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THE SINGULARITY OF THE INFORMATION
MATRIX OF THE MIXED PROPORTIONAL
HAZARD MODEL"
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1 Introduction

WE RECONSIDER THE EFFICIENCY BOUND for the semi-parametric Mixed Proportional Haz-
ard (MPH) model with parametric baseline hazard and regression function. This bound was
first derived by Hahn (1994). One of his results is that if the baseline hazard is Weibull,
the information matrix is singular, even if the model is semi-parametrically identified!. This
implies that neither the Weibull parameter nor the regression coefficients can be estimated
at a N~/2 rate? (Ishwaran (1996a) and Van der Vaart (1998, Theorem 25.32)).

Hahn’s result had an impact on the use of MPH models in empirical research. The
singularity of the information matrix seems to confirm the results of simulation studies,
see e.g. Baker and Melino (2000), that suggest that it is difficult to estimate both the
baseline hazard and the distribution of the random effects (or unobserved heterogeneity)
with a sufficient degree of accuracy with the sample sizes that one encounters in practice.

Indeed Honoré’s (1990) estimator for the parameters of a semi-parametric Weibull MPH
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model converges at a rate slower than but arbitrarily close to N~1/3. Ishwaran (1996b)
shows that the Weibull parameter can be estimated at a rate of at most N_ﬁ if the
moments of the unobserved heterogeneity up to d + 1 are bounded. Altogether these results
seem to imply that although the MPH model is semi- and even non-parametrically identified,
the estimation of the parameters of a semi-parametric MPH model requires a larger dataset
than usual.

In this note we show that this impression is false. In particular, we show that the
information matrix is singular if and only if the parametric model of the (integrated) baseline
hazard is closed under the power transformation. A set of integrated baseline hazards H is
closed under the power transformation if h(t) € H implies h(t)* € H for every o > 0. The
Weibull baseline hazard is the most prominent member of this class of models. All models
that are closed under the power transformation have a baseline hazard that is either 0 or co
for t = 0, so that the restriction that the baseline hazard at 0 is bounded away from 0 and oo
rules out closedness under the power transformation. Under this restriction the information
matrix is nonsingular.

We also show that the MPH model is semi-parametrically identified if we restrict the
baseline hazard near 0 to be bounded away from 0 and co. Hence, there are (at least) two
restrictions that are sufficient for semi-parametric identification: (i) the restriction that the
mean of the unobserved multiplicative random effect is finite (Elbers and Ridder (1982)3),
and (ii) the restriction that the baseline hazard near 0 is bounded away from 0 and infinity.
The first restriction does not preclude that the information matrix is singular, the second
restriction does. Hence, if we impose the second restriction there may exist estimators that
are N~'/2 consistent. Under the first restriction the upper bound of the rate of convergence
is N°3 (Ishwaran (1996a).

Is there empirical and theoretical support for the assumption that the baseline hazard is
bounded from 0 and oo near ¢t = 07 First, it should be noted that boundedness of the hazard
of the duration given the covariates, i.e. ignoring unobserved heterogeneity, from 0 and co

near t = 0, implies the same property of the baseline hazard in the MPH model. This makes



the assumption on the baseline hazard testable (the boundedness from oo by testing whether
one over the hazard is significantly different from 0). Second, the MPH model has been used
frequently in empirical studies. Strictly, the assumption that the baseline hazard is bounded
from 0 and oo is not testable without further assumptions, because the MPH model may not
be identified if this assumption does not hold. However, if the baseline hazard is specified
such that its value near ¢ = 0 is estimated without restrictions, e.g. by using a piecewise
constant hazard, one can construct a confidence interval for that value (and its inverse).
Meyer (1990), (1996) estimates such an MPH model for unemployment durations and his
estimates show that the baseline hazard is bounded from 0 and oo near ¢ = 0. The same
conclusion can be drawn from Kennan’s (1985) study of strike durations. He does not use
an MPH, but a discrete hazard model, but the daily settlement hazards are clearly positive
from the start and, although the hazard is decreasing/increasing, the hazard near t = 0 is
not exceptionally large. From a search of the empirical literature we conclude that there is
prima facie evidence that the assumption that the baseline hazard is bounded from 0 and co
near t = ( holds in most, but not all, studies*. Third, if we think of the MPH model as a
reduced form approximation of a hazard model that is derived from economic theory, then it
is important to check whether theoretical models have hazards that are bounded from 0 and
oo near t = 0. We can refer to Van den Berg’s (1990) study of non-stationary job search. In
his model the reservation wage path is bounded and this implies that if the arrival rate of
job offers is bounded from 0 and oo near t = 0, then the re-employment hazard also has that
property. Blau and Robins (1986) estimate the offer arrival rate and from their estimates we
conclude that it satisfies the assumption. Yoon (1985) derives a closed form solution of the
non-stationary job search model that is bounded from 0 and oo near ¢ = 0.

