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Abstract

A seller and a buyer bargain over the terms of trade for an object. The seller receives
a perfect signal determining the value of the object to both players, while the buyer
remains uninformed. We analyze the infinite horizon bargaining game in which the
buyer makes all the offers. When the static incentive constraints permit first-best effi-
ciency, then under some regularity conditions the outcome of the sequential bargaining
game becomes arbitrarily efficient as bargaining frictions vanish. When the static in-
centive constraints preclude first-best efficiency, the limiting bargaining outcome is not
second-best efficient, and may even perform worse than the outcome from the one-period
bargaining game. With frequent buyer offers, the outcome is then characterized by re-
curring bursts of high probability of agreement, followed by long periods of delay in

which the probability of agreement is negligible.
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1 Introduction

One of the most vexing problems in economics is why rational parties have such a difficult time
reaching mutually beneficial agreements. FEven a casual glance at the evidence shows that bar-
gaining inefficiencies abound. These inefficiencies take on many forms : failure to reach agreement
when gains of trade exist (e.g., lawsuits that go to trial), delays in reaching agreement (e.g., labor
disputes such as strikes or work slowdowns (Cramton and Tracy, 1992)), the build-up of significant
expenses in brokering an agreement (e.g., lawyer fees), and settling on contractual terms that fail
to fully realize all gains from trade.® Ever since Hicks (1932), economists have wondered why the
bargaining parties do not simply avoid such inefficiencies by settling immediately at the terms they
expect to eventually arrive at.

While some other theories have been advanced,? the most popular explanation for the existence
of bargaining inefficiencies is that the parties lack information about an aspect critical to reaching
agreement. If this information is privately held, active negotiation may be necessary in order to
reveal the range of agreements that are acceptable to all parties. For example, when approaching a
seller of a piece of real estate, a potential buyer may not know the minimal offer the seller would be
willing to accept. The buyer can of course estimate the seller’s reservation value, but may fail in his
negotiations unless he makes an offer that even a seller with a high reservation value would accept.
Such an offer is generally not optimal from the buyer’s viewpoint, so some delay will necessarily
result. From the viewpoint of the literature on incomplete information bargaining, this delay is
not only a necessary evil, but acts as a useful device by which the parties can credibly convey the
strength of their bargaining positions. A seller who repeatedly rejects offers and leaves his house
on the market for a long time can credibly signal to the buyer that he is not eager to sell.

Unfortunately, this elegant explanation for bargaining inefficiencies has come under recent attack
from the literature on the Coase Conjecture (Fudenberg, Levine and Tirole (1985), Gul, Sonnen-
schein and Wilson (1986)). The Coase Conjecture literature studies the simplest asymmetric

information bargaining problem, in which a seller with known valuation makes repeated price offers

ndeed, the screening literature explains distortions in contractual terms as an attempt to minimize informational

rents.
2For example, Fernandez and Glazer (1991) develop a complete information bargaining model in which, following

rejection of management’s wage offer, workers can either strike or continue to work at the existing wage. Because
management is not indifferent between these responses, there exists a multiplicity of equilibria involving immediate
settlement, but differing in the agreed upon wage. This multiplicity in turn permits equilibria involving delay in

agreement.



for the sale of a single unit of an indivisible asset to a buyer whose valuation for the asset is private
information. According to the Coase Conjecture, if there is no restraint on the rate at which the
seller can make price offers, then in the limit as the length of the time period between successive
offers vanishes, the seller will offer the good for sale at the lowest possible buyer valuation.® In
other words, bargaining inefficiencies can be explained only by exogenous limitations on the rate
at which offers can be revised. While there are undoubtedly some practical limitations on the
speed at which parties can formulate and interpret offers, these limitations are unlikely to be of
a magnitude sufficient to explain significant bargaining failures, such as protracted strikes or the
huge costs associated with major corporate lawsuits.* As a consequence, the Coase Conjecture
questions the usefulness of asymmetric information as an explanation for bargaining inefficiencies.

If we are to retain asymmetric information as a foundation for the theory of bargaining, there
appear to be two possible avenues. First, we can question the validity of the Coase Conjecture.
One line of argument here maintains that concerns for reputation may guide player’s behaviors.
Papers in this vein are Ausubel and Deneckere (1989), who abandon the stationarity assumption
driving the Coase Conjecture, and Myerson (1991, pp. 399-402) and Abreu and Gul (2000), who
develop a psychological theory of bargaining. Another line of argument questions the validity
of backward induction, either on the basis of experimental evidence (Neelin, Sonnenschein and
Spiegel (1988)), or on theoretical grounds (Binmore (1988), Reny (1993), Rosenthal (1981), Samet
(1996)). Secondly, we can question the appropriateness of the one-sided incomplete information
private values model. For example, Myerson and Satterthwaite (1983) show that in the two-
sided incomplete information private values model inefficiency necessarily occurs in any sequential
equilibrium of any bargaining game, provided the supports of the distribution of buyer and seller
type are not separated. Unfortunately, extensive models with two-sided incomplete information
are very hard to analyze, and at present very little is known about their outcomes.

In the current paper, we instead investigate the consequences of allowing interdependencies
in player’s valuations, but retain the relative simplicity and elegance of the one-sided incomplete
information model. We believe this is a fruitful area for investigation because many real world

bargaining problems involve such interdependencies. For example, in lawsuits involving the health

3More precisely, this statement holds if the lowest possible buyer valuation strictly exceeds the seller’s valuation,
and a mild technical is satisfied (Analogous to assumptions (1) and (2) in the body of the current paper). The Coase

Conjecture also holds without these assumptions, provided attention is restricted to stationary equilibria.
4For a particularly striking example of the latter, see Cutler and Summers (1988).



hazards of a manufacturer’s product, or the environmental consequence of a production method,
the manufacturer may have private information regarding the safety of his product or the risks
associated with his production method that is relevant to the welfare of potential victims. Similarly,
when negotiating the sale of an oil tract, the buyer may possess survey information regarding the
richness of the underlying deposit that is relevant to the owner’s willingness to sell. And in
wage bargaining, the worker may have superior knowledge about his level of human capital or
productivity.  This level not only affects the worker’s value to his current employer, but also
his value to alternative employers, and hence his reservation value of staying with his current
employment.®

We consider an environment in which there is a single seller bargaining over the terms at which
to trade a single unit of an indivisible good. The seller receives a signal ¢ € [0, 1] determining his
reservation value c. The signal also affects the buyer’s valuation v, but the buyer is uninformed
about the realization of the signal. A prototypical example of this situation arises in the market
for used cars, where the seller may have information regarding the reliability of the car that is
relevant to the buyer, but not easily verifiable. Ever since the pioneering work of Akerlof (1970),
economists have been aware that such an environment can generate trading inefficiencies. Indeed,
if trade is to be efficient, the buyer’s expected value from trading must exceed the reservation value
of the seller of the most reliable car, for otherwise there exists no price at which both are willing
to trade. Assuming the seller’s cost to be increasing in ¢, inefficiencies will therefore necessarily
occur whenever this condition is violated, i.e. E(v) < ¢(1).

We study the welfare performance of the infinite horizon bargaining game in which the unin-
formed party (the buyer) makes all the offers. The literature on the Coase Conjecture analyzes a
special case of this model, in which the buyer’s valuation does not depend upon the seller’s signal.
Note that in this so-called private values case, there always exists a single price mechanism that is
both feasible and efficient (any price between the highest seller valuation and the buyer’s valuation
is a competitive equilibrium price). This observation raises a number of interesting questions.
Suppose first that interdependencies in valuations are not too strong, so that the static incentive
constraints still permit an efficient outcome to be attained, i.e. E(v) > ¢(1). Do the same forces

that lie behind the Coase Conjecture in the private values case then cause the outcome of sequential

5 Alternatively, if the firm has superior information about the value of the worker’s productivity, and the worker
can capture some of this value in alternative employment situations, the reservation values of both players will be

positively related.



bargaining to become efficient as bargaining frictions disappear? Next, suppose that the basic in-
centive constraints are such that every equilibrium outcome of every bargaining game must exhibit
some inefficiency, i.e. E(v) < ¢(1). Then where does the logic of the Coase Conjecture break down,
and how does the limiting delay manifest itself? Can we characterize the limiting delay schedule?
Does the uninformed party’s incentive to accelerate trade still operate so as to select a limiting
outcome that is second-best efficient?

Our paper brings both good and bad news. We prove that when the static incentive constraints
permit first-best efficiency, and v(+) is increasing, then as in the private values case, the outcome of
the sequential bargaining game becomes arbitrarily efficient when bargaining frictions are allowed
to vanish. At the same time, we also show that whenever the static incentive constraints preclude
first-best efficiency, the Coase Conjecture forces select a limiting outcome that does not maximize
the expected gains from trade. Finally, we show that when the informed party can make frequent
offers, the bargaining outcome is characterized by recurring bursts of high probability of agreement,
followed by long periods of delay in which the probability of agreement is negligible.

The two papers most closely related to the present one are Evans (1989) and Vincent (1989).
Evans considers a two-type example in which the buyer and seller differ only in their valuation
for the high quality car, and studies the impact of relative discount factors on the bargaining

outcome.b

Vincent allows much more general interdependencies in valuations, and introduces an
assumption guaranteeing existence of a Bayesian equilibrium. He also provides a two-type example
demonstrating the possibility of limiting delay.” Neither of these papers, however, provides a
characterization of the limiting bargaining outcome, or delineates necessary and sufficient conditions
for delay to be present. They also do not explain how and why the Coase Conjecture forces operate
during the bargaining process, or determine the key factors influencing the length of delay.

The remainder of the paper proceeds as follows. Section 2 presents the model and explains
the notion of stationary equilibrium. Section 3 presents a simple two-type example that provides

intuition for our main results. Section 4 proves general existence of stationary equilibrium and,

under some (mild) regularity conditions, uniqueness of the supporting stationary triplet. Section

6Unfortunately, with equal discount factors Evans’ model becomes rather degenerate : when the fraction of high
quality cars falls below a critical threshold, every incentive compatible trading mechanism necessarily generates no
surplus. Meanwhile, when the threshold fraction is exceeded, a single take-it-or-leave it offer already leads to an

efficient outcome.
"However, Vincent’s example satisfies the condition E(v) < ¢(1), so that every Nash equilibrium of every bargain-

ing game necessarily exhibits inefficiency.



