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The ARAR Error Model for Univariate Time

Series and Distributed Lag Models

R. A. L. Carter∗

University of Western Ontario and University of Calgary

A. Zellner†

University of Chicago

Abstract

We show that the use of prior information derived from former empir-

ical findings and/or subject matter theory regarding the lag structure of

the observable variables together with an AR process for the error terms

can produce univariate and single equation models that are intuitively ap-

pealing, simple to implement and work well in practice. JEL Classification

C11, C22.

1 Introduction

“None of the previous work should be construed as a demonstration

of the inevitability of MA disturbances in econometric models. As

Parzen’s proverb1reminds us the disturbance term is essentially man-

made, and it is up to man to decide if some of his creations are more

1



reasonable than others.” Nicholls, Pagan and Terrell (1975) p.117.

Early empirical work in economics, e.g. Burns and Mitchell (1946), O’Leary

and Lewis (1955), discovered cycles in many time series which were consistent

with the early dynamic models of Samuelson (1939a,b), Metzler (1941) and

Goodwin (1947). Thus, economists building time series models often have quite

strong prior beliefs, based on this earlier theoretical and applied work, about

the lag structure for an observable variable. However, they usually have quite

weak prior beliefs about the lag structure for the error in a model. At one time

the AR model for the error was popular. Then the methods of Box and Jenkins

(1976) became dominant in the field of univariate time series analysis and the

MA model for the error was introduced without much theoretical justification.

This produced complicated likelihood functions and estimation procedures and

implied infinite AR processes for observed variables. We show here how a return

to the use of prior information, derived from former empirical findings and/or

subject matter theory, about the lag structure of the observable variables and

to the AR model for the error is intuitively appealing, yields finite, rather than

infinite, AR processes for observed variables and produces models for which

inference procedures2are simplified.

2 Univariate Models

To explain the behavior of a random variable Yt, t = 1, . . . , T , researchers

often have fairly precise beliefs, from subject matter study, about its lag struc-
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ture. For example, Samuelson’s (1939) multiplier-accelerator model produces an

AR(2) for output, Metzler’s (1941) model yields an AR(3) for inventories and

Goodwin’s (1947) cobweb model produces an AR(2) form for the price. More

recently: Garcia-Ferrer et. al. (1987) employed an AR(3) model as well as an

AR(3) model including leading indicator variables to forecast output growth

rates for several countries; Geweke (1988) used an AR(3) model for real, per

capita GDP to study its dynamics for 19 OECD countries; Zellner and Hong

(1989) and Zellner, Hong and Min (1991) also used an AR(3), together with

leading indicators, to forecast turning points in the growth rate of real output

in 18 countries. In such cases researchers have assumed that a reasonable start-

ing point for an analysis is to specify that a random variable of interest has been

generated by a process with an autoregressive component that is

φ(L)(Yt − µ) = Ut, (1)

where φ(L) is a polynomial of degree p in the lag operator L, µ is the origin

from which Yt is measured (the mean if Yt is stationary) and Ut is a covariance-

stationary error with zero mean. Researchers may have quite strong beliefs

about the value of p and be willing to specify that Yt is stationary, perhaps as

a result of differencing, which implies restrictions on the roots of φ(L). In such

cases the parameters of interest are the φi, the coefficients of φ(L), or some

function of them, such as the roots of φ(L). However, it is rare for researchers

to have such strong prior beliefs about the error process and thus a variety

of models for Ut involving input variables and/or AR, MA or ARMA error

processes may be entertained : see e.g. Fuller and Martin (1961), Zellner et. al.
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(1965) and Zellner and Geisel (1970).

One possible model for the error is

Ut = εt, (2)

where εt is white noise with zero mean and variance σ2. However, this is a

rather restrictive model: it implies that a shock to the subject-matter portion

of the model, φ(L)(Yt−µ), has an impact only in the current period. Of course,

if φ(L) is invertible the MA representation of Yt,

Yt = µ +
1

φ(L)
εt, (3)

has infinite length.

2.1 The ARMA Model

A popular alternative model for Ut is the MA model of Box and Jenkins (1976).

Ut = θ(L)εt, (4)

where θ(L) is an invertible polynomial of degree q in L. This model was intro-

duced “To achieve greater flexibility in fitting actual time series, . . . ”3rather

than from any explicit prior knowledge about the behavior of the error. But

this model is only slightly less restrictive than the white noise model because it

implies that the effect on φ(L)(Yt − µ) of a shock εt dies out completely after

q periods. Also strong restrictions on the values of the autocorrelations of Yt

are needed for θ(L) to be invertible: see Box and Jenkins (1976, Chapter 3). In
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this case too the MA representation for Yt,

Yt = µ +
θ(L)
φ(L)

εt, (5)

is infinite in length and allows somewhat richer behavior than does the white

noise case. However, the AR representation,

φ(L)
θ(L)

(Yt − µ) = εt, (6)

is also infinite, a result which may be found undesirable from a subject matter

viewpoint and which complicates inference about the parameters of interest, the

φi.

Of course, there are circumstances in which an MA model for Ut is desirable

on a priori grounds. For example if the observations on Yt were the result of

temporal aggregation an MA model for Ut may be considered. However, we

note that in many cases an MA model for Ut arises from an examination of

sample autocorrelations and is not justified by any prior theory. In these cases

the model described in the next section is worthy of consideration.

2.2 The ARAR Model

We propose an alternative model for the error Ut which is parsimonious, allows

rich time series behavior for Ut and simplifies inference procedures for the pa-

rameters of interest. Our proposal is to model Ut as an AR process, as in many

earlier studies,

ω(L)Ut = εt, (7)
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where ω(L) is a polynomial of degree r in L. If ω(L) is assumed to be invertible

the MA representation of Ut is

Ut =
1

ω(L)
εt, (8)

which is infinite in length. Thus, in this model,

φ(L)(Yt − µ) = Ut =
1

ω(L)
εt, (9)

the impact upon the subject-matter portion, φ(L)(Yt − µ), of a shock εt may

die out slowly over many lags, rather than being cut off abruptly after a small

number of lags. We believe that this feature of our model, which we label

ARAR(p, r), makes it a useful addition to the family of earlier ARMA(p, q)

models discussed above. Our model is no poorer in terms of possible behavior

of Ut in that values of r as small as 2 produce very rich behavior in (8). Also,

(8) is consistent with Wold’s (1938) Decomposition Theorem, in contrast to MA

models for Ut which impose a truncation on the Wold representation of Ut. If

φ(L) is invertible and Yt is covariance-stationary, then the MA representations

of all the above models for Yt are infinite and, therefore, consistent with Wold’s

theorem. However, (8) has the advantage of being the simplest model that also

imposes this consistency on Ut.

To see the parsimony of (8) as compared to (4) consider an example in which

ω(L) = 1 − ω1L − ω2L
2. We can factor ω(L) in terms of its inverse roots as

ω(L) = (1 − ξ1L)(1 − ξ2L). Assume that ξ1 6= ξ2, |ξ1| < 1 and |ξ2| < 1. Then

we can rewrite (8) as

Ut = εt + (c1ξ1 + c2ξ2)εt−1 + (c1ξ
2
1 + c2ξ

2
2)εt−2 + (c1ξ

3
1 + c2ξ

3
2)εt−3 + . . . , (10)
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where c1 = ξ1/(ξ1− ξ2) and c2 = −ξ2/(ξ1− ξ2). Now assume that the roots are

real with ξ1 = .7 and ξ2 = −.5. Then (10) becomes

Ut = εt+.6167εt−1+.1867εt−2+.2522εt−3+.1140εt−4+.1111εt−5+.06212εt−6+. . .

(11)

so it would take an MA process with at least five parameters to approximate the

inverse of the AR with two parameters. Next assume that there are complex

conjugate roots with ξ1 = a + bi and ξ2 = a− bi. Now (10) can be written as

Ut = εt + 2aεt−1 + (3a2 − b2)εt−2 + 4a(a2 − b2)εt−3 + . . . (12)

If a = .7 and b = .5 (12) becomes

Ut = εt + 1.400εt−1 + 1.220εt−2 + .6720εt−3 + .2879εt−4 + .2418εt−5 + . . . (13)

and so here too an approximating MA would have to have at least five param-

eters, as compared to two in ω(L).

Our model for Yt is, from (1) and (8),

ω(L)φ(L)(Yt − µ) = εt, (14)

which can be written as

α(L)Yt = α0 + εt (15)

where α(L) = ω(L)φ(L) is a polynomial in L of degree p + r with restricted

coefficients and α0 = ω(1)φ(1)µ. If φ(L) and ω(L) are invertible there is an MA

representation of Yt as

Yt = µ +
1

ω(L)φ(L)
εt. (16)
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Both (1) and (15) are finite AR processes in contrast to (6) which is infinite.

Hence the ARAR model is simpler than the ARMA model and, according to

the Wrinch-Jeffreys (1921) Simplicity Postulate, should, therefore, be accorded

higher prior probability. We note too that almost no scientific theories are

framed as infinite AR processes, although many are in the form of finite differ-

ence or differential equations.

Note that (3), (5) and (16) are all examples of a linear filter, with the white

noise εt as input and Yt as output, which is the basis for the ARMA model of

Box and Jenkins (1976). The difference between our model and their’s is that

we approximate the filter with the inverse of the product of two polynomials

while they approximate it with the ratio of two polynomials. The only sort

of behavior that is allowed by the ARMA model but ruled out by the ARAR

model (14) is an infinite AR in Yt; although if the degrees of φ(L) and ω(L)

are high then (14) will be a very long AR. In some cases this restriction will

be a notable advantage of our model. Seasonal effects are easily handled in the

ARAR model by expressing either φ(L) or ω(L), or both, as the product of

nonseasonal and seasonal polynomials. Another attractive feature of our model

is the facility of separate analyses, using proper priors to achieve identification,

of the polynomials φ(L) and ω(L), which would be appropriate if subject matter

study provided prior information about the coefficients of φ(L).

