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Abstract

Dependence among defaults both across assets and over time has proven to be an

important characteristic of financial risk. A Bayesian approach to default rate es-

timation is proposed and illustrated using a prior distributions assessed from an

experienced industry expert. Two extensions of the binomial model, most common

in applications, are proposed. The first allows correlated defaults yet remain con-

sistent with Basel II’s asymptotic single-factor model. The second adds temporal

correlation in default rates through autocorrelation in the systemic factor. Implica-

tions for the predictability of default rates are considered. The single-factor model

generates more forecast uncertainty than does the parameter uncertainty. A ro-

bustness exercise, weakening the prior on the asset correlation, illustrates that the

correlation indicated by the data is much smaller than that specified in the Basel

II regulations. The application shows that econometric methods can be useful even

when data information is sparse.

Keywords: Bayesian inference, Basel II, risk management, prior elicitation,

maximum entropy, time series



1 Introduction

Estimation of long-run default rates for groups of homogeneous assets is essential

for determining adequate capital requirements. Forecasting default rates, which

may vary over time, is essential to prudent risk management. Recent events have

illustrated the importance of systemic risk - namely correlated defaults. The Basel

II (B2) framework (Basel Committee on Banking Supervision (2006)) for calculat-

ing minimum capital requirements provides for banks to use models to assess credit

(and other) risks. In response to the credit crisis, the Basel Committee has stressed

in a document for comment the continuing importance of quantitative risk man-

agement, see Basel Committee on Banking Supervision (2009). Underlying the B2

model for required capital is a single-factor model in which asset values for homo-

geneous assets are correlated due to a systematic shock affecting all assets in the

portfolio bucket. We consider a series of models. The first is the simple binomial

model for defaults in which the underlying asset value processes are uncorrelated

across assets and time. This is by far the most commonly used model and invari-

ably provides a starting point for more sophisticated analyses. Next, we follow B2

and add asset correlation over time through a systematic shock affecting the values

of all assets in the portfolio. This is typically the next step a bank using Internal

Ratings-Based (IRB) methods would take. Finally, we add autocorrelation in the

systematic factor. This does not seem to be contemplated in the B2 model, but is

certainly plausible, is consistent with models of asset values in other settings and

can be modeled. Midportfolio asset groups, mostly commercial loans, typically to

unrated companies, for which default is still rare typically have some default ex-

perience. These groups can have sufficient data to support models allowing simple

forms of default dependence. Expert information on loan credit risk is important

and a Bayesian approach is adopted throughout. Thus, uncertainty about the de-

fault probability should be modeled the same way as uncertainty about defaults –

represented in a probability distribution. A future default either occurs or doesn’t,

given the definition. In fact both the definition and consequences of default can

vary, particularly across countries - see Franks and Davydenko (2008). Since we

do not know in advance whether default occurs or not, we model this uncertain

event with a probability distribution. Similarly, the default probability is unknown.

But there is information available about the default rate in addition to the data

information. The simple fact that loans are made shows that some risk assessment
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is occurring. This information should be organized and incorporated in the analysis

in a sensible way, specifically represented in a probability distribution. This infor-

mation can then be combined coherently with data information as represented in

the relevant likelihood function. This combination of information is easy to do once

the information is represented in probability distributions. The final distribution

represents both data and expert information about the default probability.

Much effort in recent econometric research is devoted to methods for extracting

data information with minimal assumptions. Examples include semiparametric and

nonparametric models as well as GMM models avoiding to some extent distribu-

tional assumptions. These approaches are appealing when there is a great deal of

informative data, as illustrated by the fact that most results available and sought

are asymptotic. However there is a large class of important practical problems for

which there are some, but not much data and there are also experts whose experience

and knowledge is relevant. Despite the lack of conclusive data evidence, decisions

must be made. In many applied settings professional judgment is expected and

discussed at the same level as the statistical model (which is a result of judgment)

or the relevance of the data (more judgment). This inference situation is unfamiliar

to economists due perhaps to the ambiguity surrounding the way in which expert

and data information are combined. Much of this uncomfortable ambiguity can be

eliminated by adopting a formal Bayesian approach. In this approach the econome-

trician is faced with two modeling tasks. The first is the familiar task of specifying

the likelihood function. The second is specifying the expert information, usually

consisting of a limited number of assessments, in terms of a statistical distribu-

tion. As a practical matter a rather small set of assessments is used as the basis

for fitting a probability distribution matching these assessments as well as possible.

