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Abstract

Traditional models of bank runs do not allow for herding effects, because in these models

withdrawal decisions are assumed to be made simultaneously. I extend the banking model

to allow a depositor to choose his withdrawal time. When he withdraws depends on his

liquidity type (patient or impatient), his private, noisy signal about the quality of the bank’s

portfolio, and the withdrawal histories of the other depositors. In some cases, the optimal

banking contract permits herding runs. Some of these “runs” are efficient in that the bank

is liquidated before the portfolio worsens. Others are not efficient; these are cases in which

the herd is misled.

JEL Classification Numbers: C73, D82, E59, G21.

Keywords: Bank runs, herding, imperfect information, perfect Bayesian equilibrium,

optimal bank contract, sequential-move game, fundamental-based bank runs.

1 Introduction

In the classic bank-runs model of Diamond and Dybvig (1983), individual withdrawal decisions

are made simultaneously. The lack of detailed dynamics of withdrawals makes it difficult to

explain some observed features of bank runs. In reality, at least some withdrawals are based

on the information about the previous withdrawals of others.1 During the 1994-1995 Argentine
∗I would like to thank Levon Barseghyan, Pablo Becker, David Easley, Edward Green, Ani Guerdjikova, Joe

Haslag, Todd Keister, Oksana Loginova, Tapan Mitra, James Peck, Assaf Razin, Fernando Vega-Redondo, Xinghe
Wang, Tao Zhu, and seminar participants at the Cornell Macro Workshop, Cornell-Penn State Macro Workshop,
Midwest Macroeconomics Meetings 2007, and North American Summer Meetings of the Econometric Society for
insightful comments. I am especially grateful to Karl Shell for numerous discussions and helpful guidance. All
remaining errors are my own. Correspondence: Department of Economics, University of Missouri, Columbia, MO
65293, USA. Email: guc@missouri.edu.

1Brunnermeier (2001) says that “...withdrawals by deposit holders occur sequentially in reality, [whereas] the
literature typically models bank runs as a simultaneous move game.”
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banking crisis, large depositors were responsible for most of the deposit outflows at the beginning

of the crisis. Small depositors began to make substantial withdrawals two months later.2 In their

analysis on the runs on Turkish special finance houses (SFHs)3 in 2001, Starr and Yilmaz (2007)

find that depositors made sequential withdrawals influenced by the history of the withdrawals

of others. The authors argue that the “increased withdrawals by moderate-size accountholders

tended to boost withdrawals by [their] small counterparts, suggesting that the latter viewed the

former as informative with respect to the SFH’s financial condition.”

In the present paper, I build a model in which the timing of individual withdrawals is deter-

mined by the depositor’s information about his consumption type (patient, which means he does

not need to consume immediately, or impatient, which means he needs to consume immediately),

his noisy signal about the quality of the bank’s portfolio, and the observed withdrawal history of

other depositors. In my model, the signals are received in an exogenously determined sequence,

but the timing of withdrawal is determined endogenously.4 Because one’s simple withdraw-

or-not action does not reveal perfectly to others the pair of private signals that the depositor

receives, other depositors can only imperfectly extract the depositor’s private signals from his

action. They update their beliefs about the quality of the bank’s portfolio accordingly.

This paper does not focus on the panic-based bank runs of Diamond and Dybvig (1983). (See

also Peck and Shell [2003].) I focus instead on bank runs that occur as a result of depositors

trying to extract information about bank portfolio quality from the withdrawal histories of

others. Because signals about the fundamentals are imperfect, and because signal extraction

from the observed withdrawal history is also imperfect, a bank run can occur when the bank

fundamentals are strong. In particular, it can occur when “too many” depositors receive early

liquidity shocks. A bank run due to imperfect signal extraction is unique to the model with non-

simultaneous withdrawal decisions. Bank runs in this sense are not purely fundamental-based.5

I show that there is a perfect Bayesian equilibrium in which a depositor withdraws if his

expected utility is below his threshold level, and otherwise he waits. A depositor’s expected

utility depends upon his beliefs about the quality of the bank’s portfolio; these beliefs are updated

recursively by the observed withdrawal history of the other depositors. Before a depositor’s

2See Schumacher (2005).
3Special financial houses are like commercial banks, but their deposits are not insured.
4Chari and Kehoe (2003) were the first to introduce a model of herding in investment decisions with endogenous

timing.
5See Allen and Gale (1994) and Goldstein and Pauzner (2005), etc. for fundamental-based bank runs.
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beliefs become sufficiently favorable, he follows his private signals: If he is impatient or the

portfolio signal is unfavorable, he withdraws; otherwise he waits. A bank run occurs as a

result of a herd of withdrawals when all depositors withdraw due to unfavorable signals and/or

unfavorable observations on withdrawals. If his belief is sufficiently favorable, the private signal

received by the depositor will not be decisive: the depositor always waits to withdraw unless

he is impatient. In this case, his private signal will not be revealed through his withdrawal

behavior, so his withdrawal behavior does not affect others’ beliefs or their expected utilities. A

“no-bank-run” regime thus takes place as a result of a “herd of non-withdrawals.”

Compared with herding in investment decisions (Banerjee, 1992; Bikhchandani et al., 1992;

and more recently Chari and Kehoe, 2003, 2004), herding in bank runs has some special features

that complicate the model and lead to interesting results. The most important difference lies

in the payment interdependence and uncertainty. In the banking setup, a depositor’s payoff

depends not only on his own actions, but also on the actions of others. The uncertainty in

future payoffs — in particular, whether a bank run occurs or not — adds additional risk to the

depositor’s decision-making. This uncertainty is not necessarily bad, because a run can force the

bank to liquidate assets before low productivity is actually realized, i.e., before a higher welfare

cost is incurred.

An interesting result of payment interdependence and uncertainty is the possibility that

the expected utility is not monotone in the depositor’s beliefs and thus the possibility that his

threshold beliefs are not unique. If a bank run takes place when depositors’ aggregate expected

utility, or social welfare, would be lower if there would be no bank run due to the low probability

of having a high return, then the bank run serves as a lower bound on social welfare. Information

about production is valuable in this situation. Though a more favorable level of beliefs makes

a depositor more confident in the quality of a bank’s portfolio, it is also more likely to lead

to a herd of non-withdrawals where no more information will be made available in the future.

Hence, expected utilities might not be increasing in the probability that the portfolio is good.

As a result, the uniqueness of the threshold beliefs in the traditional herding literature is not

guaranteed.

Computed examples show that in some economies a run-admitting contract is optimal be-

cause it not only provides more liquidity to the depositors to ensure against liquidity shocks, but

it also encourages depositors to reveal the signals they receive. In other economies, a run-proof

3



contract is optimal because it protects the economy from costly undesirable bank runs. Herding

runs are equilibrium phenomena when the risk of bank runs or cost is sufficiently small.6

This remainder of the paper is organized as follows: The model is introduced in Section 2.

In Section 3, I describe the equilibrium for an arbitrary demand-deposit contract. A perfect

Bayesian Nash equilibrium is shown to exist. In section 4, I calculate some examples of optimal

demand-deposit contract. The final section offers some concluding observations.

2 Model Set-up

Time: There are three periods, t = 0, 1, 2. Period 0 is a planning period, which is ex ante.

Periods 1 and 2 are ex post. Period 1 is divided into N + 1 stages. N is a finite integer.

Depositors: There is a measure 1 of depositors in the economy. Each depositor is endowed

with 1 unit of the consumption good in period 0. Depositors are identical at t = 0, but they face

consumption shocks at t = 1. If a depositor receives a consumption shock, he is called impatient

and has to consume immediately. An impatient depositor’s utility is given by u(c1), where c1

is the consumption received at t = 1. If a depositor does not receive a consumption shock, his

consumption type is patient. Patient depositors derive utility from the consumption in the last

period. If a patient depositor receives consumption at t = 1, he can reinvest it in a storage

technology privately and consume it at t = 2. Thus, a patient depositor’s utility is described

by u(c1 + c2), where c2 is the consumption received at t = 2. u(x) is strictly increasing, strictly

concave, and twice differentiable. The coefficient of relative risk aversion of the utility function,

−xu00(x)/u0(x), is greater than 1 for x ≥ 1. The utility function is normalized to 0 at x = 0, i.e.,

u(0) = 0. Each depositor has probability α (0 < α < 1) to be impatient and probability 1− α

to be patient. By law of large numbers, a proportion α of the depositors is impatient.

Storage: Depositors can store the consumption good at no cost.

The bank and its technology: The bank behaves competitively. It takes deposits from

depositors and invests in a production project. Production is risky and rigid. The investment

in production can be made only in the initial period. One unit of consumption good invested at

t = 0 yields R units at t = 2. R = R > 1 with probability p0, and R = R ≤ 1 with probability

1− p0. The production asset can be liquidated at t = 1. Either all or none must be liquidated.

The project therefore can be treated as an “indivisible good” after it is started. I assume an

6See Peck and Shell (2003) for somewhat similar results on panic-based bank runs.
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individual depositor cannot invest in production on his own.

The contract: For convenience, I assume that if a depositor decides to deposit at the bank,

the minimum amount of the deposit is 1 unit of consumption good. A competitive bank offers

a simple demand-deposit contract that describes the amount of consumption goods paid to the

depositors who withdraw in periods 1 and 2, c1 and c2, respectively. c1 is independent of the

productivity state. c2 is state contingent. The bank pays c1 to the depositors at t = 1 until it is

out of funds. If the amount of consumption good in storage cannot meet the withdrawal demand,

the bank has to liquidate assets. The bank distributes the remaining resource plus or minus the

return on the portfolio equally among the depositors who wait until the last period. Denote

the fraction of deposits that the bank keeps in storage by λ, and the fraction of depositors who

withdraw deposits in period 1 by β (0 ≤ β ≤ 1). The payment to the depositors who withdraw

in period 2 is

c2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λ− βc1 + (1− λ)R

1− β
if βc1 ≤ λ;

1− βc1

1− β
if λ < βc1 ≤ 1;

0 if βc1 > 1.

Because at least a fraction α of the depositors need to consume at t = 1, λ must at least be

αc1. In the situation that the bank cannot meet payment requirements at t = 1, the bank fails.

Because c2 is dependent on the choice of c1 and λ, the demand-deposit contract can therefore

be described by
¡
c1, λ

¢
.

Withdrawal stages and information: In each of the first N stages of t = 1, only one

depositor is informed of his consumption type. Information about consumption is precise. He

also receives a signal about the productivity of the bank portfolio. The signal about production

status is accurate with probability q, q > 0.5. That is,

Pr(Sn = H|R = R) = Pr(Sn = L|R = R) = q.

Sn denotes the signal about productivity obtained by the depositor who is informed at stage n.

Given productivity status, the probability of receiving a correct signal is q. Receiving a signal, a

depositor updates his belief about productivity by Bayes’ rule. The common initial prior is p0.

At stage N + 1, all depositors who have not received signals are informed of their consumption

types but not about productivity. An impatient depositor has to consume at the stage when he
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receives the consumption shock.

Depositors have equal opportunity to be informed at each stage. Because N is very small

compared with the infinite number of depositors, the probability of getting informed in the first

N stages is zero. Depositors do not communicate with each other about the signals they receive.

However, a depositor’s withdrawal action is observed by all others7. Once a depositor withdraws,

he cannot reverse his decision. But if a depositor chooses to wait, he can withdraw at a later

stage. The final deadline for depositors to withdraw at t = 1 is stage N +1. Depositors are not

allowed to change decisions after observing other depositors’ decisions at stage N + 1.

There are four types of depositors at each of the first N stages. The first type is those

who have already withdrawn their deposits from the bank. Those are inactive depositors who

have no more decisions to make. The second type is the newly informed depositor who receives

signals at the current stage. The third type is those who were previously informed but have

been waiting. The remaining type is the uninformed depositors.

The rigidity in liquidation of long-term assets imposes difficulty for the bank to adjust its

portfolio at t = 1 by varying the fraction of assets in production. The bank does not have private

information about productivity. It is in the same position as an uninformed depositor in terms

of information. The bank does not liquidate the assets unless it is forced to do so when a bank

run occurs.