Note that some of the coefficients, αi, of α(L) may be quite small in absolute

value, even though no φi or ωi is small. This can result in small and impre-

cise estimates of these αi if the restrictions implied by the ARAR structure are
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ignored and only the unrestricted AR(p + r) (15) is used in estimation with a

small sample. Then researchers may be tempted to impose invalid zero restric-

tions on α(L) in an effort to achieve statistical efficiency. As we demonstrate

below, estimation of φ and ω is easy so there is no reason to concentrate on (15)

exclusively.

Before considering inferences about the parameters of φ(L) and ω(L) we

note that, without further information, they are not identified. One easy way

to see this is to interchange φ(L) and ω(L) in (9) which would yield the same

unrestricted AR(p+r) as (15) so the likelihood function, which is based on (15),

would be unchanged.

Another potential failure of identification is revealed by multiplying both

sides of the model (9) by a nonzero scalar υ0. This would leave (15) unchanged:

however, it would result in

υ0φ(L) = υ0 − υ0φ1L− . . . υ0φpL
p.

We avoid this identification problem by assuming that the model has been nor-

malized to have the first term in φ(L) equal to 1.0.

A second potential identification failure arises if both sides of (9) are multi-

plied by the invertible lag polynomial υ(L) to give

υ(L)φ(L)Yt = υ(1)µ +
υ(L)
ω(L)

εt. (17)

Here too (15) and the likelihood function will be unchanged. This is analogous to

model multiplicity in the ARMA context and it also arises with ARMA models

which contain the products of seasonal and nonseasonal lag polynomials. We
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follow Box and Jenkins (1976) and others in assuming that all common factor

polynomials like υ(L) have been cancelled out of the model.

Even after normalization and common factor cancellations have been per-

formed, there is an identification problem to be solved. Write φ(L) and ω(L) in

terms of their roots as

φ(L) = (1− λ1L)(1− λ2L) . . . (1− λpL) (18)

and

ω(L) = (1− ξ1L)(1− ξ2L) . . . (1− ξrL) (19)

Thus

α(L) = φ(L)ω(L)

= (1− λ1L) . . . (1− λpL)(1− ξ1L) . . . (1− ξrL). (20)

Now, to focus on the identification problem, assume the λi and ξi have

unknown values. Then write

α(L) = (1− η1L)(1− η2L) . . . (1− ηp+rL) (21)

and assume we know the values of the roots ηi. The identification problem lies

in deciding which terms (1− ηiL) are part of φ(L) and which are part of ω(L).

The solution is to use the same prior information that was used to specify φ(L)

to make this decision. For example, in many cases φ(L) will be specified to be

of degree 2 displaying damped cyclical behavior with a period in some a priori

most probable range. This implies that the roots ηi belonging to φ(L) must be

a complex conjugate pair with modulus less than one and a period lying in the
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most probable range. Any roots ηi which are real or complex conjugate with a

smaller period must belong to ω(L).

In practice the values of the ηi are unknown. But once we specify p and r we

can fit an AR(p + r) by ordinary least squares (OLS) and find the roots of the

resulting α̂(L). These estimated roots can be used to find initial values of the φ̂i

and ω̂i for use in nonlinear least squares (NLS) estimation of ω(L)φ(L). Indeed,

we could use this idea with an AR model produced by someone else. Upon

reading their results we may suspect that their unrestricted AR is long enough

to be the product of a φ(L) and an ω(L). Using their estimated AR coefficients

we could obtain estimated roots, moduli and periods and, with large samples,

these results could help us to confirm or reject our hypothesis regarding the

degree of the φ(L) polynomial.

Alternatively, someone building an ARAR model could use a priori plausible

initial values of the φi and ωi in NLS to obtain estimates ω̂(L) and φ̂(L). Then

the roots of ω̂(L) and φ̂(L) can be compared to those of α̂(L) from (15) as a

check that the identification is correct. We do this in our empirical example on

housing starts, below.

An interesting simple case is obtained by assuming that p and r are both

one so that (14) becomes

ω(L)φ(L)(Yt − µ) = (1− ωL)(1− φL)(Yt − µ) (22)

= (1− [ω + φ]L + ωφL2)Yt − (1− ω)(1− φ)µ (23)

= εt
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from which

Yt = (1− ω)(1− φ)µ + (ω + φ)Yt−1 − φωYt−2 + εt (24)

= α0 + α1Yt−1 + α2Yt−2 + εt. (25)

We believe this ARAR(1, 1) model is a useful alternative to the popular ARMA(1, 1)

model with the same number of parameters. Imposing stationarity and invert-

ibility on the ARMA(1, 1) model results in very strong restrictions on the range

of admissible values for the autocorrelations of Yt at lags 1 and 2, ρ1 and ρ2:

see Box and Jenkins(1976) Chapter 3, especially Figure 3.10(b). The analogous

restrictions on the ARAR(1, 1) model result in restrictions on ρ1 and ρ2 which

are much weaker. We assume that φ and ω are real and that −1 < φ < 1

and −1 < ω < 1, so that Yt and Ut are both stationary. These restrictions

result in the feasible set of α1 and α2 values being a subset of that for an un-

restricted AR(2) which, since φ and ω are real, excludes the subset associated

with complex roots. This is shown in Figure 1 which should be compared with

Box and Jenkins (1976) Figure 3.9. The restrictions on α1 and α2 also result

in a restriction of the ρ1, ρ2 space which is a subset of that for an unrestricted

AR(2). This space is shown in Figure 2a which should be compared with Box

and Jenkins (1976) Figures 3.3(b) and, especially, 3.10(b), which is reproduced

below as Figure 2b. Note that the admissible parameter space shown in Figure

2a is considerably larger than that shown in Figure 2b and that negative values

of ρ2 are excluded. This last point should aid in model identification as sample

autocorrelations which are negative at both lags one and two would be evidence
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against an ARAR(1, 1) model being appropriate. We note that for many eco-

nomic time series the first two sample autocorrelations are positive so that the

ARAR model is not ruled out.

If Yt or Ut are assumed to be nonstationary in (24) we can write it as

(Yt − φYt−1) = α0 + ω(Yt−1 − φYt−2) + εt (26)

or as

(Yt − ωYt−1) = α0 + φ(Yt−1 − ωYt−2) + εt. (27)

Thus, instead of using, say, first differencing to induce stationarity we might

assume that the more general “φ” differencing or “ω” differencing induces sta-

tionarity and these restrictions can be imposed in analyzing (24).

Unrestricted inferences about the αi in (25) can be easily obtained using

OLS, ML, MAD, traditional Bayes and Bayesian Method of Moments (BMOM):

see Zellner (1996, 1997), Tobias and Zellner (2001) and Green and Strawderman

(1995). The stationarity restrictions imply that −2 < α1 < 2 and −1 < α2 < 1.

Note that if, for example, φ > 0 and ω < 0, α1 may be quite small in absolute

value but imposing α1 = 0 would be a specification error.

To achieve identification in the present example we might impose the prior

restrictions that |φ| > |ω| and that both φ and ω are real. Then to obtain the

posterior densities for φ and ω from the unrestricted posterior distribution for α1

and α2, draw a realization of α1 and α2, say α1(1) and α2(1). If the stationarity

restriction is to be imposed check that −2 < α1(1) < 2 and −1 < α2(1) < 1. If

α1(1) and α2(1) violate this restriction discard them and draw again. If they
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satisfy it, check that α2
1(1) + 4α2(1) ≥ 0 so that they correspond to the real

roots φ and ω. If α1(1) and α2(1) violate this condition discard them and draw

again. If they satisfy it, calculate r1(1) = .5
(
α1(1) +

√
α2

1(1) + 4α2(1)
)

and

r2(1) = .5
(
α1(1)−

√
α2

1(1) + 4α2(1)
)
. Then φ(1) = max(|r1(1)|, |r2(1)|) and

ω(1) = min(|r1(1)|, |r2(1)||) are draws from the posterior distributions of φ and

ω. This simple process can be repeated many times to obtain the posterior

densities and moments for φ and ω.

Alternatively, one could analyze (22) directly, without first obtaining the

posterior for [α1, α2]. In most cases one will want to specify only that ω(L) is

invertible. A prior that does this is the uniform prior, p(ω) = .5 over the range

−1 < ω < 1. To impose the prior belief that Yt is stationary one could use the

prior

p(φ) ∝ (1− φ)a−1(1 + φ)b−1 : (28)

for −1 < φ < 1: see Zellner (1971 p.190). Finally, adopt a diffuse, uniform prior

on log(σ) so that p(σ) ∝ σ−1. Then, given a T×1 vector y of data and assuming

εt to be independent normal, σ can be easily integrated out analytically. After

integrating out σ, we have a joint posterior density for φ and ω that can be

easily analyzed using bivariate numerical integration techniques. This will be

needed since with the prior in (28) the integration over φ will be analytically

intractable. Also, since bivariate numerical techniques are to be employed, it is

possible to introduce a non-diffuse prior on ω.

Now assume a quarterly seasonal model for the error, ω(L) = 1−ω4L
4 with

the nonseasonal, subject-matter structure φ(L) = 1−φL, as before. This would
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lead to the restricted AR(5) model

(1− ω4L
4)(1− φL)(Yt − µ) = εt (29)

containing only three free parameters in contrast to an unrestricted AR(5) model

which contains six free parameters. Inferences would be obtained in the same

fashion as in the earlier case.

The first step in building an ARAR model is to select a degree p for the

polynomial φ(L) based on subject matter knowledge, previous research, and

any other prior information. Data plots, sample autocorrelations and sample

partial autocorrelations may also be useful at this stage, e.g. to confirm the

presence of cycles or unit roots. Prior belief in the presence of cycles will lead

to a specification permitting φ(L) to have complex roots. A tentative AR(r)

model for the error Ut should now be specified where r is believed to be large

enough to make εt white noise. This will imply that the degree of α(L) is

p + r. The appropriateness of the choice of r can be gauged from the residual

autocorrelations from (14), using NLS, or from (15), using OLS ignoring the

restrictions. Note that this procedure differs from the Box and Jenkins (1976)

method which bases the lag lengths primarily on the sizes of sample autocor-

relations and partial autocorrelations. Their procedure may be suitable if the

researcher has no prior beliefs about φ(L), although it involves considerable

pretesting that can have adverse effects upon subsequent inference; see Judge

and Bock (1978). Of course, models initially based on features of a sample can

in the future be rationalized by theory and confirmed with new samples.

