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Abstract

This paper analyzes the higher-order properties of nested pseudo-likelihood (NPL) esti-

mators and their practical implementation for parametric discrete Markov decision models in

which the probability distribution is defined as a fixed point. We propose a new NPL estima-

tor that can achieve quadratic convergence without fully solving the fixed point problem in

every iteration. We then extend the NPL estimators to develop one-step NPL bootstrap pro-

cedures for discrete Markov decision models and provide some Monte Carlo evidence based

on a machine replacement model of Rust (1987). The proposed one-step bootstrap test

statistics and confidence intervals improve upon the first order asymptotics even with a rela-

tively small number of iterations. Improvements are particularly noticeable when analyzing

the dynamic impacts of counterfactual policies.
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1 Introduction

Understanding the dynamic response of individuals and firms is imperative for properly assess-

ing various policy proposals. As numerous empirical studies have demonstrated, the estimation

of dynamic structural models enhances our understanding of individual and firm behavior, es-

pecially when expectations play a major role in decision making.1

The literature on estimating parametric discrete Markov decision models was pioneered by

Rust (1987, 1988) who introduced the nested fixed point algorithm (NFXP). The NFXP requires

repeatedly solving the fixed point problem during optimization and can be very costly when

the dimensionality of state space is large. Hotz and Miller (1993) developed a simpler estima-

tor, called the conditional choice probabilities (CCP) estimator, based on the policy iteration

mapping—denoted by Ψ(P, θ)—which maps an arbitrary choice probability P and the model

parameter θ to another choice probability. The true choice probability is characterized as a fixed

point of the mapping, i.e., Pθ = Ψ(Pθ, θ). The CCP estimates the parameter θ by minimizing

the discrepancy between the observed choice probabilities and Ψ(P̂ 0, θ), where P̂ 0 is an initial

estimate. The CCP requires only one policy iteration to evaluate the objective function, leading

to a significant computational gain over the NFXP.

Aguirregabiria and Mira (2002) [henceforth, AM] extended the CCP estimator and proposed

the nested pseudo-likelihood (NPL) estimator. Upon obtaining θ̂ from the CCP, one can update

the conditional choice probabilities estimate as P̂ 1 = Ψ(P̂ 0, θ̂), which provides a more accurate

estimator of Pθ than P̂ 0. Next, one can obtain another estimator of θ, θ̂1, by using Ψ(P̂ 1, θ) in-

stead of Ψ(P̂ 0, θ). Iterating this procedure generates a sequence of the NPL estimators, including

the CCP as the initial element and the NFXP estimator as its limit. Somewhat surprisingly, AM

showed that the NPL estimator for any number of iterations has the same limiting distribution

as the NFXP estimator.

The NPL provides a menu of first-order equivalent estimators that empirical researchers can

choose from, but little is known about their higher-order properties. Since the choice among

these estimators involves a trade-off between efficiency and computational burden, understanding

their higher-order properties is necessary for making an appropriate choice for a given situation.
1Contributions include Miller (1984), Pakes (1986), Berkovec and Stern (1991), Rust (1987), Keane and Wolpin

(1997), Rust and Phelan (1997), Gilleskie (1998), Eckstein and Wolpin (1999), Imai and Keane (2004).
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In fact, the simulations by AM reveal that iterating the policy iteration mapping improves the

accuracy of the parameter estimates, often by a substantial magnitude, suggesting that higher-

order properties may be of practical importance.

We present the simulation results showing that tests based on first order asymptotics can be

unreliable. While bootstrap tests are known to provide a better inferential tool than first-order

asymptotic approximations, few studies have analyzed a bootstrap-based inference method for

discrete Markov decision models. The main obstacle lies in the computational burden, because

the bootstrap requires repeated parameter estimation under different simulated samples while

it is not unusual for estimating one set of the parameters to take more than a day. This further

increases the need for computationally attractive methods. Moreover, because the asymptotic

improvement of the bootstrap relies on its higher-order properties, analyzing those properties is

essential for practical applications.

The contributions of this paper are three-fold. First, we analyze the higher-order properties

of the NPL estimator and derive the stochastic differences [c.f., Robinson (1988)] between the

NFXP and the sequence of estimators generated by the NPL algorithm. We show the rate

at which the sequence of the NPL estimators approaches the NFXP and provide a theoretical

explanation for the simulation results in AM, in which iterating the NPL algorithm improves

the accuracy of the NPL estimator.

Second, we propose two new estimators based on the NPL estimator. First, we develop a

nested modified pseudo-likelihood (NMPL) estimator that uses a pseudo-likelihood defined in

terms of two policy iterations as opposed to one policy iteration in the NPL. We show the

convergence rate of the NMPL is faster than quadratic while that of the NPL is less than

quadratic. Second, we propose a version of the NPL and NMPL estimators, called the one-

step NPL and NMPL estimators, that use only one Newton-Raphson (NR) step to update

the parameter θ during each iteration. By using only one NR step rather than fully solving the

pseudo-likelihood problem for every iteration, we can reduce the computational cost significantly.

The one-step NMPL estimator with the NR method achieves a quadratic convergence while the

convergence rate of the one-step NPL estimator is less than quadratic.

Our one-step NPL and NMPL estimators are closely related to the k-step estimators ana-

lyzed by Pfanzagl (1974), Janssen, Jureckova, and Veraverbeke (1985), Robinson (1988), and

Andrews (2002a), among others. Specifically, our one-step estimators may be viewed as a (semi-
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parametric) k-step estimator in which an estimate of nuisance parameter P is updated between

NR steps.

The key to understanding the convergence properties of the NPL and the NMPL algorithms

is the orthogonality condition between the parameter of interest θ and the nuisance parameter

P . When we define a pseudo-likelihood in terms of two policy iterations, θ and P become

orthogonal in any sample size. This strengthens one of the key properties of the NPL that θ

and P are asymptotically orthogonal. Consequently, the effect of the nuisance parameter P on

the estimation of θ becomes negligible at a faster rate in the NMPL than in the NPL, leading

to their different convergence rates.

The superior convergence properties of the NMPL over the NPL is not without cost. The

computational cost for each NR step is larger in the NMPL, because its pseudo-likelihood is

defined in terms of two policy iterations in contrast to one policy iteration in the NPL. Comparing

the number of policy iterations required to achieve a particular level of convergence suggests that

the overall computational cost of the one-step NMPL may be lower than that of the one-step

NPL when the target level of convergence is high.

Third, we develop a computationally attractive bootstrap procedure for parametric dis-

crete Markov decision models, applying the framework developed by Davidson and MacKinnon

(1999a) and Andrews (2002b, 2005). Starting with an estimate from the original sample, a boot-

strap estimator is obtained with the bootstrap sample by using the (one-step) NPL and NMPL,

where taking a small number of iterations suffices to achieve higher-order improvements. Since

their computational burden is substantially less than that of the NFXP, our proposed bootstrap

is feasible for many discrete Markov decision models where the standard bootstrap procedure

is too costly to implement. The computational burden is further reduced because the covari-

ance matrix can be consistently estimated in the bootstrap sample using the derivatives of a

pseudo-likelihood function instead of the likelihood function based on the fixed point solution.

The proofs of higher-order properties of the proposed algorithm build on the results developed

in Andrews (2002a,b, 2005).

We also consider two extensions of our bootstrap procedure: counterfactual experiments

and models with unobserved heterogeneity. When estimated structural models are used to

quantitatively assess the impact of counterfactual policies, the reliability of the estimated impact

arises as an important issue. We develop a bootstrap procedure that allows us to construct
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reliable CIs for the impact of counterfactual policies where asymptotic CIs may be unreliable.

We also show that our bootstrap procedure can be applied to a finite mixture model, which is

a popular approach when preferences are likely to be different across individuals.

In order to assess the performance of our bootstrap procedure, we provide Monte Carlo

evidence based on a machine replacement model of Rust (1987) and Cooper, Haltiwanger, and

Power (1999). We compare the performance of the bootstrap CIs for the impact of counter-

factual policies with that of the asymptotic CIs. The bootstrap CIs perform better than the

asymptotic CIs, and the one-step bootstrap CIs with a few iterations often achieve a similar

performance to the bootstrap CIs based on the NFXP. The simulation results suggest that we

may construct more reliable CIs by using our proposed one-step bootstrap procedure without

facing a prohibitive computational burden.

The remainder of the paper is organized as follows. Section 2 introduces the model. In

Section 3, we propose and analyze a modification to the NPL estimator. Section 4 describes

our one-step estimation algorithm and proves its convergence properties. Section 5 analyzes

the higher-order improvements from applying parametric bootstrapping to the one-step NPL

estimators. Practical extensions are discussed in Section 6, and Section 7 reports some simulation

results. Proofs and technical results are collected in Appendices A and B.

2 The Econometric Model

This section introduces the class of discrete Markov decision models considered in this paper. We

closely follow the setup and the notations of Aguirregabiria and Mira (2002) [AM, hereafter].

An agent maximizes the expected discounted sum of utilities, E[
∑∞

j=0 β
jU(st+j , at+j)|at, st],

where st is the vector of states and at is an action to be chosen from the discrete and finite set

A = {1, 2, ..., J}. The transition probabilities are given by p(st+1|st, at). The Bellman equation

for this dynamic optimization problem is written as

W (st) = max
a∈A

{
U(st, a) + β

∫
W (st+1)p(dst+1|st, a)

}
.

¿From the viewpoint of an econometrician, the state vector can be partitioned as st = (xt, εt),

where xt is observable and εt is unobservable. We consider the following assumptions.

Assumption 1 (Additive Separability): The unobservable state variable εt is additively
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separable in the utility function so that U(st, at) = u(xt, at) + εt(at), where εt(at) is the

a-th element of the unobservable state vector εt = {εt(a) : a ∈ A}.

Assumption 2 (Conditional Independence): The transition probability of the state vari-

ables can be written as p(st+1|st, at) = g(εt+1|xt+1)f(xt+1|xt, at), where g(ε|x) has finite

first moments and is twice differentiable in ε uniformly in x ∈ X; the support of ε(a) is

the real line for all a.

Assumption 3: The observable state variable xt has compact support X ⊂ Rd.

Assumptions 1 and 2 are analogous to Assumptions 1 and 2 in AM. They are first introduced

by Rust (1987) and widely used in the literature. Assumption 3 admits xt to have a continuous

distribution, relaxing Assumption 3 in AM that assumes xt has a finite support.

Define the integrated value function V (x) =
∫
W (x, ε)g(dε|x), and let BV be the space of

V ≡ {V (x) : x ∈ X}. The Bellman equation can be rewritten in terms of this integrated value

function as:

V (x) =
∫

max
a∈A

{
u(x, a) + ε(a) + β

∫
X
V (x′)f(dx′|x, a)

}
g(dε|x). (1)

Let Γ(·) be the Bellman operator defined by the right-hand side of the above Bellman equation.

The Bellman equation is compactly written as V = Γ(V ).

Let P (a|x) denote the conditional choice probabilities of the action a given the observable

state x, and let BP be the space of {P (a|x) : x ∈ X}. Given the value function V , P (a|x) is

expressed as

P (a|x) =
∫
I

{
a = arg max

j∈A
[v(x, j) + ε(j)]

}
g(dε|x), (2)

where v(x, a) = u(x, a) + β
∫
X V (x′)f(dx′|x, a) is the choice-specific value function and I(·) is

an indicator function. The right-hand side of the equation (2) can be viewed as a mapping from

one Banach (B-) space BV to another B-space BP . Define the mapping Λ(V ) : BV → BP as

[Λ(V )](a|x) ≡
∫
I

{
a = arg max

j∈A
[v(x, j) + ε(j)]

}
g(dε|x). (3)

We now derive the mapping from choice probabilities to value functions based on Hotz and

Miller (1993). First, the Bellman equation (1) can be rewritten as

V (x) =
∑
a∈A

P (a|x)
{
u(x, a) + E[ε(a)|x, a; ṽx, P (a|x)] + β

∫
X
V (x′)f(dx′|x, a)

}
(4)
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where

E[ε(a)|x, a; ṽx, P (a|x)] = [P (a|x)]−1

∫
ε(a)I{ṽ(x, a) + ε(a) ≥ ṽ(x, j) + ε(j), j ∈ A}g(dε|x),

where ṽ(x, a) = v(x, a)− v(x, 1) and ṽx ≡ {ṽ(x, a) : a > 1}.

Define Px ≡ {P (a|x) : a > 1}. For each x, there exists a mapping from the utility differences

ṽx to the conditional choice probabilities Px. Denote this mapping as Px = Qx(ṽx). Hotz

and Miller (1993) showed that this mapping is invertible so that the utility differences can be

expressed in terms of the conditional choice probabilities: ṽx = Q−1
x (Px). Invertibility allows

us to express the conditional expectations of ε(a) in terms of the choice probabilities Px as

ex(a, Px) ≡ E[ε(a)|x, a;Q−1
x (Px), P (a|x)].

By substituting these functions into (4), we obtain

V (x) = uP (x) + βEPV (x), (5)

where uP (x) =
∑

a∈A P (a|x)[u(x, a)+ex(a, Px)] and EPV (x) =
∑

a∈A P (a|x)
∫
X V (x′)f(dx′|x, a).

Here, uP is the expected utility function implied by the conditional choice probability Px whereas

EP is the conditional expectation operator for the stochastic process {xt, at} induced by the con-

ditional choice probability P (at|xt) and the transition density f(xt+1|xt, at).

Define P ≡ {Px : x ∈ X}. The value function implied by the conditional choice probability

P is a unique solution to the linear operator equation (5): V = (I−βEP )−1uP . The right-hand

side of this equation can be viewed as a mapping from the choice probability space BP to the

value function space BV . Define this mapping as ϕ(P ) ≡ (I − βEP )−1uP . Then we may define

a policy iteration operator Ψ as a composite operator of ϕ(·) and Λ(·):

P = Ψ(P ) ≡ Λ(ϕ(P )).

Given the fixed point of this policy iteration operator, P , the fixed point of the Bellman equation

(1) can be expressed as V = ϕ(P ).

Before proceeding, we collect some definitions. Because P and V are infinite dimensional

when xt is continuously distributed, the derivatives of Ψ, Λ, and ϕ need to be defined as Fréchet

(F-) derivatives. For a map g : X → Y , where X and Y are B-spaces, g is F-differentiable at x

iff there exists a linear and continuous map T such that

g(x+ h)− g(x) = Th+ o(||h||), h→ 0
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for all h in some neighborhood of zero, where || · || is an appropriate norm (e.g. sup norm,

Euclidean norm if g ∈ RM ). If it exists, this T is called the F-derivative of g at x, and we let

Dg(x) denote the F-derivative of g. Note that Dg(x) is an operator. When X is a Euclidean

space, the F-derivative coincides with the standard derivative dg(x)/dx. Concepts such as the

chain rule, product rule, higher-order and partial derivatives, and Taylor expansion are defined

analogously to the corresponding concepts defined for the functions in Euclidean spaces. For

further details the reader is referred to Zeider (1986). Ichimura and Lee (2004) provide a concise

summary on F-derivatives. Let Djg(x, y) denote the jth order F-derivative of g(x, y), and let

Dxg(x, y) denote the partial F-derivative of g(x, y) with respect to x. If x is a finite dimensional

parameter, Dxg(x, y) is equal to the standard partial derivative ∂g(x, y)/∂x.

One of the important properties of the policy iteration operator Ψ is that the derivative of

Ψ in P is zero at the fixed point. AM proves this property in the case where the support of xt

is finite. The following proposition establishes that this zero-Jacobian property also holds even

when the support of xt is not finite and V does not belong to a Euclidean space.

Proposition 1 Suppose Assumptions 1 - 3 hold. Then ϕ(·) is F-differentiable at the fixed point

P . If Ψ(·) is F-differentiable at P, then Dϕ(·) = DΨ(·) = 0 (zero operator) if evaluated at the

fixed point P . In other words, Dϕ(P )ξ = DΨ(P )ξ = 0 for any ξ ∈ BP .

3 Maximum Likelihood Estimator and its Variants

We consider a parametric model by assuming that the utility function and the transition prob-

abilities are unknown up to an Lθ × 1 parameter vector θ ≡ (θu, θg, θf ), where θu, θg, and θf

are the parameter vectors in the utility function u, the density of unobservable state variables

g, and the conditional transition probability function f, respectively. Consequently, the policy

iteration operator Ψ is parameterized as Ψ(P, θ) = Λ(ϕ(P, θ), θ). This corresponds to AM’s

notation Ψθ(P ).

Let Pθ denote the fixed point of the policy iteration operator so that Pθ = Ψ(Pθ, θ). Let

{wi : i = 1, 2, ..., N} be a random sample of w = (a, x′, x) from the population, where xi

is drawn from the stationary distribution implied by Pθ and fθf
, ai is drawn conditional on xi

from Pθ(·|xi), and x′i is drawn from fθf
(·|xi, ai). Under Assumption 2, the log-likelihood function

8



can be decomposed into conditional choice probability and transition probability terms as:

lN (θ) = lN,1(θ) + lN,2(θf ) =
N∑

i=1

lnPθ(ai|xi) +
N∑

i=1

ln fθf
(x′i|xi, ai). (6)

Since θf can be estimated consistently without having to solve the Markov decision model, we

focus on the estimation of α ≡ (θu, θg) given initial consistent estimates of θf from the likelihood

lN,2(θf ). Thus, Ψ(P, θ) = Ψ(P, α, θf ), and we use both Ψ(P, θ) and Ψ(P, α, θf ) henceforth.

The maximum likelihood estimator solves the following constrained maximization problem:

max
α

1
N

N∑
i=1

lnP (ai|xi) s.t. P = Ψ(P, α, θ̂f ). (7)

Rust (1987) develops the celebrated Nested Fixed Point (NFXP) algorithm by formulating the

parameter restriction in terms of Bellman’s equation. The NFXP repeatedly solves the fixed

point problem at each parameter value to maximize the likelihood with respect to α. Let α̂ denote

the solution to the maximization problem (7), and let P̂ denote the associated conditional choice

probability estimate characterized by the fixed point: P̂ = Ψ(P̂ , α̂, θ̂f ).

3.1 Nested Pseudo-likelihood (NPL) Estimator

Assuming an initial consistent estimator P̂0 is available, the nested pseudo-likelihood (NPL)

estimator developed by AM is recursively defined as follows.

Step 1: Given P̂PL
j−1, update α by

α̂PL
j = arg max

α

1
N

N∑
i=1

lnΨ(α, P̂PL
j−1, θ̂f )(ai|xi).