A finite number of stages is necessary because it imposes a deadline for the depositors to

make decisions at t = 1, so the expected utility can be calculated by backward induction.

The specification of a continuum of depositors tremendously simplifies calculation. Consider

a model that has a finite number of depositors. Each depositor has a non-atomic share at

the bank. Seeing a depositor withdraw his funds, the rest need to recalculate their payoffs in

different productivity states because the amount of remaining resource at the bank has changed

significantly. The description of the equilibrium will be dependent on the parameters of the

economy, and there will be many more cases to discuss. In the appendix, I present a simple

example of a two-stage, two-depositor economy. Similar results are obtained in the example.

The sequence of timing of the banking game is as follows.

t = 0 :

Bank announces the contract;

7 I consider the limit of large finite economies. I assume individual withdrawals are observable as in an economy
with a large number of depositors, while the effects on the total resouces is negligible.
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Depositors make deposit decision.

t = 1 :

Stage 1:

One depositor receives signals about his consumption type and about productivity.

He decides whether to withdraw or not.

Other depositors decide whether to withdraw or not.

(repeat for N stages)

Stage N + 1 :

Consumption types are revealed to those who are not informed.

Depositors decide whether to withdraw or not.

t = 2 :

Bank allocates the remaining resource to the rest of the depositors.

The post-deposit game starts after depositors make deposits at the bank. An individual

depositor decides when to withdraw from the bank. Knowing what depositors will be doing

in the post-deposit game, the competitive bank offers a contract that maximizes the ex-ante

expected utility of the depositors at t = 0. Depositors determine whether to deposit at the bank

or stay in autarky. Starting at t = 0, the entire game is called the pre-deposit game. I start with

the analysis in the post-deposit game. I first prove that in the post-deposit game, there exists

a perfect Bayesian equilibrium given a contract. Then I will calculate some examples of the

optimal contract that the bank offers in the pre-deposit game given the equilibrium strategies

in the post-deposit game.

3 Post-Deposit Game

In Diamond and Dybvig (1983), a demand-deposit banking contract allows for a panic-based

bank run in the post-deposit game given c1 > 1. For convenience, the panic-based run is not

considered in the present paper. A bank run occurs in my model solely due to the information

about the productivity or the imperfect extraction of the information from the actions of other

depositors.

Depositors observe the total number of withdrawals at each stage. Let Xn denote the total

number of withdrawals at stage n. The public history of withdrawals records the total number

of withdrawals at each stage up to stage n. A depositor’s private history as of stage n differs
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from the public history only if he has received signals at stage r, r ≤ n. Depositor i’s strategy

at stage n, xin, is a function that maps his private history into zero-one withdrawal decision.

Let xin = 0 represent the decision to wait, and let xin = 1 represent the decision to withdraw.

Depositor i’s belief at stage n, pin, is a function that maps his private history into the probalility

that the productivity is high.

To simplify the notation, let xUn and pUn denote the strategy and belief, respectively, of an

uninformed depositor at stage n. Let xSrn and pSrn denote the strategy and belief, respectively,

of a depositor who is informed at stage r of a productivity signal Sr. If r = n, the depositor is

newly informed. Otherwise, he is previously informed.

In order to show how withdrawals by some depositors affect the beliefs and actions of the

others, I am interested in finding an equilibrium in which the newly informed depositors are

willing to make decisions according to the signals that they receive under some conditions. I

consider symmetric pure strategy perfect Bayesian equilibrium. At any stage, the strategies

of the depositors are optimal given their beliefs. The beliefs of the depositors are updated by

Bayes’ rule whenever possible. Depositors with the same history adopt the same action at each

stage.

For a contract that offers c1 < 1, there does not exist a symmetric pure strategy run equi-

librium, because given that all others withdraw from the bank, an individual depositor prefers

to wait to get all the remaining resources, which is expected to be an infinite amount. Not

withdrawing before stage N +1 is a patient depositor’s dominant strategy regardless of all other

depositors’ actions and signals. Therefore, given c1 < 1, I assume all patient depositors always

wait until stage N + 1 to make decisions according to their beliefs and consumption types. Be-

cause no information can be inferred from the decisions of the newly informed depositors, and

because the measure of depositors who are informed before the last stage is 0, a bank run does

not occur. The analysis in the rest of this section is based on the assumption that c1 ≥ 1.

3.1 Bayesian Updates

A newly informed depositor at stage n Bayesian updates his belief by the productivity signal

that he receives. His prior at stage n is his posterior belief at stage n − 1 when he was an
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uninformed depositor.

pSnn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
PH(p

U
n−1) =

pUn−1q

pUn−1q + (1− pUn−1)(1− q)
, if Sn = H;

PL(p
U
n−1) =

pUn−1 (1− q)

pUn−1(1− q) + (1− pUn−1)q
, if Sn = L.

PH and PL denote the rules of Bayesian updates when a high or a low signal is received,

respectively. p ≤ PH (p) ≤ 1 and 0 ≤ PL (p) ≤ p for p ∈ [0, 1]. PH (p) and PL (p) are strictly

increasing in p.

The uninformed and previously informed depositors update their beliefs about the produc-

tivity being high by observing the decision made by the newly informed depositor. If the newly

informed does not make decisions according to his signal about productivity, the uninformed and

the previously informed depositors do not change their beliefs, because the decision of the newly

informed carries no information about the productivity. Therefore, pUn = pUn−1, and pSrn = pSrn−1

for r < n. Suppose that the newly informed depositor waits if and only if a high signal is received

and he is patient. The uninformed depositors then update their beliefs by

pUn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
PH(p

U
n−1) =

pUn−1q

pUn−1q + (1− pUn−1) (1− q)
, if the newly informed waits;

P
L
(pUn−1) =

pUn−1 (1− q + αq)

α+ (1− α)
£
pUn−1(1− q) +

¡
1− pUn−1

¢
q
¤ , if the newly informed withdraws.

PL denotes the Bayesian update where the probability of observing an impatient depositor

is taken into account. 0 ≤ PL (p) ≤ PL(p) ≤ p for p ∈ [0, 1] . Note that Pn1
H

³
Pn2
L
(p
´
=

Pn2
L
(Pn1

H (p)), where the power on PL (or PH) denotes the number of updates by PL (or PH),

given the prior. So long as depositors update their beliefs by the same numbers of PH and P
L
,

their beliefs are the same, no matter at which stages these updates have occurred. A previously

informed depositor updates his belief in the same way.

3.2 A Perfect Bayesian Equilibrium

3.2.1 Beliefs and strategies

To simplify the notation, let u1 = u
¡
c1
¢
, u2 = u

³
λ−αc1+(1−λ)R

1−α

´
, and u2 = u

³
λ−αc1+(1−λ)R

1−α

´
.

u2 and u2 represent a patient depositor’s utility in t = 2, depending on the realization of

production, if there is no bank run t = 1 (i.e., β = α). I suppress
¡
c1, λ

¢
because c1 and λ are
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given in the post-deposit game.

The construction of the perfect Bayesian equilibrium relies on finding a newly informed

depositor’s equilibrium strategies. The strategies of an uninformed or a previously informed

depositor can be constructed accordingly. I will show that there exists a perfect Bayesian

equilibrium in which a newly informed depositor makes his decision according to the following

simple rule:

xSnn =

⎧⎨⎩ 1, if impatient or pSnn < p̂.

0, otherwise.
(1)

for 1 ≤ n ≤ N, where p̂ solves

u1 = p̂u2 + (1− p̂)u2. (2)

p̂ is a function of
¡
c1, λ

¢
. p̂ is the cutoff belief with which a patient depositor is indifferent

between withdrawing immediately and waiting until the last period if no information about

productivity is available. Note that p̂ is positive given c1 ≥ 1 and R ≤ 1. p̂ = 0 if and only if

c1 = R = 1 or c1 = λ = 1. Let p denote PH (p̂), and p denote PL (p̂).

The cutoff belief of a newly informed depositor is invariant to stages. A newly informed

depositor makes his decision at the stage when he is informed as if it were a static game. I will

show in proposition 1 that in the equilibrium, a newly informed depositor has no incentive to

delay withdrawal if he receives a low signal before his prior belief exceeds p̄.

A newly informed depositor share the same prior with the uninformed depositors. If no one

else makes a withdrawal, the belief of a newly informed depositor at stage n, 1 ≤ n ≤ N , is

updated by the signal he receives

pSnn =

⎧⎨⎩ PL(p
U
n−1), if Sn = L;

PH(p
U
n−1), if Sn = H,

(3)

with pU0 = p0. If anyone else makes a withdrawal, pSnn = 0.

An uninformed depositor or a previously informed depositor updates his belief by watching

the decision by the newly informed depositor. The belief of an uninformed depositor at stage n,
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1 ≤ n ≤ N, is updated by

pUn =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if Xn > 1, or (Xn = 0 and pUn−1 < p);

PL(p
U
n−1), if Xn = 1, p ≤ pUn−1 < p;

PH(p
U
n−1), if Xn = 0, p ≤ pUn−1 < p;

pUn−1, otherwise;

(4)

with pU0 = p0.

Similarly, the belief of a previously informed depositor at stage n, 1 ≤ n ≤ N, is updated by

(r < n)

pSrn =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if Xn > 1, or (Xn = 0 and pUn−1 < p);

PL(p
Sr
n−1), if Xn = 1, p ≤ pUn−1 < p;

PH(p
Sr
n−1), if Xn = 0, p ≤ pUn−1 < p;

pSrn−1, otherwise.

(5)

At stage N +1, an active depositor’s belief is equal to his belief at stage N. That is, pN+1 =

pN .

On the equilibrium path, depositors update their beliefs by the signals received or the infor-

mation inferred. Off the equilibrium path, I assume the beliefs are zero. Between the end of the

last stage and the beginning of the current stage, only the newly informed depositor receives

new information. He would be the only one who would make a withdrawal at the beginning of a

stage. If other depositors withdraw, the newly informed detects the deviation, and his belief falls

to 0. He will withdraw if p̂ > 0. Thus, at least two withdrawals occur at the current stage. The

belief of an uninformed depositor also falls to 0. If p̂ = 0, depositors prefer to wait regardless of

the actions by other depositors as u1 = u2 = u (1). If pUn−1 < p, the newly informed at stage n

is supposed to withdraw even if he receives a high signal (although in equilibrium, there is no

active depositor with beliefs lower than p). If he does not withdraw, the uninformed depositors

detect the deviation, and their beliefs become 0.

Suppose that an uninformed depositor has the posterior belief pUN at the end of stage N .

He will not get information about productivity at stage N + 1. Therefore, pUN is his finalized

belief. If pUN ≥ p̂, he will wait for period 2 unless he is told to be impatient at stage N + 1.

Otherwise, he will withdraw, regardless of the actions of the other depositors. By symmetric

strategies, each depositor has a chance of 1
c1
to get paid given c1 ≥ 1. The expected utility of
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an uninformed depositor at the end of stage N is

wU
N

¡
pUN
¢
=

⎧⎨⎩ αu1 + (1− α)
£
pUNu2 +

¡
1− pUN

¢
u2
¤
, if pUN ≥ p̂;

1

c1
u1, otherwise.

(6)

Given an uninformed depositor’s expected utility at stage N and the rules of belief updates,

the expected utility of an uninformed depositor at stage n, n < N, can be constructed in a

recursive way:

wU
n

¡
pUn
¢
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αu1 + (1− α)
£
pUn u2 +

¡
1− pUn

¢
u2
¤
, if pUn ≥ p;

π
¡
pUn
¢
wU
n+1

¡
PH

¡
pUn
¢¢
+ if p ≤ pUn < p and

+(1− π
¡
pUn
¢
)wU

n+1

¡
PL
¡
pUn
¢¢
, π

¡
pUn
¢
wU
n+1

¡
PH

¡
pUn
¢¢
+ (1− π

¡
pUn
¢
)·

· wU
n+1

¡
PL
¡
pUn
¢¢
≥ u1;

1

c1
u1, otherwise,

(7)

where

π (p) = (1− α) [(1− p) (1− q) + pq] (8)

is the probability that the depositor informed at the next stage receives a high signal and is also

patient, given the posterior belief of p at the current stage.