In Bayesian analysis the choice of p and r should be guided by posterior
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odds ratios. If the odds analysis leads to several favored models, they can all be

carried along and results regarding parameters and predictions averaged over

the models. Allowing for model uncertainty in this way often leads to forecasts

which are superior to non-combined forecasts. It also avoids problems of pre-

test bias and incorrect confidence intervals which arise from using the same data

to select the model and to estimate its parameters. Let Θi be the vector of all

qi parameters in model i and l(Θi/y) be the likelihood function for model i. If

the prior odds ratio is set to one, the posterior odds ratio becomes the Bayes

factor B1,2 = p1(y)/p2(y), where pi(y) =
∫

p(Θi)l(Θi/y)dΘ is the predictive

density for model i evaluated at the data y. For small models, like the one

in the previous example, pi(y) can be calculated exactly: see Monahan (1983)

for a discussion of pi(y) for ARMA models. Alternatively, the Schwarz (1978)

criteria provides a large sample approximation

B1,2 ' T q/2elr, (30)

where the log-likelihood ratio lr = log[l(Θ̂1/y)/l(Θ̂2/y)], Θ̂i is the maximum-

likelihood estimate of Θ from model i, and q = q2 − q1.

A common preliminary step in analyzing univariate time series is to test for

the presence of unit roots and/or polynomial trends. The most popular model

for this purpose is

α(L)Yt = α0 + β1t + β2t
2 + εt. (31)

which is usually reparameterized to

Yt = α0 + β1t + β2t
2 + ρYt−1 + ξ(L)∆Yt + εt. (32)
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where t is a trend variable (a quadratic trend is shown above because it is useful

in the example to follow), ρ is the sum of the coefficients of α(L) (α(1) = 1− ρ)

and ξ(L) is of degree one less than α(L) with ξ0 = 0: see Hamilton (1994, p.

517). Unit root tests are sensitive to the presence of serial correlation in the

error so the degree of α(L), and hence of ξ(L), is set large enough to ensure

that εt is white noise. In general there could be: several unit roots, roots

exceeding 1.0 and conjugate roots with modulus of one or more. However, in

many applications Yt will be the natural logarithm of a variable of interest and

the question is whether Yt is stationary after removal of the polynomial trend

as opposed to there being a single unit root in addition to the trend.

Note that (31) and (32) are just (15) with a quadratic trend added: i.e. the

test regressions for popular unit root tests are already in a form consistent with

an ARAR model. Also if Yt really were generated by an ARMA(p,q) process

it would impossible to find a finite AR model like (32) in which εt really was

white noise. Thus, the ARAR model is superior to the ARMA model for unit

root tests.

In this model the unit root, if it exists, can be in either the subject matter

polynomial φ(L) or in the error polynomial ω(L). If α(L) has a unit root ρ = 1

and (32) becomes

∆Yt = α0 + β1t + β2t
2 + ξ(L)∆Yt + εt, (33)

so that ∆Yt is stationary after removal of the polynomial trend. An important

property of this model is that it allows for the simultaneous existence of a unit

root and a polynomial trend.
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There is another attractive, but less popular, way to introduce an intercept

and trend into the ARAR model: i.e.

α(L)(Yt − µ0 − µ1t− µ2t
2) = εt. (34)

Now the basic variable in the model is the detrended version of Yt and the

question is whether there is a unit root in the lag structure of this detrended

variable. If we rewrite (34) as

α(L)Yt = [µ0α(1) + µ1κ− µ2η] + [µ1α(1) + 2µ2κ]t + µ2α(1)t2 + εt, (35)

where κ = Σp+r
j=1jαj and η = Σp+r

j=1j2αj , we can see that (35) is also just (15)

with a quadratic trend added. Inferences about ρ will be the same as with (32)

however, in contrast to (32), the presence of a unit root in α(L), which makes

α(1) = 0, would exclude a quadratic trend from (35) leaving an intercept and

linear trend only if µ1 6= 0 and µ2 6= 0. However, in the absence of a unit root

(35) is a more convenient form for detrending Yt if an ARMA model is to be

entertained.

The ARAR model is also well suited to a more general investigation of the

roots. If the unit root is believed to be in φ(L) which is specified to be of

degree 2 or more, repeated draws can be made from the joint posterior of the

φ coefficients and the roots calculated for each draw. Then the proportion of

draws for which the roots are complex versus real and with modulus below 1.0

versus 1.0 or more can be easily calculated and are estimates of the posterior

probabilities of these properties of φ(L). For applications of this technique see

Geweke(1988) and Hong(1989).
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2.3 Empirical Example: Housing Starts

One of the leading indicators published by the U.S. Department of Commerce

is the number of permits issued by local authorities for the building of new

private housing units. Pankratz (1983) has modelled this series using 84 sea-

sonally adjusted, quarterly observations, from the first quarter of 1947 to the

fourth quarter of 1967. He describes it as “an especially challenging series to

model”4with Box-Jenkins procedures. We suspect that the absence of exoge-

nous variables, such as real per capita income, the stock of housing and the real

price of housing, from the univariate time series model accounts for much of the

difficulty in modelling and, especially, forecasting this series. Nevertheless, it is

still an attractive series to use in illustrating the ARAR technique.

Our first step in modelling this series as an ARAR was to form a prior belief

about the degree of the φ(L) polynomial. Since this series is thought to lead

the business cycle, we believed a priori that it should have a cycle. Therefore,

we specified a second degree polynomial5for φ(L) and we chose a proper prior

for its parameters, below, which placed a modest amount of probability on

the region corresponding to conjugate complex roots. Because the data are

quarterly, we chose an AR(4) process as our tentative model for Ut. This will

allow for imperfections in the seasonal adjustment process and for the presence

in the error of omitted variables which are seasonally unadjusted. Thus we

began with the model

(1− φ1L− φ2L
2)(Yt − µ) = Ut, (36)
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with

(1− ω1L− ω2L
2 − ω3L

3 − ω4L
4)Ut = εt. (37)

From (36) and (37) we obtained the restricted AR model

Yt = µφ(1)ω(1) + (φ1 + ω1)Yt−1 + (φ2 + ω2 − ω1φ1)Yt−2 +

(ω3 − ω1φ2 − ω2φ1)Yt−3 + (ω4 − ω2φ2 − ω3φ1)Yt−4 −

(ω3φ2 + ω4φ1)Yt−5 − ω4φ2Yt−6 + εt, (38)

which implies an unrestricted AR(6)

Yt = α0 + α1Yt−1 + α2Yt−2 + α3Yt−3 + α4Yt−4 +

α5Yt−5 + α6Yt−6 + εt. (39)

Note that if φ(L) has a unit root then φ(1) = 0 and if ω(L) has a unit root then

ω(1) = 0. Thus, given a strong prior belief that µ 6= 0 or a large sample mean

for Yt, an estimate of α0 close to 0 would lead us to question the stationarity of

the both Yt and Ut.

Our sample of 191 observations was obtained from the U.S. Department of

Commerce, Bureau of Economic Analysis, Survey of Current Business, October

1995 and January 1996. These data are seasonally adjusted index numbers

(based in 1987) and extend from January 1948 until October 1995. We converted

them to quarterly form by averaging over the months of each quarter: they

are plotted in Figure 3. Neither Figure 3, nor the sample autocorrelations

and partial autocorrelations6, in Table 1, display the pattern typical of a unit

root but they do show the cyclical pattern rather clearly. These results, and
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those which follow, used the observations from the third quarter of 1949 until

the third quarter of 1990, 165 observations. The earlier observations provided

lagged values and the observations from the fourth quarter of 1990 to the third

quarter of 1995 were used for post-sample forecasts, which are discussed below.

If our specification in (36) and (37) is adequate we should observe two things

about the results from applying OLS to the unrestricted AR(6) (39). First,

the residuals should be uncorrelated. Second, the roots of the estimated lag

polynomial, α̂(L), should contain a conjugate complex pair whose modulus is

less than one and whose period is somewhere between 12 and 24 quarters, giving

a damped cycle with a period of about three to six years. There may also be

additional conjugate complex pairs of roots with moduli less than one but with

shorter periods which model the dynamics of the error Ut.

The estimated lag polynomial, with standard errors in parentheses, is

α̂(L) = 1 − 1.189L − .002388L2 + .4343L3 − .01077L4

(07685) (.1208) (.1236) (.1228)
− .2700L5 + .2014L6

(.1228) (.07871)
(40)

The sample autocorrelations and partial autocorrelations for the OLS residuals

are shown in the second and third columns of Table 1: they indicate a lack of

serial correlations. The roots of α̂(L) plus their moduli and periods are given

in Table 2. There are three complex conjugate pairs all of which have moduli

less than one. The pair in the first line have a period of about 23 quarters

which corresponds to our prior belief about the period of the business cycle.

The other two pairs have shorter periods which we attribute to dynamics of

21



the error. Thus on the basis of these results it appears that our specification is

adequate.

For purposes of illustration, unit root and trend analysis was carried out

using both of the parameterizations (31) and (34). As noted above, inferences

about unit roots will be the same for the two forms. An inspection of Figure

3 suggested that a weak quadratic trend might be present so trends of degree

0, 1 and 2 were used. A normal likelihood was assumed. The results are in

Table 3 where the means of the posteriors are denoted by α̂0, β̂i, ρ̂ and µ̂i and

the standard deviations by “Std Dev”. PD(ρ ≥ 1) is the posterior probability

that there is a root of one or more when a diffuse prior is used while PJ(ρ ≥ 1)

is obtained7when the Jefferys prior discussed in Phillips (1991) is used. These

results lead us to infer φ(L) does not have a unit root and there is no polynomial

trend8.

If the parameters φi and ωi are not of explicit interest and all that is wanted

are forecasts of future values of Yt they can easily be obtained by both Bayesian

and frequentist analyses of the unrestricted AR(6) of (39). If uniform, dif-

fuse9priors for the αi and log(σ2) and a normal likelihood are assumed, OLS

can be used, with suitable adjustment (see e.g. Zellner (1971)), to obtain the

first two moments of the posterior distributions of the αi.