Step 2: Update P using the obtained estimate α̂PL
j by P̂PL

j = Ψ(P̂PL
j−1, α̂

PL
j , θ̂f ).

Iterate Steps 1-2 until j = k.

Let P 0 be the true set of conditional choice probabilities, and let f0 be the true conditional

transition probability of x. Let Θα and Θf be the set of possible values of α and θf , and define

Θ = Θα ×Θf . Following AM, consider the following regularity conditions:

Assumption 4. (a) Θα and Θf are compact. (b) Ψ(P, α, θf ) is three times continuously F-

differentiable. (c) Ψ(P, α, θf )(a|x) > 0 for any (a, x) ∈ A × X and any {P, α, θf} ∈
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BP ×Θα ×Θf . (d) wi = {ai, x
′
i, xi}, for i = 1, 2, . . . , N, are independently and identically

distributed, and dF (x) > 0 for any x in the support of xi, where F (x) is the distribution

function of xi. (e) There is a unique θ0
f ∈ int(Θf ) such that, for any (a, x, x′) ∈ A×X×X,

fθ0
f
(x′|x, a) = f0(x′|x, a). (f) There is a unique α0 ∈int(Θα) such that, for any (a, x) ∈ A×

X, Pθ0(a|x) = P 0(a|x). For any α 6= α0, Prθ0({(a, x) : Ψ(P 0, α, θ0
f )(a|x) 6= P 0(a|x)}) > 0.

(g) Eθ0 sup(P,α,θf ) ||DsΨ(P, α, θf )(a|x)||2 < ∞ for s = 1, . . . , 4. (h) θ̂f − θ0
f = Op(N−1/2),

P̂PL
0 − P 0 = op(1), and the NFXP estimator α̂ satisfies

√
N(α̂− α0) →d N(0,Ω).

Assumptions 4(a)–4(f) are similar to the regularity conditions 4(a)-(f) in AM. The supremum

in 4(g) may be taken in a neighborhood of (P 0, α0, θ0
f ).

Following Robinson (1988), for matrix/mapping and (nonnegative) scalar sequences of ran-

dom variables {XN , N ≥ 1} and {YN , N ≥ 1}, respectively, we write XN = Op(YN )(op(YN )) if

||XN || ≤ CYN for some (all) C > 0 with probability arbitrarily close to one for sufficiently large

N .

Our first main result shows that the NPL estimator converges to the MLE, α̂, at a superlinear,

but less than quadratic, convergence rate.

Proposition 2 Suppose Assumptions 1-4 hold. Then, for k = 1, 2, . . .

α̂PL
k − α̂ = Op(N−1/2||P̂PL

k−1 − P̂ ||+ ||P̂PL
k−1 − P̂ ||2), P̂PL

k − P̂ = Op(||α̂PL
k − α̂||).

This proposition provides a theoretical explanation for the result of the AM’s Monte Carlo

experiment. Their experiment illustrates that the finite sample properties of the NPL estimators

improve monotonically with k and that the estimators with k = 2 or 3 substantially outperform

the estimator with k = 1.

Note that P̂PL
0 − P 0 = Op(N−b) with b > 1/4 suffices for

√
N(α̂PL

k − α0) →d N(0,Ω)

for all k ≥ 1. This weakens assumption (g) of Proposition 4 of AM and also implies that the

NPL estimator is valid even if xt has an infinite support and a kernel-based estimator is used

to estimate P 0. The result suggests that the NPL algorithm may work even with relatively

imprecise initial estimates of the conditional choice probabilities.

If P̂PL
0 − P 0 = Op(N−b) with b ∈ (1/4, 1/2], repeated substitution gives

α̂PL
k − α̂ = Op(N−(k−1)/2−2b), P̂PL

k − P̂ = Op(N−(k−1)/2−2b). (8)
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In particular, if the support of xt is finite and we can obtain P̂PL
0 such that P̂PL

0 − P 0 =

Op(N−1/2), then the convergence rate becomes N−(k+1)/2.

3.2 Nested Modified Pseudo-likelihood (NMPL) Estimator

We now introduce the nested modified pseudo-likelihood (NMPL) estimator that achieves a

faster rate of convergence than the NPL estimator:

Step 1: Given P̂MPL
j−1 , update α by

α̂MPL
j = arg max

α

1
N

N∑
i=1

lnΨ2(P̂MPL
j−1 , α, θ̂f )(ai|xi),

where

Ψ2(P, α, θf )(ai|xi) ≡ Ψ(Ψ(P, α, θf ), α, θf )(ai|xi).

Step 2: Update P using the obtained estimate α̂MPL
j by P̂MPL

j = Ψ(P̂MPL
j−1 , α̂MPL

j , θ̂f ).

Iterate Steps 1-2 until j = k.

Assumption 5. (a) For any α 6= α0, Prθ0({(a, x) : Ψ2(P 0, α, θ0
f )(a|x) 6= P 0(a|x)}) > 0. (b)

Eθ0 sup(P,α,θf ) ||DsΨ2(P, α, θf )(ai|xi)||2 <∞ for s = 1, . . . , 4. (c) P̂MPL
0 − P 0 = op(1).

The following proposition shows the NMPL estimator of α converges at a rate faster than

quadratic while the NMPL estimator of P converges at a quadratic rate.

Proposition 3 Suppose Assumptions 1-5 hold. Then, for k = 1, 2, . . .

α̂MPL
k − α̂ = Op(N−1/2||P̂MPL

k−1 − P̂ ||2 + ||P̂MPL
k−1 − P̂ ||3), P̂MPL

k − P̂ = Op(||P̂MPL
k−1 − P̂ ||2).

If P̂MPL
0 − P 0 = Op(N−b) with b ∈ (0, 1/2], then the convergence rate is given by

α̂MPL
k − α̂ = Op(N−1/2−b2k

+N−3b2k−1
), P̂MPL

k − P̂ = Op(N−b2k
).

In particular, if P̂MPL
0 − P 0 = Op(N−1/2), then we have α̂MPL

k − α̂ = Op(N−1/2−2k−1
). Note

that P̂MPL
0 −P 0 = Op(N−b) with b > 1/6 suffices for

√
N(α̂MPL

k −α0) →d N(0,Ω) for all k ≥ 1.

Therefore, the NMPL estimator requires a weaker condition on the initial estimate of P 0 than

the NPL estimator. The NMPL estimator may, therefore, be preferable to the NPL estimator

11



when we only have a poor initial estimate of P 0, as is likely to be the case, for instance, in

models with unobserved heterogeneity.

Using Ψ2(P, α, θf ) instead of Ψ(P, α, θf ) achieves a faster rate of convergence. However, the

NMPL algorithm requires more policy iterations than the NPL for computing each α̂j , which

implies that the overall computational cost for achieving a given rate of convergence may be

higher with the NMPL.

The following two orthogonality conditions between α̂ and P̂ are the key to understanding

the difference in the rates of convergence between the NPL and the NMPL estimators:2

N−1
∑N

i=1DPα lnΨ(Pθ̂, θ̂)(ai|xi) = Op(N−1/2),

N−1
∑N

i=1DPα lnΨ2(Pθ̂, θ̂)(ai|xi) = 0.
(9)

Thus, at the fixed point, α̂ and P̂ are asymptotically orthogonal in the NPL while they are

orthogonal in any sample size in the NMPL. In case of the NPL, the asymptotic orthogonality

in the first equation of (9) implies that the estimation error P̂PL
k−1 − P̂ has an asymptotically

negligible effect on α̂PL
k − α̂, diminishing at the rate of N−1/2. Since the extent to which the

impreciseness of P̂PL
k−1 would be carried over to the estimate α̂PL

k is mitigated only at the rate

of N−1/2, the NPL converges at a superlinear, but less than quadratic, rate. In case of the

NMPL, the second equation of (9) implies that P̂MPL
k−1 − P̂ has, at most, a second-order effect

on α̂MPL
k − α̂ for any sample size N and hence the NMPL converges, at least, at a quadratic

rate. In the appendix, we also show that N−1
∑N

i=1DPPα lnΨ2(Pθ̂, θ̂)(ai|xi) = Op(N−1/2) [c.f.,

Lemma 9(b)], implying that the second-order effect is diminishing at the rate of N−1/2, and

thus the NMPL converges at a faster rate than quadratic.

3.3 Covariance Matrix Estimation and Test Statistics

Suppose θ̂f is obtained by maximizing lN,2(θf ). Suppress (a|x) and (x′|x, a) from Pθ(a|x) and

fθf
(x′|x, a). Expanding the first order condition for α̂ and θ̂f gives the asymptotic covariance

matrix of θ̂ = (α̂′, θ̂′f )′ as

Σ(θ0) = D(θ0)−1V (θ0)(D(θ0)−1)′,

2They follow from Lemma 8(c), the root-N consistency of θ̂, and Lemma 9(a).

12



where

D(θ) =

 D11(θ) D12(θ)

0 D22(θ)

 = −

 E(∂2/∂α∂α′) lnPθ E(∂2/∂α∂θ′f ) lnPθ

0 E(∂2/∂θf∂θ
′
f ) ln fθf

 ,

V (θ) =

 V11(θ) V12(θ)

V21(θ) V22(θ)

 = E

 (∂/∂α) lnPθ

(∂/∂θf ) ln fθf

 (∂/∂α) lnPθ

(∂/∂θf ) ln fθf

′ .
The information matrix equality from the MLE based on lN,2(θ) alone impliesD22(θ0) = V22(θ0),

and the information matrix equality from the full MLE based on lN (θ) implies D11(θ0) = V11(θ0)

and −E(∂2/∂α∂θ′f ) lnPθ0 = E(∂/∂α) lnPθ0(∂/∂θ′f )(lnPθ0 + ln fθ0
f
).

There are several ways to estimate Σ(θ0) consistently. Let DN (θ) and VN (θ) be the sample

analogue of D(θ) and V (θ), respectively, and define

DO
N (θ) =

1
N

N∑
i=1

 (∂/∂α) lnPθ(∂/∂α′) lnPθ (∂/∂α) lnPθ(∂/∂θ′f )(lnPθ + ln fθf
)

0 (∂/∂θf ) ln fθf
(∂/∂θ′f ) ln fθf

 .
DO

N (θ) is an outer-product-of-the-gradient (OPG) estimator of D(θ), which does not require the

calculation of the second derivatives of lnPθ and ln fθf
. Then one can use ΣN = ΣN (θ̄), where

θ̄ is a consistent estimate of θ0 and

ΣN (θ) = DN (θ)−1VN (θ)(DN (θ)−1)′, or (10)

ΣN (θ) = DO
N (θ)−1VN (θ)(DO

N (θ)−1)′.

The consistency of ΣN (θ̄) follows from the standard argument. Notice, however, that computing

ΣN (θ̄) potentially requires a large number of policy iterations, being based on the full solution

of the fixed point problem.

Alternatively, we may estimate V (θ) and D(θ) using the pseudo-likelihood function defining

the NPL and NMPL estimators. Define DPL
N (P, θ) and DMPL

N (P, θ) by replacing Pθ in the defi-

nition of DN (θ) with Ψ(P, θ) and Ψ2(P, θ), respectively, and define DO,PL
N (P, θ), DO,MPL

N (P, θ),

V PL
N (P, θ), and VMPL

N (P, θ) analogously. As shown in the following Proposition, we can esti-

mate Σ(θ0) consistently using these estimates with the NPL and NMPL estimators of (P, α)

and construct t- and Wald statistics with a limited number of policy iterations.

Proposition 4 Let P̄ and θ̄ denote estimators that converge to P 0and θ0 in probability. Then,

Ds
N (P̄ , θ̄), DO,s

N (P̄ , θ̄) →p D(θ0) and V s
N (P̄ , θ̄) →p V (θ0) for s = {PL,MPL}.
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Let θr, θ
0
r , and θ̂r denote the r-th elements of θ, θ0, and θ̂ respectively. Let (ΣN )rr denote

the (r, r)-th element of ΣN . The t-statistic for testing the null hypothesis H0 : θr = θ0
r is

TN (θ0
r) = N1/2(θ̂r − θ0

r)/(ΣN )1/2
rr .

Let η(θ) be an RLη -valued function that is continuously differentiable at θ0. The Wald statistic

for testing H0 : η(θ0) = 0 versus HA : η(θ0) 6= 0 is

WN (θ0) = HN (θ̂, θ0)′HN (θ̂, θ0), where

HN (θ, θ0) =
(
∂

∂θ′
η(θ)ΣN (θ)

∂

∂θ
η(θ)

)−1/2

N1/2η(θ).

Then TN (θ0
r) →d N(0, 1) and WN (θ0) →d χ

2
Lη

under the null hypotheses.

4 One-step NPL and NMPL Estimators

We propose one-step NPL and NMPL estimators which update the parameter α using one

Newton step without fully solving the optimization problem. This reduces the computational

cost of the corresponding estimators especially when the dimension of α is high. Let LN (P, α, θf )

denote the objective function of the NPL estimator as

LN (P, α, θf ) =
1
N

N∑
i=1

lnΨ(P, α, θf )(ai|xi). (11)

The one-step NPL estimator, (α̃PL
k , P̃PL

k ), is defined recursively as:

Step 1: Given (P̃PL
j−1, α̃

PL
j−1, θ̂f ), update α by

α̃PL
j = α̃PL

j−1 − (QN,j−1)−1 ∂

∂α′
LN (P̃PL

j−1, α̃
PL
j−1, θ̂f ), (12)

where QN,j−1 = QN (P̃PL
j−1, α̃

PL
j−1, θ̂f ).

Step 2: Update P using the policy iteration operator evaluated at the updated α̃PL
j :

P̃PL
j = Ψ(P̃PL

j−1, α̃
PL
j , θ̂f ).

Iterate Steps 1-2 until j = k.
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The matrix QN,j−1 determines whether the one-step NPL estimator uses the NR, default NR,

line-search NR, or Gauss-Newton (GN) steps. The NR choice of QN,j−1 is QNR
N,j−1 = (∂2/∂α∂α′)

LN (P̃PL
j−1, α̃

PL
j−1, θ̂f ). The default NR choice of QN,j−1, denoted QD

N,j−1 equals QNR
N,j−1 if α̃PL

j

defined in (12) satisfies LN (P̃PL
j−1, α̃

PL
j , θ̂f ) ≥ LN (P̃PL

j−1, α̃
PL
j−1, θ̂f ), but equals some other matrix

otherwise. Typically, (1/ε)Idim(α) for some small ε > 0 is used. The line-search NR choice,

QLS
N,j−1, computes α̃PL,λ

j for λ ∈ (0, 1] using (1/λ)QNR
N,j−1 and chooses the one that maximizes

the objective function. The GN choice, denoted QGN
N,j−1, uses a matrix that approximates the

NR matrix QNR
N,j−1. A popular choice is the OPG estimator

QOPG
N,j−1 = − 1

N

N∑
i=1

∂

∂α
lnΨ(P̃PL

j−1, α̃
PL
j−1, θ̂f )(ai|xi)

∂

∂α′
lnΨ(P̃PL

j−1, α̃
PL
j−1, θ̂f )(ai|xi),

because this does not require the calculation of the second derivative of the objective function.

The following proposition establishes that the one-step NPL estimator achieves a similar rate

of convergence to the original NPL estimator. This is because taking one NR step brings the

one-step NPL estimator sufficiently close to the NPL estimator. In fact, the distance between

the one-step NPL estimator and the NPL estimator is at most of the same order of magnitude

as the distance between the NFXP estimator and the NPL estimator.

Proposition 5 Suppose the assumptions of Proposition 2 hold and the initial estimates (α̃PL
0 , P̃PL

0 )

are consistent. Then, for k = 1, 2, . . . ,

α̃PL
k − α̂ = Op(||α̃PL

k−1 − α̂||2 +N−1/2||P̃PL
k−1 − P̂ ||+ ||P̃PL

k−1 − P̂ ||2)

[+Op(N−1/2||α̂− α̃PL
k−1||) for OPG ],

P̃PL
k − P̂ = Op(||α̃PL

k − α̂||).

If the initial estimates satisfy α̃PL
0 − α0, P̃PL

0 − P 0 = Op(N−b) with b ∈ (1/4, 1/2], then

repeated substitution gives3

α̃PL
k − α̂ = Op(N−(k−1)/2−2b), P̃PL

k − P̂ = Op(N−(k−1)/2−2b), (13)

3The initial root-N consistent estimate, α̃PL
0 , can be obtained from applying the original NPL estimator with

k = 1 or using Hotz and Miller’s CCP estimator. Furthermore, when we apply the one-step NPL estimator to

the bootstrap-based inference, we may use the estimate from the original sample as an initial root-N consistent

estimate for the bootstrap sample.
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and the one-step NPL estimator achieves the same convergence rate as the NPL estimator.

The one-step NMPL estimator (α̃MPL
k , P̃MPL

k ) is defined analogously usingN−1
∑N

i=1 lnΨ2(P, α, θ)(ai|xi)

as LN (P, α, θ). As shown in the following proposition, it achieves the quadratic rate of conver-

gence when the NR, default NR, or line-search NR is used. When the OPG is used, however,

its convergence rate reduces to that of the one-step NPL estimator.

Proposition 6 Suppose the assumptions of Proposition 3 hold and the initial estimates (α̃MPL
0 , P̃MPL

0 )

are consistent. Then, for k = 1, 2, . . . ,

α̃MPL
k − α̂ = Op(||α̃MPL

k−1 − α̂||2 +N−1/2||P̃MPL
k−1 − P̂ ||2 + ||P̃MPL

k−1 − P̂ ||3)

[+Op(N−1/2||α̃MPL
k−1 − α̂||+ ||P̃MPL

k−1 − P̂ ||2) for OPG ],

P̃MPL
k − P̂ = Op(||α̃MPL

k − α̂||+ ||P̃MPL
k−1 − P̂ ||2).

When the initial estimates satisfy α̃PL
0 − α0, P̃PL

0 − P 0 = Op(N−b) with b ∈ (1/4, 1/2],

repeated substitution gives

α̃MPL
k − α̂ = Op(N−b2k

), P̃MPL
k − P̂ = Op(N−b2k

), for NR, default NR, line-search NR

α̃MPL
k − α̂ = Op(N−(k−1)/2−2b), P̃MPL

k − P̂ = Op(N−(k−1)/2−2b), for OPG.

For the NR, the default NR, and the line-search NR, the result follows from a quadratic

convergence of NR iterations. For the OPG estimator, the convergence rate is less than quadratic

because the matrix QOPG
N,j−1 approximates (∂2/∂α∂α′)LN , leading to an approximation error of

the magnitude Op(N−1/2) in the NR search direction.