An uninformed depositor’s strategy is

xUn =

⎧⎨⎩ 1, if wU
n

¡
pUn
¢
< u1.

0, otherwise.
(9)

for 1 ≤ n ≤ N .

If the prior at stage n + 1 is very high (very low), i.e., pUn ≥ p (pUn < p), even though a

low (high) signal is received, the newly informed depositor’s posterior belief at stage n + 1 is

still above (below) the critical level of p̂. So the newly informed depositor will not withdraw

(wait). The newly informed depositor’s action does not carry information about his signal, so

the beliefs of the uninformed depositors will not change. From then on, no more information

can be inferred from the decisions by the newly informed depositors at future stages. According

to his current belief, the expected utility of an uninformed depositor in the last period is αu1 +

(1− α)
£
pUn u2 +

¡
1− pUn

¢
u2
¤
, which is greater (lower) than u1 as pUn ≥ p (pUn < p).
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Suppose the newly informed depositor’s prior is moderately high. If a low signal is received,

the posterior belief falls below p̂, whereas if a high signal is received, the posterior belief is above

p̂. When the newly informed waits, his decision fully reveals that he gets a high signal. The belief

of the uninformed depositors will be updated to the same level as the newly informed depositor.

However, if a withdrawal is observed, an uninformed depositor’s belief will be updated by PL̃.

The expected utility of an uninformed depositor at the current stage is the weighted average

of the possible expected utilities at next stage, where the weights are the probabilities that

his current belief will be updated by either PH or PL̃ at next stage. Whether an uninformed

depositor decides to withdraw depends on whether the weighted average exceeds u1.

A previously informed patient depositor’s expected utility can be constructed in a similar

way:

wSr
N

³
pSrN

´
=

⎧⎨⎩ max
n
pSrN u2 +

³
1− pSrN

´
u2, u1

o
, if wU

N

¡
pUN
¢
≥ u1;

1

c1
u1, otherwise.

(10)

wSr
n

¡
pSrn
¢
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

pSrn u2 +
¡
1− pSrn

¢
u2, if pUn ≥ p;

max{π
¡
pSrn
¢
wSr
n+1

¡
PH

¡
pSrn
¢¢
+ if p ≤ pUn < p and

+
¡
1− π

¡
pSrn
¢¢
wSr
n+1

¡
PL
¡
pSrn
¢¢
, u1}, wU

n

¡
pUn
¢
≥ u1;

1

c1
u1, otherwise.

(11)

for 1 ≤ n < N, r < n. A previously informed depositor is patient, otherwise he would have

withdrawn already. He knows the beliefs of the uninformed depositors, and he can predict

whether the uninformed depositors will withdraw or not. Because the uninformed depositors are

of measure 1, when they withdraw, a previously informed depositor should also do so, otherwise

he will be left unpaid. Therefore, the expected utility of a previously informed depositor is

conditional on whether the uninformed depositors withdraw or not. If r = n, (10)− (11) defines

the expected utility of a newly informed depositor if he is patient.

For 1 ≤ n ≤ N , a previously informed depositor’s strategy is (r < n)

xSrn =

⎧⎨⎩ 1, if wSr
n

¡
pSrn
¢
< u1.

0, otherwise.
(12)
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At stage N + 1, an active depositor’s strategy is

xN+1 =

⎧⎨⎩ 1, if impatient or pN+1 < p̂.

0, otherwise.
(13)

where pN+1 = pN .

3.2.2 Lemmas

Before the equilibrium is proved, I first introduce the definitions of a herd of withdrawals and a

herd of non-withdrawals and the lemmas needed to prove the equilibrium.

Definition 1 A herd of non-withdrawals begins when (1) the newly informed depositor does not

withdraw deposits unless he is impatient even though a low productivity signal is received, and

(2) all other depositors wait until their consumption types are revealed to be impatient.

Definition 2 A herd of withdrawals begins when all depositors withdraw deposits.

The logic behind the proof of the equilibrium is similar to Chari and Kehoe (2003). However,

due to the facts that the payoffs of the depositors are dependent on each other’s actions, and

that the liquidity types are private information, the following lemmas are needed to establish

the properties of an active depositor’s expected utility function. I will discuss the properties of

an uninformed depositor’s expected utility function according to whether the contract satisfies

the “high cutoff probability” condition or the “low cutoff probability” condition. The meaning

of the conditions will become clear at the end of this section. Lemmas 1-2 and Corollary 1

show that the uninformed depositors are willing to wait if high signals are inferred. So in the

equilibrium, a newly informed depositor is willing to wait if a high signal is received. Lemma

3 shows that if a previously informed depositor and an uninformed depositor share the same

belief, and the uninformed depositor is willing to wait, then a previously informed depositor

is also willing to wait. In the equilibrium, a previously informed depositor will not change his

decision of waiting unless the uninformed depositors decide to run on the bank.

Definition 3 Define a cutoff probability of wU
n (p) as follows: p̃n is a cutoff probability if there

exist ε1, ε2 > 0 such that wU
n (p) ≥ u1 for p ∈ [p̃n, p̃n+ ε1], and wU

n (p) < u1 for p ∈ [p̃n−
ε2, p̃n, ).
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“High Cutoff Probability” Condition: αu1+ (1− α)
£
PL (p̂)u2 +

¡
1− PL (p̂)

¢
u2
¤
>
1

c1
u1.

“Low Cutoff Probability” Condition: αu1 + (1− α)
£
PL (p̂)u2 +

¡
1− PL (p̂)

¢
u2
¤
≤ 1

c1
u1.

The left-hand side of the “high (low) cutoff probability” condition is an uninformed deposi-

tor’s expected utility with belief PL (p̂) at stage N if no bank run occurs. The right-hand side is

his expected utility when a bank run occurs. With the “high (low) cutoff probability” condition,

the cutoff probabilities at stages before N are above (below) p̂. The “high cutoff probability”

condition is a sufficient condition for a bank run to be costly. As the uncertainty of having a

bank run is resolved gradually, depositors become more willing to wait. The expected utility

function is increasing in belief not only because the bank portfolio is more likely to be good, but

also the chance of having a costly bank run is small. Lemma 1 states the properties of wU
n (p)

when the “high cutoff probability” condition is satisfied.

Lemma 1 Consider a contract that pays c1 ≥ 1 and satisfies the “high cutoff probability” con-
dition. wU

n (p) is increasing in p for 1 ≤ n ≤ N. There exists a unique cutoff probability p̃n

such that wU
n (p) ≥ u1 for p ∈ [p̃n, 1], and wU

n (p) =
1

c1
u1 for p ∈ [0, p̃n). p̃n is decreasing in n.

wU
n (p) ≤ αu1 + (1− α) [pu2 + (1− p)u2] for p ∈ [p̃n, 1].

Proof. Prove by induction. See appendix.

By lemma 1, if the “high cutoff probability” condition is satisfied, the expected utility is in-

creasing in belief. Hence, there is a unique cutoff belief at each stage above which the uninformed

depositors are willing to wait, and below which they will withdraw.

When a bank run occurs, the bank liquidates all its assets to meet the payment demands.

If the liquidation helps mitigate future losses when the portfolio return is low, a bank run is

not undesirable. The “low cutoff probability” condition is a necessary condition that a bank

run can be desirable. With the “low cutoff probability” condition, the monotonicity of the

expected utility function is not guaranteed, and there can be multiple cutoff probabilities at a

stage. However, the cutoffs are always below p̂, which ensures that the uninformed depositors

are willing to wait if a high signal is inferred.

Lemma 2 Consider a contract that pays c1 ≥ 1 and satisfies the “low cutoff probability” con-
dition. wU

n (p) ≥ u1 on [p̂, 1] .

15



Proof. See appendix.

Lemma 2 says that if the “low cutoff probability” condition holds, depositors are willing to

wait if their beliefs are above p̂. In other words, the cutoff probabilities of p̃n are lower than p̂

for stages before N .

Given either of the “high/low cutoff probability” conditions, assume an uninformed depositor

is willing to wait the stage before. He is also willing to wait at the current stage assuming a

high signal is inferred.

Corollary 1 Consider a contract that pays c1 ≥ 1. Given a posterior belief of p at stage n, if
wU
n (p) ≥ u1, then wU

n+1 (PH (p)) ≥ u1.

Proof. See appendix.

By Corollary 1, if a newly informed depositor’s decision of waiting conveys a high signal to

the uninformed depositors, his decision will not trigger a bank run.

Example 1:

Figure 1 shows an example of wU
n (p) where the “high cutoff probability” condition holds.

u (c) = (c+b)1−γ−b1−γ
1−γ , b = 0.001, γ = 1.01. R = 1.5, R = 1, p0 = 0.9. q = 0.999. α = 0.01.

Let c1 = 1.04 and λ = αc1 = 0.0104. u2 = 7.5568, u2 = 7.1525, and u1 = 7.1921.

In this example, epN = p̂ = 0.0978, epn = 0.4383 for n = N − 1, N − 2, ...1.

In all figures in this paper, a solid thin line represents αu1 + (1− α) [pnu2 + (1− pn)u2] , a

solid thick line represents wU
n , and a dashed line represents u1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
6.9

7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

pN
U

w
NU

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
6.9

7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

pN-1
U

w
N

-1
U

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
6.9

7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

pN-2
U

w
N

-2
U

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
6.9

7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

pN-100
U

w
N

-1
00

U

Figure 1: An example of wU
N (p) , w

U
N−1 (p), w

U
N−2 (p) , and wU

N−100 (p) .
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Example 2:

Figure 2 shows an example of wU
n (p) where the “low cutoff probability” condition holds.

u (c) = (c+b)1−γ−b1−γ
1−γ , b = 0.001, γ = 1.01. R = 1.5, R = 0.8, p0 = 0.9. q = 0.9. α = 0.01.

Let c1 = 1.011, λ = αc1 = 0.0101. u2 = 7.5571, u2 = 6.9297, and u1 = 7.1629.

In this example, there exist unique cutoff probabilities at stages N , N − 1, N − 2, and

N − 100, above which wU
n (p) is greater than u1, and below which wU

n (p) is less than u1. epN =
p̂ = 0.3716, epN−1 = 0.2032, epN−2 = 0.1971, epN−100 = 0.1783. However, the uniqueness of the

cutoff probability is not guaranteed. We will see an example of non-uniqueness later. Also note

that wU
n (p) is not necessarily increasing in p.
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Figure 2: An example of wU
N (p) , w

U
N−1 (p), w

U
N−2 (p) , and wU

N−100 (p) .

Lemma 3 If pUn = pSrn and wU
n

¡
pUn
¢
≥ u1, then wSr

n

¡
pSrn
¢
≥ u1.

Proof. See appendix.

The intuition behind the lemma 3 is the following. Conditional on being impatient, a de-

positor prefers to withdraw immediately. If an uninformed depositor is willing to wait, it must

be true that conditional on being patient, the expected utility from waiting is higher than that

from withdrawing immediately.

3.2.3 Proof of the equilibrium

Proposition 1 Given c1 ≥ 1, the beliefs and strategies in (1)−(13) constitute a perfect Bayesian
equilibrium in the post-deposit game.
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Proof. By construction, an active depositor’s belief is updated by Bayes’ rule whenever possi-

ble. The strategies of an uninformed or a previously informed depositor are constructed to be

the equilibrium strategies given the strategies of a newly informed depositor. Hence, the proof

of the equilibrium is reduced to illustrate that a newly informed depositor will follow the strate-

gies described by (1) − (2) given the strategies of the uninformed and the previously informed

depositors.

A newly informed depositor’s prior at stage n is higher than p. That is, pUn−1 ≥ p. If a herd

of non-withdrawals has begun already, that is, pUn−1 ≥ p, the newly informed depositor’s action

does not change the beliefs of other depositors, and he will not be able to infer any information

in future. Even if he receives a low signal, his private belief is still above p̂, so he will be waiting.