Our primary interest here is to draw inferences about φ1 and φ2 with µ,

ω1, ω2, ω3, ω4 and σ being nuisance parameters. For this purpose NLS is a

widely used frequentist technique. If we assume diffuse priors and a normal

likelihood, NLS also provides the means and standard deviations of the large-
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sample normal approximations to the posteriors for the φi and ωi. The results

are shown in the second column of Table 4 where the means of the approximate

posteriors are denoted by φ̂i or ω̂i and the standard deviations by “Std Dev”.

The approximate posterior mode for σ is denoted by σ̂.

The posterior means of ω2 and ω3 are small compared to their standard

deviations. We therefore imposed ω2 ≡ ω3 ≡ 0 and calculated the results shown

in the third column of Table 4. Using the approximation in (30) we obtained a

Bayes factor in favor of the restricted model against the unrestricted model of

32.5.

The results summarized in Table 4 can be used to find approximate posterior

probabilities for various aspects of the dynamic behavior of the series. Such

things as the existence of a cycle, whether a cycle is damped and the period of

a cycle all depend on nonlinear functions of φ1 and φ2 . The first two terms

in a Taylor series expansion of these functions about φ̂1 and φ̂2 provide linear

approximations which have asymptotically normal posterior distributions. The

roots of φ(L) are complex, leading to a cycle in housing starts, if φ2
1 + 4φ2 <

0. The parameters of the asymptotic posterior for this quantity are shown in

Table 5, in the row labelled “cycle”, for both the unrestricted and restricted

ARAR(2,4) models: they show that the approximate posterior probability that

φ(L) has complex roots is greater than .99. The cycle in housing starts will be

damped if the modulus of the roots, given by
√−φ2, is less than 1.0. The results

in the row of Table 5 labelled “modulus” show that the approximate posterior

probability that the cycles are damped is over .99 for both versions of the model.
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The period of the cycle is given by 2π/ arctan(ϑ), where ϑ =
√
−φ2

1 − 4φ2/φ1.

The asymptotic means and standard deviations for the period are shown in the

last row of Table 5. Note that the entries in the modulus and period rows

of Table 5 are close to those in first row of Table 2, confirming that we have

correctly identified φ(L).

While the ARAR model is best suited to obtaining inferences about the

parameters of interest, the φi, it is also useful to compare its forecasting per-

formance with that of a traditional ARMA model. For the current example

an ARMA model might be suggested by the fact that the data were converted

from monthly to quarterly form by averaging. An ARMA(2,2) is the model

obtained by applying Box-Jenkins model identification techniques to the sam-

ple autocorrelations and partial autocorrelations in Table 1. It is one of the

models found by Pankratz10to be adequate on the grounds of its uncorrelated

residuals and small forecast root-mean-square-errors and it retains the form of

φ(L) suggested by our prior beliefs. The NLS results for this model appear in

the last two columns of Table 4. The restriction θ1 ≡ 0, imposed to produce the

results in the last column, was also imposed by Pankratz. The ARMA(2,2) esti-

mates were harder to compute than the ARAR(2,4) estimates. Using a starting

point derived from the sample autocorrelations and partial autocorrelations, the

ARMA routine took 22 iterations to converge. In contrast, the ARAR routine

started from 0.0 and took five iterations to converge. Also, as a vehicle for

learning about φ1 and φ2 the restricted ARMA(2,2) is less successful than the

restricted ARAR(2,4): the Q statistics are larger for the restricted ARMA(2,2),
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the absolute ratios of the posterior means to standard deviations are larger for

the restricted ARAR model and the approximate Bayes factor is 1.38 in fa-

vor of the restricted ARAR. Also, the ARMA(2,2) results have quite different

dynamic properties than those of the ARAR(2,4) models: the approximate pos-

terior probability of cycles for the unrestricted ARMA(2,2) is only .276 while

that for the restricted ARMA(2,2) is only .401.

We obtained one-step-ahead forecasts by the restricted and unrestricted

ARAR(2,4) model and by the restricted and unrestricted ARMA(2,2) for 20

quarters beyond the end of the sample. For the first forecast the coefficients

were set at the sample period posterior means. Then for subsequent forecasts

they were updated for each period. Since actual data for this period had been

left out of the sample used in estimation, we were able to calculate the forecast

errors for each of the 20 quarters in the forecast period. Summary statistics for

these forecast errors, measured as percentages of the actual future values of Yt,

are shown in Table 6. The main difference between the methods is in the size of

the mean percentage forecast errors, which were larger for the ARAR models.

This made the RMSE for the unrestricted ARAR(2,4) larger than that for the

unrestricted ARMA(2,2), since there standard deviations were the same. How-

ever, the standard deviation of the restricted ARAR percentage forecast errors

was smaller than that of the restricted ARMA forecast errors so that in this

case ARAR has a smaller RMSE. Of course, these forecasts are rather imprecise

because, as noted above, obvious exogenous variables have been omitted and

no account has been taken of long cycles in building activity. Nevertheless, this
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example does illustrate that the ARAR model has the potential to give forecasts

more precise than the traditional ARMA model.

Although a sample of size 165 may seem large enough to justify large-sample

approximate posteriors, it is still useful to consider the calculation of exact

posteriors for the φi and ωi. The procedure we followed is an adaptation of

Zellner (1971) Chapter IV. We will discuss exact posteriors for φ1, φ2, ω1 and

ω4 from the restricted ARAR(2,4) model of column 3 in Table 411.

Let φ′ = [φ0, φ1, φ2], where φ0 = µφ(1), and12ω′ = [ω1, ω4]. Our prior on φ,

ω and σ was

p(φ, ω, σ) = p(φ/σ)p(ω/σ)p(σ). (41)

An inverted gamma distribution was used for p(σ) with parameters s2 = 1.0

and v = 1 giving a mode of .7071. We set p(ω/σ) ∝ const., a diffuse prior, in

keeping with our lack of prior knowledge regarding the behavior of the error Ut.

We chose a normal form for p(φ/σ) with

E(φ/σ)′ = φ′ = [0, 1.0,−.5]

and covariance matrix V (φ/σ) = σ2W−1 with

W−1 =




400 0 0
0 16 −8
0 −8 16


 .

This prior is centered in the region corresponding to complex roots for φ(L)

but it is still rather uninformative with respect to φ1 and φ2. For example,

conditional on σ = .7071, the prior probability of obtaining complex roots is

only about .12.
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Let the vector of initial values of Yt be y′0 = [y1, . . . , yp+r] and the vector of

the T remaining values be y′ = [yp+r+1, . . . , yp+r+T ]. For this example p = 2,

r = 4, T = 165 and all inferences are conditional on y0. Define y(ω) as the

T × 1 vector with elements yt(ω) = ω(L)yt and z(ω) as the T × k matrix with

rows z′t(ω) = [ω(1), yt−1(ω), yt−2(ω)], where k = p + 1. Assume εt ∼ IN(0, σ2).

Then the joint posterior, after completing the square on φ, can be written as

p(φ, ω, σ/y,y0) ∝ σ−(T+v+k+1) ×

exp

{
− (ṽ ˜s2(ω) + [φ− φ̃(ω)]′[W + z′(ω)z(ω)][φ− φ̃(ω)])

2σ2

}

where: ṽ = T + v; φ̃(ω) = [W + z′(ω)z(ω)]−1[Wφ + z′(ω)y(ω)] and

ṽ ˜s2(ω) = vs2 + φ′Wφ + y′(ω)y(ω)− φ̃(ω)
′
[W + z′(ω)z(ω)]φ̃(ω).

Note that the use of the proper prior p(φ/σ) in (41) ensures that [W +z′(ω)z(ω)]

will be nonsingular even if ω(1) = 0, thus avoiding the need to confine attention

to models with µ ≡ 0 or to impose the restriction ω(1) 6= 0: see Zellner (1971)

page 89.

Integrating out σ2 gives

p(φ, ω/y,y0) ∝
[ ˜s2(ω)

]−(ṽ+k)/2 {
ṽ + [φ− φ̃(ω)]′H(ω)[φ− φ̃(ω)]

}−(ṽ+k)/2

(42)

where H(ω) =
[ ˜s2(ω)

]−1

[W + z′(ω)z(ω)].

Integrating (42) over φ gives the joint posterior density for ω1 and ω4.

p(ω/y,y0) ∝
[
ṽ ˜s2(ω)

]−ṽ/2

|W + z′(ω)z(ω)|−1/2
. (43)

However, the lack of identification mentioned above means that (43) could also
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be the posterior density for φ1 and φ2. This composite posterior, scaled for

graphical clarity, is shown in Figure 4. Identification was achieved by imposing

our prior belief that the values of φ1 and φ2 are such that φ(L) has conjugate

complex roots leading to cyclical behavior in yt. Thus we identified the higher of

the two “hills” in the background in Figure 4, which lies over a region leading to

complex roots, as the joint posterior for φ1 and φ2 and the lower of the “hills”

in the foreground, which lies over a region leading to real roots, as the joint

posterior for ω1 and ω4.

Since (43) is difficult to integrate analytically, the marginal posteriors for

ω1, ω4, φ1 and φ2 were obtained numerically. To obtain the marginal posterior

for either ω1 or ω4 we numerically integrated13the portion of (43) which we have

identified as the posterior of ω over the other ωi. Marginal posteriors for the

φi were obtained by noting that, conditional on ω, (42) is in the multivariate

Student-t form so the conditional posterior densities of the φi, given ω, are

in the univariate Student-t form which can be obtained analytically. Then the

products of these conditional densities and the joint density for ω in (43) are the

conditional densities of the φi, given ω. The marginal densities of the φi were

obtained by integrating these products over ω1 and ω4. Alternatively, Gibbs

sampling procedures could have been employed to compute these integrals14.

The marginal posteriors for ω1 and ω4 are plotted in Figures 5 and 6, those

for φ1 and φ2 are in Figures 7 and 8. In each figure the exact posterior is graphed

with a solid line while the large-sample normal approximate posterior, moments

of which are given in Table 4, is graphed with a dashed line. The exact posterior
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moments are given in Table 7. The exact and approximate posterior densities

differ because they are based on different priors and because the sample is only

moderately large. However, they are quite close in the case of φ1 and φ2, which

are the parameters of most interest.