5 provides a general characterization of the limiting equilibrium outcome as the discount factor
between successive buyer offers approaches 1. Section 6 proves that this outcome is not second-
best efficient when F(v) < ¢(1), and briefly presents the analogous model in which the buyer is the
informed party, with the seller making the offers. Section 7 concludes. All proofs are relegated to

three appendices, unless otherwise noted.

2 The Model

A buyer and a seller bargain over the terms at which to trade a single unit of an indivisible good.
The value of the good to each trader is determined by the realization of a random variable ¢
€ [0,1]. More precisely, the signal ¢ respectively determines buyer and seller valuations through

the functions v(-) and ¢(-) :

The functions v(-) and ¢(-) are required to be bounded and measurable.

We assume that one of the traders, the seller, is informed about the realization of the signal,
while his bargaining partner, the buyer, only knows the distribution of the signal.® We say that
the model has private values if v(q) is constant, and that the model has interdependent values,
otherwise. We will be primarily interested in the interdependent values case, but allow private
values as a special case.

Because the functions v(-) and ¢(-) are general, we may without loss of generality assume that
the distribution of the signal is uniform. If necessary, we then reorder the signals so that the
function c(-) is increasing in ¢. Note, however, that we do not similarly restrict the function
v(-). We impose the regularity condition that v(-) and ¢(-) are left-continuous functions, that are
right-continuous at ¢ = 0. We also make an assumption of economic significance, namely that it is

common knowledge amongst traders that the gains from trade are bounded away from zero :

Assumption 1 There exists A > 0 such that v(q) — c¢(q) > A for all ¢ € [0,1].

8See Section 6 for the analogous model in which the seller is the uninformed party.

9More precisely, given any bounded measurable function ¢’ : [0,1] — R, there always exists a measure preserving

bijection ¢ on [0,1] such that ¢(q) = ¢/(¢(q)) is increasing in g.



Assumption 1 implies that the extreme form of inefficiency described by Akerlof (1970) never
occurs.'® However, unlike in the private values case, the existence of a “gap” (Assumption 1) no

longer guarantees that first best efficiency is attainable. Specifically, we have :

Lemma 1 First best efficient trade is possible iff E(v(q)) = fol v(q)dq > ¢(1)

Proof : First best efficiency requires that all seller types ¢ trade with probability one. This
implies that the expected transfer must be independent of the seller’s type (otherwise any seller
type would want to mimic the type that receives the highest expected transfer). Denoting this
transfer by ¢, seller individual rationality for type ¢ = 1 requires that ¢t > ¢(1). Since the buyer’s
expected utility from participating in the mechanism equals FE(v(q)) —t, buyer individual rationality

then implies E(v(q)) >t > ¢(1). Q.E.D.

The bargaining protocol we wish to analyze in this paper is the infinite horizon bargaining game
in which the uninformed party makes all the offers. In this game, there are an infinite number of
time periods, indexed by n = 0,1, 2, .... In each period n in which bargaining has not yet concluded,
the buyer starts by offering the seller a price p € Ry at which trade is to occur. Upon observing
this offer, the seller can accept, in which case trade occurs at the proposed price and the game ends,
or the seller can reject, in which case play moves to the next period. Note that each terminal node
of the game can be identified with a pair (p,n). We assume that the traders are impatient and
discount surplus at the common rate » > 0. Let { be the length of the time interval between two
successive buyer offers, and § = e~"¢ the (common) discount factor. Then the terminal payoffs at
node (p,n) are 6" (v (q) — p), for the buyer, and 6™ (p — ¢(gq)), for the seller.

In every period n, the information set of the buyer can be identified with a history of rejected
offers, (po, p1,---sPn—1). A pure behavioral strategy for the buyer therefore specifies, in every period
n, her current offer as a function of the n-history of rejected prices. Similarly, in every period n, the
information set of the seller can be identified with the same history concatenated with the current
offer, (po,p1,---,Pn—1,0Pn)- Let A denote acceptance of an offer, and R denote rejection of an offer.
A pure behavioral strategy for the seller specifies for each period n a decision in the set {A, R}, as

a function of his type ¢, and as a function of the history (po, 1, ...s Pr—1,Pn)-

10 Assumption 1 implies that there always exists a feasible mechanim in which trade occurs with positive probability.
Indeed, consider the mechanism in which all seller types in [0, ] trade at the price ¢(¢), and types ¢ > & do not
trade. The buyer’s expected utility in this mechanism equals E[v(q) — c(¢)|g < €]e. Since the first term in this
expression converges to v(0) — ¢(0) > A > 0, there exists ¢ sufficiently small for which the above mechanism is

incentive compatible and individually rational.



We are interested in the stationary equilibria of this bargaining game.!*

Formally, a stationary
equilibrium is a sequential equilibrium in which the seller’s acceptance decision is based only upon
the current offer, and not on any other detail of the prior history. Thus, there exists a nondecreasing
(left-continuous) function P(q), such that seller type ¢ accepts the offer p, in period n if and only
if p, > P(q). Consequently, following any history (with no simultaneous seller deviations), the
buyer’s belief will always be a (left) truncation of the prior, i.e. a uniform distribution on an
interval of the form [g,,1]. Furthermore, since in his acceptance decision the seller ignores all but
the current offer, when the buyer formulates her offer the prior history of the game will not matter,
except in so far as it is reflected in the cutoff level ¢,. The cutoff level ¢, therefore acts as a state
variable, so that stationary equilibria are Markovian.

In stationary equilibria, the acceptance function P(:) acts as a “static” supply curve to the
buyer, who faces a tradeoff between screening more finely and delaying agreement. Let Gg4(2)
denote the buyer’s belief when the state is ¢ (the uniform distribution on [g,1]), and let g4(z)
denote the corresponding density. Also let W(q) denote the buyer’s maximized expected payoff

when the state is ¢. The buyer’s tradeoff is then captured by the dynamic programming equation :

qa'2q

W(q) = max {/q (v(2) = P(q'))gq(2)dz +6(1 — Gq(q’))W(Q’)} : (1)

To understand (1), observe that if the current state is ¢ and the buyer offers P(¢’), thereby bringing
the state to ¢’, all seller types in the interval [¢, ¢'] accept.!? Conditional on the offer being accepted,
the buyer’s net payoff from transacting with seller type z € [q,¢] is v(2) — P(¢’); the likelihood
of this happening is g,(z) = 1/(1 — ¢). Integrating over all possible seller types in [g,¢’] then
yields the first term in (1). Rejection happens with probability (1 — G4(q’)), moves the state to

q’, and results in the seller receiving the expected payoff W (q') with a one-period delay. Letting

11 The reason for our interest in stationary equilibria is that in the private values case, the literature has established
an intimate connection between stationarity of the informed party’s acceptance behavior and the Coase Conjecture
(Gul, Sonnenschein and Wilson, 1986). Furthermore, as we shall demonstrate in Section 4, under the assumption
of a “gap”, as far as equilibrium outcomes is concerned, there is no loss of generality in restricting attention to

stationary equilibrium outcomes.
123¢trictly speaking, this reasoning is only correct if P(q) is strictly increasing in ¢ (as will be the case when c(-)

is strictly increasing in g, see equation (3) below). If P(-) has a flat segment, and ¢’ is not the endpoint of this
segment, then by charging P(q’) the buyer induces more acceptances than indicated in (1). However, in this case it
is straightforward to show that the maximum in (1) is never attained on the interior of the flat segment (the buyer
always prefers to induce the largest state consistent with the offer P(q’)). The extra freedom allowed in (1), by

letting the seller select the state rather than the price, is therefore without consequence.



R(q) = (1 — ¢)W(q) denote the buyer’s ex-ante expected payoff from trading with seller types in

the interval [g, 1], equation (1) can be simplified to :

q
R =
(¢) = max { /q

Let T(q) denote the argmax correspondence in (2). By the Generalized Theorem of the Maximum

’

(v(z) = P(q))dz + 5R(q’)} : (2)

(Ausubel and Deneckere, 1993) T is a nonempty- and compact-valued upper hemicontinuous cor-
respondence, and the value function R(:) is continuous. Since the objective function in (2) has
increasing differences in (¢’, q), Y is a nondecreasing correspondence, and hence single-valued at all
but at most a countable set of q.

In equilibrium, the seller’s acceptance decision must be optimal given the buyer’s offer behavior,
as described by (2). To see the implications of this requirement, define ¢(q) = min Y(g); then we

must have!3 :
P(q) — clq) = 6(P(t(q)) — c(q))- (3)

In other words, seller type ¢ is indifferent between accepting the price P(gq) and waiting one period
for the (higher) offer P(t(q)).