In what follows, I will discuss cases according to the signal that the newly informed depositor

gets at stage n, given that a herd of non-withdrawals has not begun yet, that is, p ≤ pUn−1 < p.

(1) The newly informed depositor gets a high signal. His belief now is higher than p̂. If

he waits, he conveys the high signal to all other depositors. By corollary 1, the uninformed

depositors will be waiting. If the newly informed depositor waits, he will become a previously

informed depositor and share the same belief with the uninformed depositors. By lemma 3, the

newly informed depositor will wait.

(2) The newly informed depositor gets a low signal. His belief is now pSnn = PL
¡
pUn−1

¢
< p̂.

According to the strategies, he should withdraw and get u1. Suppose he waits. Then the belief

of an uninformed depositor is misled to be updated to pUn = PH
¡
pUn−1

¢
. From then on, the belief

of an uninformed depositor is always two signals above that of the depositor informed at n, that

is, pSnm = P 2L
¡
pUm
¢
for m ≥ n. By choosing to wait, the best outcome that the newly informed

depositor can anticipate is a herd of non-withdrawals. (If he anticipates a herd of withdrawals

to occur, he would withdraw immediately.) Suppose a herd of non-withdrawals occurs at a later

stage m < N . The posterior belief of an uninformed depositor at stage m satisfies pUm ≥ p. It

also must be true that pUm−1 < p, PL
¡
pUm−1

¢
< p̂, and PH

¡
pUm−1

¢
≥ p. Otherwise, the herd of

non-withdrawals could have begun earlier. As pUm−1 < pUm, we have p
U
m = PH

¡
pUm−1

¢
. The belief

of the depositor who has deviated is pSnm = P 2L
¡
pUm
¢
= PL

¡
pUm−1

¢
< p̂. Thus, at the stage that

the herd of non-withdrawals begins, the expected utility of the depositor who has deviated is

still lower than u1. In the case when neither a herd of withdrawals nor a herd of non-withdrawals

occurs before stage N , the uninformed depositors’ belief satisfies pUN−1 < p, which implies the
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deviator’s belief at stage N is below p̂. Therefore, the depositor informed at stage n does not

benefit from deviation. A newly informed depositor weakly prefers to withdraw immediately if

a low productivity signal is received.

In the equilibrium, the previously informed depositors who have been informed before a herd

of non-withdrawals begins share the same belief with the uninformed depositors. By Lemma 3,

the previously informed always wait unless the uninformed decide to run on the bank. Those

who are informed after a herd of non-withdrawals begins always wait.

Because the consumption types are private information, deviations are undetectable to the

uninformed and previously depositors unless more than one withdrawal is observed at a stage

before a herd of withdrawals begins. However, the newly informed depositor can detect devi-

ations if anyone else makes a withdrawal at the current stage, and he will withdraw if p̂ > 0

because his belief is 0 now. In this case, the beliefs of the uninformed and previously informed

depositors also fall to 0 because at least two withdrawals at a stage are observed. Therefore,

all depositors withdraw. If p̂ = 0, waiting is the dominant strategy even if all other depositors

withdraw as u1 = u2 = u (1).

3.3 Discussion of the Equilibrium - the “High Cutoff Probability” Condition

Holds

With the “high cutoff probability” condition, the sequence of (p̃0, p̃1, ..., p̃N−1, p̂, p̂) comprises the

threshold beliefs above which the uninformed depositors wait, and below which they withdraw,

whereas (p̂, p̂, ..p̂, p̂, p̂) is the sequence of the threshold beliefs above which the newly informed

depositors wait, and below which they withdraw. A herd of non-withdrawals happens before

stage n if pUn ≥ p. At stages N and N + 1, if beliefs are above p̂, depositors will wait unless

they are impatient. Therefore, for all depositors (p, p, ..., p, p̂, p̂) is the sequence of beliefs above

which a herd of non-withdrawals occurs at a stage.

Because p̃n is unique and is decreasing in n, we can calculate the number of updates by P
L

that are needed to trigger a bank run at stage n starting with p0. Let Zn solve

PZn−1
L̃

(p0) ≥ p̃n, and PZn
L̃
(p0) < p̃n.

If there have been Zn number of withdrawals up to stage n, a bank run will take place. Because

p̃n ≥ p̂, a non-withdrawal will trigger a herd of non-withdrawals.
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What we observe in the equilibrium is as follows: A newly informed depositor follows his

productivity signal if his prior at the current stage is below p. If the newly informed depositors

keep withdrawing from the bank, the beliefs of the uninformed depositors will finally fall below

the cutoff, and they will demand their deposits back. Before their beliefs drop below the cutoff,

if one non-withdrawal is observed, the uninformed depositors will be convinced to wait. In a

situation where the uninformed depositors observe consecutive withdrawals but the number of

withdrawals is not too large, the uninformed depositors watch the line closely. Their beliefs will

be updated by the decisions of the newly informed depositors.

Let us try to understand why the cutoff probabilities are higher before stage N if the “high

cutoff probability” condition is satisfied. Given pUN in the interval of [P
L
(p̂) , p̂), a bank run

takes place at stage N . The social welfare, measured by the aggregate expected utility, falls

to 1
c1u1. However, with the “high cutoff probability” condition, if depositors do not withdraw,

the social welfare would actually be higher than that in the bank run. From the view of social

welfare, the bank run is undesirable. Nevertheless, it is in an individual depositor’s own interest

to withdraw early. To an individual depositor, due to the costly liquidation, his expected utility

also experiences a sudden drop when there presents a possibility of bank runs. Aware of the

possibility of having a bank run at the next stage, the depositors must be more optimistic to

wait for more information at stage N − 1. Hence, the cutoff belief at stage N − 1 is higher than

p̂. Working backward, as the uncertainty of having a bank run gradually resolves, the cutoff

beliefs decrease as time goes by. Depositors become more and more willing to wait.

3.4 Discussion of the Equilibrium - the “Low Cutoff Probability” Condition

Holds

If the “low cutoff probability” condition is satisfied, when depositors withdraw with the belief

of PL (p̂) at stage N , the aggregate expected utility is
1
c1u1. If they wait, however, the expected

utility in the last period will be lower. Bank runs under such a circumstance are not undesirable

because they mitigate future losses. Bank runs serve as a valuable “option,” so the uninformed

depositors with belief slightly lower than p̂ are still willing to wait at stage N − 1, even though

they are aware of the positive probability of bank runs. The expected utility at stage N−1 given

the posterior belief of p̂ is thus raised above u1. By backward induction, the cutoff probabilities

are lower than p̂ for any stage before N.
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Two possible and interesting results associated with the “low cutoff probability” condition

are (1) non-monotonicity of the expected utility in belief and (2) non-uniqueness of the cutoff

probabilities.

Non-monotonicity of the expected utility in belief:

Because early liquidation can help mitigate future losses, the economy in which information

has a chance to be revealed can do better than the economy without information. From Figure

2, we see that for some p, wU
n (p) is above αu1+(1− α) [pu2 + (1− p)u2], which is the expected

utility in an economy with no information about production.

Because information about production is valuable and a herd of non-withdrawals suppresses

the inference of private information, a higher belief does not necessarily result in a higher

expected utility. There are two opposite forces behind belief: A higher belief brings more

confidence in production. However, an economy with a higher belief also reaches a herd of non-

withdrawals faster, after which no information will be available. Whether the expected utility

increases in belief depends on the strength of the two forces.8

The non-monotonicity of the expected utility function in herding has not been paid attention

in the literature. In the literature, herding is usually treated as a partial equilibrium problem,

in which the cutoffs are determined by the assumption of parameters. An agent’s 0-1 decision

either perfectly reveals the signal received, or both decisions carry the same amount of noises.

Given an initial prior, only a few crucial probability levels (1 and 2 signals above and below the

initial prior) are needed to prove the equilibrium. In the banking set-up with a one-side signal

extraction problem, the belief updated by observing a non-withdrawal is not completely offset

by a withdrawal. The number of possible posterior beliefs increases geometrically in each stage.

A general description of the expected utility function on the full domain of beliefs thus becomes

necessary. Also, the cutoff probabilities vary with the contract. In order to calculate the optimal

contract, the value of the expected utility given any parameters (in particular, c1 and λ) needs

to be determined.

Then why is the expected utility function always increasing in beliefs when the “high cutoff

probability” condition holds? Note that the backup option here is a bank run. Unlike a safe

asset in an investment herding problem, a bank run is costly because some depositors are not

paid. If the welfare cost is too high, a bank run is no longer a “safety net.” The “high cutoff

8The monotonicity is guaranteed for wU
N and wU

N−1.

21



probability” condition is a sufficient condition for a bank run to be too costly. With such a

condition, the uncertainty of having a bank run lowers the expected utility. A higher belief not

only stands for a higher expected return, but it also means a lower probability of having a costly

bank run. Because an earlier stage faces more future history paths and the paths are gradually

ruled out throughout period 1, the uncertainty is smaller at a later stage than at an earlier stage.

The cutoff belief is thus decreasing in n.

Note that the “high/low cutoff probability” condition relies on backward induction to decide

whether the cutoff probabilities at stages before N are higher or lower than p̂. It is not the

necessary and sufficient condition for the monotonicity of the expected utility function.

Non-uniqueness of the cutoff probabilities:

Because the monotonicity of expected utility is not guaranteed, our next question is whether

the cutoff probability p̃n is unique. In fact, the uniqueness of the cutoff probabilities is no longer

assured.9 Figure 3 shows an example.

Example 3: An example of non-uniqueness of the cutoff probabilities:

u (c) = (c+b)1−γ−b1−γ
1−γ , b = 0.01, γ = 1.5. R = 2.07, R = 0, p0 = 0.9. q = 0.7. α = 0.25.

Let c1 = 1.011 and λ = αc1 = 0.2528. u2 = 18.6107, u2 = 0, u1 = 18.0207. p̂ = 0.9683.

p = 0.9862.
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Figure 3: An example of non-uniqueness of the cutoff probabilities

Figure 3 shows the expected utility of an uninformed depositor at the stage of N − 6. There

are two cutoffs at stage N − 6, 0.9546 and 0.9562. If the posterior belief at stage N − 6 falls

below (including) 0.9546 or between (including) 0.9551 and (excluding) 0.9562, the uninformed

depositors will run on the bank.

9 It is guaranteed for wU
N , w

U
N−1, and wU

N−2.
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Non-uniqueness of the cutoff beliefs results from payment interdependence. In an investment

herding problem with no payment dependence, an investor’s expected utility is always higher

than the return on a safe asset because the safe asset is always available and its value is constant.

Therefore, the cutoff belief is the lowest level of belief given which information is still able to be

revealed. It is always unique. Here in the banking setup, the value of the option to withdraw

decreases when all depositors exercise it. An individual depositor compares his expected utility

with u1, whereas his expected utility in a bank run is actually 1
cu1. The cutoff level of his

expected utility is higher than the realized value of his option to withdraw. When the expected

utility is low, an individual depositor prefers to use his option to withdraw before all others do

so (although all others do the same thing) rather than waiting for more information. Because

the expected utility does not necessarily increase in belief, there can be more than one cutoff

belief. A bank run can happen given a relatively higher belief instead of a lower one.

Non-uniqueness of the cutoff beliefs implies the following: Given the same contract, an

economy that starts with higher initial prior p0 can be more vulnerable to bank runs than the

one with lower initial prior. A bank run may be triggered by fewer withdrawals in the economy

with a higher initial belief than with a lower initial belief. This is because an economy with

higher initial prior has higher probability to reach a herd of non-withdrawals and thus has less

chance to reveal information. In example 3, uninformed depositors with belief of pUN−7 = 0.9727

(PL̃ (0.9727) = 0.9562) run on the bank if a withdrawal is observed at stage N − 6, whereas if

their belief is pUN−7 = 0.9717 (PL̃ (0.9717) = 0.9547), they prefer to wait.