The MPH model can be expressed as a transformation model with a scale normaliza-
tion. Horowitz (1996) derives a semi-parametric estimator for transformation models, and
Horowitz (1999) proposes an estimator of the scale parameter that, if the first three mo-
ments of the multiplicative unobserved heterogeneity are bounded, converges at a rate that

is arbitrarily close to IV 3. We develop an estimator for the scale parameter under the as-



sumption that the baseline hazard near ¢ = ( is constant and bounded from 0 and co, but
no parametric assumptions are imposed on the baseline hazard for other values of t. This

/2 Combining this estimator of the scale parameter with

estimator converges at rate N~
Horowitz’ (1996) estimators of the other parameters in the MPH model yields estimators for
the integrated baseline hazard and the regression coefficients that converge at rate N -3,
This paper is organized as follows. In section 2 we discuss the semi-parametric MPH
model and its efficiency bound as obtained by Hahn (1994). We also give an example that
shows that if we change the Weibull baseline hazard slightly so that it is bounded away from

0 and oo at 0, then the information matrix becomes nonsingular. Section 3 contains the main

result. Section 4 discusses the implications for estimation and section 5 concludes.

2 The Semi-parametric MPH Model: Identification and Effi-
ciency Bound

2.1 The semi-parametric MPH model

We consider the semi-parametric MPH model for the conditional distribution of T' given a

vector of non-constant covariates X
(1) 0(t | X,U;a,B8) = A(t,a)e” X eV

with parametric baseline hazard A(t, «), regression function e#' X and (c, 3) in a parameter
space that is an open subset of the Euclidean space of conforming dimension. The unobserved
covariates are captured by the random effect U. For example, for the Weibull model we have
0t | X,U;a,B) = at® e X el where a > 0. The unconditional (on U) integrated hazard

at the population values of the parameters is defined as
(2) S = A(T, ag)e’0X

with A(t, ) = J(f A(s, a)ds. In appendix 1, we show that

a W

(3) S=7

with W a standard exponential random variable that is independent of U, X and 2 means

that the random variables on both sides have the same distribution.



2.2 Semi-parametric identification

Elbers and Ridder (1982) show that this MPH model is semi-parametrically identified if the

following assumptions hold.
(A1) A(to, ) =1 for some tg > 0, and A(00, ) = 0.
(A2) E(eY) < 0.

(A3) There are x1, x5 in the support of X with 3{z; # )z and there is no constant in X;

U and X are independent.

(A4) If A(t,a0) = A(t,dp) for all ¢ > 0, then ag = dp, and if Gy = ng for all  in the
support of X, then ) = BO.

The first part of assumption Al and the absence of a constant in X are normalizations.
Assumption A4 ensures parametric identification of ayg, 3.

We propose an alternative for assumption A2.
(AZ*) 0< limtlo )\(t,()z()) = )\(0,0&0) < 00.

Ishwaran (1996a) shows that there exist a nonnegative random variable U; and a o > 0
such that EEU 4 eI:,V—UGl If we omit covariates, the observationally equivalent MPH model
has integrated baseline hazard A(t, ao)% which does not satisfy A2*. Hence A2* precludes
Ishwaran’s construction of an observationally equivalent MPH model. Assumptions A1, A2*,

A3-A4, are sufficient for the semi-parametric identification of the MPH model.

Proposition 1
If the conditional distribution of 7" given X has a distribution with a (conditional) hazard as
in (1) and if assumptions A1, A2* A3, and A4 are satisfied, then «ag, 3, and the distribution
of U are identified, i.e. there are no observationally equivalent aq, BO.
Proof: See appendix 2.