This example has illustrated several advantages of the ARAR model over

the ARMA model. Estimates of the ARAR parameters were easier to compute,

taking many fewer iterations than ARMA estimates. There was more evidence

of serial correlation in the ARMA residuals than in the ARAR residuals and the

Bayes factor favored the ARAR model. The NLS point estimates of the ARAR

parameters were in closer accord with our prior beliefs than were the estimates or

the ARMA parameters. Furthermore, the dynamic properties of the estimated

ARAR model were far more satisfactory than those of the estimated ARMA

model. Also, the restricted ARAR model had percentage forecast errors with

smaller RMSE than did the restricted ARMA model. Exact posterior densities

for the ARAR parameters were easily obtained and were close to the asymptotic

normal posteriors derived from the NLS estimates. In the next section these

techniques will be extended to single equation, distributed lag models.

3 Distributed Lag Models

3.1 The Rational Distributed Lag Model

Jorgenson (1966) considered the general distributed lag model

Yt = µ + λ(L)xt + Vt (44)
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where xt is the value of an exogenous variable Xt and the lag polynomial λ(L)

is infinitely long. Originally the error was modelled as Vt = εt, white noise.

Then the infinite lag structure on xt was approximated as λ(L) = δ(L)/φ(L)

with δ(L) = δ0 + δ1L+ . . .+ δmLm and φ(L) defined as in (1) having no factors

in common with δ(L). With these assumptions (44) becomes

Yt = µ +
δ(L)
φ(L)

xt + εt (45)

or

φ(L)Yt = µ0 + δ(L)xt + φ(L)εt (46)

where µ0 = φ(1)µ. The parameters of interest in (45) are the coefficients of

the lag polynomials φ(L) and δ(L), the φi and δi. The disadvantage of this

model for Vt are similar to those of the previous section. First, a white noise

error in (44) is often too restrictive in that it confines the effect of a shock εt

on Yt−µ−λ(L)xt to only the current period. Secondly, it implies an MA form

for the error term in (46) leading to complicated inference procedures. Note

that these complications are avoided if the error term φ(L)εt is white noise; see

Zellner and Geisel (1970).

3.2 The Transfer Function Model

Specify the same infinite lag structure on xt as in (44) with λ(L) = δ(L)/φ(L),

but model Vt as a stationary ARMA;

π(L)Vt = θ(L)εt. (47)
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This leads to the Box and Jenkins(1976) transfer function model

π(L)φ(L)Yt = µ0 + π(L)δ(L)xt + φ(L)θ(L)εt. (48)

Now the error model is more general but it’s even more difficult to draw in-

ferences about the parameters of interest, φi and δi, because of the MA error

in (48). Also it is important not to overparameterize the pairs of polynomials

δ(L), φ(L) and π(L), θ(L) as this can lead to the existence of common factors

in one or both of these pairs which implies a lack of identification.

3.3 The ARMAX Model

The ARMAX model can be obtained by either imposing π(L) ≡ φ(L) on the

transfer function error model (47) or by adding a distributed lag in xt to the

univariate ARMA model (5) leading to

φ(L)Yt = µ0 + δ(L)xt + θ(L)εt, (49)

It is assumed that φ(L), δ(L) and θ(L) contain no common factors. This model

is somewhat simpler to analyze than the transfer function model but it retains

the inconvenient MA error structure.

3.4 The ARAR Distributed Lag Model (ARDLAR)

Our general distributed lag model is the ARAR model (1) for univariate time

series extended by the addition of a distributed lag in xt to obtain

φ(L)Yt = µ0 + δ(L)xt + Ut, (50)
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We retain the assumption from the ARAR univariate model that the degree

of φ(L) can be specified a priori, at least approximately, from subject matter

knowledge and we extend that assumption to δ(L). We also assume that φ(L)

is invertible and has no factors in common with δ(L). Then we can write the

model as

Yt =
µ0

φ(1)
+

δ(L)
φ(L)

xt +
1

φ(L)
Ut

= µ + λ(L)xt + Vt. (51)

This model retains the same infinite lag structure, λ(L) = δ(L)/φ(L), on xt as

(44), (48) and (49). However, in contrast to these models, we specify the same

stationary AR process for Ut as in the univariate case:

ω(L)Ut = εt (52)

and

φ(L)Vt = Ut (53)

Then (44) becomes15

Yt = µ +
δ(L)
φ(L)

xt +
1

φ(L)ω(L)
εt, (54)

which we label the ARDLAR(p,m, r) model, where p is the degree of φ(L), m

is the degree of δ(L) and r is the degree of ω(L). We can rewrite (54) as

ω(L)φ(L)Yt = α0 + ω(L)δ(L)xt + εt, (55)

where α0 = µω(1)φ(1). This is a simpler model than the transfer function

model but it produces nearly the same behavior in Yt if π(L) is approximately
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θ(L)ω(L). Our ARDLAR model has several desirable features. It permits a

very general process for both Vt and Ut as both λ(L) and 1/(ω(L)φ(L)) can

be infinite in length and there is no need to assume that Ut is white noise.

Since distributed lag models are often implemented using monthly or quarterly

data, our model is especially convenient because it allows seasonal behavior to

be included in ω(L), which could be the product of seasonal and nonseasonal

polynomials.

Because the ARDLAR lag model is an extension of the univariate ARAR

model, it is not surprising that it may require the same sort of prior information

to identify the φi and ωi parameters. To see what identifying restrictions are

necessary write (55) as

α(L)Yt = α0 + β(L)xt + εt (56)

where α(L) = ω(L)φ(L) and β(L) = ω(L)δ(L). In contrast to the univariate

case, interchanging φ(L) and ω(L) in (55) will change the likelihood function,

which is based on (56), except in the special case that φ(L) = ω(L). Simi-

larily, interchanging φ(L) and δ(L) will change the likelihood function, unless

φ(L) =δ(L), and so will interchanging ω(L) and δ(L), unless ω(L) = δ(L).

Thus, so long as δ0 6= 1.0, a sufficient condition for identification is that φ(L)

and ω(L) be of different degrees. Two other sources of identification failure

are removed by making two assumptions. First, as in the univariate case, we

will assume that φ(L) has been normalized to have its first term equal to 1.0.

Secondly, as mentioned above, we assume that there is no invertible polynomial

υ(L) appearing as a common factor in φ(L) and δ(L).
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Now assume that α(L) and β(L) are known but φ(L), ω(L) and δ(L) are

unknown. Write α(L) in terms of its roots, ηi, as in (21). Given the values

of ηi we would use prior information in the same way as with the univariate

ARAR to decide which (1− ηiL) are part of φ(L) and which are part of ω(L).

Once ω(L) had been identified in this way it could be factored out of β(L) to

leave δ(L). In practice, the roots ηi and the polynomial β(L) are unknown.

Given a large enough sample, estimates of them may provide some guidance as

to identification.

Note that (56) is the autoregressive-distributed-lag (ARDL) model much fa-

vored by Hendry: see inter alia Hendry et al (1986). However, the two models

are built up in different ways. The ARDLAR model begins with fairly precise

prior beliefs about the systematic or subject matter dynamics represented by

φ(L) and δ(L). It then explicitly introduces the common factor ω(L) as the

model for the error Ut. Prior beliefs about ω(L) are often diffuse. The param-

eters of interest are the φi and δi while the ωi and σ are nuisance parameters

In contrast, ARDL model begins with the unrestricted polynomials α(L)

and β(L) and tries, through COMFAC analysis, to discover if they contain any

common factors, like ω(L). There are no prior beliefs regarding φ(L) and δ(L).

Any common factor lag polynomials that are discovered are then put into an

AR model for the error, resulting in an ARDLAR model. In this procedure

the parameters of interest are initially the αi and βi but if common factors are

discovered interest presumably switches to the φi and δi. Note that since this

procedure uses the same data over several rounds of testing, it is subject to the
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pre-test problems mentioned above.

Assuming identification, the common factor ω(L) in (55) imposes a restric-

tion linking the parameters in α(L) and β(L). To exploit this restriction, first

condition on the coefficients of ω(L) to obtain

φ(L)[ω(L)Yt] = δ(L)[ω(L)xt] + εt. (57)

Then condition on the elements of φ(L) to obtain

ω(L)[φ(L)Yt] = ω(L)[φ(L)xt] + εt. (58)

Equations (57) and (58) can be used to generate NLS estimates conveniently.

They can also provide the basis for the application of the Gibbs sampler in some

cases.

An interesting simple example is obtained by assuming that the degrees of

δ(L) and φ(L) are both one so that

Yt = µ +
(δ0 + δ1L)
(1− φL)

xt + Vt (59)

with the restriction | φ |< 1. Assume that observations will be taken quarterly

without seasonal adjustment. Then an attractive AR model for Ut is the product

of a nonseasonal AR(1) and a seasonal AR(1):

ω(L)Ut = (1− ω1L)(1− ω4L
4)Ut

= εt (60)

with the restrictions | ω1 |< 1 and | ω4 |< 1. Thus our model for Ut is a

restricted AR(5) with two free parameters and our model for Vt is a restricted
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AR(6) with three free parameters (φ, ω1 and ω4) plus σ2, the variance of εt.