A question associated with non-uniqueness is whether it is possible that a shorter queue can

encourage a bank run more than a longer queue given the same parameters of the economy

but different sequences of signals. To formalize the question, suppose wU
n

¡
p1
¢
≥ u1, whereas

wU
n

¡
p2
¢
< u1, and p ≤ p1 < p2 < p̂. Is it possible that p1 results from more observed withdrawals

than p2? The answer is no. Suppose the economy observesm withdrawals up to stage n to reach

p1, whereas it takes m − 1 withdrawals up to stage n to reach p2. We have p1 = PLPL
¡
p2
¢
.

Because p2 < p̂, p1 < PL (p̂) = p. It contradicts the assumption that p1 is above p. Therefore,

in the equilibrium, a longer queue always implies that low productivity is more likely, and it

encourages people to run on the bank.

Without the uniqueness of the cutoffs, it is difficult to describe generally the sequence of

actions that can trigger a herd. Two non-withdrawals in a row will definitely trigger a herd
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of non-withdrawals. Because a decision of withdrawal conveys noisy information about the

signal received, it does not offset a decision of non-withdrawal completely. For example, if

p0 < p̂, P 2HPL̃ (p0) ≥ p, and PHP
2
L̃
(p0) < p, then a sequence of (0, 1, 0) can trigger a herd of

non-withdrawals, whereas a sequence of (0, 1, 1) can trigger a herd of withdrawals.

In summary, the following will be observed in the equilibrium: A newly informed depositor

follows his productivity signals until his belief is above p. If many informed depositors do not

withdraw, the beliefs of the uninformed depositors will be raised above p, and a herd of non-

withdrawals will start. In the opposite case, if many people withdraw, all other depositors will

demand their deposits back. In a situation where the uninformed depositors observe neither too

many withdrawals nor too many non-withdrawals, they will watch the line closely. Their beliefs

will be updated by the decisions of the newly informed depositor.

The equilibrium proved in proposition 1 is not unique. For example, there can be equilibria

in which at the first few stages, the newly informed depositors adopt the strategies described

in proposition 1. But from stage m (1 < m ≤ N) on, the newly informed depositors always

wait until the last stage to make their decisions. Because wU
n

¡
pUn
¢
changes with the strategies

adopted, it is difficult to exhaust all possible equilibria. However, because the purpose of this

paper is to illustrate how people make withdrawal decisions based on the observed withdrawals

of others, I assume that depositors only play the equilibrium strategies in proposition 1 in the

post-deposit game.

4 Pre-deposit Game

Once the equilibrium in the post-deposit game is proved, the probability of having a bank run

given a contract is determined. Questions remaining are: (1) Knowing the probability of bank

runs in any possible situation, what is the optimal contract that a competitive bank will provide?

(2) Is the optimal contract individually rational (is it better than autarky and accepted by the

depositors ex ante)? Peck and Shell (2003) show that the ex-ante acceptable optimal contract

can tolerate panic-based bank runs if the probability of runs is small enough, and that bank

runs are equilibrium phenomena. In this section, I will follow their logic to illustrate that the

optimal demand-deposit contract can permit herding runs.

In the static bank-runs model, a feasible contract should at least satisfy the participation

incentive compatibility constraint, which says that given all other patient depositors do not
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withdraw the deposits, an individual patient depositor prefers to wait. In the dynamic setup,

a bank run can happen at any stage, but a feasible contract should at least give depositors

the incentive to wait before anyone gets a signal. The participation incentive compatibility

constraint is

wU
0 (p0) ≥ u1. (14)

The participation incentive compatibility constraint in the traditional Diamond-Dybvig model

is a special case here, with N = 0 and p = 1.

The bank chooses a contract to offer. There are two types of contracts available to the

bank: run-proof contracts and run-admitting contracts. A run-proof contract guarantees that

whichever signals are sent in the post-deposit game, the expected utility of the uninformed

depositors never falls below the threshold at any stage.

4.1 Run-Proof Contracts

A run-proof contract is in any one of the three cases in my model:

Case 1: A contract that provides c1 < 1. All patient depositors wait until stage N +1 to make

decisions according to their beliefs and consumption types. No information can be inferred from

the decision of a newly informed depositor. The belief of an uninformed depositor is p0 at all

stages. The expected utility of an uninformed depositor at each stage is

wU
n (p0) = αu1 + (1− α) [p0u2 + (1− p0)u2] .

for 0 ≤ n ≤ N .

Case 2: c1 ≥ 1, and

PL (p0)u2 + (1− PL (p0))u2 ≥ u1. (15)

That is, the initial belief is already above p. A herd of non-withdrawals has already begun

before anyone gets signals. The uninformed depositors never update their beliefs by the observed

actions. If (15) is satisfied, we have pUn = p0 > ep0 > epn for all n.
Case 3: c1 ≥ 1, and

PL (p0)u2 + (1− PL (p0))u2 < u1, (16)

wU
n

³
Pn
L
(p0)

´
≥ u1 ∀0 ≤ n ≤ N. (17)
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That is, the newly informed depositors withdraw if low signals are received. However, because

there are too few stages and/or because the probability of being impatient is high, even though

the beliefs are updated by PL (·) at every stage, the beliefs of the uninformed depositors are still

above the thresholds. Note that if (17) holds, wU
n

¡
pUn
¢
= αu1 + (1− α) [pnu2 + (1− pn)u2] for

any 0 ≤ n ≤ N and for any pn derived from p0. Therefore, (17) can be rewritten as

PN
L
(p0) ≥ p̂. (170)

Given a run-proof contract, wU
0 (p0) = αu1+(1− α) [p0u2 + (1− p0)u2]. The best run-proof

contract solves
maxc1,λw

U
0 (p0) = αu1 + (1− α) [p0u2 + (1− p0)u2]

s.t. c1 < 1, or

c1 ≥ 1 and (14)− (15) , or

c1 ≥ 1, (14) , and (16)− (17) .

4.2 Run-Admitting Contracts (N = 2)

A run-admitting contract admits a herd of withdrawals because wU
n

¡
pUn
¢
< u1 at at least one

stage for some realization of pUn derived from p0. The ex-ante probability of having a bank run

given a contract can be calculated by checking the probability that wU
n

¡
pUn
¢
will be lower than

u1 at each stage. The probability of having a bank run at a stage depends on the contract

and other parameters. The realization of a bank run relies on the random process in which the

signals are sent. If a contract satisfies the “high cutoff probability” condition, the probability of

bank runs is determined by the probability of getting Zn number of withdrawals in a row up to

stage n. If a contract satisfies the “low cutoff probability” condition, it is difficult to write out

the general rules of calculating the probability of bank runs. In this section, a pre-deposit game

of N = 2 is calculated. A more general case can be calculated in the same way. There are five

cases for a run-admitting contract for N = 2, depending on the conditions with which a herd of

withdrawals starts. The conditions for each case and the objective function of wU
0 (p0) of each

case are listed in the appendix.

Case I: A herd of non-withdrawals begins if the first informed depositor waits. If the first

informed depositor withdraws and the second also withdraws, then a bank run occurs. If the

first withdraws and the second waits, the uninformed depositors wait. The probability of bank
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runs is

σ1 = (1− π (p0))
¡
1− π

¡
P
L
(p0)

¢¢
.

Case II: A herd of non-withdrawals does not occur if the first informed depositor waits. The

second depositor follows his signals, but the uninformed depositors do not withdraw regardless

of the second depositor’s decision. A herd of withdrawals does not occur after the first depositor

withdraws. If both the first and the second informed depositors withdraw, then a bank run

occurs. The probability of bank runs is σ1.

Case III: A herd of withdrawals begins if the first informed depositor withdraws. If the first

informed depositor waits, a herd of non-withdrawals begins. The probability of bank runs is

σ2 = 1− π (p0) .

Case IV: A herd of withdrawals starts if the first informed depositor withdraws. If the first

informed depositor waits, the second depositor follows his signal. However, the uninformed

depositors do not withdraw regardless of the second depositor’s decision. The probability of

bank runs is σ2.

Case V: A herd of withdrawals starts if the first informed depositor withdraws. If the first

informed depositor waits, the second depositor still follows his signal. The uninformed depositors

wait if the second depositor waits, and they withdraw if the second depositor withdraws. The

probability of bank runs is

σ3 = 1− π (p0) + π (p0) (1− π (PH (p0))) .

A competitive bank chooses the optimal contract from the classes of run-proof and run-

admitting contracts. A run-proof contract is usually associated with lower c1. The bank keeps

more asset in storage so that the difference between payments in different periods and in different

production state is small. A run-admitting contract usually provides higher c1. Although c2 in

a run-admitting contract varies more between different production states, when the probability

of low productivity is small, investing more in production is more desirable. There are three

factors concerning which type of contract to offer. First, because a run-admitting contract

usually provides more liquidity to early withdrawals, and the bank invests more in production

though it is risky, the contract helps smooth consumptions and allows for higher return in the last
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period when productivity is high. This is a positive side of providing a run-admitting contract.

Second, a run-admitting contract allows depositors to reveal their private information by their

decisions. A herding run is partly fundamental driven. It is not necessarily undesirable in an

economy with weak fundamentals because it mitigates future losses. It is again a positive side

of a run-admitting contract. Third, because the signals and the information extracted from a

depositor’s action are not perfect, a bank run can happen when fundamentals are strong. This

is a negative side of a run-admitting contract. Which contract to provide depends on the overall

effects of the three.

The choice among run-admitting contracts also depends on several factors. First, a higher

c1 helps smooth consumptions across types, but it is usually associated with higher probability

of bank runs and lower social welfare in bank runs. The second factor is unique to a sequential-

move game. The optimal run-admitting contract should allow as much information as possible

to be sensed publicly before any type of herd begins. The first N depositors can be treated

as experiments. The result of each experiment can only be read before herds begin. A careful

choice of contract should prolong the effective experiment process as much as possible. High c1

and low c2’s can encourage people to run on the bank, and a bank run can happen too soon.

I compute two examples to illustrate that in some economies a run-admitting contract is

optimal, whereas in other economies a run-proof contract is optimal. I compute the best contract

in each of the three run-proof cases and the five run-admitting cases. The optimal contract is

“the best of the best.”

In the economy without signals about production, the bank chooses c1 and λ to maxi-

mize αu1 + (1−α) [p0u2 + (1− p0)u2], subject to the incentive compatibility constraint p0u2 +

(1− p0)u2 ≥ u1. If even given the optimal demand deposit contract herding runs are unde-

sirable, the bank may want to use a “curtain” to prevent depositors from seeing each others’

actions. From the examples below, we will see that information can improve ex-ante welfare.

An individual depositor’s expected utility in autarky is u (1). If the optimal banking contract

is accepted ex ante, wU
0 (p0) must be at least equal to u (1).

4.3 Computed Examples

Parameters and functions used in examples 4 and 5 are u (c) = (c+b)1−γ−b1−γ
1−γ , b = 0.001, γ = 1.01.

R = 1.5, R = 0.2, p0 = 0.99. q = 0.99.
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Example 4: α = 0.01.

Table 1: Optimal Contract - Example 4

σ c1 λ w0 (p0)

Autarky 0 1.0000 1 7.1529
Banking economy without info 0 1.0001 0.0100 7.5332
Best run-proof contract in case 1 0 1.0000 0.0100 7.5332
Best run-proof contract in case 2 0 1.0000 1.0000 7.1529
Best run-proof contract in case 3 0 1.0000 1.0000 7.1529
Best run-admitting contract in case I 0.0102 1.0000 0.0100 7.5487∗

Best run-admitting contract in case II 0.0102 1.0000 1.0000 7.1529
Best run-admitting contract in case III 0.0296 1.0876 0.0109 7.5263
Best run-admitting contract in case IV 0.0296 1.0000 1.0000 7.1529
Best run-admitting contract in case V 0.0490 1.4868 0.0149 7.4310

Note that the best run-proof contract in case 1 provides c1 that is less than, but very close

to, 1. A run-proof contract is not the best in this example mainly because it does not induce

depositors to reveal the signals they receive. The economy cannot benefit from the available

information about productivity. This is also the reason why the economy with information about

production can achieve higher ex-ante welfare than the economy without information can.