Although both sets of conditions ensure that the semi-parametric MPH model is identi-

fied, they have different implications for the information bound of this model. In particular,



with the finite mean assumption the information matrix can be singular, while with assump-
tion A2* this cannot be the case.

Examples of parametric models where assumption A2* holds for all parameter values
are the Gompertz baseline hazard, the rational log specification (Lancaster (1990)), and the
normal hazard. See Klein and Moeschberger (1997) for a discussion of these specifications.
Examples of models in which assumption A2* is a parametric restriction are the piecewise-
constant baseline hazard and the Box-Cox baseline hazard of Flinn and Heckman (1982)5.

Finally, the lognormal hazard does not satisfy A2* for all parameter values..
2.3 The information bound of the MPH model

Hahn (1994, p. 610) derives the efficient score of the MPH model using the following as-

sumptions.

(B1) A(t, ) and A(t, ) are continuously differentiable with respect to « on an open set that

contains ag.

(B2) E(X'X) < oo and there exist non-negative functions (;(7, X), i = 1,2, 3 such that

Ol \(T

‘% < (1)
,+ ON(T

‘e“% < G(1,X)
‘Xeﬁ'XA(T,a) < (4(T, X)

with E(¢{(T)?) < oo, E(e2V(,(T, X)?) < o0, i = 2,3.

The variance matrix of the efficient score at the population parameters «q, 3, is the

information matrix. The efficient score is

(4) [ — { la ] _ { a11 — a12S - E[eV|S]

lg as — a8 - E[eV|S]



with

wy = Ol AT, o) E Oln \(T, @) S
O O
 0lnA(T,a) Oln AT, @)
(5) a2 = 6—04 —E |:8—()[|S

a; = X —E(X|S) =X —E(X),

see Hahn (1994, Theorem 1)®. Without loss of generality we assume that E(X) = 0.

For the Weibull baseline hazard A(t,a) = at® ! we have
(6) all = a1 = InT — E(ln T|S)

_ nS—pLX
and by (2) InT' = —=2= so that

/
(7) aj] = alg = ——OX.
Qo

Substitution in (4) yields

so that the distribution of the efficient score is singular at the population parameter values
as is its variance matrix. This is the argument given by Hahn (1994, p. 614).

Note that this argument is not restricted to the Weibull baseline hazard. It applies to
all integrated baseline hazards of the form A(¢,7v,a) = h(t,7)® with h a strictly increasing
function of ¢ with 2(0,7) = 0. However, a small modification of the Weibull baseline hazard
gives a nonsingular information matrix. Consider the translated Weibull with integrated
baseline hazard A.(t,a) = (t +¢)® — &® with ¢ > 0 a known constant. Note that this class
of integrated baseline hazard models is not closed under the power transformation. Also the
baseline hazard of this model is bounded away from 0 and oo if € > 0. A direct calculation

shows that the information matrix is nonsingular.

3 Necessary and Sufficient Conditions for the Singularity of
the Information Matrix

Our main result is



Proposition 2

Under assumptions A1, A3-A4, and B1-B2 the information matrix is singular if and only if the
integrated baseline hazard is of the form A(t,a) = h(t)X® for a in some open neighborhood
of ag with h a strictly increasing continuous function with 2(0) = 0, h(co) = oo and with
d(a) > 0.

Proof: See appendix 3.

The proof of Proposition 2 can be extended to the case of two or more parameters’. The

baseline hazard that corresponds to A(t, a) = h(t)4®) is
9) A(t, a0) = d()h(t) 1071/ (2).

Note that the proposition only restricts d(ag) to be positive. In particular, it can be either
smaller or larger than 1. If d(ag) < 1, then by (9) limgjo A(t, ) = oo. If d(ag) > 1, then
limg g (%, a9) = 0. Only if d(ag) = 1, the baseline hazard at 0 can be bounded away from 0
and oco. Hence we have

Theorem

If the assumptions for Proposition 2 hold, then 0 < limgjg A(t, ) < oo implies that the

information matrix of the semi-parametric MPH model in (1) is nonsingular.