The triplet {P(-), R(-),t(:)} determines a stationary equilibrium path in the following way. In
the initial period, the buyer selects (possibly randomly) an offer P(q), for some ¢ € T(0). Following
this offer, all seller types in the interval [0, q] accept, and all seller types in (g, 1] reject. Since it is
necessarily the case that ¢ > 0, Equation (3) implies that following rejection of the offer P(q) the
seller must necessarily come back with the offer P(¢(q)), even if T(g) is not single-valued. While
the buyer may thus randomize in her initial offers, subsequent buyer offers are uniquely determined.
Following the offer P(t(q)), all seller types in the interval (g, t(q)] accept, and all seller types in the
interval (¢(q), 1] reject. This process then continues : in case of rejection, the buyer raises her offer

to P(t%(q)), inducing all seller types in the interval (¢(q),t?(q)] to accept, and so on, until the state

13Note that t(q) is continuous at any point ¢ where T(q) is single-valued. Now consider any point ¢ € [0, 1] at
which the functions c(-), P(-) and P(t(-)) are continuous; since all of these functions are increasing, this excludes at
most a countable number of q. For any nonexcluded ¢, if the buyer induces the state ¢ by offering P(q), then since
T is single-valued at g, the seller will necessarily offer P(t(q)) in the next period. For seller type ¢ to be willing to
accept P(q) it must therefore be the case that P(q) — c¢(q) > 6(P(t(q)) — c(q)). But if we had strict inequality, and
the seller offered a price slightly below P(q), seller type ¢ would still strictly prefer to accept, contradicting the fact
that P(q) is a reservation price. Consequently, for any non-excluded point ¢ equation (3) must hold. Now if ¢ is an
excluded point and ¢ > 0 then there exists a sequence {gn} converging from below to ¢g. Since each of the functions

c(+), P(-) and t(-) is left-continuous, it follows that (3) must in fact hold for all ¢ > 0.



q =1 is reached.'*

3 A Two-Type Example

In this Section, we present a simple two-type example to provide intuition for how and when the
Coase Conjecture forces operate to produce equilibrium limiting delay, when the discount factor
converges to one. The example allows us to derive an explicit closed form solution for the equi-
librium, thereby avoiding many of the technical intricacies present in the general model. Suppose

the seller’s cost and the buyer’s valuation function are respectively given by:

0 for 0,q « for 0,4¢
elq) = 10 - el (4)

s forqe(q,1] s+ forge(g1]

where «, 8, and s are strictly positive (see Figure 1). As noted above, when the buyer’s valuation
function v(-) is constant, we obtain the private values model as a special case. In the present
example, this translates to the condition that o = s + (.

We will start by using backward induction to construct the stationary equilibrium, and then use
the explicit solution to both analyze the extent of the equilibrium limiting delay, and the economic
forces that underlie it. Our derivation proceeds at an intuitive level.!®

Observe first that the buyer’s final equilibrium offer must be equal to the highest possible seller
cost, ¢(1) = s. Any lower offer would not be accepted by all remaining seller types, while any offer
greater than ¢(1) would be accepted with probability one, and hence dominated. Suppose now that
in equilibrium there are n periods of bargaining remaining before the game concludes. Since seller
types with valuation s do not accept until the final round, the offer in the current round, p,,, will

have to keep seller types with valuation 0 indifferent between accepting in that round and waiting

MThe triplet {P(-), R(:),t(-)} also describes the equilibrium continuation following nonequilibrium buyer offers p
: all seller types whose reservation price falls below p accept, and all other types reject. If g is the induced state,
and the offer satisfies the equation p = P(q), then following rejection the buyer raises her offer to P(t(q)). If p is
not in the range of the function P(+), so that we have p > P(q), then following rejection of p the buyer randomizes
between the minimum and maximum elements of P(T(q)) so as to rationalize type ¢’s acceptance of the previous
offer p.  Note that the latter type of offer will never arise along the equilibrium path, for the buyer could have

lowered her offer to P(q), and still have induced the same acceptances.
5 Deneckere (1992) uses a similar procedure to compute an explicit equilibrium for the two-type independent

private values model.



n more periods to receive the final offer s, i.e.

P(Q) = 55n7 for qc (an Qn71]7 (5)

where ¢,_1 denotes the highest buyer type whose acceptance price is p,, and where we use the
convention that g1 = 1 and go = ¢. To determine the sequence of cutoff levels {g¢,}, we must
consider the buyer’s optimization problem. When the state is g1, the buyer must be indifferent
between offering pg = s, which all remaining seller types accept, and offering p; = sd, which all
seller types in (g1, qo] accept, and returning in the next period with the final offer py. Letting

m; = ¢;—1 — q; denote the period n ex-ante probability of agreement, we therefore have :

R(q1) = (o — s0)mq + §fmy = (o — s)mq + Bmy,

Solving this equation for m; yields m; = gmo, where my = (1 — §).
Similarly, when n > 1, at the state ¢, the buyer must be indifferent between making the offer
P, which will be accepted by all seller types in (g, ¢,—1], and making the next higher offer p,,_1,

which will be accepted by all seller types in (g, gn—2], i.e.
R(gn) = (@ — s6™)mp + 0R(gn_1) = (a — s V) (my + mp_1) + 6R(qn_2). (6)

Solving for m,, from (6) yields s6" (1 — §)m,, = (o — 88" )m,_1 + 6(R(gn—2) — R(gn_1)). Also,
using the middle expression in (6) for R(g,—2) and the right-hand expression in (6) for R(g,—1),
yields R(gn—2) — R(qn-1) = —(a — $6""2?)m,,_;. Combining the last two equations then produces

a difference equation in m,, :

(%
my = 857177177’2,”_1. (7)

Defining p = <, we may solve this difference equation by forward recursion, using the boundary

condition m; = gmo :

_n(n-1)

My = pnfla 5 my = pn715

,@ ﬁmo
S

(8)

Let us write m,(d) to explicitly denote the dependence of the solution in (8) on J, and let
N(6) = min{n : Y ;" m;(d) > 1}. For simplicity, assume that we are in the generic case where

Zf\il m;(6) > 1. We may then summarize the solution as follows :

Proposition 1 Let v(-) and c(-) be given by (4), let 0 < gn_1 < ... < qo = ¢ be defined recursively
by (7), and let p, be defined by (5). Then for all 6 < 1 the unique stationary triplet is given by :

10



P(q) =pn q€[0,gna], ifn=N
qec (Qn7Qn—l]a an20717 7N_1

t(‘]) = QGn-2 q € [O;Qn—l], ifn=N
qc (Q'm(bzfl]y @fn: 2,3,...,N—1

qe(th]a zfn:l

R(q) = pn-1(gn-1—q) + 0R(gn—2) q€[0,qn-1], ifn=N
q € (Gn,gn-1], fn=2,3,...,N—1
q € (g, 1], ifn=1
According to Proposition 1, the buyer starts out by offering py_1, which all seller types in
[0, gn—2] accept. Upon rejection, the buyer raises her offer to py—_s, which is accepted by all seller
types in (¢n—2,qn—3], and so on until the state gy is reached, at which point the seller makes her
final offer py = s. Bargaining therefore lasts for N(§) periods.16
We are interested in the behavior of the above solution as é converges to 1. To gain some
insight into this question, let us first consider the case where p > 1. Note that this case includes
the private values model, where p = 1 + g > 1. The economic significance of the inequality p > 1
is that it implies o > s6™ = p,, for all n > 1, so that at any point in the game the buyer always
expects to earn a positive surplus if her offer p,, is accepted. As we work backwards from the
terminal state, the buyer’s expected discounted surplus therefore grows, i.e. R(g,) — R(¢n—1) > 0.
Since the buyer trades off gains from increased price discrimination against delayed receipt of the
continuation value, she will therefore become more reluctant to price discriminate as n increases.
Thus, the acceptance probability is higher in earlier stages of the bargaining process; formally this
is reflected in the fact that m,, > m,_; for all n > 1. Note that this inequality immediately implies
that the number of bargaining rounds N (4) is finite, and uniformly bounded in §.17 It follows that
the Coase Conjecture holds, for if bargaining can last for at most N rounds, the initial price is no

lower than 6V—1

s, and hence converges to s = ¢(1) as 6 — 1. We conclude that when p > 1 the
solution behaves qualitatively exactly like in the private values case.
When p < 1, however, the equilibrium takes on a different character from the private values

case. Indeed, with p < 1, it is always the case that when § is sufficiently close to 1 there exists an

161n the nongeneric case where vazl m;(6) = 1, the buyer may randomize between the initial offers py and py_1,

so that bargaining can last for one additional period.

ndeed, my = g(l — §¢) does not depend on 4.
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initial range of integers n > 1 for which a < s§™. For such n the buyer expects to earn a negative
surplus when the seller accepts her offer p,. Working backwards from the state gy, the buyer’s
expected profits are decreasing in n, as long as the inequality o < s6"~! continues to hold. Since the
buyer trades off gains from increased price discrimination against delayed receipt of the continuation
value, she will therefore become more eager to price discriminate as n increases. Formally, this is
reflected in the fact that the ex-ante acceptance probability m.,, is decreasing in n. Importantly,
observe that when § approaches 1, the number of time periods over which the inequality o < s§™~1
holds increases without bound as the discount factor approaches 1. Consequently, unlike in the
private values case, real delay may occur, even in the limit, as bargaining frictions are allowed to
vanish.

To determine whether or not real delay occurs, let us calculate a = Y oo, m;(1). If a > 1,'8
we can define N = min{n : > m;(1) > 1}. Bargaining then lasts no more than N periods,
regardless of the discount factor §. As observed above, the Coase Conjecture then holds. This is
true despite the fact that when p < 1, for large ¢ the acceptance probability m,, is decreasing in
n(l<n< ]\7) If a = 1, the number of bargaining rounds is finite for any § < 1, but increases
without bound as § — 1. Nevertheless, as Proposition 2 below shows, the Coase Conjecture holds
for this case as well. Some simple computations show that the condition a > 1 is equivalent to the
condition E(v) > ¢(1).19 We conclude that in the two-type model the Coase Conjecture holds if
and only if the static incentive constraints permit an efficient outcome (see Lemma (1)).

When a < 1, then in the limit the backward construction “gets stuck” at the quantity ¢* = 1—a.
The reason for this is straightforward. By the definition of a, for any g > ¢* there exists an n < oo
such that for all § < 1 we have Y. ; m;(6) > 1 —¢q. For any such state, it will take no more
than n periods before the buyer makes her final offer, independently of the discount factor §. Thus
for any state ¢ > g*, the Coase Conjecture applies, yielding the buyer a limiting expected surplus
R(q) = E[v(z) — ¢(1)|z > q]. Now consider Figure 2 : the buyer makes an expected loss of (s — )
on every trade in (¢*,§), and an expected gain of 3 on every trade in (g,1). The point ¢* is such
that the buyer’s loss on the interval (¢*,§) is equal to the profit on the interval (¢,1). In other
words, the buyer’s limiting expected revenue is equal to zero at ¢*, ]A%(q*) = 0. Consequently, the

buyer’s incentive to accelerate trade vanishes at ¢*.

