP (n

−1/2) (5.1)

where Op(n
−1/2) is a random sequence εn such that

∣∣εn · n1/2
∣∣ is bounded in probability. Thus,

if the estimator is
√
n-consistent, the fluctuations of the empirical (or sample-) mean around the

equilibrium mean is Op(n
−1/2). We can establish (5.1) by using (4.4). One can show that (see

Bhattacharya, and Majumdar [2001, pp. 217-219]) if

f(z) = z −
∫
yπ(dy)

then

sup
x

∞∑

n=m+1

|T nf(x)| ≤ (d− c)
∞∑

n=m+1

(1− δ)[n/N ] → 0 as m→∞

Hence, g = −
∞∑

n=0

TNf [where T 0 is the identity operator I] is well-defined, and g, and Tg are

bounded functions. Also, (T − I)g = −
∞∑

n=1

T nf +
∞∑

n=0

TNf ≡ f . Hence,

n−1∑

j=0

f(Xj) =
n−1∑

j=0

(T − I)g(Xj)

=
n−1∑

j=0

((Tg)(Xj)− g(Xj))

=
n∑

j=1

[(Tg)(Xj−1)− g(Xj)] + g(Xn)− g(X0)

By the Markov property and the definition of Tg it follows that

E((Tg)(Xj−1)− g(Xj) |Fj−1) = 0
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where Fr is the σ-field generated by {Xj : 0 ≤ j ≤ r}. Hence, (Tg)(Xj−1)− g(Xj)(j ≥ 1) is a

martingale difference sequence, and are uncorrelated, so that

E[
k∑

j=1

(Tg(Xj−1)− g(Xj))]
2 =

n∑

j=1

E((Tg)(Xj−1)− g(Xj))
2 (5.2)

Given the boundedness of g and Tg, the right side is bounded by n.α for some constant α. It

follows that

1

n
E(

n−1∑

j=0

f(Xj))
2 ≤ η′ for all n

where η′ is a constant that does not depend on X0. Thus,

E(
1

n

n−1∑

j=0

Xj −
∫
yπ(dy))2 ≤ η′/n

which implies,

1

n

n−1∑

j=0

Xj =

∫
yπ(dy) + 0p(n

−1/2)

For other examples of
√
n-consistent estimation, see Athreya and Majumdar (2002) [and B-M

(2008, Chapter 5)].

6 Growth Under Uncertainty

6.1 A Stochastic Stability Theorem in a Descriptive Model

Models of descriptive as well as optimal growth under uncertainty have led to random dynamical

systems that are stable in distribution. We look at a “canonical” example and show how

Theorem 4.1 can be applied. We begin with a descriptive growth model and follow it up with

an optimization problem.

As a matter of notation, for any function h on S into S, we write h(n) for the nth iterate of
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h. Think of ‘x’ as per capital output of an economy.

Let S = R+; and Γ = {F1, F2, ..., Fi, ..., FN} where the distinct laws of motion Fi satisfy:

F.1. Fi is strictly increasing, continuous, and there is some ri > 0 such that Fi(x) > x

on (0, ri) and Fi(x) < x for x > ri.

Note that Fi(ri) = ri for all i = 1, ..., N . Next, assume:

F.2. ri �= rj for i �= j.

In other words, the unique positive fixed points ri of distinct laws of motion are all distinct.

We choose the indices i = 1, 2, ..., N so that

r1 < r2 < .... < rN

Let Prob (αn = Fi) = pi > 0(i ≤ i ≤ N).

Consider the Markov process {Xn(x)} with the state space (0,∞). If y ≥ r1, then Fi(y) ≥

Fi(r1) > r1 for i = 2, ...N , and F1(r1) = r1, so that Xn(x) ≥ r1 for all n ≥ 0 if x ≥ r1. Similarly,

if y ≤ rN , then Fi(y) ≤ Fi(rN) < rN for i = 1, ..., N−1 and FN(rN) = rN , so that Xn(x) ≤ rN for

all n ≥ 0 if x ≤ rN . Hence, if the initial state x is in [r1, rN ], then the process {Xn(x) : n ≥ 0}

remains in [r1, rN ] forever. We shall presently see that for a long run analysis we can consider

[r1, rN ] as the effective state space.

We shall first indicate that on the state space [r1, rN ] the splitting condition (H) is satisfied.