Just as the data distribution is specified in terms of a small number of parameters

which imply a complete distribution, so the prior is based on a small number of

assessments.

Section 2 discusses the statistical model for defaults. Section 3 concerns the

prior distribution for defaults for a mid-portfolio ”bucket” of loans elicited from

an experienced industry expert. A smoothed maximum entropy representation is

used to provide a statistical description of the properties elicited from the expert.

Section 4 turns to inference and the posterior distributions are obtained. Section 5

concerns implications of both the economic model and parameter uncertainty for

the predictability of default rates. The temporal variation in forecast default rates
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implied by the single-factor model is substantially greater than the variation implied

by parameter uncertainty. Section 6 considers an alternative, ”looser” prior for the

asset correlation parameter - a parameter whose value is specified in B2. In fact,

the data seem to imply much less correlation than suggested by the B2 regulations.

Section 7 concludes.

2 Statistical Models for Defaults

The simplest and most common probability model for defaults of assets in a homo-

geneous segment of a portfolio is the Binomial, in which the defaults are assumed

independent across assets and over time, and occur with common probability θ. The

Basel requirements demand an annual default probability, estimated over a sample

long enough to cover a full cycle of economic conditions. Thus the probability should

be marginal with respect to external conditions. Perhaps this marginalization can

be achieved within the binomial specification by averaging over the sample period,

thus many discussions of the inference issue have focussed on the binomial model

and the associated frequency estimator. Suppose the value of the ith asset in time

t is

vit = εit

where εit is the time and asset specific shock and default occurs if vit < T ∗, a default

threshold value. A mean of zero is attainable through translation without loss of

generality. We assume the shock is standard normal. Let di indicate whether the ith

observation was a default (di = 1) or not (di = 0). The distribution of diis p(di|θ) =

θdi(1− θ)1−di , where θ = Φ(T ∗),our Binomial parameter. Let D = {di, i = 1, ..., n}
denote the whole data set and r = r(D) =

∑
i di the count of defaults. Then the

joint distribution of the data is

p(D|θ) =
n∏
i=1

θdi(1− θ)1−di (1)

= θr(1− θ)n−r

Since this distribution depends on the data D only through r (n is regarded as

fixed), the sufficiency principle implies that we can concentrate attention on the

distribution of r

p(r|θ) =
(
n
r

)
θr(1− θ)n−r (2)
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a Binomial(n,θ) distribution.

The Basel II guidance suggests there may be heterogeneity due to systematic

temporal changes in asset characteristics or to changing macroeconomic conditions.

There is some evidence from other markets that default probabilities vary over the

cycle. See Nickell, Perraudin, and Varotto (2000) and Das, Duffie, Kapadia, and

Saita (2007). The B2 capital requirements are based on a one-factor model due to

Gordy (2003) that accommodates systematic temporal variation in asset values and

hence in default probabilities. This model can be used as the basis of a model that

allows temporal variation in the default probabilities, and hence correlated defaults

within years. The value of the ith asset in time t is modeled as

vit = ρ1/2xt + (1− ρ)1/2εit (3)

where εit is the time and asset specific shock (as above) and xt is a common time

shock, inducing correlation ρ across asset values within a period. The random

variables are assumed to be standard normal and independent. The overall or

marginal default rate we are interested in is θ = Φ(T ∗). However, in each period the

default rate θt depends on the realization of the systematic factor xt. The model

implies a distribution for θt. Specifically, the distribution of vit conditional on xt is

N(ρ1/2xt, 1− ρ). Hence the period t default probability is

θt = Φ[(T ∗ − ρ1/2xt)/(1− ρ)1/2] (4)

Thus for ρ 6= 0 there is random variation in the default probability over time. The

distribution is given by

Pr(θt ≤ A) = Pr(Φ[(T ∗ − ρ1/2xt)/(1− ρ)1/2] ≤ A) (5)