18Note that when p > 1, we have a = oo, so that in this case the inequality a > 1 always holds.

19 Indeed, for p < 1 we have a = mo(1 + gli—p) =1-¢9@1+

P ). The inequality a > 1 is therefore equivalent

to the condition E(v) = ag+ (8 + s)(1 — §) > s.
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In fact, real delay must necessarily occur at the state ¢*. The buyer must expect to make a
profit from trading with seller types g < ¢*, i.e. trade at a price p < a. Those types must prefer
accepting p immediately to waiting to receive the final offer ¢(1) = s, necessitating real delay. One
of the main breakthroughs in this paper is to figure out exactly how much delay there must be at the
state ¢*. To this end, define 7 such that a seller with valuation 0 is indifferent between accepting

the offer @ and waiting a length of time 7 to receive the offer s, i.e. a =e™""

s. Proposition 2 below
shows that the limiting delay must equal 27. The reason for the doubling of 7 is the symmetry of
the situation. This symmetry can be most easily seen if for each n we select § such that pd=" =1,
so that p, = a. It then follows from equation (7) that m, 1 = my,, Mpys = pd~"Hm, | =
0 'mp1 = 6 'm, =m,_1, etc. We conclude that it takes as much time to go from g, — ¢ to ¢,
as it does to go from g, to g, +¢c. Observe that lims_; ¢, = ¢*,?° and hence that the limiting real
delay to move from g, to g, + € is equal to 7. It follows that the limiting acceptance price of type
g* must be p= e ?"7s = p?s.

To complete the description of the limiting outcome when a < 1, observe that for ¢ < ¢*
the buyer’s limiting continuation surplus is strictly positive (it is no lower than o — p?s). As a
consequence, the buyer has an incentive to accelerate trade, and the Coase Conjecture again applies

: for any € > 0 there exists n < oo such that regardless of the discount factor it takes no more than

n steps for the buyer to trade with type ¢. We therefore have :2!

Proposition 2 The Coase Conjecture obtains iff a > 1. When a < 1, then as & converges to 1,
all seller types in [0, 1 — a) trade immediately at the price sp?, and all types in (1 — a, 1] trade at
«

the price s after a delay of length T discounted such that e™"" = p?, where p = <

>

The two-type example shows us that it is the possibility of ex-post buyer regret (i.e., the buyer’s
expectation to earn a negative surplus should her offer be accepted) that slows down the bargaining.
This slowdown may or may not be sufficiently strong to produce limiting delay. ~Whether the
Coase Conjecture holds, and thus whether there is no limiting delay, depends on whether the
condition E(v) > ¢(1) is satisfied. In the latter case, the buyer’s expected continuation surplus
remains bounded away from zero for all states ¢ > 0, so the incentive to speed up receipt of this
continuation value dominates the buyer’s incentive to price discriminate. ~When E(v) < ¢(1)

the Coase Conjecture forces still operate at all values of the state where the buyer’s expected

20Since the acceptance price of g, is o, we must have ¢, < ¢*. But if the lims_,; g, were less than ¢*, then by

the definition of ¢* the buyer would earn negative expected surplus, a contradiction.
21Theorem 3 in Section 5 contains Proposition 2 as a special case, so we do not provide a formal proof here.
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continuation value remains bounded away from zero. However, there exists a state ¢* =1 — a for
which the limiting continuation value converges to zero. Near this state, the incentive to price
discriminate remains strong as the discount factor converges to one, allowing real delay to occur.
As a consequence, when ¢ is near one, the bargaining outcome is characterized by two short time
periods during which there is a high probability of agreement, interspersed with a long period of
delay in which the probability of agreement is negligible. The length of the delay is increasing in
e(1) — ¢(q*), decreasing in v(¢*) — ¢(q*), but does not depend on v(1).

Intuitively, it would appear that many of these properties do not depend on there being just two
types. However, there might now be more than one location in which there is limiting delay. It
is also unclear whether the length of the limiting delay can still be determined for general cost and
valuation functions, and whether it will depend more intricately on the global structure of those
functions (rather than just c¢(¢*), v(¢*) and ¢(1)). We address these questions in the next two

sections.

4 Existence and Uniqueness

For the special case of private values, Gul, Sonnenschein and Wilson (1986) demonstrate that there
exists a unique stationary triplet, and that all sequential equilibrium outcomes are the outcomes
of some stationary equilibrium, provided that Assumptions 1 holds and the seller’s cost function

satisfies a Lipschitz condition at ¢ = 1:
Assumption 2 There exists L < oo such that ¢(1) — ¢(q) < L(1 — q) for all g € [0,1].

Theorem 1 below generalizes the Gul, Sonnenschein and Wilson result to the case of interde-
pendent values. The key step in establishing uniqueness of the stationary triplet is to show that
there exists a critical value of the state g1 < 1, such that in any sequential equilibrium, whenever
the state exceeds g1, the buyer must make an offer that all remaining seller types will accept (see
Lemmas A-1 and A-2 in Appendix A). This uniquely pins down a stationary triplet (R, ¢, P) on the
interval [g1,1]. We then use backward induction on the state, employing the functional equations
(2) and (3), to successively extend the triplet (R, t, P) to the entire interval [0, 1].

Our construction differs from the one in Gul, Sonnenschein and Wilson (1986) in two crucial
ways. First, our extension is maximal in the sense that we construct a decreasing sequence of cutoff

levels {¢,} with the property that for each n > 1 there exists no state less than ¢,41 for which
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the buyer selects an offer acceptable to seller types in the interval [g,,1]. We use this property
extensively in the proof of our characterization theorem in Section 5 (Theorem 3). Secondly, in
the private values case, the buyer’s expected surplus R(q) is decreasing in g. Assumption 1 then
guarantees that R(q) > 0 for all ¢ € [0,1]. This property allows the extension process to terminate
in a finite number of steps (for a precise argument, see Ausubel and Deneckere, 1989, Lemma 2).
When valuations are positively related, however, R(g) may be increasing in ¢ over some interval,
so it is quite conceivable that the extension procedure might never terminate. Our proof makes
essential use the maximality of the extension to establish that this cannot happen : bargaining

always ends in a finite number of rounds.?2

Theorem 1 Suppose that Assumptions 1 and 2 hold. Then for any 0 < 1 there exists a unique
stationary triplet (R(q),t(q), P(q)) on q € [0,1], and every sequential equilibrium outcome is the
outcome of some stationary equilibrium. Furthermore, there exists N(§) < oo such that bargaining

concludes with probability one in N(§) periods.

While Theorem 1 guarantees that bargaining will end in a finite number of periods, there is a
big difference with the private values case. When values are private, the number of bargaining
rounds remains bounded above as the discount factor approaches 1 (see Deneckere, 1992). With
interdependent values, this property cannot generally hold. Otherwise, the Coase Conjecture would
always apply, and according to Lemma 1 this is impossible whenever E(v(g)) < ¢(1). Under the
latter assumption, the number of bargaining rounds must necessarily increase without bound as the
discount factor approaches 1.

Our second result establishes existence of stationary equilibrium under extremely weak condi-

tions. We drop Assumption 2, and replace Assumption 1 with the much weaker condition :
Assumption 3 v(q) > ¢(q), for every q € [0,1].

Our technique of proof consists of approximating v(-) and ¢(-) by functions that satisfy As-
sumptions 1 and 2, and arguing that an appropriate chosen limit of the stationary equilibria of the
approximating games is a stationary equilibrium of the limit game. This generalizes Ausubel and

Deneckere (1989, Theorem 4.2) to the case of interdependent values.

Theorem 2 Suppose Assumption 3 holds. Then there exists a stationary equilibrium.

22Vincent (1989, Theorem 1) adapts Gul, Sonnenschein and Wilson’s (1986) arguments to establish existence under
Assumptions 1 and 2, but his proof fails to demonstrate that the extension does not get stuck at some state ¢ > 0.

Our proof also dispenses with Vincent’s requirement that v(-) be nondecreasing.
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5 Characterizing the limiting equilibrium path

In this section, we will use the results of Section 4 to characterize the limiting delay whenever the

buyer’s and seller’s valuation function are neoclassical,?® i.e. :
Assumption 4 v () and ¢(+) are step functions, each having at most a finite number of steps.

To describe the limiting revenue and acceptance functions, let us set ¢ = 1, p§ = ¢(1), and

iteratively define

¢; = max {q e [0, giy) : / " () - py )z < o} : 9)

whenever the set in (9) is nonempty, and ¢ = 0 otherwise, and

(v(g) — c(q)?

Pyt —clq) (10)

Pp = c(d,) +

ending the process whenever ¢ reaches 0. Note that Assumptions 1 and 4 guarantee that this
happens in a finite number of steps. Let us denote this number by K. In order to simplify the

proofs, we also make the following nondegeneracy assumption.
Assumption 5 The functions v () and ¢ () are continuous at g, for alln € {1,...,K}.

For each n € {1,..., K — 1} let us also define T}, as the solution to e~"» = p2 where

pn = (0(gy) —c(a) / (1 —clan)) - (11)

The intuition behind the above construction is analogous to the intuition for the limiting solution
in the two-step example of Section 3. Let R (¢) and P (q) respectively denote the buyer’s expected
revenue and the seller’s acceptance function, in the limit as the length of the time period between
successive offers converges to zero (our proofs below show that these limits are well defined, with
the possible exception of P (¢%), which is defined by making P left-continuous). Then we have the

following generalization of Proposition 2:

Theorem 3 Suppose Assumptions 1, 4 and 5 hold. Let ¢, pi and T, be given by (9), (10) and

(11), respectively. Then in the limit, as § — 1, the seller’s acceptance function and the buyer’s

23Note that arbitrary valuation functions can be arbitrarily closely approximated by neoclassical ones.
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revenue function converge to :

P(q) =p;, qel0, ¢, if n=K—1

q€ (g, g, if n=0,..,K—2

R(q)= ["(v(z) —pp)dz  q€0,q;), if n=K—1
q € (q:L+17 q:;]7 Zf n= Oa aK - 2
Furthermore, the buyer successively offers {p%_,...,p5}, but delays trade for a length of time T,

between the offers p}, and p}_.