Comparing the number of policy iterations required to achieve a particular level of con-

vergence with these estimators reveals that the one-step NMPL estimator requires fewer policy

iterations than the one-step NPL estimator when the target level of convergence is high. We may

also consider a hybrid algorithm that needs the fewest policy iterations by using the one-step

NPL estimator for the first few steps and then switching to the one-step NMPL estimator.

5 Parametric Bootstrap and Higher-order Improvements

In this section, building upon Andrews (2005), we analyze the higher-order improvements from

applying parametric bootstrapping to the parametric discrete Markov decision models.
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5.1 The NFXP Parametric Bootstrap

First, consider bootstrapping the NFXP estimator. The parametric bootstrap sample {w∗i :

i = 1, . . . , n} is generated using the parametric density at the (unrestricted) NFXP estimator α̂

and the MLE θ̂f . The conditional distribution of the bootstrap sample given θ̂ = (α̂′, θ̂′f )′ is the

same as the distribution of the original sample except that the true parameter is θ̂ rather than

θ0 = (α0′, θ0′
f )′.4

The bootstrap estimator θ∗ = (α∗′, θ∗′f )′ is defined exactly as the original estimator θ̂ but

using the bootstrap sample {w∗i : i = 1, . . . , n}. Specifically,

θ∗f = arg max
θf∈Θf

l∗N,2(θf ), where l∗N,2(θf ) =
1
N

N∑
i=1

ln fθf
(x′∗i |x∗i , a∗i ), (14)

α∗ = arg max
α∈Θα

1
N

N∑
i=1

lnP (a∗i |x∗i ) s.t. P = Ψ(P, α, θ∗f ).

The bootstrap covariance matrix estimator, Σ∗
N , is defined as Σ∗

N (θ∗) where Σ∗
N (θ) has the

same definition as ΣN (θ) in (10) but with the bootstrap sample in place of the original sample.

The bootstrap t and Wald statistics are defined as

T ∗N (θ̂r) = N1/2(θ∗r − θ̂r)/(Σ∗
N )1/2

rr , (15)

W∗
N (θ̂) = H∗

N (θ∗, θ̂)′H∗
N (θ∗, θ̂), where

H∗
N (θ, θ̂) =

(
∂

∂θ′
η(θ)Σ∗

N (θ)
∂

∂θ
η(θ)

)−1/2

N1/2(η(θ)− η(θ̂)),

where θ∗r denotes the r-th element of θ∗, and (Σ∗
N )rr denotes the (r, r)-th element of Σ∗

N . Here,

we use the bootstrap Wald statistics to test H0 : η(θ0) = 0 versus HA : η(θ0) 6= 0.

Let z∗|T |,α, z
∗
T,α, and z∗W,α denote the 1−α quantiles of |T ∗N (θ̂r)|, T ∗N (θ̂r), and W∗

N (θ̂), respec-

tively. The symmetric two-sided bootstrap CI for θ0
r of confidence level 100(1− α)% is

CISY M (θ̂r) = [θ̂r − z∗|T |,α(ΣN (θ̂))1/2
rr /N

1/2, θ̂r + z∗|T |,α(ΣN (θ̂))1/2
rr /N

1/2]. (16)

The equal-tailed two-sided bootstrap CI for θ0
r of confidence level 100(1− α)% is

CIET (θ̂r) = [θ̂r − z∗T,α/2(ΣN (θ̂))1/2
rr /N

1/2, θ̂r − z∗T,1−α/2(ΣN (θ̂))1/2
rr /N

1/2]. (17)

4If xi is assumed to be exogenous, then x∗
i = xi needs to be used. If xi is assumed to be drawn from its

stationary distribution λ(θ) implied by Pθ and fθf , then x∗
i is either equal to xi or drawn from λ(θ̂).
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The symmetric two-sided bootstrap t test of H0 : θr = θ0
r versus H1 : θr 6= θ0

r at significance level

α rejects H0 if |TN (θ0
r)| > z∗|T |,α. The equal-tailed two-sided bootstrap t test at significance level

α for the same hypotheses rejects H0 if TN (θ0
r) < z∗T,1−α/2 or TN (θ0

r) > z∗T,α/2. The bootstrap

Wald test rejects H0 if WN (θ0) > z∗W,α.

We introduce technical conditions that are used in establishing the higher-order improve-

ments. They mainly consist of the conditions on the higher-order differentiability, the existence

of the higher-order moments, and the Cramér condition. They are essentially the same as

Assumptions 4.1-4.3 in Andrews (2005). Let c be a non-negative constant such that 2c is an in-

teger. Let g(wi, θ) = ((∂/∂θ′) lnPθ(a|x), (∂/∂θ′f ) ln fθf
(x′|x, a))′, and let h(wi, θ) ∈ RLh denote

the vector containing the unique components of g(wi, θ) and g(wi, θ)g(wi, θ)′ and their partial

derivatives with respect to θ through order d = max{2c+2, 3}. Let λmin(A) denote the smallest

eigenvalue of the matrix A. Let d(θ,B) denote the distance between the point θ and the set B.

We assume the true parameter θ0 lies in a subset Θ0 of Θ and establish asymptotic refine-

ments that hold uniformly for θ0 ∈ Θ0. For some δ > 0, let Θ1 = {θ ∈ Θ : d(θ,Θ0) < δ/2} and

Θ2 = {θ ∈ Θ : d(θ,Θ0) < δ} be slightly larger sets than Θ0. For the reason why these sets need

to be considered, see Andrews (2005).

Assumption 6. (a) Θ1 is an open set. (b) Given any ε > 0, there exists η > 0 such that

||θ− θ0|| > ε implies that Eθ0 lnPθ0(ai|xi)−Eθ0 lnPθ(ai|xi) > η and Eθ0 ln fθf
(x′i|xi, ai)−

Eθ0 ln fθf
(x′i|xi, ai) > η for all θ ∈ Θ and θ0 ∈ Θ1. (c) supθ0∈Θ1

Eθ0 supθ∈Θ ||g(wi, θ)||q0 <

∞, supθ0∈Θ1
Eθ0 supθ∈Θ{| lnPθ(ai|xi)|q0 + | ln fθf

(x′i|xi, ai)|q0} < ∞ for all θ ∈ Θ for q0 =

max{2c+ 1, 2}.

Assumption 7. (a) g(w, θ) is d = max{2c+ 2, 3} times partially differentiable with respect to

θ on Θ2 for all w = (a, x′, x) ∈ A ×X ×X. (b) supθ0∈Θ1
Eθ0 ||h(wi, θ

0)||q1 < ∞ for some

q1 > 2c+2. (c) infθ0∈Θ1
λmin(V (θ0)) > 0, infθ0∈Θ1

λmin(D(θ0)) > 0. (d) There is a function

Ch(wi) such that ||h(wi, θ)− h(wi, θ
0)|| ≤ Ch(wi)||θ− θ0|| for all θ ∈ Θ2 and θ0 ∈ Θ1 such

that ||θ − θ0|| < δ and supθ0∈Θ1
Eθ0Cq1

h (wi) <∞ for some q1 > 2c+ 2.

Assumption 8. (a) For all ε > 0, there exists a positive δ such that for all t ∈ RLh with

||t|| > ε, |Eθ0 exp(it′h(wi, θ
0))| ≤ 1 − δ for all θ0 ∈ Θ1. (b) Varθ0(h(wi, θ

0)) has smallest

eigenvalue bounded away from 0 over θ0 ∈ Θ1.
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The higher-order differentiability of lnPθ(a|x) and ln fθf
(x′|x, a) are satisfied if the den-

sity function of the unobserved state variable, ε, and the utility function, uθ, are sufficiently

smooth. Note that Assumption 4.1(b) of Andrews (2005) is satisfied by the definition of α̂

and θ̂f . Assumption 4.1(c) of Andrews (2005) is satisfied with ρ(θ, θ0) = Eθ0 lnPθ(a|x) and

Eθ0 ln fθf
(x′|x, a). Assumption 4.1(d) of Andrews (2005) is satisfied by Assumption 6(b). Be-

cause wi is iid, Assumption 4.3(a), (b), and (d) of Andrews (2005) are trivially satisfied, and his

Assumption 4.3(c) reduces to the standard Cramér condition. Assumption 4.3(f) of Andrews

(2005) follows from our Assumption 8(b) since wi is iid. Assumption 8(a), however, is not

satisfied when all elements of the observed state variable have a finite support.

The following Lemma establishes the higher-order improvements of the bootstrap NFXP

estimator.

Lemma 1 Suppose Assumptions 1-8 hold with c in Assumptions 6 and 7 as specified below.

Then,

(a) supθ0∈Θ0
|Prθ0(θ0

r ∈ CISY M (θ̂r))− (1− α)| = O(N−2) for c = 2,

(b) supθ0∈Θ0
|Prθ0(θ0

r ∈ CIET (θ̂r))− (1− α)| = o(N−1 lnN) for c = 1,

(c) supθ0∈Θ0
|Prθ0(WN (θ0) ≤ z∗W,α)− (1− α)| = o(N−3/2 lnN) for c = 3/2.

The errors in coverage probability of standard delta method CIs are O(N−1) and O(N−1/2)

for symmetric CIs and equal-tailed CIs, respectively. The errors in rejection probability of a

standard Wald test are O(N−1). Davidson and MacKinnon (1999b) and Kim (2005) analyze an

alternative parametric bootstrap procedure that draws the bootstrap sample using the restricted

MLE where the null is imposed. The results in Davidson and MacKinnon and Kim indicate that

the bootstrap equal-tailed t-test from the restricted parametric bootstrap have smaller errors

in rejection probabilities than the unrestricted parametric bootstrap. In this paper, we mainly

focus on CIs, but we conjecture that such a refinement from bootstrapping with the restricted

MLE is also possible in our context.

5.2 One-step NPL and NMPL Parametric Bootstrap

Bootstrapping the NFXP estimator is computationally costly because one has to estimate the

model repeatedly under different bootstrap samples, where each estimation requires the re-

peated full solution of the Bellman equation. For this reason, we propose the one-step boot-
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strap NPL and NMPL estimators, which are defined as θ∗PL
k = (α∗PL

k
′
, θ∗f

′)′ and θ∗MPL
k =

(α∗MPL
k

′
, θ∗f

′)′, where θ∗f is defined in (14) and (α∗PL
k , P ∗PL

k , α∗MPL
k , P ∗MPL

k ) are defined exactly

as (α̃PL
k , P̃PL

k , α̃MPL
k , P̃MPL

k ) but using the bootstrap sample {w∗i : i = 1, . . . , n}.

We estimate θ by the NFXP estimator in the original sample and use the fixed point at the

NFXP estimator Pθ̂ as the initial estimate of P for the one-step estimation with the bootstrap

samples. Using the NFXP and Pθ̂ does not increase the computational burden significantly,

since we are required to estimate θ and compute Pθ̂ only once in the original sample.5

We use the derivatives of the pseudo-likelihood function defining the NPL or NMPL estimator

to construct the covariance matrix estimate (c.f., Proposition 4). This is essential for developing

computationally attractive bootstrap-based inference in this context. Evaluating the derivatives

of the pseudo-likelihood functions involves a limited number of policy iterations and, under the

assumption of extreme-value distributed unobserved state variables, the analytical expression for

the first derivatives are available. The computational saving from using the pseudo-covariance

matrix estimate can be substantial, since we need to compute the covariance matrix estimates

as many times as the number of bootstraps.

With (P ∗PL
k , θ∗PL

k ), we use the bootstrap covariance matrix estimator as

Σ∗
N (P, θ) = D∗O,PL

N (P, θ)−1V ∗PL
N (P, θ)(D∗O,PL

N (P, θ)−1)′, (18)

where D∗O,PL
N (P, θ) and V ∗PL

N (P, θ) are the same as DO,PL
N (P, θ) and V PL

N (P, θ) but constructed

with the bootstrap sample. Here, care must be exercised; using the bootstrap covariance ma-

trix estimator defined asD∗PL
N (P ∗PL

k , θ∗PL
k )−1V ∗PL

N (P ∗PL
k , θ∗PL

k )(D∗PL
N (P ∗PL

k , θ∗PL
k )−1)′ does not

yield the higher-order refinement, because the second derivatives of lnPθ and lnΨ(P, θ) with

respect to θ do not agree with each other even when evaluated at the fixed point.

With (P ∗MPL
k , θ∗MPL

k ), we use either

Σ∗
N (P, θ) = D∗MPL

N (P, θ)−1V ∗MPL
N (P, θ)(D∗MPL

N (P, θ)−1)′, or

Σ∗
N (P, θ) = D∗O,MPL

N (P, θ)−1V ∗MPL
N (P, θ)(D∗O,MPL

N (P, θ)−1)′, (19)

5Alternatively, we may estimate θ by the NPL or NMPL estimator in the original sample and use P̂ PL
k or

P̂ MPL
k as the initial estimate for the bootstrap estimation. Here, we focus on the case of estimating θ by the

NFXP estimator but the similar argument applies to the case of estimating θ by the NPL or NMPL estimator in

the original sample.
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with analogous definitions for D∗MPL
N (P, θ), V ∗MPL

N (P, θ), and D∗O,MPL
N (P, θ). It is important

to note that D∗MPL
N (P, θ) must be used if DN (θ) is used in forming ΣN (θ), and D∗O,MPL

N (P, θ)

must be used if DO
N (θ) is used in forming ΣN (θ). For instance, using D∗MPL

N (P, θ) when DO
N (θ) is

used in forming ΣN (θ) introduces an approximation error of magnitude Op(N−1/2) and, hence,

does not yield the higher-order refinement.

The one-step bootstrap t- and Wald statistics, T ∗N,k(θ̂r) and W∗
N,k(θ̂), are defined as in (15),

but with (θ∗,Σ∗
N ) replaced by (θ∗PL

k ,Σ∗
N (P ∗PL

k , θ∗PL
k )) or (θ∗MPL

k ,Σ∗
N (P ∗MPL

k , θ∗MPL
k )). The

one-step bootstrap CIs, denoted CISY M,k, CIET,k, are defined analogously to (16) and (17) but

using the 1− α quantiles of |T ∗N,k(θ̂r)| and T ∗N,k(θ̂r) instead of |T ∗N (θ̂r)| and T ∗N (θ̂r).

Define

µN,k = N−2k−1
ln2k

(N) for the one-step NMPL estimator with NR, default NR, and line-search NR,

µN,k = N−(k+1)/2 lnk+1(N) for the one-step NPL estimator and the one-step NMPL estimator with OPG.

Lemma 2 establishes the higher-order equivalence of the one-step NPL and NMPL bootstrap

estimators and NFXP bootstrap estimator. Lemma 3 shows, under suitable conditions on c and

k, the difference between the bootstrap test statistics constructed using the one-step NPL or

NMPL estimator and the NFXP estimator is o(N−c).

Lemma 2 Suppose Assumptions 1-8 hold for some c > 0 with 2c an integer and supθ∈Θ

||(∂/∂θ)Pθ(a|x)||, sup(P,θ) ||DΨ(P, θ)(a|x)||, sup(P,θ) ||D2Ψ(P, θ)(a|x)|| <∞ with probability one.

Then, for all ε > 0 and s = {PL,MPL},

sup
θ0∈Θ0

Prθ0

(
Pr∗

θ̂
(||θ∗sk − θ∗|| > µN,k) > N−cε

)
= o(N−c),

sup
θ0∈Θ0

Prθ0

(
Pr∗

θ̂
(|T ∗N,k(θ̂r)− T ∗N (θ̂r)| > N1/2µN,k) > N−cε

)
= o(N−c),

sup
θ0∈Θ0

Prθ0

(
Pr∗

θ̂
(|W∗

N,k(θ̂)−W∗
N,k(θ̂)| > N1/2µN,k) > N−cε

)
= o(N−c),

Lemma 3 Suppose the assumptions of Lemma 2 hold and µN,k = o(N−(c+1/2)). Then, for all

ε > 0,

sup
θ0∈Θ0

Prθ0

(
supz∈R |Ξk(z)| > N−cε

)
= o(N−c),

for Ξk(z) = Pr∗
θ̂
(N1/2(θ∗sk −θ̂) ≤ z)−Pr∗

θ̂
(N1/2(θ∗−θ̂) ≤ z) with s = {PL,MPL}, Pr∗

θ̂
(T ∗N,k(θ̂r) ≤

z)− Pr∗
θ̂
(T ∗N (θ̂r) ≤ z), or Pr∗

θ̂
(W∗

N,k(θ̂) ≤ z)− Pr∗
θ̂
(W∗

N (θ̂) ≤ z).
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Admittedly, the additional finiteness assumptions on the derivatives of P and Ψ are strong.

We conjecture they can be weakened to assumptions in terms of their moments, but doing so

would require a longer proof. The following Lemma shows that the errors in coverage probability

of the one-step NPL and NMPL bootstrap CIs are the same as those of the NFXP bootstrap CIs.

Therefore, the one-step bootstrap estimators achieve the same level of higher-order refinement

as the NFXP bootstrap estimator.

Lemma 4 Suppose the assumptions of Lemma 2 hold.

(a) If c = 2 and µN,k = o(N−5/2), then supθ0∈Θ0
|Prθ0(θ0

r ∈ CISY M,k(θ̂r))− (1−α)| = O(N−2).

(b) If c = 1 and µN,k = o(N−3/2), then supθ0∈Θ0
|Prθ0(θ0

r ∈ CIET,k(θ̂r))−(1−α)| = o(N−1 lnN).

(c) If c = 3/2 and µN,k = o(N−3/2), then supθ0∈Θ0
|Prθ0(WN (θ0) ≤ z∗W,α) − (1 − α)| =

o(N−3/2 lnN).

The condition µN,k = o(N−5/2) requires k ≥ 3 for the one-step NMPL estimator with the

NR, default NR, and line-search NR, and requires k ≥ 5 for the one-step NPL estimator and the

one-step NMPL estimator with the OPG. Constructing a one-step NMPL bootstrap-t statistic

requires 8 policy iterations. This is because the one-step bootstrap NMPL estimator with k = 3

requires 6 policy iterations and the pseudo-covariance matrix estimator based on the second

equation of (19) requires 2 policy iterations.6 On the other hand, constructing a one-step NPL

bootstrap-t statistic requires 6 policy iterations by using the one-step NPL estimator with k = 5

and using (18), and hence fewer computation. The fewest policy iterations with µN,k = o(N−5/2)

are achieved if we use the one-step NPL estimator in the first and second iterations, the one-step

NMPL estimator in the third iteration, and using the pseudo-covariance matrix estimator based

on (18); this yields µN,k = O(N−3 ln6(N)) with 5 policy iterations.