Note that since δ(L) 6= δ0 and the degree of ω(L) is different from the degree of

φ(L), φ, ω1 and ω4 are identified, as are δ0 and δ1. The model for the observable

random variable Yt can be written as

(1−ω1L)(1−ω4L
4)(1−φL)Yt = α0+(1−ω1L)(1−ω4L

4)(δ0−δ1L)xt +εt (61)

or as the restricted ARDL model

Yt = α0 + Σ6
j=1αjYt−j + Σ6

j=0βjxt−j + εt, (62)

where the restrictions are

α0 = µφ(1)ω(1) β0 = δ0

α1 = ω1 + φ β1 = δ1 − ω1δ0

α2 = −ω1φ β2 = −ω1δ1

α3 = 0 β3 = 0

α4 = ω4 β4 = −ω4δ0

α5 = −ω4(ω1 + φ) β5 = ω4(ω1δ0 + δ1)

α6 = ω1ω4φ β6 = ω1ω4δ1

(63)

To take advantage of the common factors in (62) first condition on ω1 and

ω4 to obtain

[Yt − ω1Yt−1 − ω4Yt−4 + ω1ω4Yt−5] = φ[Yt−1 − ω1Yt−2 − ω4Yt−5 + ω1ω4Yt−6]

+ δ0[xt − ω1xt−1 − ω4xt−4 + ω1ω4xt−5]
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+ δ1[xt−1 − ω1xt−2 − ω4xt−5 + ω1ω4xt−6]

+ εt. (64)

Then condition on φ, δ0 and δ1 to obtain

[Yt − φYt−1 − δ0xt + δ1xt−1] = ω1[Yt−1 − φYt−2 − δ0xt−1 + δ1xt−2]

+ ω4[Yt−4 − φYt−5 − δ0xt−4 + δ1xt−5]

− ω1ω4[Yt−5 − φYt−6 − δ0xt−5 + δ1xt−6]

+ εt. (65)

These two equations can form the basis for application of the Gibbs sampler in

some cases.

The first step in building an ARDLAR model is to use subject matter knowl-

edge, previous research, and any other prior information to select p, the degree

of φ(L), and m, the degree of δ(L). These selections should reflect prior belief

about the presence of cycles or trends and about the pattern of the coefficients,

λi, in the ratio λ(L) = δ(L)/φ(L). A tentative AR model of degree r for the

error Ut should now be chosen. This will imply that α(L) is of degree p + r

and β(L) is of degree m + r. The adequacy of the choice of r can be checked

by examining the residuals from the OLS fit of (56). If the initial choice of r

was found to be too large it can be reduced, although this leads to the pre-test

problems noted above. If the aim of the model is only to produce forecasts one

may wish to stop at this point. However, if the aim is to gain knowledge about

the parameters of φ(L) and δ(L) the procedures discussed above and illustrated

below should be followed.
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3.5 The Error Correction Model (ECM)

This popular model is simply another form of a restricted ARDL model (62): see

Banerjee et al (1993) or Hendry et al (1986). For the simple example discussed

above, where the AR process for the error is the product of a non-seasonal

AR(1) and a seasonal AR(1), the ECM can be written as16

∆Yt = α0 + β0∆xt + (α1 − 1)(Yt−1 − xt−1)

+ Σ6
j=2αj(Yt−j − xt−j) + (α1 − 1 + β0 + β1)xt−1

+ Σ6
j=2(αj + βj)xt−j + εt, (66)

where terms involving α3 and α3 + β3 drop out.

If nonseasonal data are used the model can be simplified by removing the

seasonal component in Ut so that ω4 = 0. Then α3 = α4 = α5 = α6 = β3 =

β4 = β5 = β6 = 0 and (66) simplifies to

∆Yt = α0 + β0∆xt + (α1 − 1)(Yt−1 − xt−1) (67)

+ α2(Yt−2 − xt−2) + (α1 − 1 + β0 + β1)xt−1

+ (α2 + β2)xt−2 + ε,

This illustrates the utility of using prior information in specifying the model.

3.6 The Partial Adjustment Model

The partial adjustment model provides the short run dynamic response to a de-

parture from long run equilibrium: e.g. see Harberger(1960), Jorgenson(1965),

Lintner(1967), Nerlove(1958), Phillips(1957) and Pagan(1985).
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Yt − Yt−1 = µ∗ + φ∗(y∗t − Yt−1) + Ut, (68)

where y∗t is the long run equilibrium value of the random variable Yt and 0 ≤

φ∗ < 1 is the speed of the short run dynamic response: i.e. φ∗ is an error

correction parameter. The simplest form of this model sets

y∗t = ψ0 + ψ1xt. (69)

Let φ = 1− φ∗, δ0 = φ∗ψ1 and µ0 = µ∗ + φ∗ψ0. Then substitute (69) into (68)

to obtain

(1− φL)Yt = µ0 + δ0xt + Ut. (70)

and

Yt = µ +
δ0

(1− φL)
xt +

1
(1− φL)

Ut (71)

It is common to model Ut as white noise so that ω(L) = 1 and (70) is in the same

form as (56); i.e. the partial adjustment model is a simple ARDLAR model.

Note that δ(L) 6= 0 and the degree of ω(L) is 0 while the degree of φ(L) is 1 so

φ and δ0 are identified.

3.7 The Adaptive Expectations Model

This is just a special case of the rational distributed lag model. Consider the

simple case

Yt = µ + ψx∗t+1 + Vt, (72)
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where x∗t+1 is the expectation of the future value of an exogenous variable Xt

which is formed according to

x∗t+1 = φx∗t + (1− φ)xt, (73)

with 0 ≤ φ ≤ 1. Substituting (73) into (72) gives

Yt = µ +
δ0

(1− φL)
xt + Vt, (74)

where δ0 = ψ(1− φ), which is in the form of (44).

Usually Vt is modelled as white noise which makes (74) the same as (45) with

the same disadvantages. Indeed this error specification is the only difference

between the adaptive expectations model (74) and the partial adjustment model

(71). However if, as in (54), we model the error Vt as

ω(L)(1− φL)Vt = εt. (75)

then

ω(L)(1− φL)Yt = δ0ω(L)xt + εt (76)

which is identical to the partial adjustment model (71). This model has been

analyzed by Zellner and Geisel (1970) and by Zellner (1971, Chapter 7) who give

the joint posterior density function for φ and ω based on a normal likelihood,

diffuse priors and various models for Vt and Ut.

3.8 The Finite Distributed Lag Model

In many cases an infinite lag structure for the observable causal component

will a priori be unattractive. Such cases are easily handled by restricting the
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rational distributed lag model by imposing φ(L) ≡ 1.0, which serves to identify

the ωi. Now (54) becomes

Yt = δ(L)xt +
1

ω(L)
εt (77)

= δ(L)xt + Ut (78)

which is just a linear regression model with AR errors for which inferences

procedures are relatively straightforward.

3.9 Empirical Example: Growth of Real GDP

The AR(3) model has often been used in forecasting real GDP or its rate of

growth, as in Geweke(1988). However, Garcia-Ferrer et al(1987), Zellner and

Hong(1989), Hong(1989) and Zellner et al(1991) have shown that AR(3) models

give very poor forecasts of turning points. Their forecasting performance can

be improved by converting them to distributed lag models which include lagged

endogenous or exogenous variables as leading indicators. We show in this ex-

ample how a further extension to an ARDLAR is an attractive model in this

context.

Let Yt be the first difference of the log of real GDP. We begin by build-

ing univariate AR and ARAR models for Yt to further illustrate the ARAR

technique and to provide a basis for comparison with the subsequent ARDLAR

model. We then introduce two leading indicators and use them as the exogenous

variables in an ARDLAR model.

We follow earlier literature in specifying the first of our univariate models as
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an AR(3), which is an example of the unrestricted AR model (15). A priori we

believe that Yt follows a damped cycle so the first step in building our ARAR

model was to specify φ(L) as a second degree polynomial. An ω(L) of degree

one when combined with the φ(L) of degree two led to an α(L) of degree three,

as in the unrestricted AR(3) above. Thus we specify our ARAR model as

(1− ω1L)(1− φ1L− φ2L
2)Yt = α0 + εt. (79)

Yt was constructed from quarterly, seasonally adjusted, observations on

United States GDP in millions of 1987 dollars from the fourth quarter of 1949

to the fourth quarter of 1990; 165 observations. Observations from the first

quarter of 1991 until the third quarter of 1995 were held back for use in cal-

culating forecast errors. The results of trend and unit roots analyses appear

in the top panel of Table 8 which used the same techniques as were used to

obtain the top panel of Table 3. The number of lags used, three, was the same

as the number of lags in (79). As in Table 3, PD(ρ ≥ 1) and PJ (ρ ≥ 1) are

the posterior probabilities of a root of one or more using diffuse and “Jeffreys”

priors, respectively. They are all zero to eight significant digits.

OLS results for the unrestricted AR(3) model are reported in the second

column of Table 9. We view them as the moments of posterior distributions

based on uniform priors and a normal likelihoods. In the top panel of Table 10

we present the roots of α̂(L), their moduli and periods. They support our a

priori belief in a damped cycle.

NLS results for the ARAR(2,1) model are shown in column three of Table 9.

Note that the AR(3) point estimates obey the ARAR(2,1) restrictions exactly
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so the ln likelihoods and residual diagnostics in columns two and three are the

same. Also the estimated roots, moduli and periods in the second panel of

Table 10 are the same as those in the first panel. Note too that the posterior

mean for α3 obtained by OLS, in column two of Table 9, is small compared

to its standard deviation but the asymptotic posterior means of both φ2 and

ω1, whose product equals α3, are large compared to their asymptotic standard

deviations. Thus setting α3 to 0, in an attempt to increase statistical efficiency,

would be a specification error. Table 11 uses the same notation as Table 5 to

present posterior results for the dynamic properties of the estimated φ(L) from

Table 9. The asymptotic posterior probability of the presence of a cycle is .72.

We now introduce two leading indicator variables which have been used in

the past by Garcia-Ferrer et al(1987), Zellner and Hong(1989), Hong(1989) and

Zellneret al(1991); the rate of growth of real M2 and the real rate of return on

stocks. Data on the value of M2 in billions of 1987 dollars and on an index

of the prices of 500 common stocks were both taken from U.S. Department of

Commerce, Bureau of Economic Analysis, Survey of Current Business, October

1995 and January 1996. These series are both monthly while the GDP series

are quarterly. Several methods are available to transform the monthly series to

quarterly series: averaging over the quarter, taking the median over the quarter,

or taking one of the months to represent the quarter. We used the value for

the third month in each quarter as the value for that quarter. Then the rate

of growth of real M2, x1,t, was obtained as the first difference of the log of

M2. The index of common stock prices was deflated by the consumer price
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index and the real rate of return on stocks, x2,t was the obtained as the first

difference of the log of the deflated series. The results of trend and unit roots

analyses for x1,t and x2,t appear in the second and third panels of Table 8. We

refrained from using prior information as to the appropriate lag length for x1,t

and x2,t; instead we chose the lag length which gave the minimum BIC for an

unrestricted AR model. This was a lag of one in both cases. Here too, all the

posterior probabilities of stochastic nonstationarity were zero to eight significant

digits.