To interpret Theorem 3, observe that when the state ¢ satisfies ¢ > ¢f, the buyer’s expected
revenue is strictly positive. The Coase Conjecture forces thus cause her to accelerate trade, and
in the limit propose the concluding offer ¢ (1) instantaneously. As in the two type case, this also
explains why the seller’s acceptance function over the interval (¢f, 1] is equal to ¢(1). At ¢ = ¢
the buyer’s revenue becomes zero, and there no longer is any incentive to accelerate trade. As a
consequence, there is real delay at ¢ = ¢f. The length of this delay, T}, is determined so that the
seller of type g7 is indifferent between accepting the price p; and waiting for a length of time 73 to
receive the price pjj = ¢(1), i.e. p} — c(q}) = p?(c(1) — ¢(q})). The equation for pj is derived in an
analogous fashion to the two type case.

Over the interval (g3, ¢] the buyer’s expected revenue is again positive, so again the Coase
Conjecture causes her to offer the price p} instantaneously. As a consequence the seller’s acceptance
function over the interval (g3, ¢7] is equal to p}, and so on.

For the special case where K < 2, the proof of Theorem 3 follows from Corollary 1 and Theorem
3’, below. The proof for the general case consists of a finite number of repetitions of the arguments
for K = 2, because the acceptance price p takes on an analogous role over the interval (¢f_;, ¢}]
to that of the acceptance price p§y = ¢ (1) over the interval (¢f, 1].

Suppose then that K < 2, so that either ¢f = 0 or ¢5 = 0. Define
¢ = inf{g: lim P(q) = c(1)}. (12)

Note that by Lemma A-2 we have P (q) = ¢(1), for all ¢ > ¢, regardless of the length of time
between periods, so ¢ is well defined. Our next lemma shows that ¢§ = ¢7, i.e. that the buyer’s
limiting revenue is equal to R (q) for all ¢ > ¢f, and that the seller’s limiting acceptance function
is equal to p§ = ¢(1) on the interval (¢f, 1]. Essentially, the proof of Lemma 2 consist of showing

that the Coase Conjecture applies on the interval (¢, 1].
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Lemma 2 Suppose Assumptions 1, 4 and 5 hold. Then § = q;.%*

An immediate consequence of Lemma 2 is the following generalization of Proposition 2 :

Corollary 1 Suppose Assumptions 1, 4 and 5 hold. Then the Coase Conjecture holds if and only
if gf =0 .2

Indeed, if ¢f > 0 and Assumptions 1, 4 and 5 hold, then by Lemma 2 we necessarily have
P(0) < ¢(1). Thus, ¢¢ = 0 is necessary for the Coase Conjecture to hold. Now if ¢¢ = 0, then
Lemma 2 implies that P(q) = ¢(1) for all ¢ > 0. What remains to be shown is that there cannot
be any delay at ¢ = 0, i.e. that P(0) = ¢(1). This requires a more sophisticated proof, along the
lines of the proof of the Coase Conjecture for the private values case when there is no “gap.”

Corollary 1 reduces the question of whether or not the limiting bargaining outcome is efficient

to the question of whether or not ¢f = 0. Since the condition g7 = 0 is equivalent to the condition

Elv(z) — ¢(1)] z > ¢] > 0 for all g, we may rephrase Corollary 1 as :

Corollary 2 Suppose Assumptions 1, 4 and 5 hold. Then the Coase Conjecture holds if and only
if E[v(z) —c(1)| 2> q] > 0 for all q.

Observe that in the two-type case, whenever Assumption 1 holds, the condition E[v(z) — ¢(1)]
z > q] > 0 is equivalent to the condition E(v) > ¢(1). As a consequence, we were able to conclude
that the Coase Conjecture held if and only if the static incentive constraints admit an efficient
outcome. In general, however, it is possible that E(v) > ¢(1) but that E[v(z) —¢(1)] 2 > ¢q] =0

for some ¢ € (0,1), so that ¢i > 0. Our next example illustrates this.

Example : Modify the example from Section 3 as follows. Pick € > 0 and s > 0, and select «
and so that ¢f > e. Now redefine v on [0, €] so that v(q) = v, and select « sufficiently large that
E(v) > ¢(1).

In the above example, it is feasible for trade to occur at the price ¢(1), but because ¢f > 0
the limiting bargaining outcome exhibits real delay (see Corollary 1). In order for there not to
be any limiting delay, the condition E(v) > ¢(1) therefore generally needs to be strengthened.

However, suppose the function v(-) is nondecreasing and Assumption 1 holds. Then the condition

24 A careful perusal of the proof of Lemma 2 reveals that Assumptions 4 and 5 may be replaced by the weaker

condition that v(-) is nondecreasing in a right neighbourhood of ¢ .
25The proof of Corollary 1 actually shows that Assumption 1 and the condition g7 = 0 are sufficient to imply the

Coase Conjecture.
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E(v) > ¢(1) is equivalent to the condition of Corollary 2, and hence both necessary and sufficient
for the absence of delay.
Our remaining task is to determine the extent of the equilibrium delay when ¢ > 0.26 As we

saw in Section 3, determining this delay is equivalent to finding the limiting acceptance price of

type qj.

Theorem 3’ Suppose that Assumptions 1, 4 and 5 hold, and suppose that qf > 0. Then the

acceptance price at ¢i converges to pi as d tends to 1.

The proof of Theorem 3’ is long and hard. The essential ideas are as follows. Assumption 4
implies that ¢(-) can have at most M jumps (M < o0), and hence that P(-) can have at most M
jumps in the interior of any interval (g, ¢n—1]. We show that any such jumps can persist for at
most an arbitrarily small amount of real time when 9§ is sufficiently large. Now because ¢; > 0
there is real delay at ¢f. There will therefore exist a neighborhood of ¢i such that whenever §
is sufficiently large there are no inner jumps in P(-). As a consequence, when the state is g,11
the buyer will be indifferent between inducing the state g,, and the state g,11. It is this property
which allows us to estimate the a relationship between m,, and m,1, in a fashion analogous to
the two-type case (see the derivations leading up to equation (7)), and therefore to calculate the

limiting delay at g7.

6 The efficiency of sequential bargaining

Suppose that the condition of Lemma 1 is violated, so that we necessarily have ¢f > 0. We would
like to know whether the limiting solution described in the previous section is then ex-ante efficient,
i.e. maximizes the gains from trade over all incentive compatible and individually rational trading
outcomes. To see that this cannot generally be the case, let us first consider the two-type example
studied in Section 3 (see Proposition 2). Note that in the limiting outcome, all seller types in
the interval [0, 4] have the same valuation, and hence are indifferent between trading at time 0 at
the price sp?, and trading at time 7" at the price s (where e™"7 = p?). However, in the limiting
outcome, only types ¢ in the interval [0,¢;] (where ¢f = 1 — a) trade at time zero; the remainder

trade at time 7. Social welfare can thus be increased by having all types ¢ € (¢7, §] trade at time

26Note that whenever E(v) < ¢(1), it is necessarily the case that ¢} > 0.
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zero at the price sp? instead. Indeed, all such seller types are indifferent between these two options,
and the buyer pays the same discounted price, but gets to trade earlier.2”

The two-type example gives a clear and unambiguous answer, but leaves open the possibility
that for more general type distributions the limiting bargaining mechanism might sometimes achieve
the constrained welfare optimum. We will now slightly alter the argument from the two-type case
to demonstrate that this is never the case. Indeed, under Assumptions 4 and 5 there exists an
€ > 0 such that c¢(¢f +¢) = c(q7). Just as in the two-type case, we can therefore improve welfare
by letting all types in the interval (¢}, q; + ¢) trade at the price pj at the same time as type ¢;.
Incentive compatibility is maintained, for each of these seller types is indifferent between this option

and trading after a delay of length T; at a price p§ = ¢(1). Hence we have shown :

Theorem 4 Suppose Assumptions 1, 4 and 5 hold, and suppose that qf > 0. Then the limiting
bargaining outcome is not ex-ante efficient, i.e. there exists an incentive compatible and individually

rational mechanism that yields higher expected gains from trade.

Theorem 4 shows that whenever E(v) < ¢(1), there exist feasible mechanisms that yield higher
welfare than in the frictionless bargaining outcome of our model. Consequently, when values are
strongly interdependent, many of the lessons we have learned from the private values model may
be overturned . As an example of this, we demonstrate below that the relative performance of
different bargaining institutions may depend significantly on the degree to which valuations are
interdependent.

Ever since Ronald Coase’s (1972) famous paper, a central tenet of bargaining theory has been
that a player’s inability to commit to walking away from the bargaining table may not only seriously
undermine her bargaining power, but may also enhance the efficiency of the bargaining outcome. In
other words, the welfare distortions are lower when the uninformed party lacks commitment power
than when she has perfect commitment power. We claim that when values are interdependent,
this conclusion may be reversed. To see this, let us again consider the two-type example studied
in Section 3, and let us assume that the fraction of high valuation seller types is sufficiently small

that g7 > 0, i.e. ¢ > B/(s+ 8 — a). Amongst all incentive compatible mechanisms, the one

27In the resulting mechanism, the buyer will enjoy strictly positive expected surplus; this means we can increase
the probability of trade on the interval (g, 1] above p?, thereby further increasing welfare. We can maintain incentive
compatibility by raising the price paid by seller types in [0, §] in such a way as to keep them indifferent between the
two options. The ex-ante optimal mechanism obtains when the probability of trade over the interval [0, §] cannot

be raised any further without making the buyer sustain losses.
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most preferred by the buyer is the one in which she gets to make a single take-it-or-leave-it offer
(see Samuelson (1984)). Since there are relatively few high valuation seller types, the buyer’s
optimal take-it-or-leave-it offer is equal to zero. Under perfect commitment power social welfare
therefore coincides with the buyer’s expected revenue, i.e. equals «g. At the same time, the
limiting bargaining outcome from Section 3 has trade occur immediately with seller types in [0, ¢7],
and with delay discounted to p? with seller types in (¢i,1]. In the absence of commitment power,
welfare therefore equals agi + p?[a(d — ¢7) + B(1 — §)] = ag — pB(1 — §) < ag, i.e. falls short of
welfare under perfect commitment! Intuitively, this can happen because with relatively few high
valuation types the inefliciencies associated with ordinary monopsony power are smaller than the
inefficiencies caused by the Coase Conjecture forces.