The NPL and NMPL estimators yield the same level of higher-order refinement as stated in

Lemma 4 except that, reflecting the difference in their convergence rates, the definition of µN,k

for the NMPL estimator is different from that for the one-step NMPL estimator. Specifically,

we have µN,k = N−2k−1−1/2 ln2k+1(N) for the NMPL estimator with NR, default NR, and line

search NR. We omit the proof because it is very similar to the proof of Lemmas 2-4.
6We may reduce the number of policy iterations from 8 to 7 by using the pseudo-covariance matrix estimator

(18) instead of (19).

22



6 Practical Extensions

6.1 Bootstrapping Counterfactual Experiments

One important advantage of structural models over reduced-form models is that we can use

them to quantitatively assess the dynamic impact of public policy proposals, often called coun-

terfactual experiments. Thereby, the reliability of the estimated impact of policies arises as an

important issue. Our proposed bootstrap method allows us to construct reliable CIs for the

dynamic impact of counterfactual policies where asymptotic CIs may be unreliable.

Counterfactual policies are characterized by a counterfactual parameter which in turn de-

pends on the true parameter. Given the true parameter θ, a counterfactual parameter is denoted

by ϑ(θ), where ϑ(·) is a (non-random) smooth mapping from Θ to itself. The quantity of in-

terest under a counterfactual policy often depends on the true parameter θ, a counterfactual

parameter ϑ(θ), as well as the conditional choice probabilities Pθ and Pϑ(θ); see the examples

provided in Section 7. We assume that the quantity of interest takes a scalar value and denote

it by y(θ) = g(θ, ϑ(θ), Pθ, Pϑ(θ)). Define Y (θ) = ∂y(θ)/∂θ. In practice, Y (θ) is evaluated by

taking a numerical derivative of y(θ).

Denote the NFXP estimator by θ̂ and the covariance matrix estimator by ΣN (θ̂). The

asymptotic CI for y(θ̂) of confidence level 100(1 − α) is CIASY = [y(θ̂) − zα/2σ̂y/N
1/2, y(θ̂) +

zα/2σ̂y/N
1/2], where σ̂2

y = Y (θ̂)′ΣN (θ̂)Y (θ̂) and zα denotes the 1 − α quantiles of the standard

normal random variable. It is also straightforward to define the bootstrap CIs for y(θ̂) . Define

the bootstrap t-statistic as Ty = N1/2(y(θ∗) − y(θ̂))/σ∗y , where σ∗2y = Y (θ∗)′Σ∗
N (θ∗)Y (θ∗) and

θ∗ is the bootstrap NFXP estimator. Let z∗Ty ,α and z∗|Ty |,α denote the 1 − α quantiles of Ty

and |Ty|. The symmetric and equal-tailed two-sided bootstrap CI for y(θ̂) of confidence level

100(1 − α) are defined as CISY M (y(θ̂)) = [y(θ̂) − z∗|Ty |,ασ̂y/N
1/2, y(θ̂) + z∗|Ty |,ασ̂y/N

1/2] and

CIET (y(θ̂)) = [y(θ̂)− z∗Ty ,α/2σ̂y/N
1/2, y(θ̂)− z∗Ty ,1−α/2σ̂y/N

1/2], respectively.

Define θ∗sk = (α∗s′k , θ̂′f )′, where s ∈ {PL,MPL}. The one-step NPL or NMPL bootstrap

CIs, denoted by CISY M,k(y(θ̂)) and CIET,k(y(θ̂)), are defined exactly as CISY M (y(θ̂)) and

CIET (y(θ̂)) but with (θ∗,Σ∗
N (θ∗)) replaced with (θ∗sk ,Σ

∗
N (P ∗s

k , θ∗sk )), where s ∈ {PL,MPL} and

Σ∗
N (P, θ) is defined by (18)-(19).

When y(θ) depends on Pϑ(θ), constructing the one-step bootstrap CIs often requires com-

puting the numerical derivatives of Pϑ(θ∗s
k ) with respect to θ∗sk . This is potentially expensive
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because it requires solving the fixed point problem, P = Ψ(P, ϑ(θ∗sk )), as many times as the

number of bootstraps multiplied by the dimension of θ.7 Let θ∗k denote either θ∗PL
k or θ∗MPL

k .

We propose to reduce the computational burden in computing y(θ) by approximating the fixed

point Pϑ(θ∗k) by taking a finite number of policy iterations under ϑ(θ∗k) starting from the fixed

point under θ̂. That is, starting from P ∗0
ϑ,k = Pϑ(θ̂), we repeat policy iterations under ϑ(θ∗k) as

P ∗j
ϑ,k = Ψ(P ∗j−1

ϑ,k , ϑ(θ∗k)) to obtain a sequence {P ∗j
ϑ,k : j ≥ 0}. Since P ∗0

ϑ,k − Pϑ(θ∗k) = Op(N−1/2)

and the policy iteration mapping Ψ(·, ϑ(θ∗k)) has the quadratic convergence property, we have

P ∗j
ϑ,k − Pϑ(θ∗k) = Op(N−2j−1

). Under the assumption that g(θ, ϑ(θ), Pθ, Pϑ(θ)) is a smooth func-

tional of Pϑ(θ), it follows that g(θ∗k, ϑ(θ∗k), P
∗
k , Pϑ(θ∗k)) − g(θ∗k, ϑ(θ∗k), P

∗
k , P

∗j
ϑ,k) = Op(N−2j−1

).

This suggests that a small value of j may suffice to achieve higher-order refinement in boot-

strapping. Let CIj
SY M,k(y(θ̂)) and CIj

ET,k(y(θ̂)) be the approximated one-step bootstrap CIs

that use the approximated conditional choice probabilities P ∗j
ϑ,k in place of Pϑ(θ∗k). Define

µj
N = N−2j−1

ln2j
(N) and µj

N,k = max{µN,k, µ
j
N}. The following Lemma shows choosing

j = k = 3 (j = k = 2) suffices to achieve higher-order refinement in constructing the symmetric

(equal-tailed) two-sided bootstrap CIs for y(θ̂).

Lemma 5 Suppose the assumptions of Lemma 2 hold, ϑ(θ) and g(θ, ϑ, Pθ, Pϑ) are continuously

F-differentiable, and supθ ||(∂/∂θ)ϑ(θ)||, sup(θ,ϑ,Pθ,Pϑ) ||Dg(θ, ϑ, Pθ, Pϑ)|| < ∞ with probability

one. Then

(a) If c = 2 and µj
N,k = o(N−5/2), then supθ0∈Θ0

|Prθ0(y(θ0) ∈ CIj
SY M,k(y(θ̂))) − (1 − α)| =

O(N−2).

(b) If c = 1 and µj
N,k = o(N−3/2), then supθ0∈Θ0

|Prθ0(y(θ0) ∈ CIj
ET,k(y(θ̂))) − (1 − α)| =

o(N−1 lnN).

6.2 Unobserved Heterogeneity

In the model of Section 2, it is assumed that individuals are homogenous in terms of the param-

eter θ representing their preferences and transition probabilities. However, in many empirical

applications, preferences and transition probabilities are likely to be different across individuals.
7Note that numerically evaluating the derivative of g(θ∗s

k , ϑ(θ∗s
k ), Pθ∗s

k
, Pϑ(θ∗s

k
)) with respect to θ∗s

k requires

changing the value of an element of θ∗s
k slightly, computing Pϑ(·) for the new value θ∗s

k by solving the fixed point

problem, and repeating it elementwise for all elements of θ∗s
k .
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An approach often used in practice is to treat such heterogeneity as unobserved by econome-

tricians and to allow for a finite mixture of types (c.f., Keane and Wolpin, 1997). This section

discusses an extension of our bootstrap method to a finite mixture model.

Suppose there are M types of individuals, where type m is characterized by a type-specific

parameter θm = (αm′, θm′
f )′ and the probability of being type m in the population is πm (m =

1, . . . ,M).8 It is assumed that the number of types, M , is known and πm ∈ (0, 1). As often done

in practice, we reparametrize the type probabilities as πm(γ) = exp(γm)/(1 +
∑M−1

m=1 exp(γi))

for m = 1, . . . ,M − 1 and πM (γ) = 1−
∑M−1

m=1 π
m(γ), where γ = (γ1, . . . , γM−1)′.

Let ζ = (γ′, θ1′, . . . , θM ′)′ be the parameter to be estimated, and let Θζ denote the set of pos-

sible values of ζ. Let {{ait, xit, xi,t+1}T
t=1}N

i=1 be a panel data such that wi = {ait, xit, xi,t+1}T
t=1

is randomly drawn across i’s from the population. In particular, the initial state xi1 is assumed

to be randomly drawn from a type-specific stationary distribution implied by the conditional

choice probability and the transition probability. We consider the asymptotics when T is fixed

and N →∞.

Conditional on being type m, the likelihood of observing wi is

L(wi; θm) = λ(xi1;Pθm , fθm
f

)
T∏

t=1

fθm
f

(xi,t+1|xit, ait)Pθm(ait|xit), (20)

λ(x;Pθm , fθm
f

) =
∫ J∑

a′=1

Pθm(a′|x′)fθm
f

(x|x′, a′)dλ(x′;Pθm , fθm
f

), (21)

where Pθm is the fixed point of Ψ(·, θm). λ(x;Pθm , fθm
f

) is the stationary distribution of x for type

m defined as the fixed point of the mapping defined by (21), and it is used to evaluate the (type-

specific) likelihood contribution of the initial observation xi1. Since solving (21) given (Pθm , fθm
f

)

is often less computationally intensive than computing Pθm , we assume the full solution of (21)

is available given (Pθm , fθm
f

).

The NFXP estimator of ζ is defined as

ζ̂ = arg max
ζ∈Θζ

1
N

N∑
i=1

l(wi; ζ), where l(wi; ζ) = ln

(
M∑

m=1

πm(γ)L(wi; θm)

)
. (22)

Let Pm be the conditional choice probability for type m. Stack Pm’s as P = (P 1, . . . , PM ),

and let P0 denote its true value. Define Ψ(P, ζ) = (Ψ(P 1, θ1), . . . ,Ψ(PM , θM )) and Ψ2(P, ζ) =
8If the transition probabilities are common across types so that θm

f = θf for m = 1, . . . , M , then we may use

the 2-stage procedure analogous to that of Section 3.
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(Ψ2(P 1, θ1), . . . ,Ψ2(PM , θM )). The pseudo-likelihood function for the NPL estimator is

LPL
N (P, ζ) =

1
N

N∑
i=1

lPL(wi;P, ζ), where lPL(wi;P, ζ) = ln

(
M∑

m=1

πm(γ)LPL(wi;Pm, θm)

)
,

and

LPL(wi;Pm, θm) = λ
(
xi1; Ψ(Pm, θm), fθm

f

) T∏
t=1

fθm
f

(xi,t+1|xit, ait)Ψ(Pm, θm)(ait|xit),

where λ is given by the fixed point of the mapping defined by (21). The pseudo-likelihood

function for the NMPL estimator is defined by LMPL
N (P, ζ) = N−1

∑N
i=1 l

MPL(wi;P, ζ), where

lMPL(wi;P, ζ) = lPL(wi;Ψ(P, ζ), ζ), i.e., we replace Pm in the NPL pseudo-likelihood function

LPL
N (P, ζ) with Ψ(Pm, θm). Let LMPL(wi;Pm, θm) = LPL(wi; Ψ(Pm, θm), θm).

Let {π0,m}M
m=1 be the true set of type probabilities, and let {P 0,m, f0,m}M

m=1 be the true

sets of type-specific conditional choice probabilities and transition probabilities. Let P 0(w)

denote the true set of probabilities for w defined as P 0(w) ≡
∑M

m=1 π
0,mλ

(
x1;P 0,m, f0,m

)
×∏T

t=1 f
0,m(xt+1|xt, at)P 0,m(at|xt). Let P̂PL

0 and P̂MPL
0 be initial consistent estimators of P.

Consider the following regularity conditions that correspond to Assumptions 4 and 5.

Assumption 4UH. (a) Θζ is compact. (b) λm(x;P, f) is three times continuously F-differentiable.

(c) λ(x;P, fθf
) > 0 for any x ∈ X and any {P, θf} ∈ BP ×Θf . (d) wi = {(ait, xit, xi,t+1) :

t = 1, . . . , T} for i = 1, . . . , N, are independently and identically distributed, and dF (x) >

0 for any x ∈ X, where F (x) is the distribution function of xi. (e) For any {Pm, θm
f } ∈ BP×

Θf , there exists a unique solution to the fixed point problem of (21). (f) There is a unique

ζ0 ∈int(Θζ) such that, for any w = {(at, xt, xt+1) : t = 1, . . . , T},
∑M

m=1 π
m(γ0)L(w; θ0,m) =

P 0(w). For any ζ 6= ζ0, Prζ0({w :
∑M

m=1 π
m(γ)Ls(w;P 0,m, θm) 6= P 0(w)}) > 0 for s ∈

{PL,MPL}. (g) Eζ0 sup(P,f) ||Dsλ(x;P, f)||2 <∞ for s = 0, . . . , 4. (h) P̂PL
0 −P0 = op(1),

P̂MPL
0 −P0 = op(1), and the NFXP estimator ζ̂ satisfies

√
N(ζ̂ − ζ0) →d N(0,Ωζ).

The following Lemma corresponds to Proposition 1 and equation (9) and establishes the key

property of the pseudo-likelihood functions of the NPL and NMPL algorithm in the context of

a finite mixture model. Define Pζ = (Pθ1 , . . . , PθM ).

Lemma 6 Suppose Assumptions 1-3 hold and Ψ(·) and λ(·; ·, ·) are F-differentiable. Then

DPl
PL(wi;Pζ , ζ) = DPl

MPL(wi;Pζ , ζ) = 0. Suppose, in addition, Assumption 4(a)-(c), 4(e)-

(g) and 4UH hold. Then DPζLPL
N (Pζ̂ , ζ̂) = Op(N−1/2) and DPζLMPL

N (Pζ̂ , ζ̂) = 0.
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Thus, at the fixed point, the parameter of interest ζ and the nuisance parameter P are

asymptotically orthogonal for the NPL estimator and are orthogonal in any sample size for the

NMPL estimator. Given this result, we may develop the NPL and NMPL algorithms for a finite

mixture model which have similar convergence properties to those in section 3.

The NPL and NMPL estimators are defined as follows. Let s ∈ {PL,MPL}.

Step 1: Given P̂s
j−1, ζ̂

s
j is computed by

ζ̂PL
j = arg max

ζ∈Θζ

LPL
N (P̂PL

j−1, ζ) or ζ̂MPL
j = arg max

ζ∈Θζ

LMPL
N (P̂MPL

j−1 , ζ). (23)

Step 2: Form = 1, . . . ,M , update P̂ s,m
j−1 using the obtained estimate θ̂s,m

j as P̂ s,m
j = Ψ(P̂ s,m

j−1 , θ̂
s,m
j ).

Iterate Steps 1-2 until j = k.

The following proposition corresponds to Propositions 2 and 3 and establishes the conver-

gence rates of the NPL and the NMPL estimators for a finite mixture model. Define P̂ = Pζ̂ ,

the NFXP estimator of P.

Proposition 7 Suppose Assumptions 1-3, 4(a)-(c), 4(e)-(g), 5, and 4UH hold. Then, for k =

1, 2, . . .

ζ̂PL
k − ζ̂ = Op(N−1/2||P̂PL

k−1 − P̂||+ ||P̂PL
k−1 − P̂||2), P̂PL

k − P̂ = Op(||ζ̂PL
k − ζ̂||),

ζ̂MPL
k − ζ̂ = Op(N−1/2||P̂MPL

k−1 − P̂||2 + ||P̂MPL
k−1 − P̂||3), P̂MPL

k − P̂ = Op(||P̂MPL
k−1 − P̂||2).

The one-step NPL and NMPL estimators are analogously defined to the NPL and NMPL

estimators except that they update the parameter ζ using one Newton step without fully solving

the pseudo-maximization problem (23). Specifically, the one-step NPL estimator is updated as

ζ̃PL
j = ζ̃PL

j−1 −QPL
N (P̃PL

j−1, ζ̃
PL
j−1)

−1(∂/∂ζ)LPL
N (P̃PL

j−1, ζ̃
PL
j−1).

Then, P̃PL
j−1 is updated as P̃ s,m

j = Ψ(P̃ s,m
j−1 , θ̃

s,m
j ) for m = 1, . . . ,M . This process is iterated for

j = 1, . . . , k. The NR choice of QPL
N is QPL

N (P, ζ) = (∂2/∂ζ∂ζ ′)LPL
N (P, ζ) whereas the OPG

estimator is QPL
N (P, ζ) = −N−1

∑N
i=1(∂/∂ζ)l

PL(wi;P, ζ)(∂/∂ζ ′)lPL(wi;P, ζ). The one-step

NMPL estimator is defined analogously.

The following proposition corresponds to Propositions 5 and 6 and shows that the one-

step NPL/NMPL estimator achieves a similar rate of convergence as the original NPL/NMPL
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estimator for a finite mixture model. The proof is omitted because it follows the proof of

Propositions 5 and 6.

Proposition 8 Suppose the assumptions of Proposition 7 hold and the initial estimates (ζ̃PL
0 , P̃PL

0 )

and (ζ̃MPL
0 , P̃MPL

0 ) are consistent. Then, for k = 1, 2, . . . ,

ζ̃PL
k − ζ̂ = Op(||ζ̃PL

k−1 − ζ̂||2 +N−1/2||P̃PL
k−1 − P̂||+ ||P̃PL

k−1 − P̂||2)

[+ Op(N−1/2||ζ̃PL
k−1 − ζ̂||) for OPG ],

P̃PL
k − P̂ = Op(||ζ̃PL

k − ζ̂||).

ζ̃MPL
k − ζ̂ = Op(||ζ̃MPL

k−1 − ζ̂||2 +N−1/2||P̃MPL
k−1 − P̂||2 + ||P̃MPL

k−1 − P̂||3)

[+ Op(N−1/2||ζ̃MPL
k−1 − ζ̂||+ ||P̃MPL

k−1 − P̂||2) for OPG ],

P̃MPL
k − P̂ = Op(||ζ̃MPL

k − ζ̂||+ ||P̃MPL
k−1 − P̂||2).