= Φ[((1− ρ)1/2Φ−1[A]− Φ−1[θ])/ρ1/2]

using the standard normal distribution of xt and θ = Φ(d). Differentiating gives

the density p(θt|θ, ρ). This is the Vasicek distribution. The parameters are θ, the

marginal or mean default probability and the asset correlation ρ. The conditional

distribution of the number of defaults in each period is (from 2)

p(rt|θt) =
(
nt

rt

)
θrtt (1− θt)nt−rt (6)

4



from which we obtain the distribution conditional on the underlying parameters

p(rt|θ, ρ) =

∫
p(rt|θt)p(θt|θ, ρ)dθt

The distribution for R = (r1, ...rT ) is

p(R|θ, ρ) =
T∏
t=1

p(rt|θ, ρ) (7)

where we condition on (n1, ..., nT ). Regarded as a function of (θ, ρ) for fixed R, 7 is

the likelihood function.

This formulation allows clumping of defaults within time periods, but not cor-

relation across time periods. This is the next natural extension. Specifically, let xt

follow an AR(1) process

xt = τxt−1 + ηt

with ηt iid standard normal. Now the formula for θt (4) still holds but the like-

lihood calculation is different and cannot be broken up into the period-by-period

calculation. Write using (6)

p(R|θ1, ...θT ) =
T∏
t=1

p(rt|θt(xt, θ, ρ))

emphasizing the functional dependence of θt on xt as well as θ and ρ.Now we can

calculation the desired unconditional distribution

p(R|θ, ρ, τ) =

∫
· · ·
∫ T∏

t=1

p(rt|θt(xt, θ, ρ))p(x1, ..., xT |τ)dx1...dxT (8)

where p(x1, ..., xT |τ) is the density of a zero-mean random variable following an

AR(1) process with parameter τ. Regarded as a function of (θ, ρ, τ) for fixed R, 8is

the likelihood function.

This one-factor model for asset value and hence default correlation is quite simple

but it does have empirical support. Recall that the techniques here are applied to

”buckets” of homogeneous assets. In a study of a large sample of nonfinancial

and nonutility corporate bonds, Das, Duffie, Kapadia, and Saita (2007) examine

the suitability of a model based on correlation determined by observable factors
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(a T-bill rate and lagged S&P returns). Since their sample is not a bucket of

homogeneous assets they also control for asset characteristics. They find that most

of the default correlation is explained by the observable factors but there is a small,

significant remaining correlation which is consistent with a common unobserved

factor. We tuck all of the correlation into the unobserved factor, noting that it

may be correlated with observed factors and noting that our assets are considerably

more homogeneous.

3 Prior Distribution

I have asked an expert to consider a portfolio bucket consisting of loans that might

be in the middle of a bank’s portfolio. These are typically commercial loans to

unrated companies. If rated, these might be about S&P Baa or Moody’s BBB. The

method included a specification of the problem and some specific questions followed

by a discussion. The elicitation method included a specification of the problem and

some specific questions over e-mail followed by a discussion. Elicitation of prior

distributions is an area that has attracted attention. General discussions of the

elicitation of prior distributions are given by Garthwaite, Kadane, and O’Hagan

(2005), O’Hagan, Buck, Daneshkhah, Eiser, Garthwaite, Jenkinson, Oakley, and

Rakow (2006) and Kadane and Wolfson (1998). I merely sketch the elicitation and

representation of the prior here: details are given in a previous application Kiefer

(2008). The elicitation took place in 2006. The expert found it easier to think in

terms of the probabilities directly than in terms of defaults in a hypothetical sample.

This is not uncommon in this technical area, as practitioners are accustomed to

working with probabilities. The mean value was 0.01. The minimum value for the

default probability was 0.0001 (one basis point). The expert reported that a value

above 0.035 would occur with probability less than 10%, and an absolute upper

bound was 0.3. The upper bound was discussed: the expert thought probabilities in

the upper tail of his distribution were extremely unlikely, but he did not want to rule

out the possibility that the rates were much higher than anticipated (prudence?).