If x ≥ r1, F1(x) ≤ x, F
(2)
1 (x) ≤ F1(x) etc. The limit of this decreasing sequence F

(n)
1 (x) must

be a fixed point of F1, and therefore must be r1. Similarly, if x ≤ rN , then F
n
N(x) increases to

rN . In particular,

lim
n→∞

F
(n)
1 (rN) = r1, lim

n→∞
F
(n)
N (r1) = rN .

Thus, there must be a positive integer n0 such that

F
(n0)
1 (rN) < F

(n0)
N (r1).
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This means that if z0 ǫ [F
(n0)
1 (rN), F

(n0)
1 (r1)], then

Pr ob(Xn0(x) ≤ z0 ∀xǫ[r1, rN ])

≥ Pr ob(αn = F1 for 1 ≤ n ≤ n0) = pn01 > 0

Pr ob(Xn0(x) ≥ z0 ∀xǫ[r1, rn])

≥ Pr ob(αn = FN for 1 ≤ n ≤ n0) = pn0N > 0

Hence, considering [r1, rN ] as the state space, and using Theorem 3.1, there is a unique invariant

probability π with the stability property holding for all initial xǫ[r1, rN ].

Now, define m(x) = min
i=1,...,N

Fi(x), and fix the initial state xǫ(0, r1).

One can verify that (i) m is continuous; (ii) m is strictly increasing; (iii) m(r1) = r1 and

m(x) > x for xǫ(0, r1), and m(x) < x for x > r1. Clearly m(n)(x) increases with n, and

m(n)(x) ≤ r1. The limit of the sequence m(n)(x) must be a fixed point, and is, therefore r1.

Since Fi(r1) > r1 for i = 2, ..., N , there exists some ε > 0 such that Fi(y) > r1(2 ≤ i ≤ N) for all

yǫ[r1−ε, r1]. Clearly there is some nε such thatmnε(x) ≥ r1−ε. If τ 1 = inf{n ≥ 1 : Xn(x) > r1}

then it follows that for all k ≥ 1

Pr ob(τ 1 > nε + k) ≤ pk1.

Since pk1 goes to zero as k → ∞, it follows that τ 1 is finite almost surely. Also, Xτ1(x) ≤ rN ,

since for y ≤ r1, (i) Fi(y) < Fi(rN) for all i and (ii) Fi(rN) < rN for i = 1, 2, ..., N − 1 and

FN(rN ) = rN . (In a single period it is not possible to go from a state less than r1 to one

larger than rN). By the strong Markov property, and our earlier result, Xτ+m(x) converges in

distribution to π as m → ∞ for all xǫ(0, r1). Similarly, one can check that as n → ∞, Xn(x)

converges in distribution to π for all x > rN .�

Note that in growth models, the condition F.1 is often derived from appropriate “end point”

or Uzawa-Inada conditions. It should perhaps be stressed that convexity assumptions have not
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appeared in the discussion of this section so far. Of course, in models of optimization, Fi is the

optimal transition of the system from one state into another, and non-convexity may lead to a

failure of the splitting condition (see Majumdar, Mitra and Nyarko (1989) for details).

6.2 One Sector Log-Cobb-Douglas Optimal Growth

Let us recall the formulation of the one-sector growth model with a Cobb-Douglas production

functionG(x) = xα, 0 < α < 1, with a representative decision maker’s utility given by u(c) = ln c.

Following Mitra, Montrucchio and Privileggi (2004), suppose that an exogenous perturbation

may reduce production by some parameter 0 < k < 1 with probability p > 0 (the same for all

t = 0, 1, ...). This independent and identically distributed random shock enters multiplicatively

into the production process so that output is given by Gr(x) = rxα where r ∈ {k, 1}. The

dynamic optimization problem can be explicitly written as follows:

maxE0

∞∑

t=0

βt ln ct

where 0 < β < 1 is the discount factor, and the maximization is over all consumption plans

c = (c0, c1, ...) such that for t = 0, 1, 2, ...

ct = rtx
α
t − xt+1, ct ≥ 0, xt ≥ 0

and x0, r0 are given.

It is well known that the optimal transition of xt is just described is g(x, r) = αβrx
α i.e., the

plan xt generated recursively by

xt+1 = g(xt, rt) = αβrtx
α
t

is optimal.

Consider now the random dynamical system obtained by the following logarithmic transfor-
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mation of xt:

yt = −
1− α
ln k

ln xt + 1 +
1nα + ln β

ln k
.