The asymptotic covariance matrix of ζ̂ is given by Σ(ζ0) = D(ζ0)−1V (ζ0)(D(ζ0)−1)′, where

D(ζ) = −E(∂2/∂ζ∂ζ ′)l(w; ζ) and V (ζ) = E(∂/∂ζ)l(w; ζ)(∂/∂ζ ′)l(w; ζ). As in Section 3.3, we

may estimate the asymptotic covariance matrix either using the averages of the derivatives of

l(wi; ζ̂) or the derivatives of the summands of the pseudo-likelihood function.

Applying our bootstrap-based inference method to a finite mixture model is straightforward.

We estimate ζ by the NFXP estimator as (22) in the original sample and use ζ̂ and Pθ̂m ’s as the

initial estimates for the bootstrap samples. The one-step bootstrap NPL and NMPL estimators

(P∗PL
k , ζ∗PL

k ,P∗MPL
k , ζ∗MPL

k ) are defined exactly as (P̃PL
k , ζ̃PL

k , P̃MPL
k , ζ̃MPL

k ) but computing

from the bootstrap sample. The bootstrap covariance matrix estimator, Σ∗PL
N (P∗PL

k , ζ∗PL
k ) (or

Σ∗MPL
N (P∗MPL

k , ζ∗MPL
k )), is defined analogously to the covariance matrix estimator, ΣN (ζ̂),

except that we use the bootstrap sample and the corresponding pseudo-likelihood function. The

one-step bootstrap t- and Wald statistics, T ∗N,k(ζ̂r) and W∗
N,k(ζ̂), are then defined as in (15), but

with (θ∗,Σ∗
N ) replaced by (ζ∗PL

k ,Σ∗PL
N (P∗PL

k , ζ∗PL
k )) or (ζ∗MPL

k ,Σ∗MPL
N (P∗MPL

k , ζ∗MPL
k )). The

one-step bootstrap CIs are defined similarly to (16) and (17).

Before presenting the final lemma, we define some notation. Let hζ(wi, ζ) ∈ RLhζ denote the

vector containing the unique components of (∂/∂ζ)l(w; ζ) and (∂/∂ζ)l(w; ζ)(∂/∂ζ ′)l(w; ζ) and

their partial derivatives with respect to ζ through order d = max{2c+2, 3}. We assume the true

parameter ζ0 lies in a subset Θζ,0 of Θζ . For some δ > 0, let Θζ,1 = {ζ ∈ Θζ : d(θ,Θζ,0) < δ/2}

and Θζ,2 = {ζ ∈ Θζ : d(θ,Θζ,0) < δ}. The following lemma establishes the higher-order
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improvements of the one-step bootstrap NPL and NMPL algorithms for a finite mixture model.

The proof follows the proof of Lemmas 1-4 and is therefore omitted.

Lemma 7 Suppose Assumptions 1-3, 4(a)-(c), 4(e)-(g), 5, and 4UH hold. Suppose Assump-

tions 6-8 hold with θ,Θ,Θ1,Θ2, Pθ(a|x), h(wi, θ) replaced by ζ,Θζ ,Θζ,1,Θζ,2, l(w; ζ), hζ(wi, ζ),

respectively, for some c > 0 with 2c an integer. Suppose supθ∈Θ ||(∂/∂θ)Pθ(a|x)||, sup(P,θ) ||DΨ(P, θ)(a|x)||,

sup(P,θ) ||D2Ψ(P, θ)(a|x)|| < ∞ with probability one. Then the errors in coverage probability of

CISY M,k(ζ̃r) and CIET,k(ζ̃r) and the errors in rejection probability of the one-step bootstrap

Wald test are given by Lemma 4(a)-(c), respectively.

7 Monte Carlo Experiments

This section compares the performance of our proposed bootstrap-based inference method with

that of the standard inference method based on first-order asymptotics.

7.1 Experimental Design

The model we consider is a version of the machine replacement models of Rust (1987) and

Cooper, Haltiwanger, and Power (1999). There are two observable state variables in the model:

machine age st ∈ N and productivity shock ωt ∈ R. We denote the vector of observed state

variables by xt = (st, ωt)′ and let the variable at ∈ {0, 1} represent the machine replacement

decision. The profit function is given by u(xt, at) + ε(at), where

u(xt, at) = y(st, ωt, at)−mc(st, at)− rc(at)

with

rc(at) = θ0at,

y(st, ωt, at) = exp(θ1st(1− at) + ωt),

mc(st, at) = θ2st(1− at).

Here, y(st, ωt, at) is a revenue function; c(st) is a machine maintenance cost; rc(st) is a re-

placement cost; and ε(at) is an unobserved state variable which follows an extreme value dis-

tribution independently across alternatives. The transition function of st is given by st =
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at−1 + (1− at−1)(st−1 + 1) and productivity shock ωt follows an AR(1) process ωt = ρωt−1 + ηt

with ηt ∼ N(0, σ2
η). The model requires estimation of the three structural parameters whose

true value is given by θ ≡ (θ0, θ1, θ2)′ = (2.0,−0.2, 0.1)′. We assume that the other parameters

in the model, (β, ρ, ση), are known and fixed at (β, ρ, ση) = (0.96, 0.8, 0.2).

We generate a cross-sectional data set of sample size N from a parametric model by first

randomly drawing the initial states {(si, ωi) : i = 1, . . . , N} from the stationary distribution of

(s, ω) under θ and then simulating ai’s using the conditional choice probabilities Pθ(a|si, ωi).

The data set consists of {(si, ωi, ai) : i = 1, . . . , N}.

To simulate the data from the model with a continuous state space, we first solve an ap-

proximated model with a discrete state space using a finite number of grids and then use the

“self-approximating” property of the Bellman operator [c.f., Rust (1996)] to evaluate conditional

choice probabilities at points outside of the grids. This allows us to generate a sample with con-

tinuously distributed ω from the approximated model and to evaluate a likelihood function at

points outside of the grids. Finally, we approximate the state space of ω by 10 grid points using

Gauss-Hermit quadrature points while the state space of st is given by {1, . . . , 10}.9

7.2 Parametric Bootstrapping

We conduct parametric bootstraps with 1000 simulated samples consisting of N = 1000 obser-

vations. For each simulated sample, we estimate the parameters by Maximum Likelihood (ML)

using the NFXP algorithm and draw B=599 bootstrap samples from the parametric model eval-

uated at the ML estimates.10 Then we estimate parameters for each bootstrap sample using ML,

NPL, NMPL, one-step NPL, and one-step NMPL estimators starting from the ML estimates

and the corresponding conditional choice probabilities in the original sample. The covariance
9The choice of approximation methods can potentially affect estimation and inference. We checked the robust-

ness of the results by repeating the same bootstrapping exercise with the NFXP using alternative approximation

methods. First, using 15 instead of 10 grid points in approximating the state space of ω does not substantially

change the results. Second, using the method of Tauchen (1986) instead of Gauss-Hermit quadrature method to

approximate the state space of ω and their transition probabilities produces similar results.
10We draw the bootstrap samples of {(s∗i , ω∗

i ) : i = 1, . . . , N} from the stationary distribution under the ML

estimate θ̂. We examine the alternative case in which (s∗i , ω∗
i ) is set to the original observation (si, ωi) and find

that the results are similar. We also experiment with B = 999 in some cases and find that the results do not

change substantially.
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matrices of the ML estimates are constructed by the OPG estimator using the derivatives of

the likelihood function while those of the NPL, NMPL, one-step NPL, and one-step NMPL are

constructed by the OPG estimator using the derivatives of their pseudo-likelihood functions.

We first compare the performance of the bootstrap Wald test and the asymptotic Wald

test. The null hypothesis we test is H0 : (θ1, θ2) = (−0.2, 0.1). Table 1 reports the rejection

frequencies of the asymptotic Wald test at .10, .05, and .01 levels for different sample sizes:

N = 500, 1000, and 2000. The asymptotic Wald test overrejects the null hypothesis at all three

levels. While the severity of overrejection decreases with the sample size, it is substantial at all

levels even with the sample size of 1000.

Table 2 reports the rejection frequencies of the bootstrap Wald test at .10, .05, and .01

levels for ML, NPL, NMPL, one-step NPL, and one-step NMPL estimators for a sample size

N = 1000. In the table, “1-NPL” and “1-NMPL” represent one-step NPL and one-step NMPL

estimators, respectively. The bootstrap Wald tests using ML slightly underreject at .10 and .05

levels but its overall performance is substantially better than that of the asymptotic Wald test.

We also conduct the bootstrap Wald test based on the restricted ML estimator where the null is

imposed. Its performance is reported in the row “MLE-NULL” and is similar to the one based

on the unrestricted ML estimator. The results from the bootstrap Wald tests using NPL and

NMPL with one iteration (i.e., k = 1) are similar to those using ML and are better than that of

asymptotic Wald test at all three levels. Furthermore, the bootstrap Wald tests using one-step

NPL and one-step NMPL perform well; 1-NPL and 1-NMPL with five iterations (i.e., k = 5)

perform better than the asymptotic Wald test at all three levels.

Next, we compare the performance of the bootstrap CIs and the asymptotic CIs for the

parameters θ1, θ2, and θ3. Table 3 reports the coverage performance of the asymptotic 90% and

95% CIs, indicating the frequencies that the confidence intervals missed the true values on the

left and right sides. In the case of the 90% CI, for instance, the true coverage is 0.9 so that the

ideal values of “Miss Left” and “Miss Right” are 0.05. For the parameter θ1, both the 90 % and

the 95% CIs severely overcover on the right while they undercover on the left, suggesting that

the center of these CIs is substantially larger than the true parameter value. The asymmetry

of miscoverage for θ1 is still substantial even at N = 2000. On the other hand, the asymmetry

of miscoverage for θ0 and θ2 is not as severe as that for θ1.11 In terms of the overall coverage
11This may be due to the difference in the degree of nonlinearity. The parameter θ1 enters into the profit
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probabilities, the asymptotic CIs for θ0 and θ1 overcover for sizes of 500 and 1000 while the

asymptotic CIs for θ2 undercover.

Table 4 reports the coverage performance of bootstrap 90% and 95% CIs with N = 1000.

The performance of symmetric bootstrap CIs from ML are similar to that of the asymptotic

CIs in Table 3; in particular, both symmetric bootstrap CIs and asymptotic CIs for θ1 severely

overcover on the right while they undercover on the left. On the other hand, equal-tailed

bootstrap CIs cover more equally on the right and on the left and thus are better centered

around the true parameter value although they slightly undercover overall. The bootstrap CIs

from NPL and NMPL with k = 1 and the bootstrap CIs from 1-NPL and 1-NMPL with k = 3

performs similar to ML.

7.3 Counterfactual Policy Experiments

Our proposed bootstrap method may allow us to construct reliable CIs for the impact of counter-

factual policies where asymptotic CIs may be unreliable. We examine the finite sample properties

of the bootstrap CIs for the impact of the following counterfactual policy experiments:

1. A government introduces a policy that permanently increases (or decreases) replacement

cost by 30 percent. The agents in the economy know that the new policy is permanent.

2. Starting from the steady state, a government unexpectedly introduces a policy that tem-

porarily increases (or decreases) replacement cost by 30 percent for a duration of one

period. The agents in the economy know that the new policy only lasts one period.

We focus on the impact of these counterfactual policies on average revenue and revenue

dispersion, where the latter is measured as the standard deviation of the logarithm of revenues.

In particular, we examine these statistics (i) at the steady state under the new policy in the

first experiment and (ii) at the initial period when the new policy is unexpectedly introduced

in the second experiment. Table 5 compares the values of these statistics as well as average

replacement rate across different experiments.

Given the estimated parameter θ̂, the estimate of a counterfactual parameter is denoted by

ϑ(θ̂) = (1.3θ̂0, θ̂1, θ̂2)′ in the case of a 30% increase or ϑ(θ̂) = (0.7θ̂0, θ̂1, θ̂2)′ in the case of a 30%

function through exponential function while θ0 and θ1 are linearly related to the profit function; consequently,

the degree of nonlinearly in θ1 is larger than those in θ0 and θ2.
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decrease. Average revenue and revenue dispersion for (i)-(ii) above depend on θ̂ and ϑ(θ̂) as well

as the conditional choice probabilities Pθ̂ and Pϑ(θ̂). For instance, average revenue at the steady

state under ϑ(θ̂) may be written as

ȳ(i)(θ̂) =
∫ ∑

a′=0,1

yϑ(θ̂)(s
′, ω′, a′)Pϑ(θ̂)(a

′|s′, ω′)dπ∗
ϑ(θ̂)

(s′, ω′),

where π∗
ϑ(θ̂)

is the stationary distribution of (s, ω) under the parameter ϑ(θ̂) defined as a fixed

point of π∗
ϑ(θ̂)

(s, ω) =
∫ ∑

a=0,1 Pϑ(θ̂)(a|s, ω)fs(s′, ω′|s, ω, a)dπ∗ϑ(θ̂)
(s′, ω′).

As discussed in Section 6.1, constructing the bootstrap CIs for average revenue and revenue

dispersion under counterfactual policies requires repeatedly solving the fixed point problem

under counterfactual parameter evaluated at different bootstrap estimates. To construct the

bootstrap CIs using NPL, NMPL, one-step NPL, and one-step NMPL, we apply the result of

Lemma 5 and approximate the policy function under counterfactual bootstrap estimates by

taking 3 policy iterations starting from the fixed point under the counterfactual parameter

evaluated at the original estimates, ϑ(θ̂). On the other hand, for the bootstrap CIs using ML,

we use the full solution of the fixed point problem under counterfactual parameter estimates.

The asymptotic CIs are constructed by the standard delta method.

Table 6 reports the coverage performance of the asymptotic and the bootstrap 95% CIs

for counterfactual average revenues. The asymptotic CIs undercover both on the left and on

the right across all counterfactual policies. Both the symmetric and the equal-tailed bootstrap

CIs constructed from ML perform slightly better than the asymptotic CIs in terms of coverage

probabilities. The average lengths of the asymptotic CIs for average revenues are shorter than

those of the bootstrap CIs for all cases (not reported). The bootstrap CIs from NPL and NMPL

with one iteration (k = 1) perform as well as those from ML while the bootstrap CIs from 1-NPL

and 1-NMPL with three iterations (k = 3) achieve performance similar to those from ML.

The results are more striking in Table 7, which reports the coverage performance of the

asymptotic and the bootstrap 95% CIs for counterfactual revenue dispersions. In terms of cov-

erage probabilities, both the symmetric and the equal-tailed bootstrap CIs constructed from ML

perform substantially better than the asymptotic CIs while the symmetric bootstrap CIs per-

form better than the equal-tailed bootstrap CIs. For instance, for the counterfactual experiment

with a permanent 30% decrease in replacement cost, the coverage probabilities of nominal 95%

asymptotic, symmetric bootstrap, and equal-tailed bootstrap CIs are .86, .96, and .91, respec-
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tively. Furthermore, the asymptotic CIs and the symmetric bootstrap CIs severely overcover

on the left and undercover on the right. On the other hand, the equal-tailed bootstrap CIs are

better centered around the true parameter values.

The bootstrap CIs from NPL and NMPL with one iteration (k = 1) and 1-NPL and 1-NMPL

with three iterations (k = 3) perform as well as the bootstrap CIs from ML. The results indi-

cate that we can reduce the cost of constructing bootstrap CIs by considering computationally

attractive one-step bootstrap procedures, such as one-step NPL and one-step NMPL, instead of

the standard bootstrap procedure which is often infeasible in the context of structural discrete

Markov decision models.

We acknowledge that the experiment provided in this section has a limited scope and that

these results can be different in other applications. Nonetheless, the Monte Carlo evidence

suggests that our one-step bootstrap procedure can be used to construct more reliable confidence

intervals for the dynamic impact of counterfactual policies where asymptotic confidence intervals

may be unreliable and yet the standard bootstrap procedure is too costly to implement.

8 Appendix A: proofs

For an n-linear operator M(x1, . . . , xn) such as an n-th F-derivative, the operator norm of M is

defined as ||M || = sup||x1||=···=||xn||=1 ||M(x1, . . . , xn)||. To simplify the notation, let ψα(P, α, θf ) =

N−1
∑N

i=1(∂/∂α
′) ln Ψ(P, α, θf )(ai|xi) and ψ2α(P, α, θf ) = N−1

∑N
i=1(∂/∂α

′) ln Ψ2(P, α, θf )(ai|xi).

8.1 Proof of Proposition 1

Let P̄ be an arbitrary set of conditional choice probabilities, and let h = h(a|x) be a mapping

such that P̄ + h ∈ BP . From the relation ϕ(P̄ )(x) = uP̄ (x) + βEP̄ϕ(P̄ )(x), we obtain

ϕ(P̄ + h)(x)− ϕ(P̄ )(x) = (1− βEP̄+h)−1
[
uP̄+h(x)− uP̄ (x) + β

(
EP̄+h − EP̄

)
ϕ(P̄ )(x)

]
.

Recall uP̄ (x) =
∑

a∈A P̄ (a|x)u(x, a) +
∑

a∈A P̄ (a|x)ex(a, P̄x), and note that
∑

a∈A h(a|x) = 0

because P̄ , P̄ + h ∈ BP . Furthermore, Lemmas 1 and 2 of AM hold uniformly in x ∈ X by

Assumptions 1 and 2. Consequently, applying Lemma 2 of AM to uP̄+h(x) − uP̄ (x) gives

uP̄+h(x)−uP̄ (x) =
∑

a∈A h(a|x)u(x, a)−Q−1
x (P̄x)′h̄x+o(||h||), where h̄x = (h(2|x), . . . , h(J |x))′,

P̄x = (P̄x(2), . . . , P̄x(J))′, and o(||h||) term is uniform in x ∈ X.
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Let P be the fixed point of Ψ, so that ϕ(P )(x) = V (x). Then

β (EP+h − EP )ϕ(P )(x) = β
∑
a∈A

h(a|x)
∫

X
V (x′)f(dx′|x, a)

=
∑
a∈A

h(a|x)v(x, a)−
∑
a∈A

h(a|x)u(x, a)

= ṽ′xh̄x −
∑
a∈A

h(a|x)u(x, a).