4 Implications for Estimation

A consequence of the theorem is that if we impose A2* there may exist estimators of the
regression coefficients and the parameters of the integrated baseline hazard that converge at
arate N~3. In this section we discuss some estimators for semi-parametric MPH models that
satisfy A2*. We also develop an estimator for the case that the baseline hazard is constant
near (), but nonparametric for other values of ¢. In both cases the parameters are estimated
at rate N 3.

If the baseline hazard is specified for all ¢ > 0, estimation starts from the observation
that if we define A(T, o) exp(8'X) = S(X, «, 3), then under weak conditions the distribution
of S is independent of X if and only if o = a,3 = 3;. Estimators as the Quantile Cen-

soring estimator (Ridder and Woutersen (2002)) and the Linear Rank estimator (Bijwaard



and Ridder (2002)) use this observation to formulate (potentially a continuum of) moment
conditions. A proof that their moment conditions identify the parameters of the semipara-
metric MPH model, even if the durations are censored, is beyond the scope of the present
paper. Note that these moment conditions cannot identify the parameter o of a power trans-
formation of A(t, ) and corresponding scale of 3. However, by assumption A2* there are no
observationally equivalent models with o # 1.

Next consider the case that the baseline hazard is only specified near 0. Taking the

logarithm of (2) gives, by appendix 1
(10) InA(T,0) = —f'X —U +InW.

This is essentially a transformation model with transformation H = In A and random error
—U 4+ InW. Horowitz (1996) suggests using existing single index estimators for 3 and he
proposes a nonparametric estimator for H. This estimator (and the single index estimator)
estimate In(A(t)) (and () up to a multiplicative scale parameter ¢. In the MPH model this
scale parameter is identified either by an assumption on the moments of eV or by assump-
tion A2*. Horowitz (1999) proposes an estimator for the scale parameter that converges at
rate arbitrarily close to N™3. Now assume, as in Meyer (1990), that the baseline hazard is
constant over a small interval near 0, i.e. 0 < A(t) = A(0) < oo for 0 < ¢t < 2e. Moreover,
suppose that assumptions 1-9 of Horowitz (1996) hold and that we can estimate the trans-
formation (up to scale) over the interval [e, 7] where 7 > 2¢. Denote the estimator of the
transformation by ﬁ(\t) This estimator converges at rate N2 (Horowitz (1996, theorem
1)). Because H(t) = olnA(t) we have H(2e) — H(e) = oln2, so that we estimate the scale

parameter o by

—_——

H(2¢) —H(e)'

11 oN =
(11) N In2

The integrated baseline hazard and the regression parameters can be estimated using .

All these estimators converge at rate NV -3,



5 Conclusion

The condition that the baseline hazard is bounded away from 0 and oo near ¢t = 0 is suf-
ficient for semi-parametric identification. This condition is also sufficient for a nonsingular
information matrix. Hence, if the parametric baseline hazard is bounded from 0 and oo near
t = 0, there may exist (regular) estimators of the parameters of the semi-parametric MPH
model with a parametric baseline hazard and regression function that are N—1/2 consistent.
In particular, we develop an estimator for the scale parameter in the MPH model (and hence
the integrated baseline hazard and the regression parameters) under the assumption that the
baseline hazard is constant and bounded from 0 and oo in a small interval near zero. This
estimator converges at rate N2,

The restriction 0 < limgjo A(f,a0) = A(0,00) < o0, is an alternative for restrictions
that bound the moments of the multiplicative unobserved heterogeneity. Both are sufficient
for semi-parametric identification. However, under the restriction on the baseline hazard,
the information matrix of the semi-parametric MPH model is nonsingular, so that N—1/2
consistent estimators may (and indeed do) exist.

The restriction on the baseline hazard is testable. A sufficient (but not necessary) con-
dition for the boundedness of the baseline hazard from 0 and co near ¢ = 0 is that the

conditional hazard given the covariates (but not the unobserved heterogeneity) and the in-

verse of this conditional hazard are significantly different from 0 near ¢t = 0.

6 Appendices

Appendix 1 Distribution of S = A(T, ao)eﬁ()X.

We have Pr(T > t|X,U) = exp (—A(t,ao)eﬁﬁXeU). Hence Pr (A(T, ap)ePoX > s|X, U) =
Pr <T > A1 (se‘ﬂbXao) |X, U) = ¢=*". Because U and X are independent we have
Pr(S > s|X) = E(e—*¢") and Pr(S > s) = E(e 5" ).