Our welfare analysis also applies to the reverse bargaining model in which the buyer is the
informed party, and the seller makes all the offers. To see this, let us assume that types are
ordered such that v(-) is a non-increasing function, so that it can be interpreted as a demand
curve.?® Assumption 2 then becomes : there exists L < oo such that v(q) —v(1) < L(1—gq) for all ¢
€ [0,1]. In a stationary equilibrium, the buyer adopts a stationary acceptance strategy, accepting
the offer p when his signal is ¢ if and only if p < P(q). The seller’s value function R(g) must then

satisfy a dynamic programming equation analogous to (2):

o) - e [

Let t(¢) be the minimum element from the argmax correspondence associated with (13); the buyer’s

(P(q') = c(2))dz + 5R(Q’)} (13)

acceptance function must then satisfy the indifference equation :

v(g) = Plg) = 8(v(q) — P(t(a))). (14)

By analogy, we may define
1
¢} = max {q €1[0,1) : / (v(1) — ¢(2))dz < O} ,
q
] " q i
= —-_—
P (‘h) U(QT) —’U(l)

and similarly for {¢}, p*} when n > 1. With these definitions, all of our results apply immediately.

For example, under Assumptions 1, 4 and 5, there is limiting delay if and only if ¢f > 0. In the latter

28This model is of independent interest, for it can be interpreted as a model of a durable goods monopoly, in which
the seller is subject to learning-by-doing (in case ¢(-) is decreasing), or sells exhaustible resources (in case c(-) is

increasing).
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case, there is a delay for a length of time discounted to p?, where p = (v(q;) —c(q}))/(v(q;) —v (1)),

and so on.

7 Conclusion

In this paper, we considered a bilateral trading situation, in which there is one-sided incomplete in-
formation. We analyzed the infinite-horizon bargaining game in which the uninformed party makes
all the offers, but departed from the standard model by allowing valuations to be interdependent.
We showed that the Coase conjecture forces are still very much operative, but that there may be
limiting delay, at states for which the uninformed party’s limiting expected payoff vanishes. Under
these circumstances, when the discount factor is sufficiently large, bargaining will characterized by
short periods with substantial likelihood of agreement, followed by long periods with very low prob-
ability of agreement. Such delay may occur even if the static incentive and individual rationality
constraints permit an efficient outcome to be obtained, unless additional regularity conditions are
imposed. We also demonstrated that when the static incentive constraints do not permit first best
efficiency, then from a welfare viewpoint the limiting bargaining outcome displays “excessive delay.”

The inability of the bargaining game in which the uninformed party makes all the offers to
replicate the ex-ante efficient outcome opens up an interesting avenue for future research. Indeed,
other institutions may then yield superior outcomes. This could help explain why parties sometimes
resort to other mechanisms, such as arbitration. Even staying strictly within the framework of
infinite horizon bargaining, interesting questions arise. For example, it is a well accepted wisdom
that in order to promote efficiency in bargaining, the power should go the party that has the private
information. Ausubel and Deneckere (1989b) lend some credibility to this belief, by showing that
with private values, the bargaining game in which the informed party makes all the offers yields
the efficient outcome (even when bargaining frictions are present). With interdependent values,
first best efficiency cannot be attained when the static incentive constraints do not permit so,
and as we saw above may not be attained when they do so. Thus, it remains an open question
whether transferring bargaining power to the party that has superior information generally improves

bargaining efficiency.
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Appendix A : Proof of Theorem 1

Consider first the one-period bargaining problem, starting at an arbitrary state ¢ < 1. Since
the buyer’s offer is final, the seller’s reservation price then coincides with his cost. Thus the buyer
selects y € [g, 1] to maximize :

w(wia) = [ (o) — elw))az
q
Lemma A-1 establishes that if ¢ is sufficiently near 1, then in the one-period bargaining game the

buyer will select an offer that all remaining seller types accept. Despite the presence of monopsony

power, in this case there are no allocative distortions.

Lemma A-1 Suppose that Assumptions 1 and 2 hold. Then there exists § < 1 such that for all

q > @ the unique maximizer of w(y;q) isy = 1.

Proof :  Let e = A/2; by left-continuity of v(-) there exists §; < 1 such that v(q) > v(l) —¢ for all
q>7q;. Letg, =1-A/(2L), and define § = max{g,,qd,}. Then we have 7(y; g fy y))dz
< fy Y+ L(1—y))dz = n(l;q9) — fy (v(2) — (1) — L(y — q))dz, where the first inequality
follows from Assumption 2. Using the fact that ¢ > g, the term under the integrand can in turn
be bounded below by v(1) —e —¢(1) — Ly — ¢) > A/2 — L(1 —¢q) > 0. Thus if y < 1 we have
m(y; q) < 7(1;q), as was to be demonstrated. Q.E.D.

The intuition behind Lemma A-1 is straightforward. When the buyer raises output marginally
from y < 1, the increased acceptance probability raises her expected payoff by at least A. The
cost associated with raising output is that all seller types who would have accepted previously will
now be receiving a higher offer. When ¢ approaches 1, the number of such seller types becomes
arbitrarily small, so raising output will be profitable unless the rate at which the offer must be
increased is unbounded. Assumption 2 prevents this from happening.

Define S(q) = argmax7(y;q) and let ¢; = inf{q : 1 € S(q)}; the previous result implies that
¢1 < 1. Lemma A-2 shows that when the state exceeds g; and there is more one bargaining period
remaining, the buyer will still “clear the market” by making the offer p = ¢(1). This is not obvious,
for in the infinite horizon model the acceptance price of any seller type ¢ € [g1,1] will generally

exceed ¢(q).

Lemma A-2 Suppose that Assumptions 1 and 2 hold. Then in every sequential equilibrium, after
any history in which it is the buyer’s turn to move and the state q > q1, the buyer makes the offer

¢(1), and all remaining seller types accept.
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Proof : Since in equilibrium the seller can never expect an offer p > ¢(1) (Fudenberg, Levine and
Tirole, 1985, Lemma 2), the seller will accept any such price with probability one. This implies
that the buyer’s (ex-ante) equilibrium continuation payoff is bounded below by m(1;¢). At the
same time, Samuelson (1984) has shown that the optimal static mechanism for the buyer involves
a take-it-and-leave-if offer to the seller. Consequently, Lemma A-1 implies that in any sequential
equilibrium, after any history in which it is her turn to move, the most the buyer can expect
as a continuation payoff is w(1;¢). Combining both results, we see that the buyer’s equilibrium
continuation payoff equals 7(1;¢), and is uniquely attained by offering p = ¢(1), which the seller
accepts. Q.E.D.

Lemma A-2 yields a unique candidate stationary triplet (R, t, P) on the interval [¢q;,1] :

R(q) = maxy>q [ (v(2) - c(y))dz
t(g) = minargmax,>, fqy(v(z) —c(y))dz ; (A-1)
P(g) = (1-0)c(q)+ (1 —0)dc(t(q)) + 6%c(1)

This is the easiest to see when ¢ > ¢, for then (A-1) reduces to t(q) =1 and R(q) = 7(1;q), as
required by Lemma A-2. Furthermore, if contrary to the equilibrium the seller is offered a price
p < ¢(1), he will expect the buyer to return with the counteroffer ¢(1) in the next period, and
therefore will accept p iff p > (1—6)c(q) +d¢(1), as indicated in (A-1). The same argument applies
at ¢ = q1 if t (q1) = 1. Meanwhile, if ¢(q;) < 1, application of equation 3, and using the fact that
t(q1) > q1, yields the stated formula for P(g;). That (A-1) is a stationary triplet is shown in the

next lemma.

Lemma A-3 Consider the triplet defined in (A-1). Then R(q) = maxyzq{fqy(v(z) — P(y))dz +
dR(y)} > 0 and t(q) = minarg maxyzq{fqy(v(z) — P(y))dz+ 6R(y)}, for all g € [q1,1].

Proof : First, we prove that R(q) as defined in (A-1) satisfies R(¢q) > 0 for all ¢ € [¢1,1]. Let
q € [q1,1], w= liminf, gv(¢+e¢), and ¢ =lim;|pc(¢+¢€). By Assumption 1, we have w > ¢+ A.
Consequently, there exists € > 0 such that v (¢') > ¢(q + ¢) for all ¢’ € (¢,q + €) . The definition of
R(-) then implies that R (gq) > 0.

By the definition of ¢;, we know that t(q) = 1 for all ¢ > ¢1, so that (A-1) yields P(q) =

(1=96)e(q) +dc(1). Furthermore, R(q) > 0 implies that we must have t(q1) > ¢;. Hence, for all
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q € [q1,1], we have

y>q

max { /q ’ (v(z) — P(y))dz + 5R(y)}

The one before last equality follows from the fact that maxyzq{fqy (v(z) — c(y))dz} = fql(v(z) -
¢(1))dz. Since fql (v(2z)—c(1))dz is constant, we also have arg maxyzq{fqy(v(z) —P(y))dz+d0R(y)} =
arg maxyzq{fqy(v(z) —c(y))dz} =t(q). Q.E.D.