Example 5: α = 0.2.

Table 2: Optimal Contract - Example 5

σ c1 λ w0 (p0)

Autarky 0 1 1 7.1529
Banking economy without info 0 1.0028 0.2006 7.4602
Best run-proof contract in case 1 0 1.0000 0.2000 7.4602∗

Best run-proof contract in case 2 0 1.0000 1.0000 7.1529
Best run-proof contract in case 3 0 1.0028 0.2006 7.4602∗

Best run-admitting contract in case I 0.0527 1.0213 0.2043 7.4523
Best run-admitting contract in case II 0.0527 1.0000 1.0000 7.1529
Best run-admitting contract in case III 0.2158 1.1047 0.2209 7.2785
Best run-admitting contract in case IV 0.2158 1.0000 1.0000 7.1529
Best run-admitting contract in case V 0.3790 1.0000 1.0000 7.1529

In this example, a run-proof contract is optimal. The increase in α adds more noise to the

informed depositors’ withdrawal decisions. If it is a run-admitting contract, the probability of

bank runs is increased because the probability of observing informed depositors withdraw is

raised. In addition, because there are more impatient depositors in the economy, the payments

to the depositors in period 1 are decreased due to the resource constraint, which leaves more

room for using a run-proof contract. In this example, a run-admitting contract is not desirable

as bank runs happen too frequently when the fundamentals are strong.
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Green and Lin (2000, 2003) provide a model in which depositors make decisions whether

to withdraw in sequence, although the depositors do not observe the line nor the decisions by

others. They show that there exists an optimal banking contract that completely eliminates

panic-based bank runs. My paper discusses bank runs given a demand-deposit contract. It does

not seek a banking mechanism that eliminates herding runs. A demand-deposit contract with

sequential service is widely used in the banking industry.10 It is worthwhile as the first attempt

to explain the queuing process given a contract in a narrow class of banking mechanism such as

a simple demand-deposit contract.

A crucial difference between Green and Lin’s economy and my economy is that there is no

production uncertainty in Green and Lin’s economy. Their mechanism induces the depositors

to tell their private information — their consumption type — truthfully by their decisions. In

my model, however, there are two dimensions of uncertainty. The 0-1 withdrawal decision

cannot fully reveal the private information that a depositor has. Thus, there exists information

asymmetry between the bank and depositors. Even if the bank is allowed to provide a contract

that offers payments contingent on withdrawal history, it may not be able to eliminate bank runs.

In a different paper, I show that in a two-depositor, two-stage economy with partial suspension

of convertibility in the sense of Wallace (1988, 1990), a run-admitting contract can be optimal.

However, it is still an open question whether there exists an optimal banking mechanism that

eliminates both panic-runs and fundamental-runs.

5 Conclusion

This paper provides a model for studying detailed dynamics in bank runs. In an economy with

uncertainty in production, a line in front of a bank carries information about the production

status. The formation of a line outside a bank can persuade others to join the line. In my

model, a depositor makes withdrawal decisions according to his observation of the withdrawal

histories of the others as well as his private information about the bank fundamentals. Given

a simple demand-deposit contract, there is a perfect Bayesian equilibrium in which depositors

withdraw deposits if too many withdrawals are observed, and wait otherwise. In some economies,

the simple demand-deposit contract allowing for herding runs is optimal because it achieves

10Calomiris and Kahn (1991) show that demand-deposit contract is efficient if a bank’s moral hazard problem
potentially exists. Because bank runs are costly, depositors are motivated to monitor the bank and the moral
hazard problem will be reduced.
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higher risk-sharing among depositors and/or allows private information about production to be

revealed.

There is some literature on bank runs that is closely related to this paper. Goldstein and

Pauzner (2005) construct a model in which depositors receive i.i.d. signals on fundamentals and

determine whether to run on the bank simultaneously. Chen (1999) explains contagious bank

runs using information externality. Chari and Jagannathan (1988) analyze an economy with

random productivity. Some depositors are informed of the productivity status and others are

not. The uninformed depositors infer information about productivity by observing the aggregate

withdrawals rate. There is a rational expectation equilibrium in the model, which allows for

bank runs. However, Chari and Jagannathan adopt a static equilibrium concept. The bank in

their model does not have an intrinsic role in the economy. The cost of bank runs is imposed

exogenously. Long-run payments do not depend on whether bank runs occur in the short run.

My paper addresses these problems and emphasizes the welfare aspect of herding runs.

In the present paper, the bank has no information advantage over the majority depositors,

which is not quite true in reality. In a more complicated model in which the bank receives

signals about productivity, there arise problems such as how to eliminate the bank’s moral

hazard problem due to the information asymmetry between the bank and the depositors, and

how the bank reduces the probability of bank runs due to the misleading signals. These can be

extensions to the paper.

Allowing payments to vary with the evolution of history will give the bank more flexibility

and will achieve higher social welfare (Wallace,1988, 1990). Is there a more general banking

mechanism, for example, a mechanism that induces people to report truthfully about the signals,

achieving a more efficient allocation? An efficient banking mechanism should not only allow the

bank to provide a contract depending on the withdrawal history but also eliminate asymmetric

information between the bank and the depositors as much as possible. To find a more efficient

mechanism in the economy with uncertainties in both production and consumption is another

extension of this paper, and more policy implications can be derived from the finding of such a

mechanism.
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6 Appendix

6.1 Proofs of Lemmas 1- 3 and Corollary 1

Lemma 1 Consider a contract that pays c1 ≥ 1 and satisfies the “high cutoff probability”

condition. wU
n (p) is increasing in p for 0 ≤ n ≤ N . There exists a unique cutoff probability p̃n

such that wU
n (p) ≥ u1 for p ∈ [p̃n, 1], and wU

n (p) =
1
c1u1 for p ∈ [0, p̃n). p̃n is decreasing in n.

wU
n (p) ≤ αu1 + (1− α) [pu2 + (1− p)u2] for p ∈ [p̃n, 1].

Proof. If p̂ ≤ 0, pu2+(1− p)u2 ≥ u1 for any p ∈ [0, 1] .Hence, wU
n (pn) = αu1+(1− α) [pnu2 + (1− pn)u2] ≥

u1 for pn ∈ [0, 1]. p̃n = 0 for all n.

Same argument applies to p̂ ≥ 1. wU
n (p) =

1
c1
u1 on pn ∈ [0, 1]. p̃n = 1 for all n.

Discuss the case in which p̂ ∈ (0, 1) .

wU
N (p) is increasing in p by its definition. It has a unique cutoff probability p̂. For stageN−1,

wU
N−1 (p) = αu1 + (1− α) [pu2 + (1− p)u2] for p ≥ p by definition. Check π (p)wU

N (PH (p)) +

(1− π (p))wU
N

¡
PL (p)

¢
for p < p.

Because wU
N (p) is increasing in p, π (p)wU

N (PH (p)) + (1 − π (p))wU
N

¡
P
L
(p)
¢
is also in-

creasing in p for p < p. Because limp→p π (p)w
U
N (PH (p)) + (1 − π (p))wU

N

¡
PL (p)

¢
= αu1 +

(1− α) [pu2 + (1− p)u2] , w
U
N−1 (p) is increasing on the entire domain of [0, 1] . Hence, a unique

cutoff probability p̃N−1 can be found.

Let PH̃ (p) be the inverse function of PL̃ (p). w
U
N−1 (p) = αu1+ (1− α) [pu2 + (1− p)u2] for

p ≥ PH̃ (p̂). If

π
¡
PH̃ (p̂)

¢ ©
αu1 + (1− α)

£
PH

¡
PH̃ (p̂)

¢
u2 +

¡
1− PH

¡
PH̃ (p̂)

¢¢
u2
¤ª
+

+
¡
1− π

¡
PH̃ (p̂)

¢¢
1
c1u1

< u1,

then p̂ < p̃N−1 = PH̃ (p̂) < p. wU
N−1 (p) = αu1 + (1− α) [pu2 + (1− p)u2] > u1 for p ≥ p̃N−1.

wU
N−1 (p) =

1
c1u1 for p < p̃N−1.
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If the inequality does not hold, a unique cutoff p̃N−1 < PH̃ (p̂) can be found to solve

π (p̃N−1) {αu1 + (1− α) [PH (p̃N−1)u2 + (1− PH (p̃N−1))u2]}+

+(1− π (p̃N−1))
1
c1
u1

= u1,

by the continuity and the monotonicity of the above function in p. By the “high cutoff prob-

ability” condition, p̂ < p̃N−1 < PH̃ (p̂) < p. Also by the “high cutoff probability” condi-

tion, wU
N−1

¡
PL̃ (p)

¢
= 1

c1
u1 < αu1 + (1− α)

£
PL (p)u2 +

¡
1− PL (p)

¢
u2
¤
for p ∈ [p̃N−1, PH̃(p̂)).

Therefore, wU
N−1 (p) ≤ αu1 + (1− α) [pu2 + (1− p)u2] on [p̃N−1, 1].

Prove the rest by induction.

Suppose it is true for every stage up to stage n+ 1 that (1) wU
n+1 (p) is increasing in p. (2)

p̂ < p̃n+2 ≤ p̃n+1 ≤ p. If wU
n+1 (p̃n+1) > u1, p̃n+1 = min

n
P
N−(n+1)
H̃

(p̂) , p
o
, wU

n+1 (p) = αu1 +

(1− α) [pu2 + (1− p)u2] for p ≥ p̃n+1. If wU
n+1 (p̃n+1) = u1, p̃n+1 < min

n
P
N−(n+1)
H̃

(p̂) , p
o
.

wU
n+2

¡
PL̃ (p̃n+1)

¢
= 1

c1
u1; (3) wU

n+1 (p) ≤ αu1 + (1− α) [pu2 + (1− p)u2] for p ∈ [p̃n+1, 1].

Check the properties of wU
n (p):

(i) monotonicity.

wU
n (p) = αu1 + (1− α) [pu2 + (1− p)u2] for p ≥ p. For p < p, as wU

n+1 (p) is increasing in

p, π (p)wU
n+1 (PH (p)) + (1− π (p))wU

n+1

¡
P
L
(p)
¢
is also increasing. Check π (p)wU

n+1 (PH (p)) +

(1− π (p))wU
n+1

¡
PL (p)

¢
.

If PL (p) ≥ p̃n+1,

u1 ≤ wU
n+1

¡
P
L
(p)
¢
≤ αu1 + (1− α)

£
P
L
(p)u2 +

¡
1− P

L
(p)
¢
u2
¤
.

If PL (p) < p̃n+1,

wU
n+1

¡
PL (p)

¢
= 1

c1
u1 < αu1 + (1− α)

£
PL (p)u2 +

¡
1− PL (p)

¢
u2
¤
.

Therefore,

π (p)wU
n+1 (PH (p)) + (1− π (p))wU

n+1

¡
P
L (p)

¢
≤ αu1 + (1− α) [pu2 + (1− p)u2] .
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wU
n (p) is increasing on [0, 1], and there exists a unique cutoff probability p̃n.

(ii) p̂ < p̃n+1 ≤ p̃n ≤ p.

Plug p̃n+1 into π (p)wU
n+1 (PH (p)) + (1− π (p))wU

n+1

¡
PL (p)

¢
, and we have

π (p̃n+1)w
U
n+1 (PH (p̃n+1)) + (1− π (p̃n+1))w

U
n+1

¡
PL (p̃n+1)

¢
= π (p̃n+1) {αu1 + (1− α) [PH (p̃n+1)u2 + (1− PH (p̃n+1))u2]}+

(1− π (p̃n+1))
1
c1
u1.

(a) If wU
n+1 (p̃n+1) = u1, w

U
n (p̃n+1) = u1 because p̃n+1 solves the same problem. Hence, we

have p̃n = p̃n+1 < min
n
P
N−(n+1)
H̃

(p̂) , p
o
≤ min

n
PN−n
H̃

(p̂) , p
o
, wU

n+1

¡
PL̃ (p̃n)

¢
= wU

n+2

¡
PL̃ (p̃n+1)

¢
=

1
c1u1.