Quartiles. were assessed by asking the expert to consider the value at which larger

or smaller values would be equiprobable given the value was less than the median,

then given the value was more than the median. The median value was 0.01. The

former was 0.0075. The latter, the .75 quartile, was assessed at .0125. The expert

, who has long experience with this category of assets, seemed to be thinking of
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a distribution with a long and thin upper tail but otherwise symmetric. After

reviewing the implications, the expert added a .99 quantile at 0.02, splitting up the

long upper tail. This information was used to fit a truncated Beta distribution in

Kiefer (2009). Here, we instead take a maximum entropy (ME) approach.

The ME approach provides a method to specify the distribution that meets

the expert specifications and otherwise imposes as little additional information as

possible Thus, we maximize the entropy in the distribution subject to the constraints

indexed by k given by the assessments. This gives a piecewise uniform distribution

for θ. It can be argued that the discontinuities in the ME densities are unlikely

to reflect characteristics of expert information and indeed this was the view of the

expert. Smoothing was accomplished using the Epanechnikov kernel with several

bandwidths h chosen to offer the expert choices on smoothing level (including no

smoothing). Specifically, with pS(θ) the smoothed distribution with bandwidth h

we have

pS(θ) =

1∫
−1

K(u)pME(θ + u/h)du (9)

with K(u) = 3(1− u2)/4 for −1 < u < 1. Since the density is defined on bounded

support there is an endpoint or boundary ”problem” in calculating the kernel-

smoothed density estimator. Specifically, pS(θ) as defined in 9 has larger support

than pME(θ), moving both endpoints out by a distance 1/h. We adjust for this using

reflection, pSM(θ) = pS(θ) + pS(a − θ) for a ≤ θ < a + 1/h, pSM(θ) = pS(θ) for

a + 1/h ≤ θ < b− 1/h, and pSM(θ) = pS(θ) + pS(2b− θ) for b− 1/h ≤ θ ≤ b. The

resulting smoothed density has support on [a, b] and integrates to 1. See Schuster

(1985). The prior distribution for θ is shown in Figure 1.

To specify the prior on the asset correlation ρ, note that B2 provides guidance.

For this portfolio bucket, B2 recommends a value of 0.20. I did not assess further

details from an expert on this parameter. There appears to be little experience

with correlation, relative to expert information available on default rates. There is

agreement that the correlation is positive (as it has to be asymptotically if there

are many assets). Consequently, I choose a Beta prior with mean equal to 0.20 for

ρ. Since the B2 procedure is to fix ρ at that value, any weakening of this constraint

is a generalization of the model we first choose a rather tight prior around the

mean, namely a Beta(12.6, 50.4) distribution. As a check (a robustness check?

a validation?) I also consider in Section 6 a looser prior, Beta(1.5, 6.0). These
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priors are illustrated in Figure 2. For the autocorrelation parameter τ, we take the

uniform on (-1,1), reflecting the zero mean corresponding to the B2 model (without

autocorrelation). Thus, the prior specifications on the parameters for which we have

no expert information beyond that given in the B2 guidelines reflect the guidelines

as means and little else. The joint prior is obtained as the product, which is the

maximum-entropy combination of the given marginals. Here, it does not seem to

make sense to impose correlation structure in the absence of expert information.

4 Inference

Writing the likelihood function generically as p(R|φ) with φ ∈ {θ, (θ, ρ), (θ, ρ, τ)}
depending on whether we are referring to the likelihood function (2), (7), or (8),

and the corresponding prior p(φ), inference is a straightforward application of Bayes

rule. The joint distribution of the data R and the parameter φ is

p(R, φ) = p(R|φ)p(φ)

from which we obtain the marginal (predictive) distribution of R,

p(R) =

∫
p(R, φ)dφ (10)

and divide to obtain the conditional (posterior) distribution of the parameter φ :

p(φ|R) = p(R|φ)p(φ)/p(R) (11)

Given the distribution p(φ|R), we might ask for a summary statistic, a suitable

estimator for plugging into the required capital formulas as envisioned by Basel

Committee on Banking Supervision (2006). A natural value to use is the posterior

expectation, φ = E(φ|R). The expectation is an optimal estimator under quadratic

loss and is asymptotically an optimal estimator under bowl-shaped loss functions.

When applied to calculating minimum required capital, interest centers on the com-

ponent θ = E(θ|R).For default prediction, taken up in Section 5, interest centers

on θT+1, which depends on all components of φ.