Proof of Theorem 1 : Given a stationary triplet on the interval [g,, 1], we extend it in a
unique way to a stationary triplet on a larger interval [¢,11,1]. For ¢ € [0,1], let R;(q) be the
buyer’s profit when constrained to select the state in [g,, 1], and let T be the corresponding argmax

Correspondence:

Ri(q) = maxyep, 1 [, (v(2) — P(y))dz +dR(y)

Ti(q) = argmaxyep, 1 [, (v(z) = P(y))dz + SR(y)
Also, extend P (q) to the entire interval [0, 1] by setting P;(¢) = (1 — d)e(q) + 6P (t1(q)), where
t1 (¢) = min Yy (q). Next, for ¢ € [0,g,] let Ro (¢) denote the buyer’s profit when constrained to

select the state in [q, ¢,] (using the extended acceptance function):

Ro(q) = maxyefq, [, (v(2) = Pi(y))dz +6Ri(y)

Tao(q) = argmaxyepgq,) [, (v(2) = Pi(y))dz +6Ri(y)
Finally, define ¢,+1 = max{q>0: R; (¢) < Rz(q)} whenever the latter set is nonempty, and
Gn+1 = 0 otherwise.

We now claim that g,41 < ¢,. To see this, note that Rs(g,) = dR1(¢n) < Ri1(gn), and
that by the theorem of the maximum R; and Ry are continuous functions. For ¢ € [gn41,1]
define P(q) = Pi(q), R(q) = Ri(q), t(q) = t1(q) if ¢ > gny1, and #(gny1) = ta(gni1). We also
claim that (P,t, R) is a stationary triplet on [gn4+1,1]. To show this, we need to establish that
for any ¢ € [gn11,¢n) it is the case that R; (q) = max,ecq,1] fqy(v(z) — P(y))dz + dR1(y). But
if the maximizer y € [q, ¢, ), we would have R; (¢) = Ra2(q), contradicting the definition of gy41.

Consequently, y € [¢n, 1] and the required equality holds by construction.
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Next, we claim that R (gn41) > 0. Let ¢ (¢) = max T (q), and let € be such that g+¢ € (g, (q)).
Since 7 (q) is feasible from the state ¢ + ¢, we have R (q +¢) > f;jrqg) (v(z)—P(t(g)))dz
+OR ((g)). Tt then follows from R (q) = [ (v(2) — P (£(q)))dz + 0R (£ (q)) that

q

q+e _
R(g+¢) > R(q) - / (v () - P (i (q)))dz (A-2)

q

Since g + ¢ is feasible from ¢, we also have

qt+e
Rz [ 06 -Pa+e)d+dR+e) (A-3)
Plugging (A-2) into (A-3) yields
q+e
1-0r@= [ ((1=00) - Pla+ )+ 5P(E0) )d=

> /qq+6 ((1 —9) (v(z) —clg+ e)) - 5(P(t(q +€) — P(E(q))» dz (A-4)

As shown in the proof of Lemma A-3, the first term under the integrand is bounded away from 0 for
sufficiently small e. 'We will have proven the claim if we can show that lim. | (P(t(g+¢)—P(t(q)) = 0.
Since T (g) is a nondecreasing continuous correspondence, we have lim. o t(¢+¢) = t(¢). The above
equality can therefore fail only if P (-) has a discontinuity at ¢ (¢). However, if this is the case, we
necessarily have t (¢ + €) = t (¢) when ¢ is sufficiently small. Otherwise the buyer could select #(q)
when the state is g + ¢, thereby lowering the price discontinuously, and increasing his profit.
Finally, we will show that it takes only a finite number of extensions before ¢,; reaches 0.
Suppose to the contrary that lim, .o ¢n = ¢oo > 0. Since P (g,) = (1 — 9) Z?:o
(6" e (t"I(q))) + 6™ e (1), it must be the case that lim, oo P(gn) = ¢4 (goo), Where cy (q)
denotes the right hand limit of ¢(g). By Assumption 1 there exists ng > 0 such that Vn > ng

and all ¢ € (¢oo,Gn,] We have 0 < v(q) — P(gn,) < U, where © = sup{v(q) : ¢ € [0,1]}. Let

¢ = U=DR()

. We will show that ¢, — ¢,+1 > € for all n > ng, contradicting the assumption that
{gn} converges to ¢oo. To see this, observe that

t(qn41)
R(gnir) = / (0(2) = P(t(gns1)))dz + 6R(E(gns1))

dn+41

< ’L_}(Qn - Qn+1) + 5R(t(Qn+1))

IN

0(qn — qni1) + 0R(qn+1)

The last inequality follows because v(q) — P(qn,) > 0 for ¢ € [goo, Gn,) implies that the function
R(q) is decreasing in ¢ for ¢ € [¢oo, qno)- Indeed, if ¢’ > ¢ then R(q) > f;(q,) (v(z) = P(t(q")))dz
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+oR(t(¢")) = R(¢') + qu, (v(z) — P(t(q))) dz > R(q’'). Hence we have,

G — Qg1 > (1- 5)1_%(Qn+1) > (1— 5)_R(qn0) _

where the last inequality follows again from the monotonicity of R (-) on [¢eo, Gng]- Q.E.D.
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Appendix B : Proof of Theorem 2

Consider a sequence A,, > 0 such that A,, | 0, and a sequence ¢,, < 1 such that ¢, T 1. For each

n, define v, (q) = v(q) + Ay, and ¢,(q) = ¢(q) for ¢ < ¢, and ¢, (q) = ¢(gn) + [e(1) — c(qn)]‘f:?}:,

for ¢ > g,. Observe that the game with valuation functions {v,(-), ¢, (+)} satisfies the assumptions
of Theorem 1, and so has a stationary triplet {R,, Pp,t,}.

Since [0, 1] is compact, it follows from Prohorov’s Theorem (Billingsley, 1968, p.37) that the
sequence P, has a weakly convergent subsequence (more precisely, Prohorov proves this for the
right continuous versions of P,, but the result is obviously true if we take left continuous versions
instead). By taking this subsequence, and renumbering indices, we may without loss of generality
assume that the original sequence { P, } is weakly convergent. Thus, P, converges “in distribution”
to a left-continuous nondecreasing function P(q), i.e. P,(q) — P(q) at every point ¢ where P(-) is
continuous.

Next, we claim that each R,, is Lipschitz continuous, with Lipschitz constant v + ¢(1) +
A,. Indeed, we know that R, () is continuous and that its left-hand derivative, R, (q) =
lim, o w = —(vn(q)— P, (tn(q)), exists and is bounded by t4¢(1)+A,,. Using reasoning

analogous to the proof of the mean value theorem, we obtain that for any two values 1, 25 in [0, 1],
|Ry, (1) — Ry (22)] < (0+ Ay +¢(1)) |21 — 22|

This in turn implies that {R,,} is an equicontinuous family of functions, and hence has a subse-
quence which converges uniformly to a continuous limit R. Again, by taking a further subsequence
if necessary, we may assume that the original sequence converges to R.

Let J, (q) = maxy s { [ (0(2) — P (¢'))dz+6Ro ()} and J(g) = maxgso {7 (v(2) ~ P(¢))dz+
0R(q")}. Because P, converges “in distribution” to P, and R, converges uniformly to R, the
hypotheses of the Generalized Theorem of the Maximum (Ausubel and Deneckere, 1989, p. 527)
are satisfied. Since for each n we have J,, = R, it follows that J(q) = lim,,_.. R,(¢) = R(q), i.e.
(2) holds.

It remains to be shown that (3) is also satisfied. Consider any ¢ € [0,1) where ¢(-), P(:), and
P(t(-)) are continuous. Since each of these functions is nondecreasing, at most countably many ¢ are
excluded. We will first argue that for such ¢ equation (3) must hold. Observe first that since ¢ is a
continuity point of P(-), we have lim,, . P,,(¢) = P(q). Secondly, since ¢, (-) converges uniformly
to ¢(+), we have lim,_,« ¢,(q) = ¢(¢q). Thirdly, the Generalized Theorem of the Maximum implies

that any cluster point of {t,,(¢q)} belongs to T(q). Since #(-) is continuous at g, Y(+) is single-valued
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at ¢, and hence lim,, o t,(q) = t(g). Finally, let p be any accumulation point of the sequence
{P,(tn(q))}. We claim that p = P(t(q)). First, let us show that p > P(t(¢)). To this effect, let
ri 1 t(q) and si | t(g) be sequences of continuity points of P(:). Then for all k, there exists N (k)
such that for all n > N (k) we have t,(q) € (rg, k). Consequently, P, (1) < Pn(tn(q)) < Pn(sk),
for all n > N(k). Since ri and s are continuity points of P(-), it follows upon taking limits as
n — oo that P(rr) < p < P(sx). Exploiting left-continuity of P(:), and again taking limits as
k — 00, we then obtain P(t(q)) < p < limg|44) P(s). Secondly, suppose that contrary to the claim
we have p > P(t(q)). We will show that for large n this contradicts that tn(q) is a profit-maximizing
choice for the buyer. Indeed, observe that fqr’“ (v(2) = Po(rr))dz + Ry (1 =" Sl

P, (tn(9)]dz + [Pn(tn(q)) — Pn(re)]lre — ¢ +[Rn(rr) — Rn(tn(q))]. Now letting n = N(k:), and
letting k& — oo, we see that the above expression converges to [p— P(t(q))][t(¢) —¢q]. Next, we claim
that t(q) > ¢, showing that for large k the choice r;, dominates the choice #y)(q), the desired
contradiction. Indeed, suppose to the contrary that ¢(q) = ¢. Then there must exist € > 0 such
that ¢ (¢ +¢) =t (q). Forif we have t(¢+¢) > t(q) for all e > 0 then P (¢t (¢ +¢€)) > p > P(t(q)),
contradicting continuity of the function P (t(-)) at ¢. Now let ¢ € (¢,q+¢) be a continuity
point of ¢ (-). Then since t, (¢') > ¢ for every n, we would obtain the contradiction ¢ = t(¢') =
lim,, 00 ¢, (¢') > ¢, s0 we must have ¢ (¢) > ¢g. We conclude that lim,,—. P, (t,(q)) = P(t(q)).