To obtain an ARDLAR model we must add distributed lags in x1,t and

x2,t to the ARAR model (79). In making these additions we specified the lag

polynomials so as to: reflect the character of x1,t and x2,t as leading indicators;

take account of the fact that the reporting lag before data on the growth of

M2 are publicly available is much longer than the reporting lag for real stock

returns; take advantage of the way in which monthly values of x1,t and x2,t were

converted to quarterly values. This produced a generalization of (55) which we

label ARDLAR(p,m1,m2, r)

ω(L)φ(L)Yt = α0 + ω(L)δ1(L)x1,t + ω(L)δ2(L)x2,t + εt (80)

where: ω(L) and φ(L) are specified as in the ARAR model (79); δ1(L) = δ1,2L
2

( so m1 = 2 with δ1,0 = δ1,1 = 0 ) and δ2(L) = δ2,1L (so m2 = 1 with δ2,0 = 0).

We can also write (80) in the form of the restricted ARDL(3,3,2) model

Yt = α0 + α1Yt−1 + α2Yt−2 + α3Yt−3 +
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β1,2x1,t−2 + β1,3x1,t−3 + β2,1x2,t−1 + β2,2x2,t−2 + εt. (81)

where the restrictions are

α0 = µφ(1)ω(1) α1 = ω1 + φ1

α2 = φ2 − ω1φ1 α3 = −ω1φ2

β1,2 = δ1,2 β1,3 = −ω1δ1,2

β2,1 = δ2,1 β2,2 = −ω1δ2,1.

If, for example, Yt pertains to the fourth quarter of 1970 then x1,t−2 pertains

to June 1970 and x2,t−1 pertains to September 1970: i.e. there is a delay of

three months before x1,t has an impact on Yt and a delay of only one month

before x2,t has an impact. Note that there is no identification problem with this

model.

NLS results for this model are in the fourth column of Tables 9. They

show that the addition of the distributed lags in x1,t and x2,t was useful be-

cause the posterior means δ̂1,2 and δ̂2,1 are large compared to the posterior

standard deviations and because the residual variance was reduced. Also the

approximate Bayes factor is 36100 in favour of the ARDLAR(2,2,1,1) over the

ARAR(2,1). The estimated roots, plus their modulus and period, of α̂(L) im-

plied by this model are given in the third panel of Table 10: they agree closely

with those from the AR(3) and ARAR(2,1) models. The size of φ̂2 compared to

its standard deviation is smaller for the ARDLAR(2,2,1,1) model than for the

ARAR(2,1). This results in less precise inferences about the dynamic properties

φ(L), especially the period of the cycle, as shown in Table 11. Never-the-less,
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the approximate posterior probability of the presence of a cycle is .64 for the

ARDLAR(2,2,1,1) model.

The fifth column of Table 9 shows the results for the ARDL(3,3,2) implied

by imposing the restrictions shown below equation (81), while those in the

sixth column were obtained by applying OLS to (81) without regard for these

restrictions. A researcher who focussed on these OLS results might be tempted

to set α3 and β1,3 to zero, to gain statistical efficiency. But the results in columns

four and five of Table 9 suggest that these restrictions would be inappropriate.

Also the approximate Bayes factor in favor of the ADLAR(2,2,1,1) model over

the unrestricted ARDL(3,3,2) is 40.69. Finally, we note that the roots of α̂(L)

from the unrestricted ARDL(3,3,2), shown in the last panel of Table 10, do not

suggest the presence of a cycle.

Next we obtained forecasts of the level of GDP for 16 periods beyond the end

of the sample used in estimation. For this purpose the ARAR(2,1) model was

written as a restricted AR(3) ( which in this case is the same as the unrestricted

AR(3) ) and the ARDLAR(2,2,1,1) as a restricted ARDL(3,3,2). Then forecasts

were calculated for these two models and for the unrestricted ARDL(3,3,2) for

the 16 post-sample periods and converted to forecasts of the level of GDP.

Summary statistics for the percentage forecast errors are shown in Table 12. The

forecasting performance of the ARAR model was the best of the three models,

in spite of its lack of exogenous variable. On RMSE grounds the ARDLAR and

ARDL models were nearly equal.

To illustrate the calculation of exact posterior results we used a procedure
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similar to that used for the housing starts model above. Write x′t = [1, x1,t, x2,t]

and γ′ = [α0, φ1, φ2, δ1,2, δ2,1]. In contrast to the housing model we adopted a

uniform, diffuse prior for ω1, γ′ and log σ. Write the initial values of Yt and xt

as y′0 = [y1, . . . , ys] and x′0 = [x′1, . . . ,x′s], where s = max(p + r,m + r), and let

z′0 = [y′0,x′0]. Write the T remaining observations as y′ = [ys+1, . . . , ys+T ] and

x′ = [xs+1, . . . ,xs+T] and write z′ = [y′,x′]. For this example s = 3 and T =

165. All inferences are conditional on z′0. Define y(ω) as the T × 1 vector with

elements yt(ω) = yt−ω1yt−1 and x(ω) as the T×2 matrix with rows xt−ω1xt−1.

Then let z(ω) be the T ×k matrix with rows z′t(ω) = [yt−1(ω),xt(ω),xt−1(ω)],

where k = m + p + 1 = 5. Assume εt ∼ IN(0, σ2). Then the joint posterior,

after completing the square on γ, can be written as

p(γ, ω, σ/y, z,y0, z0) ∝ σ−(T+2) exp

{
− (v ˜s2(ω) + [γ − γ̃(ω)]′[z′(ω)z(ω)][γ − γ̃(ω)])

2σ2

}

where: v = T − k;

γ̃(ω) = [z′(ω)z(ω)]−1z′(ω)y(ω)

and

v ˜s2(ω) = y′(ω)y(ω)− γ̃(ω)
′
[z′(ω)z(ω)]γ̃(ω).

Integrating out σ2 gives

p(γ, ω/y, z,y0, z0) ∝
[ ˜s2(ω)

]−(v+k)/2 {
v + [γ − γ̃(ω)]′H(ω)[γ − γ̃(ω)]

}−(v+k)/2

(82)

where H(ω) =
[ ˜s2(ω)

]−1

[z′(ω)z(ω)].

Integrating (82) over γ gives the marginal posterior density for ω1.

p(ω1/y, z,y0, z0) ∝
[
v ˜s2(ω)

]−v/2

|z′(ω)z(ω)|−1/2
. (83)
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This density is plotted, together with the large-sample approximation, in Figure

9. Posterior moments for ω1 are in Table 13. Since a diffuse prior was used,

the difference between the two densities is due entirely to the approximation

error resulting from the small sample size. As in the housing starts example,

conditional on ω1, (82) is a multivariate Student-t density so the conditional

posterior densities of the γi, given ω1, are in the univariate Student-t form. To

obtain the marginal posterior density for an individual γi integrate ω1 out of

the product of the conditional Student-t density and the marginal density for

ω1 given in (83). This integration was done using Gaussian quadrature over one

dimension which is quick and accurate. The resulting posterior densities are

plotted in Figures 10, 11, 12 and 13 and their moments are in Table 13. Clearly,

the asymptotic approximations are not nearly so close to the exact densities as

was the case in the housing example above.

4 Conclusions

We have shown in this paper that a useful model for the error, in univariate

and single equation distributed lag models, is a finite, stationary AR. In the

past researchers have often used a white noise or MA model for the error with-

out much prior or other information to support their choice. The ARAR and

ARDLAR models allows for very rich behavior of the error process and yet are

usually easier to implement empirically than models with MA errors. Other

appealing features of our ARAR model are its parsimony and the fact that all
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its components obey the Wold decomposition. We have shown theoretically and

empirically how a researcher’s prior beliefs about the autoregressive structure of

the observable variable can be used to solve the identification problem inherent

in the univariate version of the model. There is no such identification problem in

versions of the model, such as distributed lag models, which contain exogenous

variables.

The extension of these ideas to vector autoregression and simultaneous equa-

tions models is the subject of our current research.
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Notes

1. “God made X (the data), man made all the rest (especially, the error

term).” quoted in Nicholls et al (1975). We add that in many instances

humans, not God, construct the data.
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2. For work on inference procedures for time series models see, inter alia: Box

and Jenkins (1976), Chib (1993), Harvey (1981), and Hamilton (1994).

3. Box and Jenkins (1976)page 11.

4. Pankratz (1983) p.369.

5. In this example we are abstracting from the problem of analyzing multiple

cycles, such as long cycles in construction activity.

6. For all the calculations reported in Tables 1 to 4 we used TSP Version

4.3A for OS/2.

7. These values were calculated using the COINT routines for GAUSS which

scale the trend value to range from 1 to 1/T.

8. We drew the same inference from the results of augmented Dickey-Fuller

(Said and Dickey (1984)), Phillips-Perron (1988) and weighted symmetric

(Pantula et.al. (1994)) tests.

9. While a uniform, diffuse prior is uninformative for the αi in (39), it is not

uninformative for the roots of α(L). See Hong(1989) and Phillips (1991)

for a discussion of this point.

10. The other model which Pankratz found adequate was an ARMA(3,2) with

φ2 set to 0. For our data that model has slightly higher residual autocor-

relation, was less parsimonious and had larger forecast errors than did the

ARAR(2,2).
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11. For these calculations the data was measured as deviations from the esti-

mated sample mean divided by the standard deviation of these deviations.

This had no effect on the φ̂1, φ̂2, ω̂1 or ω̂4 but it served to eliminate over-

flow and underflow errors in the numerical evaluations of the integrals

discussed below.

12. There is no ω0 = 0, analogous to φ0, because E(Ut) = 0 by assumption.

13. All the numerical integrations reported here were done by Gaussian quadra-

ture using GAUSS 386 version 3.2.13.