(b) If wU
n+1 (p̃n+1) > u1, p̃n+1 = min

n
P
N−(n+1)
H̃

(p̂) , p
o
. It must be true that

π (p̃n+1) {αu1 + (1− α) [PH (p̃n+1)u2 + (1− PH (p̃n+1))u2]}+

(1− π (p̃n+1))
1
c1
u1 ≤ u1.

If not, we could have found a cutoff that is less than p̃n+1 for stage n+1. Therefore, wU
n (p̃n+1) ≤

u1, and p̃n ≥ p̃n+1 by the monotonicity of wU
n+1 (p) .

Discuss p̃n in case (b). At pn = min
n
PN−n
H̃

(p̂) , p
o
, wU

n (pn) = αu1+(1− α) [pnu2 + (1− pn)u2] >

u1. Check

π (pn) {αu1 + (1− α) [PH (pn)u2 + (1− PH (pn))u2]}+ (1− π (pn))
1
c1
u1.

If it is greater than u1, we can find a cutoff of p̃n between
³
p̃n+1,min

n
PN−n
H̃

(p̂) , p
o´

to satisfy

wU
n (p̃n) = u1. If it is less than or equal to u1, p̃n = min

n
PN−n
H̃

(p̂) , p
o
.

(iii) wU
n (p) ≤ αu1 + (1− α) [pu2 + (1− p)u2] for p ∈ [p̃n, 1].

wU
n (p) = αu1 + (1− α) [pu2 + (1− p)u2] for p ∈ [p̄, 1]. For p ∈ [p̃n, p̄), by the “high cutoff
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probability” condition,

wU
n (p) = π (p)wU

n+1 (PH (p)) + (1− π (p̃n))w
U
n+1

¡
PL (p)

¢
= π (p) {αv1 + (1− α) [PH (p)u2 + (1− PH (p))u2]}+

+(1− π (pn))w
U
n+1

¡
PL (p)

¢
≤ π (p) {αu1 + (1− α) [PH (p)u2 + (1− PH (p))u2]}+

+(1− π (pn))
©
αu1 + (1− α)

£
P
L
(p)u2 +

¡
1− P

L
(p)
¢
u2
¤ª

= αu1 + (1− α) [pu2 + (1− p)u2] .

Lemma 2 Consider a contract that satisfies “low cutoff probability” condition. wU
n (p) ≥ u1 on

[p̂, 1] .

Proof. wU
n (p) is increasing on [p, 1] by definition. w

U
n (p) > u1 on [p, 1]. For p ∈ [p̂, p), we have

PH (p) ≥ p. Check π (p)wU
n+1 (PH (p)) + (1− π (p̃n))w

U
n+1

¡
P
L (p)

¢
.

(I) If wU
n+1

¡
P
L
(p)
¢
≥ u1,

π (p)wU
n+1 (PH (p)) + (1− π (p))wU

n+1

¡
PL (p)

¢
> u1.

(II) If wU
n+1

¡
P
L
(p)
¢
= 1

c1
u1,

π (p)wU
n+1 (PH (p)) + (1− π (p))wU

n+1

¡
P
L (p)

¢
= π (p) {αu1 + (1− α) [PH (p)u2 + (1− PH (p))u2]}+

+(1− π (p)) 1c1u1

is strictly increasing in p in this case. Because

π (p̂) {αu1 + (1− α) [pu2 + (1− p)u2]}+ (1− π (p̂)) 1c1u1

≥ π (p̂) {αu1 + (1− α) [pu2 + (1− p)u2]}+ (1− π (p̂))
©
αu1 + (1− α)

£
PL̃ (p̂)u2 +

¡
1− PL̃ (p̂)

¢
u2
¤ª

= αu1 + (1− α) [p̂u2 + (1− p̂)u2]

≥ u1
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by the “low cutoff probability” condition, π (p)wU
n+1 (PH (p)) + (1− π (p̃n))w

U
n+1

¡
P
L (p)

¢
≥ u1

for p ∈ [p̂, p). In both cases, wU
n (p) ≥ u1 on p ∈ [p̂, 1].

Corollary 1 Consider a contract that pays c1 ≥ 1. Given a posterior belief of p at stage n, if

wU
n (p) ≥ u1, then wU

n+1 (PH (p)) ≥ u1.

Proof. It is obvious that Corollary 1 is true if the “high cutoff probability condition” is satisfied.

If the “low cutoff probability condition” holds, p must be greater than or equal to p as wU
n (p) ≥

u1.

If p ∈ [p̂, 1], PH (p) ≥ p.

wU
n (PH (p)) = αu1 + (1− α) [PH (p)u2 + (1− PH (p))u2] ≥ u1.

If p ∈ [p, p̂), p̂ ≤ PH (p) < p. By lemma 2, wU
n (PH (p)) ≥ u1.

Lemma 3 If pUn = pSrn and wU
n

¡
pUn
¢
≥ u1, then wSr

n

¡
pSrn
¢
≥ u1.

Proof. Prove by induction. Let pUn = pSrn = p. Show that at each stage, if wU
n (p) ≥ u1, wU

n (p)

can be written as

wU
n (p) = α

£
ρn (p)u1 + (1− ρn (p))

1
c1
u1
¤
+ (1− α)wSr

n (p) ,

where ρn (p) ∈ [0, 1], and wSr
n (p) ≥ u1.

Begin with stage N, if wU
N (p) ≥ u1,

wU
N (p) = αu1 + (1− α) [pu2 + (1− p)u2]

= αu1 + (1− α)wSr
N (p)

≥ u1, so

wSr
N (p) = pu2 + (1− p)u2 ≥ u1, and

ρN = 1.

Suppose it is true for every stage up to stage n+ 1. If wU
n+1 (p) ≥ u1, we have

wU
n+1 (p) = α

£
ρn+1 (p)u1 + (1− ρn+1 (p))

1
c1u1

¤
+ (1− α)wSr

n+1 (p) ,
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where ρn+1 (p) ∈ [0, 1], and wSr
n+1 (p) ≥ u1.

At stage n, suppose wU
n (p) ≥ u1.

If p ≥ p, wU
n (p) = αu1 + (1− α) [pu2 + (1− p)u2] ≥ u1. wSr

n (p) = pu2 + (1− p)u2 ≥ u1.

ρn = 1.

If p < p, wU
n (p) = π (p)wU

n+1 (PH (p)) + (1 − π (p))wU
n+1

¡
PL (p)

¢
≥ u1. By corollary

1, wU
n+1 (PH (p)) ≥ u1. Suppose wU

n+1

¡
P
L
(p)
¢
≥ u1. By the assumption at stage n, we

have wSr
n+1 (PH (p)) ≥ u1 and wSr

n+1

¡
PL (p)

¢
≥ u1. So wSr

n (p) = π (p)wSr
n+1 (PH (p)) + (1 −

π (p))wSr
n+1

¡
P
L (p)

¢
≥ u1.

wU
n (p) = π (p)wU

n+1 (PH (p)) + (1− π (p))wU
n+1

¡
P
L
(p)
¢

= π (p)
n
α
£
ρn+1 (PH (p))u1 + (1− ρn+1 (PH (p)))

1
c1u1

¤
+ (1− α)wSr

n+1 (PH (p))
o
+

+(1− π (p))
n
α
£
ρn+1

¡
PL̃ (p)

¢
u1 + (1− ρn+1

¡
PL̃ (p)

¢
) 1
c1
u1
¤
+ (1− α)wSr

n+1

¡
PL̃ (p)

¢o
= α

£
ρn (p)u1 + (1− ρn (p))

1
c1u1

¤
+ (1− α)wSr

n+1 (p)

and ρn = π (p) ρn+1 (PH (p)) + (1− π (p))ρn+1
¡
PL̃ (p)

¢
.

Suppose wU
n+1

¡
PL (p)

¢
< u1, so

wU
n+1

¡
P
L
(p)
¢
= 1

c1
u1,

and wSr
n+1

¡
PL (p)

¢
= 1

c1
u1 by definition.

wU
n (p) = π (p)wU

n+1 (PH (p)) + (1− π (p))wU
n+1

¡
P
L
(p)
¢

= π (p)wU
n+1 (PH (p)) + (1− π (p)) 1c1u1

= π (p)

⎧⎨⎩ α
£
ρn+1 (pH (p))u1 + (1− ρn+1 (pH (p)))

1
c1u1

¤
+

(1− α)wSr
n+1 (PH (p))

⎫⎬⎭+ (1− π (p)) 1c1u1

= α
£
ρn (p)u1 + (1− ρn (p))

1
c1u1

¤
+

+(1− α)
h
π (p)wSr

n+1 (PH (p)) + (1− π (p))wSr
n+1

¡
PL (p)

¢i
≥ u1, where ρn (p) = π (p) ρn+1 (PH (p)) so

wSr
n (p) = π (p)wSr

n+1 (PH (p)) + (1− π (p))wSr
n+1

¡
PL (p)

¢
≥ u1.
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6.2 Conditions and Objective Functions of Run-Admitting Contracts (N = 2)

A run-admitting contract should at least satisfy (14) and the following:

P 2
L
(p0)u2 +

³
1− P 2

L
(p0)

´
u2 ≤ u1, (18)

P 2H (p0)u2 +
¡
1− P 2H (p0)

¢
u2 > u1, (19)

(18) and (19) imply

wU
2

³
P 2
L
(p0)

´
≤ u1, and

wU
2

¡
P 2H (p0)

¢
> u1.

The feasible contract also implies wU
1 (PH (p0)) > u1 by corollary 1. I first list the conditions for

all of the possible outcomes after each newly informed depositor’s decision is observed.

1. If the first informed depositor waits, a herd of non-withdrawals occurs.

PLPH (p0)u2 + (1− PLPH (p0))u2 = p0u2 + (1− p0)u2 ≥ u1. (20)

2. If the first informed depositor withdraws, a herd of withdrawals occurs.

w1
¡
PL (p0)

¢
< u1.

3. If the first informed depositor withdraws, a herd of withdrawals does not occur. The

second depositor follows the signal as PLPL (p0)u2+
¡
1− PLPL (p0)

¢
u2 < u1, guaranteed

by (18). The uninformed depositors withdraw if the second depositor withdraws (by (18)),

and they wait if the second depositor waits.

w1
¡
PL (p0)

¢
≥ u1

w2
¡
PHPL (p0)

¢
= αu1 + (1− α)

£
PHPL (p0)u2 +

¡
1− PHPL (p0)

¢
u2
¤
≥ u1 (21)

4. If the first informed depositor waits, a herd of non-withdrawals does not occur. The second
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depositor follows the signal. The uninformed depositors withdraw if the second depositor

withdraws, and they wait if the second depositor waits.

p0u2 + (1− p0)u2 < u1, and (22)

αu1 + (1− α)
£
P
L
PH (p0)u2 +

¡
1− P

L
PH (p0)

¢
u2
¤

< u1. (23)

5. If the first informed depositor waits, a herd of non-withdrawals does not occur. The

second depositor follows the signal. The uninformed depositors wait regardless of the

second depositor’s decision. i.e. (21)− (22) .

The combinations of the above five outcomes constitute descriptions of equilibrium outcomes

given the contract.

Case I: Combine 1 and 3.

The probability of bank runs is

σ1 = (1− π (p0))
¡
1− π

¡
PL (p0)

¢¢
.

Equations (18)− (20) are necessarily required for the outcome. The participation incentive

constraint is

wU
0 (p0) = π (p0)w

U
1 (PH (p0)) + (1− π (p0))w

U
1

¡
P
L
(p0)

¢
≥ u1 (24)

where

wU
1

¡
PL (p0)

¢
= π

¡
PL (p0)

¢ ©
αu1 + (1− α)

£
PHPL (p0)u2 +

¡
1− PHPL (p0)

¢
u2
¤ª
+¡

1− π
¡
PL (p0)

¢¢
1
c1u1 (25)

≥ u1,

and

wU
1 (PH (p0)) = αu1 + (1− α) [PH (p0)u2 + (1− PH (p0))u2] ≥ u1, (26)

which is guaranteed by (20) .
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The ex-ante expected utility maximization problem is

max
c1,λ

wU
0 (p0)

s.t. c1 ≥ 1, (18)− (20) , (24)− (26) .