Because ṽx = Q−1
x (Px) when P is the fixed point of Ψ, it follows that ϕ(P+h)−ϕ(P ) = o(||h||) for

any h and hence Dϕ(P ) = 0. Since Ψ = Λ ◦ ϕ, application of the chain rule in B-spaces gives

DΨ(P ) = DΛ(ϕ(P ))Dϕ(P ) = 0. �

8.2 Proof of Proposition 2

Because the NFXP estimator maximizes the objective function of the NPL estimator if P = P̂

(c.f. equation (Ap.3) of AM p. 1540), it follows that

ψα(P̂PL
k−1, α̂

PL
k , θ̂f ) = ψα(P̂ , α̂, θ̂f ) = 0. (24)

We use induction. First, assume P̂PL
k−1 − P 0 = op(1). Then α̂PL

k is consistent, because

the consistency proof in the proof of Proposition 4 of AM does not depend on the finite-

ness of X. Applying the generalized Taylor’s theorem [c.f., pp.148-149 of Zeidler (1986)] to

ψα(P̂PL
k−1, α̂

PL
k , θ̂f )− ψα(P̂ , α̂, θ̂f ) gives∫ 1

0
(∂/∂α)ψα(Pτ , ατ , θ̂f )(α̂PL

k − α̂)dτ +
∫ 1

0
DPψα(Pτ , ατ , θ̂f )(P̂PL

k−1 − P̂ )dτ = 0 (25)

where Pτ = τP̂PL
k−1+(1−τ)P̂ and ατ = τα̂PL

k +(1−τ)α̂. Note that P̂−P 0 = Pθ̂−Pθ0 = Op(N−1/2)

because θ̂ − θ0 = Op(N−1/2) and ∂Pθ/∂θ = ∂Ψ(Pθ, θ)/∂θ = Op(1) from Lemma 8(a). For the

first term on the left of (25),
∫ 1
0 (∂/∂α)ψα(Pτ , ατ , θ̂f )dτ →p E(∂2/∂α∂α′) ln Ψ(P 0, θ0) follows

from Lemma 8(d) and the consistency of Pτ , θ̂f , and ατ . For the second term on the left

of (25), expanding DPψα(Pτ , ατ , θ̂f ) around (P̂ , α̂, θ̂f ) and using ||Pτ − P̂ || ≤ ||P̂PL
k−1 − P̂ ||,

||ατ − α̂|| ≤ ||α̂PL
k − α̂||, Lemma 8(b)(c), and root-N consistency of (α̂, θ̂f , P̂ ), we obtain

DPψα(Pτ , ατ , θ̂f ) = Op(N−1/2) +Op(||P̂PL
k−1 − P̂ ||) +Op(||α̂PL

k − α̂||),

uniformly in τ . Therefore, rearranging the terms in (25) gives[
E(∂2/∂α∂α′) ln Ψ(P 0, θ0) + op(1)

]
(α̂PL

k − α̂) = Op(N−1/2||P̂PL
k−1 − P̂ ||) +Op(||P̂PL

k−1 − P̂ ||2),
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and α̂PL
k − α̂ = Op(N−1/2||P̂PL

k−1− P̂ ||+ ||P̂PL
k−1− P̂ ||2) follows because E(∂2/∂α∂α′) ln Ψ(P 0, θ0)

is a nonsingular negative definite matrix (see AM p.1541).

For the convergence rate of P̂PL
k , expand P̂PL

k = Ψ(P̂PL
k−1, α̂

PL
k , θ̂f ) around (P̂ , α̂, θ̂f ), apply

Ψ(P̂ , α̂, θ̂f ) = P̂ and DP Ψ(P̂ , α̂, θ̂f ) = 0, and use Lemma 8(a), to obtain

P̂PL
k = Ψ(P̂PL

k−1, α̂
PL
k , θ̂f ) = P̂ +Op(||α̂PL

k − α̂||) +Op(||P̂PL
k−1 − P̂ ||2). (26)

The required result for all k follows from induction because P̂PL
0 − P 0 = op(1) by Assumption

4(g). �

8.3 Proof of Proposition 3

We use induction. Assume P̂MPL
k−1 − P 0 = op(1). The consistency of α̂MPL

k follows from an

argument similar to the proof of consistency of α̂PL
k by AM. From the first order conditions for

the NMPL and NFXP estimator and Lemma 9(a), we have

ψ2α(P̂MPL
k−1 , α̂MPL

k , θ̂f ) = ψ2α(P̂ , α̂, θ̂f ) = 0. (27)

Applying the generalized Taylor’s theorem to (27) gives∫ 1

0
(∂/∂α)ψ2α(Pτ , ατ , θ̂f )(α̂MPL

k − α̂)dτ +
∫ 1

0
DPψ2α(Pτ , ατ , θ̂f )(P̂MPL

k−1 − P̂ )dτ = 0, (28)

where Pτ = τP̂MPL
k−1 + (1 − τ)P̂ and ατ = τα̂MPL

k + (1 − τ)α̂. For the first term on the left of

(28),
∫ 1
0 (∂/∂α)ψ2α(Pτ , ατ , θ̂f )dτ →p E(∂2/∂α∂α′) ln Ψ2(P 0, α0, θ0

f ) = E(∂2/∂α∂α′) lnPθ0 from

Lemma 8(d) and the consistency of Pτ , ατ , and θ̂f . For the second term on the left of (28),

recall DPψ2α(P̂ , α̂, θ̂f ) = 0 from Lemma 9(a) because P̂ is the fixed point of Ψ(·, α̂, θ̂f ). Thus,

applying the generalized Taylor’s theorem to DPψ2α(Pτ , ατ , θ̂f )−DPψ2α(P̂ , α̂, θ̂f ) yields

DPψ2α(Pτ , ατ , θ̂f ) =
∫ 1

0
DPPψ2α(Pb, αb, θ̂f )(Pτ − P̂ )db+

∫ 1

0
DαPψ2α(Pb, αb, θ̂f )(ατ − α̂)db,

(29)

where Pb = bPτ + (1− b)P̂ and αb = bατ + (1− b)α̂. For the right hand side of (29), first note

that DPPψ2α(P 0, α0, θ0
f ) and DαPψ2α(P 0, α0, θ0

f ) are Op(N−1/2) from Lemma 9(b) and wi ∼

iid. Consequently, we obtain, uniformly in b,

DPPψ2α(Pb, αb, θ̂f ), DαPψ2α(Pb, αb, θ̂f ) = Op(N−1/2 + ||ατ − α̂||+ ||Pτ − P̂ ||), (30)

36



by expanding the left hand side around (P 0, α0, θ0
f ), applying the triangle inequality to ||Pb−P 0||

and ||αb − α0||, and using Lemma 8(b) and the root-N consistency of (α̂, P̂ , θ̂f ). Substituting

(30) into (29) gives, uniformly in τ ,

DPψ2α(Pτ , ατ , θ̂f ) = Op(N−1/2||P̂MPL
k−1 − P̂ ||+ ||P̂MPL

k−1 − P̂ ||2) + op(||α̂MPL
k − α̂||).

Consequently, rearranging the terms in (28) gives [E(∂2/∂α∂α′) lnPθ0 + op(1)](α̂MPL
k − α̂) =

Op(N−1/2||P̂MPL
k−1 − P̂ ||2 + ||P̂MPL

k−1 − P̂ ||3), and the stated bound on α̂MPL
k − α̂ follows because

E(∂2/∂α∂α′) lnPθ0 is a nonsingular negative definite matrix.

For P̂MPL
k , we have P̂MPL

k = Ψ(P̂MPL
k−1 , α̂MPL

k , θ̂f ) = P̂ +Op(||α̂MPL
k − α̂||) +Op(||P̂MPL

k−1 −

P̂ ||2) from the same argument as (26). The required result for all k follows from induction

because P̂MPL
0 − P 0 = op(1) by Assumption 5(c). �

8.4 Proof of Proposition 4

First, consider a MLE based on l3(θ) = N−1
∑N

i=1[lnΨ(P 0, θ) + ln fθf
]. The information ma-

trix equality associated with it implies −E(∂2/∂α∂θ′f ) ln Ψ(P 0, θ0) = E(∂/∂α) ln Ψ(P 0, θ0) ×

(∂/∂θ′f )(lnΨ(P 0, θ0) + ln fθ0
f
). Then, the required result for the (1, 2)-th block of DPL

N (P̄ , θ̄)

follows from Lemma 8, the information matrix equality and (47) as:

− 1
N

N∑
i=1

∂2

∂α∂θ′f
lnΨ(P̄ , θ̄) → p − E

∂2

∂α∂θ′f
lnΨ(P 0, θ0)

= E(∂/∂α) ln Ψ(P 0, θ0)(∂/∂θ′f )(lnΨ(P 0, θ0) + ln fθ0
f
)

= E(∂/∂α) lnPθ0(∂/∂θ′f )(lnPθ0 + ln fθ0
f
)

= −E(∂2/∂α∂θ′f ) lnPθ0 .

The proof for the (1, 1)-th block of DPL
N (P̄ , θ̄) follows from the same argument, and the (2, 2)-th

block DPL
N (P̄ , θ̄) does not depend on P̄ . The proof for DMPL

N (P̄ , θ̄) is similar, using Lemma 9(a)

instead of (47). An analogous argument gives the proof for DO,s
N (P̄ , θ̄) and V s

N (P̄ , θ̄). �

8.5 Proof of Proposition 5

We prove the result for only the NR and OPG methods. The proof for the default NR and

line-search NR is essentially the same except for showing Pr(QD
N 6= QNR

N ) → 0 and Pr(QLS
N 6=

QNR
N ) → 0; see the proof of Lemma 7.1 of Andrews (2005) (A05 hereafter). We suppress the
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superscript PL from α̃PL
j and P̃PL

j , and we suppress θ̂f from ψα(P, α, θ̂f ) and QN (P, α, θ̂f ) when

it does not lead to confusion.

Recall the NFXP estimator satisfies the first order condition ψα(P̂ , α̂) = 0. Applying the

generalized Taylor’s theorem to ψα(P̂ , α̂)− ψα(P̃j−1, α̃j−1) gives

0 = ψα(P̃j−1, α̃j−1) +Dαψα(P̃j−1, α̃j−1)(α̂− α̃j−1)

+DPψα(P̃j−1, α̃j−1)(P̂ − P̃j−1) +RN,j

= ψα(P̃j−1, α̃j−1) +QN (P̃j−1, α̃j−1)(α̃j − α̃j−1) +QN (P̃j−1, α̃j−1)(α̂− α̃j)

+
[
Dαψα(P̃j−1, α̃j−1)−QN (P̃j−1, α̃j−1)

]
(α̂− α̃j−1)

+DPψα(P̃j−1, α̃j−1)(P̂ − P̃j−1) +RN,j , (31)

where RN,j = Op(||P̂ − P̃j−1||2 + ||α̂ − α̃j−1||2) from Lemma 8(b). The first two terms on the

right of (31) cancel out. For the fourth term on the right of (31), the term inside the bracket is

zero in the NR and Op(||P̂ − P̃j−1||+ ||α̂− α̃j−1||+N−1/2) in the OPG from Lemma 8(d), (e)

and the information matrix equality. For the fifth term on the right of (31), it follows from the

generalized Taylor’s theorem, Lemma 8(c), and P̂ − P 0, θ̂ − θ0 = Op(N−1/2) that

DPψα(P̃j−1, α̃j−1, θ̂f ) = DPψα(P 0, α0, θ0) +Op(||P̃j−1 − P̂ ||) +Op(||α̃j−1 − α̂||) +Op(N−1/2)

= Op(||P̃j−1 − P̂ ||) +Op(||α̃j−1 − α̂||) +Op(N−1/2).

Therefore,

QN (P̃j−1, α̃j−1)(α̂− α̃j) = Op(N−1/2||P̂ − P̃j−1||) +Op(||α̂− α̃j−1||2 + ||P̂ − P̃j−1||2)

[+Op(N−1/2||α̂− α̃j−1||) for OPG].

The stated bound of α̃j − α̂ follows from QN (P̃j−1, α̃j−1) →p E(∂2/∂α∂α′) ln Ψ(P 0, θ0) , which

is negative definite.

We complete the proof by showing the bound of P̃j− P̂ . Similarly to the proof of Proposition

2, expanding P̃j = Ψ(P̃j−1, α̃j) around (P̂ , α̂) and applying DP Ψ(P̂ , α̂) = 0 and Assumption

4(g) gives P̃j = P̂ + Op(||α̃j − α̂|| + ||P̃j−1 − P̂ ||2) = P̂ + Op(||α̃j − α̂||). The required result

follows by induction. �
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8.6 Proof of Proposition 6

We prove the result for only the NR and OPG. We suppress the superscript MPL from α̃MPL
j

and P̃MPL
j , and we suppress θ̂f from ψ2α(P, α, θ̂f ) and QN (P, α, θ̂f ).

The proof is similar to the proof of Proposition 5. Since the NFXP estimator satisfies the

first order condition ψ2α(P̂ , α̂) = 0, applying the generalized Taylor’s theorem to ψ2α(P̂ , α̂) −

ψ2α(P̃j−1, α̃j−1) and proceeding similarly to (31) gives

0 = QN (P̃j−1, α̃j−1)(α̂− α̃j) +
[
Dαψ2α(P̃j−1, α̃j−1)−QN (P̃j−1, α̃j−1)

]
(α̂− α̃j−1)

+DPψ2α(P̃j−1, α̃j−1)(P̂ − P̃j−1) +RN,j , (32)

where ||Rn,j || ≤ 2 sup(P,α)(||DPPψ2α(P, α)||+ ||DαPψ2α(P, α)||)(||P̂ − P̃j−1||2 + ||α̂− α̃j−1||2)

+ sup(P,α)(||Dααψ2α(P, α)||)(||α̂ − α̃j−1||2), where the supremum is taken for all the pairs of

(P, α) that lie between (P̂ , α̂) and (P̃j−1, α̃j−1).

For the second term on the right of (32), the term inside the bracket is 0 in the NR and

Op(||P̂ − P̃j−1|| + ||α̂ − α̃j−1|| +N−1/2) in the OPG from Lemma 8(d)(e) and the information

matrix equality. For the third term on the right of (32), we obtain

DPψ2α(P̃j−1, α̃j−1) = Op(N−1/2||α̃j−1 − α̂||+N−1/2||P̃j−1 − P̂ ||+ ||α̃j−1 − α̂||2 + ||P̃j−1 − P̂ ||2)

(33)

by expandingDPψ2α(P̃j−1, α̃j−1) around (P̂ , α̂) and applyingDPψ2α(P̂ , α̂) = 0 andDPPψ2α(P̂ , α̂),

DαPψ2α(P̂ , α̂) = Op(N−1/2), which follows from Lemma 9, the root-N consistency of (P̂ , θ̂), and

Lemma 8(b). Finally, for the bound of Rn,j , applying the argument that is used to show (30)

gives sup(P,α)DPPψ2α(P, α), sup(P,α)DαPψ2α(P, α) = Op(N−1/2+||α̃j−1−α̂||+||P̃j−1−P̂ ||) with

the range of the supremum stated above. Lemma 8(b) gives sup(P,α) ||Dααψ2α(P, α)|| = Op(1).

Combining all the bounds in conjunction with QN (P̃j−1, α̃j−1) →p E(∂2/∂α∂α′) lnPθ0 gives

α̂− α̃j = Op(||α̃j−1− α̂||2 +N−1/2||P̃j−1− P̂ ||2 + ||P̃j−1− P̂ ||3 (+ Op(N−1/2||α̃j−1− α̂||+ ||P̃j−1−

P̂ ||2) for OPG). The bound of P̃j−P̂ follows from the same argument as the proof of Proposition

5, and induction gives the required result. �

8.7 Proof of Lemma 1

The stated result follows from applying the proof of Theorem 6.1 of A05. Note that only Lemmas

A.6, A.7, and A.8 of A05 are used in his proof. Our Lemma 11 corresponds to Lemma A.6 of
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A05. The results of Lemmas A.7 and A.8 of A05 hold in our case, because we can replace

Lemmas A.4 and A.6 of A05 in the proof of Lemmas A.7 and A.8 of A05 with our Lemmas 10

and 11 and the proof carries through. �

8.8 Proof of Lemma 2

The proof follows the same line of approach as the proof of Theorem 7.1 of Andrews (2005). We

drop the superscript PL and MPL from α̃k and P̃k. We show that, if α̃0 = α0 and P̃0 = P 0,

then for k = 0, 1, . . . (this corresponds to (A.9) of A05)

sup
θ0∈Θ1

Prθ0 (||α̃k − α̂|| > µN,k) = o(N−c), sup
θ0∈Θ1

Prθ0

(
||P̃k − P̂ || > µN,k

)
= o(N−c),(34)

sup
θ0∈Θ1

Prθ0

(
|TN,k(θ0

r)− TN (θ0
r)| > N−1/2µN,k

)
= o(N−c), (35)

sup
θ0∈Θ1

Prθ0

(
|WN,k(θ0)−WN (θ0)| > N−1/2µN,k

)
= o(N−c). (36)

Then, as in the proof of Theorem 7.1 of A05 (p. 203), the stated result follows from applying

Lemma A.1 of A05 three times, because the condition on θ̂ (corresponding to θ̂N in A05) in

Lemma A.1 of A05 is satisfied by our Lemma 10.

First, using an induction argument, we prove the result for the one-step NPL estimator. Let

µN,k = N−(k+1)/2 lnk+1N. For k = 0, (34) holds from Lemma 10 and supθ∈Θ ||(∂/∂θ)Pθ|| <∞.

Suppose (34) holds for k = j − 1 ≥ 0. Then, from (31) in the proof of Proposition 5, we have

α̃j − α̂ = QN (P̃j−1, α̃j−1)−1
[
Dαψα(P̃j−1, α̃j−1)−QN (P̃j−1, α̃j−1)

]
(α̂− α̃j−1)

+QN (P̃j−1, α̃j−1)−1DPψα(P̃j−1, α̃j−1)(P̂ − P̃j−1) +QN (P̃j−1, α̃j−1)−1RN,j ,(37)

where ||RN,j || ≤ (sup(P,α,θf ) ||D2ψα(P, α, θf )||)(||α̂− α̃j−1||2 + ||P̂ − P̃j−1||2).

¿From Lemmas A.2(b), A.2(c), and A.3 of A05 and Assumption 7(c), we have, for all ε > 0

and some K <∞,

supθ0∈Θ1
Prθ0(sup(P,α,θf ) ||D2ψα(P, α, θf )|| > K) = o(N−c),

supθ0∈Θ1
Prθ0(||DPψα(P 0, α0, θ0

f )|| > εN−1/2 lnN) = o(N−c),

supθ0∈Θ1
Prθ0(||QN (P̃j−1, α̃j−1)−1|| > K) = o(N−c).