We construct a bucket of mid-portfolio corporate bonds from S&P-rated firms in

the KMV North American Non-Financial Dataset. Default rates were computed for
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cohorts of firms starting in September 1993 and running through September 2004.

In total there are 2197 asset/years of data and 20 defaults, for an overall empirical

rate of 0.00913. The analysis of the binomial model is straightforward using direct

calculations involving numerical integration to calculate the predictive distribution

and various moments (recall we are not in a conjugate-updating framework due

to the flexible form of the prior representation). Model 2, with asset-value correla-

tion but no temporal correlation, can be analyzed with direct numerical integration,

though this is time consuming. Model 3 is more difficult. This seems an ideal setting

to use Markov Chain Monte Carlo. Specifically, I use a random-walk Metropolis

algorithm with a normal proposal distribution. In each case, 10000 samples from

the joint posterior distribution were taken after a 5000-sample burnin. Scaling of

the proposal distribution allowed an acceptance rate between 18 and 24 percent.

This procedure was used for Model 2 and for Model 3. Calculation of posterior dis-

tributions of the parameters and the functions of parameters considered in Section

5 are based on these samples. The software was the mcmc package (Geyer (2009))

used in R (R Development Core Team (2009)).

The posterior distribution for the binomial model is shown in Figure 3.

This density has E(θ|R) =0.0096 and σθ = 0.0012.

Model 2 has asset value correlation within periods, allowing for heterogeneity in

the default rate over time (but not correlated over time) and clumping of defaults.

The marginal posterior distributions are shown in Figure 4.

The densities have a single maximum and the default probability is well deter-

mined, though not as precisely as in the single-parameter model. The posterior

summary statistics are: .E(θ|R) =0.0101 and σθ = 0.0019, E(ρ|R) =0.0960 and

σρ = 0.0260. The correlation parameter is not as well-determined, even with the

rather sharp prior. The data seem to be leaning toward rather lower correlation

than the a priori expectation generated by the B2 prescription. Of course, the data

evidence is rather weak as reflected in the posterior standard error. The posterior

correlation is corr(θ, ρ) = 0.078.

Allowing the systematic shock to be autocorrelated leads to Model 3. The

marginal posterior densities are shown in Figure 5.

Again the default probability is well determined, though the other parameters

are not. The posterior summary statistics are: .E(θ|R) =0.0102 and σθ = 0.0019,

E(ρ|R) =0.0914 and σρ = 0.0259, and E(τ |R) =0.7420 and στ = 0.0880. Adding

autocorrelation in the systematic factor very slightly reduces the within-period as-
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set correlation parameter. The posterior correlations, induced by the likelihood

function since the parameters were specified a priori independent, are corr(θ, ρ) =

0.113, corr(θ, τ) = 0.010, and corr(ρ, τ) = 0.058.

5 Predictability of Default Rates

Estimation of the long run default rate θ is crucial for calculating minimum capital

requirements under B2. But banks and other lenders are also interested in predicting

defaults in the next year and outer years. The model underlying the B2 capital

formula has implications for the predictability of future default rates. In fact, banks

regularly predict default rates, and report to the supervisory authorities on the

accuracy of their predictions. In a typical validation, a model is used to forecast

θT+1, that forecast, θFT+1, is then regarded as a fixed number, and the sampling

distribution of the frequency estimator of the period T + 1 default rate θ̂T+1 is used

to test H0 : θT+1 = θFT+1.It is widely thought that this procedure leads to too many

rejections, not in the sense that the sampling distribution understates the nominal

size, but in the sense that departures small enough to have no business implications

are sometimes statistically significant. Glennon and Kiefer (2008), argue that the

appropriate null hypothesis is not the point null but an interval null, where the

interval is determined by business considerations. Hanson and Schuermann (2006)

study confidence intervals for estimated default probabilities from a sampling theory

point of view and propose a bootstrap method. Here I investigate two different

sources of uncertainty about θT+1, that generated by the economic model given

parameter values, and that generated by parameter uncertainty, as reflected in the

posterior distribution for the parameters.