The new variable yt, associated with xt evolves according to a linear policy, so that

yt+1 = αyt + (1− α)
(
1− ln rt

ln k

)
,

which can be rewritten as






yt+1 = αyt with probability p

yt+1 = αyt + (1− α) with probability 1− p

Define the maps γ0, γ1 from [0, 1] to [0, 1] by






γ0(y) = αy

γ1(y) = αy + (1− α)
. (6.1)

It is useful to note here that the map γ0 corresponds to the case where the shock, r, takes the

value k; and the map γ1 corresponds to the case where the shock, r, takes the value 1. Denote

(p, 1 − p) by (p0, p1). Then S = [0, 1], Γ ≡ {γ0, γ1}, together with Q ≡ {p0, p1} is a random

dynamical system. The maps γi, for i ∈ {0, 1}, are clearly affine.

6.2.1 The Support of the Invariant Distribution

Let π be the unique invariant distribution, Fπ, its distribution function. The graphs of the

functions show that for 0 < α < 1/2, the image sets of the two functions γ0 and γ1 are disjoint, a

situation which can be described as the “non-overlapping” case. In this case, the “gap” between

the two image sets (in the unit interval) will “spread” through the unit interval by successive

applications of the maps (6.1). Thus, one would expect the support of the invariant distribution

to be “thin” (with zero Lebesgue measure).
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On the other hand, for 1/2 ≤ α < 1, the image sets of the functions γ0 and γ1 have a

non-empty intersection. We can refer to this as the “overlapping” case. Here, the successive

iterations of the overlap can be expected to “fill up” the unit interval, so the invariant distribution

should have full support.

The above heuristics are actually seen to be valid.

It is important to remark that this result does not depend on the magnitude of the discount

factor β nor on the amplitude of the shock k, but only on the technological parameter α. The

discount factor β only shifts the support of the invariant distribution of the original model over

the real line, while the exogenous shock k affects its amplitude. The stream of research has been

striving around the fundamental question on deciding for what values of α, the invariant Fπ is

absolutely continuous, and for what values of α, Fπ is singular. For an exhaustive mathematical

survey on the whole history of Bernoulli convolutions, see Peres, Schlag and Solomyak (1999).

It is known, in the symmetric case p = 1
2
, that the distribution function is “pure”; that is, it

is either absolutely continuous or it is singular (Jessen and Wintner [1935]). Further, Kershner

and Wintner [1935] have shown that if 0 < α < 1/2, the support of the distribution function is

a Lebesgue-null Cantor set and, therefore, the distribution function is singular. For α = 1
2
, one

gets the uniform distribution, which is not singular.

For the symmetric case p = 1
2
, denote by S⊥ the set of α ∈ (1/2, 1) such that Fπ is singular.

It was conjectured that the distribution function should be absolutely continuous with respect

to Lebesgue measure when 1/2 < α < 1. Wintner [1935] showed that if α is of the form (1/2)1/k

where k ∈ {1, 2, 3, ...}, then the distribution function is absolutely continuous. However, in

the other direction, Erdös [1939] showed that when α is the positive solution of the Equation

α2 + α− 1 = 0, so that α = (
√
5− 1)/2, then α ∈ S⊥.

Erdös also showed that S⊥ ∩ (ξ, 1) has zero Lebesgue measure for some ξ < 1, so that

absolute continuity of the invariant distribution obtains for (almost every) α sufficiently close to

1. A conjecture that emerged from these findings is that the set S⊥ itself should have Lebesgue

measure zero. In their brief discussion of this problem, Dubins and Freedman [1966] state that
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deciding whether the invariant distribution is singular or absolutely continuous for α > 1/2 is a

“famous open question”.

Solomyak [1995] made a real breakthrough when he showed that S⊥ has zero Lebesgue mea-

sure. More precisely, he established that for almost every α ∈ (1/2, 1), the distribution has

density in L2(R) and for almost every α ∈ (2−1/2, 1) the density is bounded and continuous. A

simpler proof of the same result was subsequently presented by Peres and Solomyak [1996].

More recent contributions to this literature deal with the asymmetric case p �= 1/2. (see,

for example, Peres and Schlag (2000)). For example, Fπ is singular for values of parameters

(α, p) such that 0 < α < pp(1 − p)(1−p), while Fπ is absolutely continuous for almost every

pp(1− p)(1−p) < α < 1 whenever 1/3 ≤ p ≤ 2/3. For more details see Mitra, Montrucchio and

Privileggi (2004).
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