(38)

Thus, expanding DPψα(P̃j−1, α̃j−1) = DPψα(P̃j−1, α̃j−1, θ̂f ) in (37) around (P 0, α0, θ0
f ) gives

||DPψα(P̃j−1, α̃j−1)|| ≤ ξN,j

(
N−1/2 lnN + ||P̃j−1 − P̂ ||+ ||α̃j−1 − α̂||

)
+ξN,j

(
||P̂ − P 0||+ ||α̂− α0||+ ||θ̂f − θ0

f ||
)
, (39)
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where supθ0∈Θ1
Prθ0(||ξN,j || > K) = o(N−c) for some K <∞ .

In case of NR, the first term on the right of (37) is zero. Hence, the first equation of (34)

for k = j follows from (37)-(39) and Lemma 10. In case of the default NR, line-search NR, and

OPG, we can show

sup
θ0∈Θ1

Prθ0(||Dαψα(P̃j−1, α̃j−1)−QN (P̃j−1, α̃j−1)|| > N−1/2 lnN) = o(N−c), (40)

by repeating the argument of the proof of Lemma 1 of Andrews (2001), to which the proof of

Lemma 7.1 of A05 refers. Using (40) to bound the first term on the right of (37), we establish

that the first equation of (34) holds for k = j.

To show that the second equation of (34) holds for k = j, expanding Ψ(P̃j−1, α̃j) around

(P̂ , α̂) and applying DP Ψ(P̂ , α̂) = 0 give

||P̃j − P̂ || ≤ ||DαΨ(P̂ , α̂)||||α̃j − α̂||+ ( sup
(P,α)

||D2Ψ(P, α, θ̂f )||)(||α̃j − α̂||2 + ||P̃j−1 − P̂ ||2).

Then the required result follows from sup(P,θ) ||DΨ(P, θ)|| <∞ and sup(P,θ) ||D2Ψ(P, θ)|| <∞.

We proceed to prove (35) and (36). Let Σr denote (ΣN (θ̂))rr. Also, let Σk,r denote Σr with

DN (θ̂), DO
N (θ̂), and VN (θ̂) in its definition of (10) replaced with DPL

N (P̃k, θ̃k), D
O,PL
N (P̃k, θ̃k) and

V PL
N (P̃k, θ̃k), where θ̃k = (α̃′k, θ̂

′
f ). In view of the arguments in pp. 205-6 of A05, (35) holds if

there exists K <∞ and δ > 0 such that

sup
θ0∈Θ1

Prθ0(|Σr − Σk,r| > µN,k) = o(N−c), (41)

sup
θ0∈Θ1

Prθ0(Σk,r < δ) = o(N−c), sup
θ0∈Θ1

Prθ0(Σr < δ) = o(N−c). (42)

Let θ̄ denote an estimator that satisfies: for all ε > 0, supθ0∈Θ1
Prθ0(||θ̄ − θ0|| > ε) = o(N−c).

Then, proceeding in the same way as the proof of Lemma A.3 of A05, we obtain the fol-

lowing; for all ε > 0 and some K < ∞, supθ0∈Θ1
Prθ0(||VN (θ̄) − V (θ0)|| > ε) = o(N−c),

supθ0∈Θ1
Prθ0(||DN (θ̄) − D(θ0)|| > ε) = o(N−c), and supθ0∈Θ1

Prθ0(||DO
N (θ̄) − D(θ0)|| > ε) =

o(N−c). Thus, (42) holds. Equation (41) holds if

sup
θ0∈Θ1

Prθ0(||V PL
N (P̃k, θ̃k)− VN (θ̂)|| > µN,k) = o(N−c), and

sup
θ0∈Θ1

Prθ0(||DO,PL
N (P̃k, θ̃k)−DO

N (θ̂)|| > µN,k) = o(N−c).

Note that VN (θ̂) = V PL
N (P̂ , θ̂) from (47). Therefore, the first result follows from applying the

generalized Taylor’s theorem to V PL
N (P̃k, θ̃k)− V PL

N (P̂ , θ̂) in conjunction with Lemma A.2(b) of
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A05 and (34). The second result is proven in an analogous manner, and we complete the proof

of (35). The corresponding result does not hold for DPL
N (P̃k, θ̃k) − DN (θ̂), however, because

DθθPθ 6= DθθΨ(Pθ, θ) in general from (48). Finally, in view of the argument in p. 206 of A05,

(36) follows from (34) and the proof of (35), because Lemma A.8(a) of A05 holds in our case (see

the proof of Lemma 1). The proof for the one-step NPL for general k ≥ 1 follows by induction.

The proof for the one-step NMPL estimator follows an analogous argument. Suppose (34)

holds for k = j− 1 ≥ 0 with µN,k = N−(k+1)/2 lnk+1N for the OPG and µN,k = N−2k−1
ln2k

(N)

in all other cases. From (32) in the proof of Proposition 6 and the bounds analogous to (38),

equation (37) holds for the one-step NMPL estimator with ψα replaced by ψ2α, where the

reminder term satisfies ||RN,j || ≤ ξN,j(||α̂ − α̃j−1||2 +N−1/2||P̂ − P̃j−1||2 + ||P̂ − P̃j−1||3) with

the same definition of ξN,j . Applying the argument used to show (33), we have, in place of (39),

||DPψ2α(P̃j−1, α̃j−1)|| ≤ ξN,j(N−1/2||α̂−α̃j−1||+N−1/2||P̂−P̃j−1||+||α̂−α̃j−1||2+||P̂−P̃j−1||2).

Therefore, repeating the argument of the proof for the one-step NPL estimator following

equation (39) shows that the first equation of (34) holds for k = j with µN,k = N−2k−1
ln2k

(N)

(µN,k = N−(k+1)/2 lnk+1N for the OPG). Note that (40) holds with Dαψα replaced by Dαψ2α.

The second equation of (34) follows from sup(P,θ) ||DΨ2(P, θ)|| <∞ and sup(P,θ) ||D2Ψ2(P, θ)|| <

∞, and the proof for general k ≥ 1 follows from induction.

Equations (35) and (36) are proven using the same argument as the one for the one-step NPL

estimator. The only difference is that supθ0∈Θ1
Prθ0(||DMPL

N (P̃k, θ̃k)−DN (θ̂)|| > µN,k) = o(N−c)

holds by virtue of Lemma 9. �

8.9 Proof of Lemma 3 and 4

These lemmas correspond to Theorems 7.1(b) and 7.2 of A05. They are proven by applying the

argument of pp. 206-7 of A05. �

8.10 Proof of Lemma 5

We drop the superscript PL and MPL from α̃k and P̃k. Define P̃ j
ϑ,k exactly as P̃ ∗j

ϑ,k but using

the original sample in place of the bootstrap samples. In view of the proof of Lemmas 2-4,

the required result follows if we show that, if α̃0 = α0, P̃0 = P 0, and P̃ 0
ϑ,k = Pϑ(θ0), then for
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k = 0, 1, . . . and j = 0, 1, . . .

sup
θ0∈Θ1

Prθ0

(
||ϑ(θ̃k)− ϑ(θ̂)|| > µN,k

)
= o(N−c), (43)

sup
θ0∈Θ1

Prθ0

(
||P̃ j

ϑ,k − Pϑ(θ̂)|| > µj
N,k

)
= o(N−c), (44)

sup
θ0∈Θ1

Prθ0

(
||g(θ̃k, ϑ(θ̃k), P̃k, P̃

j
ϑ,k)− g(θ̂, ϑ(θ̂), P̂ , Pϑ(θ̂))|| > µj

N,k

)
= o(N−c). (45)

Equation (43) follows from applying the mean value expansion to ϑ(θ̃k) − ϑ(θ̂) and using

(34) and the finiteness of ∂ϑ(θ)/∂θ. To prove (44), note that applying the mean value expansion

to Pϑ(θ̃k) − Pϑ(θ̂) with (43) gives supθ0∈Θ1
Prθ0(||Pϑ(θ̃k) − Pϑ(θ̂)|| > µN,k) = o(N−c). Therefore, it

suffices to show

sup
θ0∈Θ1

Prθ0

(
||P̃ j

ϑ,k − Pϑ(θ̃k)|| > µj
N

)
= o(N−c). (46)

For j = 0, (46) holds because P̃ 0
ϑ,k = Pϑ(θ0). Suppose (46) holds for j = r − 1 ≥ 0. Expanding

Ψ(P̃ r−1
ϑ,k , ϑ(θ̃k)) around (Pϑ(θ̃k), ϑ(θ̃k)) and applying Ψ(Pϑ(θ̃k), ϑ(θ̃k)) = Pϑ(θ̃k) andDP Ψ(Pϑ(θ̃k), ϑ(θ̃k)) =

0 give

P̃ r
ϑ,k = Ψ(P̃ r−1

ϑ,k , ϑ(θ̃k)) = Pϑ(θ̃k) +RN,r,

where ||RN,r|| ≤ K||P̃ r−1
ϑ,k − Pϑ(θ̃k)||

2 for a finite constant K. Thus (46) holds for j = r, and the

proof for general j ≥ 1 follows from induction. This proves (44). Finally, (45) follows from the

finiteness of Dg(θ, ϑ, Pθ, Pϑ) and (34), (43), and (44). �

8.11 Proof of Lemma 6

First, DPl
PL(wi;Pζ , ζ) = DPl

MPL(wi;Pζ , ζ) = 0 follows from the chain rule and Proposition 1.

We proceed to prove the orthogonality results. DPl
PL(wi;Pζ , ζ) = 0 and the information matrix

equality imply that Eζ0DPζ l
PL(wi;P0, ζ0) = 0. It follows that DPζLPL

N (P0, ζ0) = Op(N−1/2)

since wi is iid. Then, DPζLPL
N (Pζ̂ , ζ̂) = Op(N−1/2) follows from expanding DPζLPL

N (Pζ̂ , ζ̂)

around (P0, ζ0) and using P̂−P0, ζ̂ − ζ0 = Op(N−1/2) and Assumptions 4(g) and 4UH(g).

For the NMPL estimator,DPζ l
MPL(wi;Pζ , ζ) = 0 follows from the chain rule,DPl

PL(wi;Pζ , ζ) =

0, and DPΨ(Pζ , ζ) = 0. �

8.12 Proof of Proposition 7

The proof follows the proofs of Proposition 2 and 3. Because the NFXP estimator maximizes the

objective function of the NPL estimator if P = P̂, we have, in place of (24), DζLPL(P̂PL
k−1, ζ̂

PL
k ) =
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DζLPL(P̂, ζ̂) = 0. Assume P̂PL
k−1 −P0 = op(1), then applying the generalized Taylor’s theorem

and following the argument used to prove Proposition 2 in conjunction with Lemma 6 gives

[Eζ0Dζζ l
PL(wi;P0, ζ0) + op(1)](ζ̂PL

k − ζ̂) = Op(N−1/2||P̂PL
k−1 − P̂||+ ||P̂PL

k−1 − P̂||2). The stated

result follows because Eζ0Dζζ l
PL(wi;P0, ζ0) is negative definite. The bound of P̂PL

k − P̂ can be

shown by expanding Ψ(PPL,m
k−1 , θ̂PL,m

k ) around (Pθ̂m , θ̂
m) and applying DP Ψ(Pθ̂m , θ̂

m) = 0. The

required result follows by induction.

In case of the NMPL estimator, we have DζLMPL(P̂MPL
k−1 , ζ̂MPL

k ) = DζLMPL(P̂, ζ̂) = 0 in

place of (27). The required result follows from repeating the argument of the proof of Proposi-

tion 3 in conjunction with Lemma 6 and DPPζLMPL
N (P0, ζ0), DζPζLMPL

N (P0, ζ0) = Op(N−1/2),

which holds because Eζ0DPPζ l
MPL(wi;P0, ζ0) = 0 and Eζ0DζPζ l

MPL(wi;P0, ζ0) = 0 from the

chain rule, DPΨ(P0, ζ0) = 0, Eζ0DPPl
PL(wi;P0, ζ0) = 0 and Eζ0DPζ l

PL(wi;P0, ζ0) = 0. �

9 Appendix B: Auxiliary results

Lemma 8 collects the bounds that are used in the proof of Propositions 2-6. Lemma 9 collects

the results on the derivatives of lnΨ2(P, θ). Lemma 10 is our version (i.e., for α̂ and θ̂f ) of

Lemma A.4 of A05. Lemma 11 is our version (i.e., for α̂ and θ̂f ) of Lemma A.6 of A05.

Lemma 8 Suppose Assumptions 1-5 hold, P̄ →p P
0, and θ̄ →p θ

0. Let ψi(P, θ) denote either

lnΨ(P, θ)(ai|xi) or lnΨ2(P, θ)(ai|xi). Then

(a) DsΨ(P̄ , θ̄)(ai|xi) = Op(1) for s = 1, 2,

(b) N−1
∑N

i=1 sup(P,θ)∈BP×Θ0
||Dsψi(P, θ)||q = Op(1) for q = 1, 2 and s = 1, . . . , 4,

(c) N−1
∑N

i=1DPα lnΨ(P 0, θ0)(ai|xi) = Op(N−1/2),

(d) N−1
∑N

i=1D
2ψi(P̄ , θ̄) = Eθ0D2ψi(P 0, θ0) +Op(||P̄ − P 0||+ ||θ̄ − θ0||+N−1/2),

(e)

 N−1
∑N

i=1Dθψi(P̄ , θ̄)Dθψi(P̄ , θ̄)

= Eθ0Dθψi(P 0, θ0)Dθψi(P 0, θ0) +Op(||P̄ − P 0||+ ||θ̄ − θ0||+N−1/2).

If Assumptions 1-8 hold, then (b) holds for (P, θ) ∈ BP ×Θ1.

Proof Parts (a) and (b) follow from Assumptions 4(c), 4(g), and 5(b). Part (c) follows because

Eθ0DPα lnΨ(P 0, θ0) = 0 (zero operator) from the information matrix equality and Proposition

1 and wi is iid. Parts (d) and (e) follow from part (b) and the law of large numbers. �
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Lemma 9 Suppose Assumptions 1-4 hold. Then

(a)


DP lnΨ2(Pθ, θ)(ai|xi) = 0, Dθ lnΨ2(Pθ, θ)(ai|xi) = D lnPθ(ai|xi),

Dθθ lnΨ2(Pθ, θ)(ai|xi) = D2 lnPθ(ai|xi), DPθ lnΨ2(Pθ, θ)(ai|xi) = 0.

The same results hold for the derivatives of Ψ2(Pθ, θ)(ai|xi) and Pθ(ai|xi).

(b) Eθ0DPPθ lnΨ2(P 0, θ0)(ai|xi) = 0, Eθ0DθPθ lnΨ2(P 0, θ0)(ai|xi) = 0.

Proof The first result of part (a) is a simple consequence of Proposition 1 and the chain

rule. For the other results of part (a), recall Pθ(ai|xi) is defined implicitly as a function of θ as

Pθ(ai|xi) = Ψ(Pθ, θ)(ai|xi). Taking the derivative of lnPθ(ai|xi) = ln Ψ(Pθ, θ)(ai|xi) and using

Proposition 1 gives

D lnPθ(ai|xi) = DP lnΨ(Pθ, θ)(ai|xi)DPθ +Dθ lnΨ(Pθ, θ)(ai|xi) = Dθ lnΨ(Pθ, θ)(ai|xi). (47)

It follows from the chain rule and DP Ψ(Pθ, θ) = 0 that, for all h ∈ Θ

D2 lnPθ(ai|xi)h = DPP lnΨ(Pθ, θ)(ai|xi)DPθh ·DPθ +DθP lnΨ(Pθ, θ)(ai|xi)h ·DPθ

+DPθ lnΨ(Pθ, θ)(ai|xi) ·DPθh+Dθθ lnΨ(Pθ, θ)(ai|xi)h. (48)

Now collect the derivatives of lnΨ2(P, θ) = lnΨ(Ψ(P, θ), θ), where P is not necessarily the

fixed point of Ψ(·, θ).

Dθ lnΨ2(P, θ)(ai|xi) = DP lnΨ(Ψ(P, θ), θ)(ai|xi)DθΨ(P, θ) +Dθ lnΨ(Ψ(P, θ), θ)(ai|xi), (49)

whereDP lnΨ(Ψ(P, θ), θ) is the F-derivative of ln Ψ(P, θ) with respect to P evaluated at (Ψ(P, θ), θ),

and similarly for DPP lnΨ(Ψ(P, θ), θ) etc. Furthermore, for all h ∈ Θ

Dθθ lnΨ2(P, θ)(ai|xi)h = DPP lnΨ(Ψ(P, θ), θ)(ai|xi)DθΨ(P, θ)h ·DθΨ(P, θ)

+DθP lnΨ(Ψ(P, θ), θ)(ai|xi)h ·DθΨ(P, θ) +DP lnΨ(Ψ(P, θ), θ)(ai|xi)DθθΨ(P, θ)h

+DPθ lnΨ(Ψ(P, θ), θ)(ai|xi)DθΨ(P, θ)h+Dθθ lnΨ(Ψ(P, θ), θ)(ai|xi)h. (50)

The cross derivative of Ψ2(P, θ) takes the form, for all h ∈ BP

DPθ lnΨ2(P, θ)(ai|xi)h = DPP lnΨ(Ψ(P, θ), θ)(ai|xi)DP Ψ(P, θ)h ·DθΨ(P, θ)

+DP lnΨ(Ψ(P, θ), θ)(ai|xi)DPθΨ(P, θ)h+DPθ lnΨ(Ψ(P, θ), θ)(ai|xi)DP Ψ(P, θ)h. (51)
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Evaluating (49)-(51) at P = Pθ with DP Ψ(Pθ, θ) = 0 gives the first set of the results in part (a).

The required results for the derivatives of Ψ2(Pθ, θ)(ai|xi) and Pθ(ai|xi) follow from the same

argument.

To show part (b), taking the F-derivative of (51) and evaluating it at P = Pθ gives, for all

h1, h2 ∈ BP

DPPθ lnΨ2(Pθ, θ)(ai|xi)h1h2 = DPP lnΨ(Pθ, θ)(ai|xi)DPP Ψ(Pθ, θ)h1h2 ·DθΨ(Pθ, θ)

+DPθ lnΨ(Pθ, θ)(ai|xi)DPP Ψ(Pθ, θ)h1h2,

DθPθ lnΨ2(Pθ, θ)(ai|xi)h1h2 = DPP lnΨ(Pθ, θ)(ai|xi)DθP Ψ(Pθ, θ)h1h2 ·DθΨ(Pθ, θ)

+DPθ lnΨ(Pθ, θ)(ai|xi)DθP Ψ(Pθ, θ)h1h2.