5.1 Uncertainty from the economic model

In this section we abstract from parameter uncertainty and suppose that the pa-

rameter η is known. In Model 1, the Binomial, the default rate is constant over

time so the T + 1 forecast default rate θFT+1 is simply θ, the known long-run default

rate. The other models are more interesting.

In Model 2, the distribution of the default rate θT+1 conditional on η = (θ, τ) is

from 5

Pr(θT+1 < A) = Φ[((1− ρ)1/2Φ−1[A]− Φ−1[θ])/ρ1/2]
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and the density p(θT+1|θ, ρ) is obtained by differentiating. This density evaluated

at the posterior mean values for η is graphed in Figure 6.

This distribution has E(θT+1|θ, ρ, R) = 0.010 and σθT+1
= 0.009. Thus the Va-

sicek distribution generated by the B2 single-factor model implies considerable un-

certainty about default forecasts even conditionally on parameters. In fact, it is

widely thought that this distribution substantially understates the predictability

of default rates. Tests based on whether θ̂T+1, (often regarded as a fixed number)

are within a confidence interval generated by the Vasicek distribution, a procedure

which has been suggested but is not widely used, are regarded as unsatisfactory

because they ”never” reject, even for quite bad models from a business point of

view.

In Model 3 the realized period T default rate is useful in predicting θT+1 because

of the dynamics of the systemic factor x. From 4 we can write

xt = (T ∗ − (1− ρ)1/2Φ−1(θt))ρ
−1/2

= τ(T ∗ − (1− ρ)1/2Φ−1(θt−1))ρ
−1/2 + εt

Hence

Pr(θt ≤ A|θt−1) (12)

= Pr(Φ[(T ∗ − ρ1/2(τ(T ∗ − (1− ρ)1/2Φ−1(θt−1))ρ
−1/2 + εt))/(1− ρ)1/2] ≤ A)(13)

= Pr(εt < ρ−1/2(Φ−1(A)− T ∗ + τ(T ∗ − (1− ρ)1/2Φ−1(θt−1)))

using the fact that εt is symmetric around zero. This is just a standard normal

integral and the density p(θT+1|θT , θ, ρ, τ)is obtained by differentiation. The density

at the posterior mean values for η = (θ, ρ, τ) is given in Figure 7 for θt−1 = 0.004 and

for θt−1 = 0.015. Conditioning on the recent default rate clearly has a substantial

effect. Summary statistics are E(θT+1|θT = 0.004, θ, ρ, R) = 0.007 with σθT+1
=

0.006, and E(θT+1|θT = 0.015, θ, ρ, R) = 0.016 with σθT+1
= 0.013.

HPD regions for θT+1 for all models are given in Table 1.

5.2 Uncertainty from the model and the parameters

Conditioning on parameter values is useful in understanding the relative contribu-

tions of parameter uncertainty and the uncertainty generated by the model. In an
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Figure 6: Predictive density p(θt|θ, ρ, R) with (θ, ρ) fixed at their mean values.
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Figure 7: Predictive densities p(θt|θt−1,θ, ρ, τ, R) with (θ, ρ, τ) fixed at their mean
values.
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application however it is clearly preferable to marginalize with respect to parame-

ters rather than conditioning on particular values (here the expected values, but it

could have been medians or modes). In this case, even Model 1 implies a predictive

distribution, due to the uncertainty about the value of θ. Of course, the predictive

distribution for θT+1 from Model 1 is simply the posterior distribution of θ given in

Figure 3. Recall that this has mean 0.0096 and standard deviation 0.0012, so the

uncertainty in the forecast due to parameter uncertainty in Model 1 is much less

than the uncertainty generated by the economic model in Model 2, even with fixed

parameters.

Turning to Model 2, the relevant density is

p(θT+1|R) =

∫∫
p(θT+1|θ, ρ)p(θ, ρ|R)dθdρ

where the definite integrals are over the supports of θ and ρ. This density is shown

in Figure 8. It has E(θT+1|R) =0.010 and σθT+1
=0.010. Thus, even accounting

for parametric uncertainty, incorporating the variation predicted by the one-factor

model increases the prediction standard error relative to the Binomial model by

a factor of 8. Comparing with the conditional Model 2, unconditioning only adds

0.001 to the forecast standard error (about 11%).