Case II: Combine 3 and 5.

The probability of bank runs is σ1.

The conditions for the outcome are (18)− (19) , (21) − (22), and (24)− (26) , where (26) is

guaranteed by (21) in this case.

The ex-ante expected utility maximization problem is

max
c1,λ

wU
0 (p0)

s.t. c1 ≥ 1, (18)− (19) , (21)− (22) , and (24)− (26) .

Case III: Combine 1 and 2.

The probability of bank runs is

σ2 = 1− π (p0) .

Equations (18) − (20) , and (24) are necessarily required for the outcome. In addition, the

participation incentive constraint requires

wU
0 (p0) = π (p0)w

U
1 (PH (p0)) + (1− π (p0))w

U
1

¡
PL (p0)

¢
≥ u1

where

wU
1 (PH (p0)) = αu1 + (1− α) [PH (p0)u2 + (1− PH (p0))u2] ≥ u1, (27)

is guaranteed by (20) , and

wU
1

¡
PL (p0)

¢
= 1

c1
u1,

requires

π
¡
PL (p0)

¢ ©
αu1 + (1− α)

£
PHPL (p0)u2 +

¡
1− PHPL (p0)

¢
u2
¤ª
+
¡
1− π

¡
PL (p0)

¢¢
1
c1
u1 < u1.

(28)
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The ex-ante expected utility maximization problem is

max
c1,λ

wU
0 (p0)

s.t.c1 ≥ 1, (18)− (20) , (24) , and (27)− (28) .

Case IV: Combine 2 and 5.

The probability of bank runs is σ2.

The conditions for the outcome are (18) − (19) , (21) − (22) , (24) and (27) − (28) , where

(27) is guaranteed by (21) .

The ex-ante expected utility maximization problem is

max
c1,λ

wU
0 (p0)

s.t.c1 ≥ 1, (18)− (19) , (21)− (22) , (24) , (27)− (28) .

Case V: Combine 2 and 4.

The probability of bank runs is

σ3 = 1− π (p0) + π (p0) (1− π (PH (p0)))

Equations (14) , (18) − (19), and (22) − (24) are necessarily required for the outcome. The

participation incentive constraint requires:

wU
0 (p0) = π (p0)w

U
1 (PH (p0)) + (1− π (p0))w

U
1

¡
PL (p0)

¢
≥ u1

where

wU
1 (PH (p0)) = π (PH (p0))

©
αv1 + (1− α)

£
P 2H (p0)u2 +

¡
1− P 2H (p0)

¢
u2
¤ª
+ (29)

(1− π (PH (p0)))
1
c1u1

≥ u1.

Also,

wU
1

¡
P
L
(p0)

¢
= 1

c1
u1,

which is guaranteed by (23) .
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The ex-ante expected utility maximization problem is

max
c1,λ

wU
0 (p0)

s.t.c1 ≥ 1, (18)− (19) , (22)− (24) , (29) .

6.3 An Example of an Economy with Two Depositors

In this section, I present the model in a two-depositor, two-stage version. One of the two

depositors will be informed about his consumption type as well as the productivity status at

the beginning of stage 1, and the other will be informed only about his consumption type at

stage 2. Both depositors have equal probability to be the first informed depositor ex ante. The

two-depositor, two-stage setup is the simplest case that allows for herding runs. The deadline

for the decision in period 1 is the end of stage 2. Depositor 1 (the depositor who is informed at

stage 1) does not have the chance to revise his decision after observing the decision of the other.

But he can delay his decision until stage 2. If both depositors are active at stage 2, they will

make decisions simultaneously. R > 1 and R < 1. For convenience, the signal about production

is assumed to be perfect (q = 1). Because there are only two depositors, there is no need for

depositor 2 to make a decision before he receives his signal about consumption.

The bank announces the demand-deposit contract, which describes the payment to the de-

positor who withdraws in period 1, c1, and the amount of resource kept in storage, λ. The bank

liquidates either all or none of the assets in production and liquidates the assets only when it

cannot meet the payment demands. If c1 > 1, the depositor who withdraws second will not

receive the full amount of c1. So let c1 (1) and c2 (2) denote the payment received by depositors

who withdraw first and second in period 1, respectively. Let c2 (x1 + x2, R) denote the payment

in period 2 conditional on the total withdrawals in period 1 and the realization of production.

To comply with the assumption in section 3, I assume that given c1 < 1, depositor 1 always

delays his decision until stage 2 and that depositor 2 cannot obtain any information from de-

positor 1’s action at stage 1. Depositors play a simultaneous-move game if both are active at

stage 2. I first illustrate the equilibrium given c1 ≥ 1, then the one given c1 < 1.
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6.3.1 Equilibrium given c1 ≥ 1

When c1 ≥ 1, the equilibrium strategies include: (1) depositor 1’s strategy when he receives

signals at stage 1; (2) depositor 2’s strategy contingent on depositor 1’s decision at stage 2.

I begin with depositor 2’s strategy at stage 2. At stage 2, depositor 2 has an updated belief

p2. If he waits, he expects p2u
¡
c2
¡
x1, R

¢¢
+ (1− p2)u

¡
c2 (x1, R)

¢
, whereas if he withdraws, he

will get u
¡
c1 (x1 + 1)

¢
.It is easy to see that there exists a cutoff belief p̂2 (x1) above which the

depositor waits, below which he withdraws. p̂2 is contingent on x1, as depositor 2’s expected

payoffs vary with depositor 1’s decision.

If a contract specifies c1 = 1 and λ = 2, depositor 1 does not have the incentive to withdraw

if a low signal is received. Except for such a contract, withdrawing immediately is depositor

1’s best response regardless of the decision of other depositors if a low signal is received, given

c1 > 1,

Given c1 ≥ 1, an acceptable contract must satisfy the following condition: If the productivity

is known to be high, both depositors are willing to wait ex ante. That is,

α2
¡
0.5u

¡
c1 (1)

¢
+ 0.5u

¡
c1 (2)

¢¢
+ (1− α)2 u

¡
c2
¡
0, R

¢¢
+ (30)

+2α (1− α)
£
0.5u

¡
c1 (1)

¢
+ u

¡
0.5c2

¡
1, R

¢¢¤
≥ u (1) .

If a high signal is received, depositor 1 will always have the incentive to wait if he can convey

the high signal to depositor 2 because

αu
¡
c2
¡
1, R

¢¢
+ (1− α)u

¡
c2
¡
0, R

¢¢
≥ u (1)

by (30).

In this simplest setup, there is a perfect Bayesian equilibrium in the post-deposit game, given

any contract that provides c1 ≥ 1. That is,

1. If c1 = 1 and λ = 2, depositors 1 and 2 withdraw if and only if they are impatient.

Depositor 1’s belief is updated by the signal received. Depositor 2’s belief does not change.

This contract results in the same welfare level as in autarky.

2. If c1 > 1 or λ 6= 2, depositor 1 withdraws if he is impatient and/or a low signal is received

and does not withdraw otherwise. Depositor 2 has the updated belief PL̃ (p0) (PH (p0 = 1))
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if depositor 1 withdraws (does not withdraw). Depositor 2 withdraws if he is impatient

and/or his updated belief is below p̂2 (x1).

6.3.2 Equilibrium given c1 < 1

When c1 < 1 is provided (c1 (1) = c1 (2) = c1), depositors 1 and 2 play a simultaneous-move

game at stage 2 if depositor 1 is still active (patient). Depositor 1 knows the productivity status

but does not know depositor 2’s type. Depositor 2 does not know the productivity status but

knows depositor 1 is patient. In this game at stage 2, there exist Bayesian Nash equilibria.

There are four possible equilibrium outcomes, depending on the parameters and contract.

1. αu
¡
c2 (1, R)

¢
+ (1− α)u

¡
c2 (0, R)

¢
< u

¡
c1
¢
and p0u

¡
c2
¡
0, R

¢¢
+ (1− p0)u

¡
c2 (1, R)

¢
≥

u
¡
c1
¢
: Depositor 1 withdraws if he has received a low signal, and does not otherwise.

Depositor 2 withdraws if he is impatient and does not withdraw otherwise.

2. u
¡
c2 (1, R)

¢
< u

¡
c1
¢
and p0u

¡
c2
¡
0, R

¢¢
+ (1− p0)u

¡
c2 (1, R)

¢
< u

¡
c1
¢
: Depositor 1

withdraws if he has received a low signal and does not withdraw otherwise. Depositor 2

withdraws.

3. u
¡
c2 (1, R)

¢
≥ u

¡
c1
¢
and p0u

¡
c2
¡
0, R

¢¢
+(1− p0)u

¡
c2 (0, R)

¢
< u

¡
c1
¢
: Depositor 1 does

not withdraw. Depositor 2 withdraws.

4. αu
¡
c2 (1, R)

¢
+ (1− α)u

¡
c2 (0, R)

¢
≥ u

¡
c1
¢
and p0u

¡
c2
¡
0, R

¢¢
+ (1− p0)u

¡
c2 (0, R)

¢
≥

u
¡
c1
¢
: Depositor 1 does not withdraw. Depositor 2 withdraws if he is impatient and does

not withdraw otherwise.

Note that there exists multiple equilibria given some parameter values. Also note that

depositor 1 always has incentive to wait if he has received a high signal as c1 < 1 and c2
¡
1, R

¢
>

1.

At stage 1, depositor 1 withdraws if he is impatient. If depositor 1 has withdrawn, depositor

2 withdraws at stage 2 if p0u
¡
c2
¡
1, R

¢¢
+ (1− p0)u

¡
c2 (1, R)

¢
< u

¡
c1
¢
and/or he is impatient,

and he does not otherwise.

6.3.3 A Numerical Example

In this example, I will employ the following utility function and parameters: u (c) = (c+b)1−γ−b1−γ
1−γ ,

b = 0.001, γ = 1.01; R = 1.25, R = 0.95, p0 = 0.95; q = 1; α = 0.05.
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Table 3: Optimal Contract - two-depositor, two-stage

c1 λ w0 (p0)

Best contract that provides c1 > 1 or λ 6= 2 1 0 7.3439∗

Contract that provides c1 = 1 and λ = 2 (Autarky) 1 2 7.1529
Best contract that provides c1 < 1 1.0000 0 7.3439

The contract that provides c1 = 1 and λ = 2 (equivalent to autarky) yields the ex-ante

expected utility of 7.1529. The optimal contract in this example requires c1 = 1 and λ = 0.

Because the liquidity demand is small (α is small) and the production has high probability to be

successful, the bank invests all resources in production. The ex-ante expected utility is 7.3439.

Given c1 = 1 and λ = 0, depositor 1 withdraws at stage 1 if and only if a low signal is received

or he is impatient, depositor 2 withdraws at stage 2 if depositor 1 has withdrawn at stage 1 or

he is impatient, and does not otherwise. (If depositor 1 has withdrawn, depositor 2 is indifferent

between withdrawing immediately at stage 2 and waiting until t = 2.) When productivity is low,

depositor 1’s withdrawal forces the bank to liquidate all its assets so depositor 2 also benefits

from depositor 1’s private information. Of course, if either of the depositors is impatient, the

bank has to interrupt production. However, the probability of having a liquidity shock is small

enough to be tolerated. The best contract in the category of c1 < 1 provides c1 very close to

1, and the bank also invests all resources in production. The ex-ante expected utility is very

close to 7.3439. Given this contract, there exists an unique equilibrium in which depositor 1

withdraws at stage 1 if and only if he is impatient, he withdraws at stage 2 if and only if he has

received a low signal; depositor 2 does not withdraw at stage 1, he withdraws at stage 2 if and

only if he is impatient.
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