Appendix 2 Proof of Proposition 1

10



By (2) and (3) we have for all £ > 0

(12) Pr(T < t|X) = Fy (A(t,ao)eﬁOX)

where V = QEU is distributed as a mixture of exponential distributions and hence has a

strictly increasing cdf Fyy. We can assume that A(¢,«p) is strictly increasing in ¢ without

loss of generality. If &g, BO, U are observationally equivalent, then for all ¢ > 0
(13) Fy (A(t, ao)eﬂoX) Sy (A(t,do)eBOX) .

We denote A(t, ag) = A(t), A(t,ap) = A(t), e Por1 = ?15 e Por2 = b9, e Bor1 — &51, e Powz —
(}2 with x1, 22 as in A3 and without loss of generality 1 = ¢y > ¢, 1 = g?)l > q~i>2.

The inverse of a strictly increasing function exits and from (13) for all £ > 0

N | o
(14) Ao (A (R 208) 3-) = Rt = 7 (A (R 0))
If we denote K = A (A’l(t)) with K strictly increasing and K (0) = 0, then (14) implies
that
(15) K(t¢y) = oK (1)

and by iteration for all n > 1

(16) K(tdy) = $5E(t).

If we take the derivative of (15) we obtain

a7) L1 (1) = K' ()
)
and by iteration for all n > 1
¢2 " ! . 1(n
(18) = | K'(t) = K'(¢31).
o)
. . . / AA= (@) .
Taking the ratio of (18) and (16) we obtain because K'(t) = 0 with A\(¢) = A\(t, ),

Alt) = A(t, ap)

. MA(ér1))
(t K'(¢pqt 1 X(A-1(]
K(t)  tnooo K@it) n—ocot  K(rt) t
Pit pit

11



by assumption Al. Because K (0) = 0 this implies that K () = ¢ and hence \(t,ag) = (¢, &)
for t > 0 so that ag = &g by A4. By (15) Byae = Bo,xg for all x5 in the support of X and
hence 3, = 3, by A4.

Appendix 3 Proof of Proposition 2
We first rewrite the efficient score in (4) and (5) to reflect the dependence on T, X, S and

the parameters,

lo a11(T, S, o) — a12(T, S, ) Hyr (S)
0 I R R PR

with Z = 3,X and Hy(S) = SE(eY|S). Note that by (3) Hy does not depend on the

parameters. Because S and Z are independent we have

Oln AT, « HIn AM(A~1(Se %, ag),
all(T7 S7 040) - %Ly—ao - EZ |: { ( (604 ) )} |a—a0:|
Oln AT, « H{In A(A~1(Se 7, ap),
a12(T, 57 OéO) - %Ly:ao - EZ |: { ( (8(1 0) )} |o¢:oz0:|
where by (2) the variables T, S, Z are related by
(21) InA(T,a0) +Z =In S.

By assumptions B1 and B2 the information bound is continuous in ap. We first consider
the case that ag is a scalar. If the information matrix has a rank equal to the number of
regressors in X, i.e. one less than full rank, for some value «a, then by continuity it has the
same rank for population parameters in a small neighborhood of ag, B(ag). Note that T
depends on X only through 3;X. By assumption A4 the linear combination that makes the
score singular must contain l,. Because l, depends on X only through 33X, loss of rank

occurs if and only if I, is proportional to 35X, i.e. there is a ¢(a) # 0 on B(ap) such that
(22) c(a)a1 (T, S, a) — c(a)ar2(T, S, o) Hy (S) = Z{1 — Hy(S)}

for @ in B(ay), and S > 0, Z, T that satisfy (21). From (22) it follows that for a € B(ay)
(23) ai1(t,s,a) = aa(t, s, a)

12



for if this equality does not hold for some o € B(ay), it does not hold on some open interval,
because of B1 and B2. Moreover, there is a t such that a11(t, s, @), ai2(t, s, ) are not constant
in @ on that interval by assumption A4. Hence only if the equality holds we can find a function
¢(a) such that the left-hand side does not depend on «.