For Model 3 the conditional density (on lagged defaults, not on parameters) is

p(θT+1|θT , R) =

∫ ∫ ∫
p(θT+1|θT , θ, ρ, τ)p(θ, ρ, τ |R)dθdρdτ

where the integrals are definite. This density for the two trial values of lagged θ,

namely 0.004 and 0.015, are graphed in Figure 9. Summary statistics are E(θT+1|θT =

0.004, θ, ρ, R) = 0.006 with σθT+1
= 0.004, and E(θT+1|θT = 0.004, θ, ρ, R) = 0.014

with σθT+1
= 0.010. Here marginalizing with respect to parameters has reduced both

the forecast values and the forecast standard errors.

Differences among these models can be summarized by considering the highest

posterior density intervals for the forecast. These are the shortest intervals with the

specified posterior probability. These are shown in Table 1.

19



0.00 0.01 0.02 0.03 0.04 0.05

0
20

40
60

80

θθT++1

D
en

si
ty

Figure 8: Predictive density p(θT+1|R) from Model 2.
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Figure 9: Predictive densities p(θT+1|θT,R) from Model 3.
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Table 1: Highest Posterior Density Intervals

Model p = .9 p = .75 p = .5

Binomial 0.0096 0.0096 0.0096

2− parameter 0.0008, 0.0241 0.0008, 0.01506 0.0012, 0.0089

3− p, θT = 0.004 0.0002, 0.0143 0.0007, 0.0093 0.0006, 0.0053

3− p, θT = 0.015 0.0009, 0.0346 0.0016, 0.0218 0.0031, 0.0138

Binomial(m) 0.0063, 0.0121 0.0077, 0.0118 0.0089, 0.0111

2− parameter(m) 0.0002, 0.0217 0.0005, 0.0133 0.0011, 0.0078

3− p, θT = 0.004(m) 0.0006, 0.0109 0.0010, 0.0075 0.0017, 0.0053

3− p, θT = 0.015(m) 0.0022, 0.0267 0.0038, 0.0194 0.0056, 0.0143

Note: (m) denotes marginal with respect to parameters.

6 Robustness - less prior information on rho

Our prior distribution on the asset correlation ρ strictly weakened the B2 prior,

point mass on a specified value. Nevertheless, we chose a fairly tight distribution,

reflecting some of the confidence apparent in the B2 specification. It is prudent

however to run the analysis with a much looser prior as a robustness or valida-

tion exercise. There are guidelines for validation for the methods typically seen in

practice - see OCC (2000). These required procedures note that any analysis de-

pends on subjective business judgement as well as data and computations and stress

the importance of rigorous evaluation. The Bayesian approach encourages making

subjective information explicit. Although the report does not specifically address

Bayesian methods, it seems likely that a robustness analysis using alternative, per-

haps less informative priors would be a part of a Bayesian validation exercise. Here,

we use the weaker prior shown in Figure 2. The prior on τ cannot really be weakened

- it is uniform on [-1,1], weakening the B2 specification (zero) as much as possible

while preserving the zero mean. The prior on θ actually depends on an elicitation

and is in accord with the data so weakening it is unlikely to be informative. Thus,

we proceed with the joint prior which is given by the product of the marginals

using the weak prior on ρ.The posterior marginal distributions are given in Figure

10. The moments are: E(θ|R) =0.0097 and σθ = 0.0019, E(ρ|R) =0.018 and σρ =

0.014, and E(τ |R) =0.641 and στ = 0.166

The posterior mean for the long-run default rate θ is almost unchanged and

the posterior mean for the autocorrelation τ is reduced slightly (relative to the
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Figure 10: Posterior marginals using the weak prior.
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standard deviations). The posterior mean for the asset correlation ρ is reduced

dramatically from 0.091. This is evidence that the B2 specification for this param-

eter is in conflict with at least this data set. The reduction has strong implications

for the predictability of annual default rates. The predictive distributions with the

parameter values set at their posterior means, showing only uncertainty generated

by the model, are shown in Figure 11. The summary statistics are E(θT+1|θT =

0.004, θ, ρ, R) = 0.0055 with σθT+1
= 0.0023, and E(θT+1|θT = 0.015, θ, ρ, R) =

0.0135 with σθT+1
= 0.0048. The predictive distribution is much tighter as shown

by the graphs and by the calculated standard deviations.