Part (b) follows because Eθ0DPP lnΨ(P 0, θ0)(ai|xi) = 0 and Eθ0DPθ lnΨ(P 0, θ0)(ai|xi) = 0

from Proposition 1, the information matrix equality, and wi ∼ iid. �

Lemma 10 Suppose Assumptions 1-8 hold. Then, for all ε > 0,

sup
θ0∈Θ1

Prθ0

(
N1/2||θ̂f − θ0

f ||+N1/2||α̂− α0|| > ε lnN
)

= o(N−c).

Proof ¿From Lemma 5 of Andrews (2001), we have supθ0
f∈Θ1

f
Prθ0

f
(N1/2||θ̂f − θ0

f || > ε lnN) =

o(N−c) for all ε > 0.

Define ρN (α, θf ) = −N−1
∑N

i=1 lnP(α,θf )(ai|xi) and ρ(α, θf ) = −Eθ0 lnP(α,θf )(ai|xi), so that

α̂ = arg minα∈Θα ρN (α, θ̂f ). By Assumption 6(b), given any ε > 0, there exists δ > 0 such

that ||α − α0|| > ε implies ρ(α, θ0
f ) − ρ(α0, θ0

f ) ≥ δ. Therefore, supθ0∈Θ1 Prθ0(||α̂ − α0|| > ε) ≤

supθ0∈Θ1 Prθ0(ρ(α̂, θ0
f ) − ρ(α0, θ0

f ) ≥ δ). Since ρ(α, θf ) is uniformly continuous, the right hand

is no larger than

sup
θ0∈Θ1

Prθ0

(
ρ(α̂, θ̂f )− ρ(α0, θ̂f ) ≥ δ/2

)
+ o(N−c)

≤ sup
θ0∈Θ1

Prθ0

(
ρ(α̂, θ̂f )− ρN (α̂, θ̂f ) + ρN (α0, θ̂f )− ρ(α0, θ̂f ) ≥ δ/2

)
+ o(N−c) = o(N−c),

where the first inequality follows from ρN (α̂, θ̂f ) − ρN (α0, θ̂f ) ≤ 0 and the last equality follows

from supθ0∈Θ1 Prθ0(sup(α,θf )∈Θ |ρN (α, θf )− ρ(α, θf )| > η) = o(N−c) for all η > 0, which follows

from (8.49) in Andrews (2001).

Therefore, we can use the argument in p. 34 of Andrews (2001) following his equation (8.51)

to obtain infθ0∈Θ1 Prθ0((∂/∂α)ρN (α̂, θ̂f ) = 0) = 1−o(N−c). Then, the stated result for α̂ follows
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from expanding (∂/∂α)ρN (α̂, θ̂f ) around (α0, θ0
f ) and applying an argument similar to (8.52) in

Andrews (2001). �

Lemma 11 Suppose Assumptions 1-8 hold. Define SN (θ) = N−1
∑N

i=1 h(wi, θ) and θ̂ = (α̂′, θ̂′f )′.

Let ∆N (θ0) denote N1/2(θ̂− θ0), TN (θ0
r), or HN (θ̂, θ0). Let L denote the dimension of ∆N (θ0).

For each definition of ∆N (θ0), there is an infinitely differentiable function G(·) that does not

depend on θ0 and that satisfies G(Eθ0SN (θ0)) = 0 for all N large and all θ0 ∈ Θ1, and

sup
θ0∈Θ1

sup
B∈BL

∣∣∣Prθ0(∆N (θ0) ∈ B)− Prθ0(N1/2G(SN (θ0)) ∈ B)
∣∣∣ = o(N−c),

where BL denotes the class of all convex sets in RL.

Proof The proof follows the proof of Lemma A.6 of A05. Suppose ∆N (θ0) = N1/2(θ̂ − θ0).

Define

s(θ) =

 (∂/∂α)N−1
∑N

i=1 lnP(α,θf )(ai|xi)

(∂/∂θf )N−1
∑N

i=1 ln fθf
(x′i|ai, xi)

 .
¿From Lemma 10, θ̂ is in the interior of Θ with probability 1−o(N−c), and we have infθ0∈Θ1

Prθ0(s(θ̂) =

0) = 1 − o(N−c). Consequently, the proof of Lemma A.6 of A05 carries through if we replace

(∂/∂θ)ρN (θ) and θ̂N in A05 with our s(θ) and θ̂. The only difference is (∂/∂x)ν(Eθ0RN (θ0), x)|x=0 =

N−1
∑N

i=1Eθ0g(W̃i, θ0)g(W̃i, θ0)′ in line 20, p. 210 of A05 needs to be replaced with

∂

∂x
ν(Eθ0RN (θ0), x)|x=0 = E

 (∂2/∂α∂α′) lnPθ0(ai|xi) (∂2/∂α∂θ′f ) lnPθ0(ai|xi)

0 (∂2/∂θf∂θ
′
f ) ln fθ0

f
(x′i|ai, xi)

 .
Because this is negative definite, the implicit function theorem can be applied to ν(·, ·) at the

point (Eθ0RN (θ0), 0), to obtain

inf
θ0∈Θ1

Prθ0

(
θ̂ − θ0 = Λ(RN (θ0) + eN (θ0))

)
= 1− o(N−c).

This equation corresponds to (A.35) of A05, where RN (θ0) and eN (θ0) are defined in the same

manner as in A05 but his (∂/∂θ)ρN (θ0) replaced with our s(θ0). The remaining part of his proof

carries through, because Lemmas A.5 and A.8 of A05 holds in our context by our Assumptions

1-8, and our Lemma 10 plays the role of Lemma A.4 of A05. �
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201-272.

[21] Robinson, P. M. (1988). “The stochastic difference between econometric statistics.” Econo-

metrica 56(3): 531-548.

[22] Rust, J. (1987). “Optimal replacement of GMC bus engines: an empirical model of Harold

Zurcher.” Econometrica 55(5): 999-1033.

[23] Rust, J. (1988). “Maximum likelihood estimation of discrete control processes.” SIAM Jour-

nal of Control and Optimization 26(5): 1006-1024.

49



[24] Rust, J. (1996). “Numerical dynamic programming in economics.” in Handbook of Compu-

tational Economics eds. H. Amman, D. Kendrick and J. Rust. Elsevier, North Holland.

[25] Rust, J., and C. Phelan (1997). “How social security and medicare affect retirement behavior

in a world of incomplete markets.” Econometrica 65: 781-831.

[26] Tauchen, G. (1986). “Finite state markov-chain approximation to univariate and vector

autoregressions.” Economics Letters 20: 177-181.

[27] Zeidle, E. (1986). Nonlinear Functional Analysis and its Applications I: Fixed-Point Theo-

rems. New York, Sprinver-Verlag.

50



Table 1: Rejection Frequencies for Asymptotic Wald test at .10, .05, and .01 Levels

Significance Levels

.10 .05 .01

N = 500 0.177 0.137 0.077

N = 1000 0.135 0.097 0.059

N = 2000 0.111 0.074 0.030

Notes: Based on 1000 simulated samples. The null hypothesis is (θ1, θ2) = (−0.2, 0.1).

Table 2: Rejection Frequencies for Bootstrap Wald test at .10, .05, and .01 Levels

Significance Levels

.10 .05 .01

Asymptotic 0.135 0.097 0.059

MLE 0.088 0.040 0.016

MLE-NULL 0.084 0.039 0.006

NPL k = 1 0.086 0.035 0.012

k = 3 0.090 0.042 0.016

NMPL k = 1 0.082 0.041 0.004

k = 3 0.083 0.041 0.004

1-NPL k = 1 0.026 0.007 0.000

k = 3 0.087 0.046 0.003

k = 5 0.090 0.048 0.007

1-NMPL k = 1 0.029 0.005 0.000

k = 3 0.078 0.042 0.001

k = 5 0.080 0.044 0.011

Notes: Based on 1000 simulated samples. The sample size is N = 1000 while the number of bootstrap samples is 599. The

null hypothesis is (θ1, θ2) = (−0.2, 0.1).
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Table 3: Coverage Performance of Asymptotic 90% and 95% Confidence Intervals

θ0 θ1 θ2

Miss Left Miss Right Miss Left Miss Right Miss Left Miss Right

95% CI N = 500 0.054 0.033 0.084 0.000 0.026 0.018

N = 1000 0.044 0.021 0.078 0.000 0.029 0.009

N = 2000 0.026 0.030 0.043 0.000 0.022 0.011

90% CI N = 500 0.072 0.057 0.118 0.000 0.050 0.040

N = 1000 0.055 0.047 0.109 0.000 0.067 0.024

N = 2000 0.042 0.058 0.072 0.007 0.053 0.031

Notes: Based on 1000 simulated samples. N represents the number of observations for each sample. The table shows the

frequencies that the confidence intervals missed the true values of θ0 = 2.0, θ1 = −0.2, and θ2 = 0.1 on the left or right

side. For example, “Miss Left” for θ0 means that the left endpoint was larger than 2.0. The true coverage is 0.9 for 90%

CIs and, thus, the ideal values of “Miss Left” and “Miss Right” are 0.05 for 90% CIs while they are 0.025 for 95% CIs.
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Table 4: Coverage Performance of Bootstrap 90% and 95% CIs for parameters θ0, θ1, and θ2

95% CIs 90% CIs

θ0 θ1 θ2 θ0 θ1 θ2

Miss Miss Miss Miss Miss Miss Miss Miss Miss Miss Miss Miss

Left Right Left Right Left Right Left Right Left Right Left Right

Asymptotic CIs 0.044 0.021 0.078 0.000 0.029 0.009 0.055 0.047 0.109 0.000 0.067 0.024

MLE-SY 0.031 0.040 0.051 0.000 0.021 0.018 0.043 0.064 0.097 0.000 0.060 0.031

MLE-ET 0.037 0.040 0.033 0.057 0.040 0.023 0.041 0.067 0.051 0.059 0.063 0.058

NPL-SY k = 1 0.032 0.040 0.049 0.000 0.022 0.020 0.043 0.066 0.098 0.000 0.058 0.033

k = 3 0.031 0.040 0.053 0.000 0.020 0.018 0.043 0.063 0.099 0.000 0.060 0.031

NPL-ET k = 1 0.037 0.037 0.031 0.057 0.043 0.022 0.041 0.060 0.049 0.059 0.065 0.050

k = 3 0.037 0.040 0.034 0.057 0.041 0.023 0.041 0.067 0.053 0.059 0.063 0.059

NMPL-SY k = 1 0.031 0.035 0.051 0.000 0.016 0.024 0.039 0.065 0.119 0.000 0.049 0.035

k = 3 0.031 0.035 0.051 0.000 0.016 0.024 0.039 0.065 0.119 0.000 0.049 0.035

NMPL-ET k = 1 0.032 0.033 0.023 0.047 0.031 0.031 0.040 0.069 0.051 0.050 0.052 0.051

k = 3 0.032 0.033 0.023 0.047 0.031 0.031 0.040 0.069 0.051 0.050 0.052 0.051

1-NPL-SY k = 1 0.022 0.030 0.013 0.000 0.019 0.026 0.035 0.052 0.063 0.000 0.043 0.045

k = 3 0.018 0.034 0.065 0.000 0.012 0.026 0.032 0.055 0.116 0.000 0.049 0.037

k = 5 0.017 0.033 0.065 0.000 0.010 0.023 0.032 0.052 0.114 0.000 0.050 0.036

1-NPL-ET k = 1 0.037 0.021 0.003 0.192 0.040 0.020 0.059 0.041 0.013 0.236 0.077 0.031

k = 3 0.029 0.025 0.028 0.040 0.022 0.025 0.037 0.053 0.065 0.041 0.057 0.043

k = 5 0.025 0.029 0.029 0.040 0.026 0.027 0.036 0.053 0.065 0.041 0.057 0.049

1-NMPL-SY k = 1 0.025 0.022 0.015 0.000 0.019 0.020 0.034 0.041 0.068 0.000 0.045 0.039

k = 3 0.019 0.027 0.067 0.000 0.014 0.018 0.034 0.045 0.124 0.000 0.054 0.036

k = 5 0.021 0.026 0.070 0.000 0.015 0.017 0.031 0.044 0.121 0.000 0.056 0.032

1-NMPL-ET k = 1 0.050 0.016 0.001 0.186 0.046 0.014 0.072 0.033 0.015 0.22 0.087 0.026

k = 3 0.031 0.021 0.028 0.034 0.026 0.020 0.048 0.038 0.067 0.036 0.066 0.043

k = 5 0.026 0.023 0.032 0.034 0.035 0.022 0.037 0.039 0.070 0.037 0.067 0.049

Notes: Based on 1000 simulated samples, each with the sample size of 1000. The number of bootstrap samples is 599.
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Table 5: Average Replacement Rates, Average Revenues, and Revenue Dispersions under Coun-

terfactual Experiments

Counterfactual Experiments

The Permanent Change Temporary Change

Model (Stead State) (Initial Year)

30 % More 30 % Less 30 % More 30 % Less

Ave. Replacement Rate 0.336 0.406 0.282 0.468 0.224

Ave. Revenue 0.830 0.873 0.789 0.881 0.783

Revenue Dispersion 0.142 0.132 0.154 0.132 0.155
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Table 6: Coverage Performance of Asymptotic and Bootstrap 95% CIs for Average Revenues

under Counterfactual Policies

Permanent Change Temporary Change

(Steady State) (Initial Year)

Counterfactual θ0 30% Less 30% More 30% Less 30% More

Miss Miss Miss Miss Miss Miss Miss Miss

Left Right Left Right Left Right Left Right

Asymptotic CIs 0.035 0.041 0.035 0.044 0.032 0.044 0.039 0.043

MLE-SY 0.031 0.035 0.037 0.037 0.028 0.039 0.038 0.035

MLE-ET 0.025 0.036 0.029 0.038 0.024 0.039 0.028 0.035

NPL-SY k = 1 0.029 0.035 0.036 0.037 0.027 0.039 0.039 0.034

k = 3 0.032 0.035 0.038 0.037 0.028 0.039 0.039 0.035

NPL-ET k = 1 0.020 0.037 0.025 0.038 0.022 0.039 0.026 0.035

k = 3 0.025 0.037 0.029 0.038 0.024 0.039 0.029 0.035

NMPL-SY k = 1 0.024 0.031 0.027 0.034 0.021 0.035 0.031 0.031

k = 3 0.024 0.031 0.027 0.034 0.021 0.035 0.031 0.031

NMPL-ET k = 1 0.012 0.033 0.022 0.033 0.015 0.035 0.020 0.031

k = 3 0.012 0.033 0.022 0.033 0.015 0.035 0.020 0.031

1-NPL-SY k = 1 0.015 0.012 0.021 0.018 0.011 0.011 0.016 0.007

k = 3 0.035 0.019 0.038 0.022 0.030 0.016 0.037 0.010

k = 5 0.034 0.021 0.037 0.024 0.031 0.024 0.041 0.022

1-NPL-ET k = 1 0.005 0.031 0.015 0.032 0.004 0.011 0.005 0.007

k = 3 0.020 0.027 0.027 0.027 0.022 0.015 0.026 0.015

k = 5 0.023 0.025 0.028 0.025 0.024 0.027 0.027 0.025

1-NMPL-SY k = 1 0.007 0.018 0.021 0.022 0.008 0.020 0.011 0.013

k = 3 0.038 0.022 0.040 0.024 0.032 0.022 0.040 0.018

k = 5 0.039 0.024 0.041 0.025 0.035 0.026 0.044 0.024

1-NMPL-ET k = 1 0.000 0.028 0.003 0.028 0.000 0.020 0.001 0.013

k = 3 0.016 0.028 0.026 0.028 0.021 0.025 0.027 0.022

k = 5 0.023 0.028 0.030 0.028 0.024 0.028 0.030 0.028

Notes: Based on 1000 simulated samples.
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Table 7: Coverage Performance of Asymptotic and Bootstrap 95% CIs for Revenue Dispersions

under Counterfactual Policies

Permanent Change Temporary Change

(Steady State) (Initial Year)

Counterfactual θ0 30% Less 30% More 30% Less 30% More

Miss Miss Miss Miss Miss Miss Miss Miss

Left Right Left Right Left Right Left Right

Asymptotic CIs 0.000 0.140 0.000 0.149 0.000 0.137 0.000 0.151

MLE-SY 0.000 0.041 0.000 0.043 0.000 0.072 0.000 0.074

MLE-ET 0.065 0.026 0.049 0.027 0.059 0.034 0.048 0.035

NPL-SY k = 1 0.000 0.042 0.000 0.043 0.000 0.040 0.000 0.044

k = 3 0.000 0.043 0.000 0.045 0.000 0.040 0.000 0.043

NPL-ET k = 1 0.063 0.027 0.049 0.028 0.058 0.027 0.048 0.028

k = 3 0.064 0.027 0.049 0.028 0.060 0.026 0.048 0.027

NMPL-SY k = 1 0.000 0.033 0.000 0.034 0.000 0.033 0.000 0.034

k = 3 0.000 0.033 0.000 0.034 0.000 0.033 0.000 0.034

NMPL-ET k = 1 0.056 0.019 0.042 0.022 0.050 0.018 0.042 0.021

k = 3 0.056 0.019 0.042 0.022 0.050 0.018 0.042 0.021

1-NPL-SY k = 1 0.000 0.053 0.000 0.054 0.000 0.038 0.000 0.045

k = 3 0.000 0.045 0.000 0.046 0.000 0.038 0.000 0.047

k = 5 0.000 0.045 0.000 0.048 0.000 0.042 0.000 0.048

1-NPL-ET k = 1 0.142 0.026 0.069 0.029 0.003 0.022 0.001 0.025

k = 3 0.042 0.024 0.033 0.025 0.029 0.022 0.023 0.025

k = 5 0.039 0.023 0.033 0.025 0.043 0.022 0.032 0.025

1-NMPL-SY k = 1 0.000 0.054 0.000 0.059 0.000 0.040 0.000 0.047

k = 3 0.000 0.051 0.000 0.053 0.000 0.044 0.000 0.051

k = 5 0.000 0.050 0.000 0.052 0.000 0.049 0.000 0.052

1-NMPL-ET k = 1 0.134 0.034 0.068 0.034 0.004 0.027 0.002 0.028

k = 3 0.037 0.029 0.030 0.031 0.028 0.027 0.026 0.030

k = 5 0.033 0.027 0.029 0.030 0.035 0.027 0.028 0.030

Notes: Based on 1000 simulated samples.
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