Substitution in (23) gives that for all @ € B(ap) and s > 0 and ¢ that satisfy (21) for
some z in the support of Z

(24)
dlnA(t, o) E OlnA(A~(se™%, ), a) _alnA(t,a)_E OInA(A~(se™%, ), )

Oa i Oa Oa z Oa =0

Note that both a1; and aqo are identically equal to 0 if Z takes only one value. If Z takes

two (or more) values, then (24) holds if and only if for « € B(ag) and ¢ > 0

OlnA(t,a) OlnA(t, )
Oa Oa

(25) = f(e).

Integrating first with respect to o and next with respect to t gives (using the initial value

Alto,a) = 1)

o t
(26) InA(t,a) = el T / eF3)ds
Jtg
for @« € B(ap) and with k(t) the integration constant for the integration with respect to

a. Also ];2 k(s)ds = —oo and [ k(s)ds = oo. If we define h(t) = exp(ﬁz k(s)ds) and
d(a) = exp(j;z) f(7)dy), we find for a € B(ayp)

A(t, @) = h(t)4®
with h an increasing function with ~(0) = 0 and h(co) = co. This completes the proof.
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Notes

IThe singularity holds if we have single-spell duration data. Hahn shows that the efficiency
bound is nonsingular, if we have two or more spells for the same individual provided that
the individual random effect is the same for both spells.

2That is by a regular estimator sequence (for a definition see Van der Vaart (1998), p.
115).

3See also Jewell (1982) and Heckman and Singer(1984) who consider an alternative identi-
fying assumption that allows for an infinite mean, but assumes that the power transformation

is fixed.

4References can be found on our webpages www-rcf.usc.edu/ ridder/ and
www.sscl.uwo.ca/economics/faculty / Woutersen.

®The logarithm of this hazard model has the following form, In{A(t,a)} = ’yltki—l_l +

Yo txigl where Ao > A; > 0; condition A2* holds if and only if A; > 0. With this restriction
the baseline hazard still can be non-monotonic, e.g. ‘bathtub’ shaped.

6The efficient score is well-defined even if E(V) = oco; the proof is available at our web-
pages.

"The proof is available at our webpages.
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Omitted appendices of The Singularity of the Information Matrix of the Mixed

Proportional Hazard Model

Appendix A Existence of the score if E(V) = oo.

We have
E <62U e—SeU)
E(Y]S) = —~——2L
19 = 5 sy
Because z2e™57 < ;%6_2 the numerator is bounded by %e‘z. Because the distribution of

eV is not degenerate in 0, there are 0 < v; < ve with Pr(v; < eV < vg) > 0. Hence the

denominator is greater than min{vle_svl,vge_sm} Pr(v; < eV < vg) > 0. Hence
4 2

o
E(V|S) < kil
(e719) < min{vie 51 vge 2} Pr(v; < eV < o)

Appendix B The information matrix for translated Weibull baseline hazard.

The score is evaluated at o« = «g so that

(27) aj; = L In (e_ﬁ()XS + 50‘0) - iEX [In (e_BBXS + an)}
Qg Qg
Bo X , /
(28) a1z = (e"BOXS + 60‘0) In (e_BOXS + eao) —
OzoS

eBoX , ,
-Ex 5 (e*ﬂOXS + 60‘0) In (e*ﬂOXS + 5“0)

Qg
ePoX a0y ¢ ePoX g0 Ip ¢
S X S

To see that the distribution of the efficient score is nonsingular, consider the special case

U =0so that E [eU|S] = 1. Then a necessary condition for singularity is that

1 / 1 /
(29) a1l —a;nS = —1In (e_BOXS + 50‘0) - —Ex [ln (e_BOXS + 60‘0)} —
(e7)) Qo
ePoX

(eiﬁGXS + an) In <eiﬁ6XS + an) +

&%)
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€B6X 15’ I X
+Ex (e_ﬂo S + eao) In (e_ﬂo S+ 60‘0) +
(&%)
ePoX g0 Ip ¢ ePoX o0 I ¢
S X S

is constant in S for all x in the support of X, and this is true if and only if € = 0.

Appendix C Proof of Proposition 2 if the number of parameters in the baseline hazard is
greater than 1.

If a is a vector and o € B(ayp), (25) becomes

(30) C(a),aln(;\((lt,a) _c(a),alngo(ét,a) ~ f(a)

for some vector ¢(a) and a function, f(a). Consider the case that a has two parameters.