Turning to the unconditional (on parameters) case the forecast densities reflect-

ing both uncertainty due to the model and that due to parameter uncertainty are

shown in figure 12. The summary statistics are E(θT+1|θT = 0.004, θ, ρ, R) = 0.0056

with σθT+1
= 0.0016, and E(θT+1|θT = 0.015, θ, ρ, R) = 0.0129 with σθT+1

= 0.0036.

The message here is that the data favor values of the asset correlation much

smaller than those suggested by B2. The implication is that default rates are

substantially more predictable than the B2 values imply. It is widely thought that

the B2 model suggests that default rates are more variable over time than is the

case in normal times.; our approach provides formal evidence on this issue. Note the

substantial reduction in the sizes of the HPD intervals shown in Table 2 compared

with those in Table 1.

Table 2: Highest Posterior Density Intervals: Weak Prior

Model p = .9 p = .75 p = .5

3− p, θT = 0.004 0.0022, 0.0089 0.0033, 0.0078 0.0037, 0.0062

3− p, θT = 0.015 0.0061, 0.0205 0.0079, 0.0175 0.0087, 0.0141

3− p, θT = 0.004(m) 0.0030, 0.0082 0.0038, 0.0073 0.0044, 0.0063

3− p, θT = 0.015(m) 0.0073, 0.0177 0.0088, 0.0154 0.0102, 0.0138

Note: (m) denotes marginal with respect to parameters.

7 Conclusion

Given an economic model for default rates, forecast default rates are uncertain be-

cause the generating model is stochastic (if indeed it is a stochastic model) and

because of uncertainty about the parameters of the model. The former is a much

larger source of uncertainty in the application and dataset considered in this paper.
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Figure 11: Predictive densities p(θT+1|θT , θ, ρ, τ, R) from Model 3 with the weak
prior.

25



0.00 0.01 0.02 0.03 0.04 0.05

0
50

15
0

25
0

θθT++1

D
en

si
ty

θθT=0.004

0.00 0.01 0.02 0.03 0.04 0.05

0
50

10
0

15
0

20
0

θθT++1

D
en

si
ty

θθT=0.015

Figure 12: Predictive densities p(θT+1|θT , R) from Model 3 with the weak prior.
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The model is the single-factor model underlying the B2 minimum capital calcula-

tions. Two variations are considered: a simplification - the binomial model with

no systematic factor, widely used in applications and the starting point for deeper

analyses, and a generalization allowing temporal correlation in the systematic fac-

tor. The latter allows conditional forecasting, and it is clear that, within the model,

this period’s default rate is useful in forecasting next period’s. A Bayesian approach

is taken with an assessed prior on the long-run default probability, a prior on the

within-period asset correlation that reflects and weakens the B2 recommended spec-

ification (B2 fixes a value for the correlation, we choose a prior with mean equal to

the B2 value but introduce some variance), and a uniform prior on the temporal

correlation in the systemic risk factor. This too strictly generalizes the B2 model,

which sets this value equal to zero. As a robustness check, we also consider a much

weaker prior on the asset correlation. This turns out to be an interesting exercise,

as it appears the data favor a much smaller value than that specified in B2. This

has important implications for the predictability of default rates. Looking across

industry experience, it appears that the stochastic model generates too much un-

certainty, in that default rates are not as difficult to predict as the model implies.

The model with the weakened prior gives a lower asset correlation, implying that

defaults are more predictable over time. Nevertheless, there is still rather a lot of

prediction variance implied by the model. This introduces another and more diffi-

cult source of forecast uncertainty: model uncertainty. Modeling model uncertainty

is a difficult but important task and certainly merits further attention. The usual

procedure of considering a sequence of increasingly general models is probably a

good start.

In this and related applications the econometrician faces the dual chore of model-

ing the data distribution with a specification of a statistical distribution and mod-

eling expert information with a statistical distribution. Adding the latter task

substantially increases the range of applicability of econometric methods. This is

clearly an area for further research.
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