14. Marginal posteriors for φ1 or φ2 can also be obtained by integrating the

portion of (43) which we have identified as the joint posterior of φ1 and

φ2 over the other φi.

15. This produces the same results as the technique introduced by Fuller and

Martin (1961).

16. This formulation assumes that Yt and xt have the same unit of measure-

ment.
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Table 1
Housing Starts Model

Autocorrelations and Partial Autocorrelations
Data AR(6) Residuals

Autocorr Partial Autocorr Partial
Lag (S.E.) (S.E.) (S.E.) (S.E.)
1 .911 .911 .00213 .00213

(.0765) (.0765) (.0778) (.0778)
2 .765 -.376 -.0273 -.0273

(.125) (.0765) (.0779) (.0778)
3 .581 -.242 -.0238 -.0237

(.150) (.0765) (.0779) (.0778)
4 .397 -.0111 .0146 .0139

(.162) (.0765) (.0780) (.0778)
5 .230 -.0207 .0481 .0468

(.168) (.0765) (.780) (.0778))
6 .0751 -.126 -.0628 -.0630

(.144) (.0765) (.0781) (.0778))
7 -.0459 .0382 .00562 .00920

(.170) (.0765) (.0785) (.0778)
8 -.141 -.0471 .0232 .0221

(.170) (.0765) (.0785) (.0778)
9 -.210 -.0548 .0322 .0283

(.171) (.0765) (.0785) (.0778)
10 -.267 -.106 -.0387 -.0384

(.172) (.0765) (.0786) (.0778))
Box-Ljung (1978) portmanteau statistics at lags 5 & 10
Q5 344 19.3
Q10 370 30.3

Data source: U.S. Department of Commerce,
Survey of Current Business
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Table 2
Housing Starts Model
Roots of α̂(L) by OLS

Roots Modulus Period
.860± .242i .893 23.0
−.624± .382i .731 2.42
.358± .586i .687 6.14

Table 3
Housing Starts Model

Posteriors for Unit Roots and Trends
No Linear Quadratic

Trend Trend Trend
Using Equation (31)

α̂0 15.4 15.2 14.3
Std Dev 3.39 3.43 3.67

β̂1 —- .00568 .0403
Std Dev —- .0123 .0494

β̂2 —- —- -.000206
Std Dev —- —- .000285

ρ̂ .836 .833 .833
Std Dev .0352 .0359 .0359

PD(ρ ≥ 1) .000 .000 .000
PJ (ρ ≥ 1) .000 .000 .000

Using Equation (34)
µ̂0 94.2 91.2 84.1

Std Dev 3.51 7.36 12.2
µ̂1 —- .0341 .254

Std Dev —- .0729 .315
µ̂2 —- —- -.00123

Std Dev —- —- .172
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Table 4
Housing Starts Models

Asymptotic Posterior Moments
Unrestricted Restricted Unrestricted Restricted
ARAR(2,4) ARAR(2,4) ARMA(2,2) ARMA(2,2)

φ̂1 1.72 1.63 1.04 1.22
Std Dev .0727 .0628 .189 .0771

φ̂2 -.798 -.722 -.217 -.371
Std Dev .0699 .0623 .176 .0741

ω̂1 -.531 -.461 —- —-
Std Dev .0985 .0805 —- —-

ω̂2 -.114 —- —– —-
Std Dev .118 —- —- —-

ω̂3 -.206 —- —- —-
Std Dev .110 —- —- —–

ω̂4 -.252 -.149 —- —-
Std Dev .0882 .0743 —- —-

θ̂1 —- —- -.175 —-
Std Dev —- —- .177 —-

θ̂2 —- —- -.398 -.329
Std Dev —- —- .0910 .0845

σ̂ 7.38 7.41 7.52 7.48
ln likelihood -560 -562 -565 -565

Q5 .658 4.80 2.37 3.96
Q10 1.89 5.79 6.96 7.39

Table 5
Housing Starts Models

Asymptotic Posterior Moments
For Functions of φ1 and φ2

Unrestricted Restricted
ARAR(2,4) ARAR(2,4)

Dynamic Standard Standard
Property Mean Deviation Mean Deviation

Cycle -.233 .0631 -.232 .0815
Modulus .893 .0391 .850 .366
Period 23.0 2.75 21.9 3.41
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Table 6
Housing Starts Models

Percentage Forecast Error Summary Statistics
Unrestricted Restricted Unrestricted Restricted
ARAR(2,4) ARAR(2,4) ARMA(2,2) ARMA(2,2)

Mean 2.92 2.52 1.85 1.86
Std Dev 7.25 6.68 7.25 6.98
RMSE 7.82 7.14 7.49 7.22

Table 7
Housing Starts Model

Exact Posterior Moments
Restricted ARAR(2,4)

Coeff. Mean Std. Dev. Skewness
φ1 1.62 .0680 -.0000186
φ2 -.706 .0671 -.000210
ω1 -.440 .0860 -.00176
ω4 -.137 .0768 -.00848
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Table 8
Posteriors for Unit Roots and Trends in Rates of Growth

for Real GDP, M2 and Stock Returns Using Equation (31)
No Trend Linear Trend Quadratic Trend

Rate of Growth of Real GDP
α̂0 .04604 .006394 .006502

Std Dev .001045 .001776 .002524
β̂1 —- -.003146 -.003737

Std Dev —- .002529 .01013
β̂2 —- —- .0005825

Std Dev —- —- .009668
ρ̂ .3894 .36375 .36299

Std Dev .09417 .09600 .09695
PD(ρ ≥ 1) .00000 .00000 .00000
PJ(ρ ≥ 1) .00000 .00000 .00000

Rate of Growth of Real M2
α̂0 .002594 .0032332 .0008665

Std Dev .0008632 .001585 .002280
β̂1 —- -.001253 .01345

Std Dev —- .002611 .01057
β̂2 —- —- -.01464

Std Dev —- —- .01020
ρ̂ .5922 .5910 .5750

Std Dev .06351 .06352 .06410
PD(ρ ≥ 1) .00000 .00000 .00000
PJ(ρ ≥ 1) .00000 .00000 .00000

Rate of Growth of Real Stock Returns
α̂0 .006503 .01626 .03827

Std Dev .005782 .01163 .01764
β̂1 —- -.01928 -.1479

Std Dev —- .01996 .08041
β̂2 —- —- .1273

Std Dev —- —- .07716
ρ̂ .1447 .1370 .1180

Std Dev .07708 .07726 .07750
PD(ρ ≥ 1) .00000 .00000 .00000
PJ(ρ ≥ 1) .00000 .00000 .00000
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Table 9
Real GDP Growth Models

Asymptotic Posterior Moments
Restricted Unrestricted

AR(3) ARAR(2,1) ARDLAR(2,2,1,1) ARDL(3,3,2) ARDL(3,3,2)
Eqn (15) Eqn (79) Eqn (80) Eqn (81) Eqn(81)

α̂0 .004884 .004884 .004049 .004049 .004023
Std Dev .001103 .001103 .001056 .001056 .001056

α̂1 .3403 —- —- .2091 .1993
Std Dev .07883 —- —- .07766 .07826

α̂2 .1257 —- —- .1357 .1158
Std Dev .08267 —- —- .07206 .07693

α̂3 -.08642 —- —- -.05417 -.01090
Std Dev .07841 —- —- .06628 .07346

β̂1,2 —- —- —- .1100 .1328
Std Dev —- —- —- .05283 .07869

β̂1,3 —- —- —- .04623 .003707
Std Dev —- —- —- .02255 .07698

β̂2,1 —- —- —- .04137 .03639
Std Dev —- —- —- .008879 .009529

β̂2,2 —- —- —- .01739 .02818
Std Dev —- —- —- .005981 .01047

φ̂1 —- .7676 .6295 —- —-
Std Dev —- .1443 .1450 —- —-

φ̂2 —- -.2023 -.1289 —- —-
Std Dev —- .1279 .1208 —- —-

ω̂1 —- -.4273 -.4203 —- —-
Std Dev —- .1364 .1410 —- —-

δ̂1,2 —- —- .1100 —- —-
Std Dev —- —- .05283 —- —-

δ̂2,1 —- —- .04137 —- —-
Std Dev —- —- .008879 —- —-

σ̂ .09761 .009761 .008921 .008921 .08919

ln(L) 531.7 531.7 547.3 547.3 548.7
Q5 .459 .459 .803 .803 .537
Q10 6.78 6.78 9.41 9.41 7.96
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Table 10
Real GDP Growth Models
Roots of Estimated α̂(L)

Roots Modulus Period
Unrestricted AR(3) by OLS

.3838± .2344i .4497 11.46
-.4273 .4273

α̂(L) From ARAR(2,1) by NLS
.3838± .2343i .4497 11.46

-.4273 .4273

α̂(L) From ARDLAR(2,2,1,1) by NLS
.3147± .1727i .3590 12.52

-.4203 .4203

α̂(L) From ARDL(3,3,2) by OLS
.4151 .4151
-.3026 .3026
.08681 .08681

Table 11
Real GDP Growth Models

Asymptotic Posterior Moments
For Functions of φ1 and φ2

ARAR(2,1) ARDLAR(2,2,1,1)
Dynamic Standard Standard
Property Mean Deviation Mean Deviation

Cycle -.2195 .3345 -.1193 .3339
Modulus .4497 .1422 .3590 .1682
Period 11.46 6.024 12.52 13.07

Table 12
Real GDP Growth Models

Percentage Forecast Error Summary Statistics
Unrestricted

ARAR(2,1) ARDLAR(2,2,1,1) ARDL(3,3,2)
Mean -.0434 -.180 -.170

Std Dev 1.65 1.74 1.74
RMSE 1.66 1.75 1.75
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Table 13
ARDLAR(2,2,1,1) Model for Real GDP Growth

Exact Posterior Moments
Coeff. Mean Std. Dev. Skewness

φ1 .4678 .1842 -.4976
φ2 -.02723 .1190 -.02367
ω1 -.4203 .1898 .5911
δ1,2 .1472 .06145 .3166
δ2,1 .03836 .008749 -.02477
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