Then from (30)

(31) - =

OlnA(t,a) OlA(t,a)  fla) cf(a) <81n)\(t, o)  OlnA(t, a))
Oay Jay cla) () ’

8(12 6042

Integrating With respect to a1 and and t yields the representation A(t, o) = h(t,a)¥®) with

fo‘l co(v,a9) (Bln A(s,y,29) _alnA(s,'y,aQ)) d’y
ajg c1(¥,22) dag dag ds

d(a) = efam c1(7 az) 7 and In h(t, o) /Z) P e2)
so that Proposition 2 still holds with an obvious modification.
Appendix D

Addendum: Duration dependence near 0 in empirical research
Structural /empirical papers not MPH

In some papers only a graph of the baseline hazard is provided, and no estimates (with

standard errors).

1. Van den Berg, ReStud (1990). Unemployment durations. Hazard is 0(t, a) = AF(¢(t))
with ¢(t) the time-varying reservation wage. In his application ¢(t) is bounded and
the arrival rate and wage offer distribution are time constant. Hence the hazard near

0 is bounded from 0 and oo.
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2. Blau and Robins, J. of Public Economics (1986). Unemployment durations (days).
Piecewise constant baseline hazard (exponential specification) no unobserved hetero-
geneity. Estimates of offer arrival rate (Tables 2-3) and re-employment hazard (Table

4). Baseline hazard in first 10 weeks not different.

3. Yoon, Economics Letters (1985). Derives closed form solution for hazard in non-

stationary job search. This hazard satisfies the condition A2%*.
Reduced form studies (not Weibull)

1. Arulampalam and Stewart, Econ Journal (1995). Unemployment durations. Meyer
type grouped duration model with piecewise constant baseline hazard (weeks), no un-
observed heterogeneity. Baseline hazard is in Figure 1, p.327. Greater than 0 and finite

near 0.

2. Bonnal, Fougere, Serandon, ReStud (1997). Transitions between various states. Piece-
wise constant baseline hazard and unobserved heterogeneity. Intercept in Table 4.

p.702 is baseline hazard near (. Estimates consistent with A2*

3. Dolton and Van der Klaauw, Econ Journal (1995). Time to leaving the teaching pro-
fession. Meyer type estimation with unobserved heterogeneity. Baseline hazard near 0

is 0 in graph. See Fig 2 and 3, p. 439-440. A2* may be problematic.

4. Meyer, Ectra (1990). Unemployment durations (weeks). Grouped duration model with
unobserved heterogeneity. Hazard in first week reported in Table VII, p. 774. Signifi-

cantly different from (. Inverse also (use delta method).

5. Goniil and Srinivasan, JASA (1993). Times between brand switches (two-state model)

in weeks. Piecewise constant hazard with unobserved heterogeneity. Estimates with-
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10.

out (Table 2) and with (Table 4) unobserved heterogeneity. Consider estimate in first
month. A2* OK.

. Blank, J. of Public Economics (1989). Welfare spells in months. Piecewise constant

baseline (exponential specification)hazard without unobserved heterogeneity. See Fig-

ure 4 for graph. A2* OK.

Ham and Rea, JOLE (1987). Unemployment durations (weeks). Discrete hazard (logit
specification), not MPH. Bathtub shape probabilities of leaving unemployment. Em-

pirical hazard in Table 1. Figures 1-4 give re-employment probability that is well below
1.

. Kennan, JOEC (1985). Strike durations in days. Discrete hazard (logit specification).

Probabilities reported in figures 1-6. Probability of settlement is not 0 on first day and

this probability is not near 1 (and not the largest).

. Flinn and Heckman, Adv. in Ectrics (1982). Two-state model with employment and

non-employment. Spells in days? Baseline hazard is two-component Box-Cox with the

N's fixed at 1 and 2. Baseline hazard satisfies A2*.

Follain, Ondrich, and Sinha, Journal of Urban Economics (1997). Time to repayment
of mortgage in quarters. Meyer type grouped duration data with unobserved hetero-
geneity. Hazard in first quarter much smaller than in later quarters. Figure 1 suggests

that hazard starts at 0. A2* may be problematic.
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