Now observe that since {P,, Ry, t,} is a stationary triplet, we have for each n :

Po(q) = enlq) = 8(Pu(tn(q)) — cu(q))-

By taking limits as n — oo, we see that (3) must hold for all but at most a countable number of
g. Finally, consider any of the excluded ¢ € [0, 1], and select as sequence of nonexcluded ¢ such
that ¢x T g. Since (3) holds for all k, and since the functions P,(-),c,(:), and P, (t,(-)) are all
left-continuous, we see upon taking limits as k — oo that (3) also holds at g. We conclude that

{P(:),R(:),t(-)} is a stationary triplet for the game with valuations functions v(-) and ¢(-). Q.E.D.
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Appendix C : Characterization of the Limit

Lemma C-1 For any € > 0, there exists a finite integer N and a constant n > 0 such that

t(q)—qg>nforalqge (g +e,q) and qn < qf +¢, for all § < 1.

Proof : Note that R(q) — R(t(q)) = f;(q)(v(z) — P(t(z)))dz.  Consequently, f;(q)(v(z) -
P(t(g))dz = R(q) = 6R(H(q)) = (1= 6)R(q) + 6(R(q) = R(t(q) = (1 = HR(g) +3 [, (v(2)

P(t(z)))dz. Combining the outer inequalities then yields :

t(q) t(q)
(1-4) / o(z)dz — / (P(t(q)) — 6P(t(2))) dz = (1 — 6)R(q) (c-1)

Note that P(t(q)) — 6P(t(z)) > (1 — d)e(t(q)) > 0, v < T and R(q) > R(g). Substituting into

G

(C-1) then yields t(q) — Since R(q) is continuous and strictly positive over [¢} + €, 1],

d=minge(gs e, g R(q ) exists and is strictly greater than 0. Hence, t(q) — ¢ is uniformly bounded
from below by n = ¢ 1= (q1 +e).

Q.E.D.

Let N be the smallest integer greater than ; then gn < ¢f +e.

Proof of Lemma 2 : First, we claim that ¢ > ¢f. If ¢f = 0, the inequality is trivial, so
suppose that ¢f > 0. Observe that since for all ¢ > ¢ we have lims_; P(q) = ¢(1), it is the
case that R(q) = ¢ (q) for all ¢ > G, where ¢(q) = fql (v(z) —c(1))dz. Next, observe that
v(qy) < ¢(1). Indeed, if we had v (g¢f) > c¢(1), then since (by Assumptions 4 and 5) v (-) must
be constant in a neighborhood of ¢f , we would have ¢’ (¢) < 0 in a right neighborhood of ¢,
contradicting the definition of ¢i. Suppose now that contrary to the claim we had ¢ > ¢. Since
¢ (qf) = v(g) —c(1) < 0, this would imply that R (q) = ¢ (¢) < 0 in a left neighborhood of ¢}.
But this is impossible since for every § < 1 we have R (¢q) > 0, and hence R (q) = lims_.; R (q) > 0.

Next, we show that ¢ < ¢f. Suppose to the contrary we had ¢ > ¢f. Select any ¢’ € (g7, q)-
From Lemma C-1, we know that it takes at most a finite periods for the buyer to offer price ¢(1)

regardless of . This implies P(¢’) = ¢(1), which contradicts to the definition of §. Q.E.D.

Proof of Corollary 1 : It remains to be shown that there can be no limiting delay at ¢7 = 0,
i.e. that P(0) = ¢(1). Suppose to the contrary that liminfs_; P°(0) = b < ¢(1). In the generic
case where E(O) > 0, select ¢; € (0,1) and define ¢’ = 0. The second part of the proof of Lemma
2 now applies literally, with ¢; taking the place of ¢, yielding the desired contradiction.

Next, let B(0) = 0. Define N(¢) be the smallest index such that qn(¢) < 0. We will show that
lim¢ o N(¢)¢ = 0, which then implies P(0) = ¢(1). Observe that q; > 0, for ¢ = 0 would imply
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that N(¢) = 1, which completes the proof. It therefore follows from the definition of ¢; that if
Yq = sup S(q) = argmaxy¢c(q1) 7(y’; ¢) then y, < 1 for all ¢ € [0, 1), so that fqu (v(2) — c(yq))dz >
fql (v(z) —c(1))dz > 0. Select z € (0,¢1). By the Theorem of the Maximum fqy" (v(2) — c(yq))dz is
continuous in ¢. Hence d = mingej 4 {fqy" (v(2) — c(yq))dz} exists and is strictly greater than 0.
Hence, applying the definition of R and the inequality P(q) < (1 —d)c(q) + de(1), we obtain

1

R(q) > /yq (v(z) = P(yg))dz+46 | (v(z) —c(1))dz

Yq

1 Yq
26 [ (0(a) — ez + (1-0) [ (0() — clu) dz
>(1-9) [0l — clu)ds > (1= D)

(1-8)d
v

Now from (C-1) we obtain g — t(g) > @ > . Hence for any ¢ < z, it takes at most

n (J) periods to move from state 0 to state €, where n(d) is the smallest integer greater than (1f%)d.

From Lemma C-1, there exists an Ny such that ¢y, < e. Hence N (¢) < n(d) + Np. Since
lim¢ o ¢N (¢) < lime—o¢(n(6) + No) = lim¢_o (172%% = =% by letting e go to zero we obtain
lime_.o (N (C) = 0 Q.E.D.

Proof of Corollary 2 : From the first part of the proof of the Lemma 2, we know that Flv (z) —
c(1)|z > q] > 0 for all ¢ implies ¢; = 0. Otherwise we would have E[v (z) — ¢ (1) |z > ¢] < 0 for ¢
in a left neighborhood of ¢7. Conversely, the condition ¢f = 0 and the definition of ¢} immediately
imply that Flv(z) —c¢(1) ]z > ¢] > 0 for all q. Q.E.D.
Proof of Theorem 3 : By Assumptions 4 and 5, there exists €g > 0 such that v(q) = v(q})
and c(q) = c(q¢}) for all g € [g] — €0, g7 +€0]. Let p= %. The proof then consists of four

steps :

1. Show that for a length of real time approximately discounted to p the state g, (constructed in
Theorem 1) stays in a neighborhood of ¢;. More precisely, for any ¢ € (0, %) and

1
any €1 < %, there exists dp < 1 such that for all § > do, n1(e, 6) satisfying 6" = 1 — ¢, and

n}y(9) satisfying 62 = p, we have ¢, € (¢f — 1, ¢f 4 &1) for all n satisfying n; < n < n} + 1.

2. Show that for sufficiently large §, we have t(q) = g,—1 for all ¢ € (gn+1, qn], n1(e,d) =2 <
n < n.(6), where 71 (§) = max{n: ¢, > ¢f —eo}. In other words, there are no inner jumps
in the seller’s acceptance function for all ¢ in the neighborhood (gz, gn,—2] of ¢f. Note that

from Step 1 we have 2 > nf, > ny and that 7 — n; becomes arbitrarily large as dg goes to 1.
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3. Similarly to the two step case, because there are no inner jumps in P (-) within any interval
(Gn+1, qn] for n satisfying ny —2 <n < n—1, we have R(qn) = (¢n-1—qn)(v(¢}) — P(gn-1)) +
OR(gn-1) = (gn—2 — gn)(v(q}) — P(gn-2)) + 6R(qn—2), for n satisfying n; <mn < n. Letting

ple) = % , we therefore get a similar relation between the discount factor ¢ and
ni 1

My = Gn-1 — qn, 1.€. mm"if =6~ (n=m=D)(g). Define fi(e, ) to be the turning period, that
is the solution to p(€)d~ (1) <1 < p()d~", or dp () < 6™ < p(e). We show that g5 < qn,,
that there exists a ¢n, such that ¢ > g, > ¢ — 5¢1, and that the length of the delay in

[Gny» Gn,] must satisfy e ™7 = (1 — )2 p2 (¢). By letting e — 0 and £; — 0, we further prove

that P (qf) = pi.
4. Prove that P(q) = p* for q € (¢5, ¢}].

Proof of Step 1 : First, given € > 0 and 6™ =1 — ¢, we have

ni—1 ni—1
Plgn,)=1=06) > et (gn,) + 0™ c(1) < (1=6) > delqr) + 6™ e(1)
3=0 j=0

=c(1) —e(e(l) — c(qr)) < c(1).

The inequality ¢ (¢1) < ¢ (1) follows from the definition of ¢; = inf{q : t(¢) = 1}. Otherwise, by the
left continuity of ¢ (-), and Assumption 4 we can find ¢’ < ¢ such that ¢ (¢) = ¢(1) for all ¢ € (¢/, 1].
This would imply #(¢’) = 1, yielding a contradiction. Since P (¢} +&1) = ¢(1), there exists a &
such that for all & > &g, P(qn,) < P (g} +¢1). Hence, we obtain ¢,, < ¢ + ;1.

Secondly, from the proof of Theorem 1, we know that R(q) > 0 for all g € [0,1]. Hence,

0<Rai—e)= [ @) - PG+ [ 06) - PUE)
1
< (vlaf) — Plo(a; —=)er + [ (o) = () (©2)

0
The second inequality uses the fact that v(z) = v(q}) over the interval [¢f — 1, ¢7], and that P(-) is
increasing. Lemma 2 shows that R (¢f) = 0 which implies that the second term in (C-2) converges
to 0 as 6 — 1. Hence for sufficiently large 4, (C-2) implies v(q7) > P(t(¢f — 1)) > P (¢f — &1).
Now observe that there exists n’ such that ¢f — 1 < ¢ < t(¢f —€1). Since in equilibrium a

seller with type g, would accept a price P (g,/) rather than a price ¢(1) after n’ periods, we have

n' .. . n' P(q,/)—c(qy v(qy)—c(q}
P (qn)—c(qn) > 0" (c¢(1) — c(gn)) . This implies 6" < C(Ell)zc(cq(g)l) < C(Ezll)lc(;%l)). Hence nf, < n/

and gny 41 > ¢7 — €1
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Proof of Step 2 : We first prove that if there are M steps in ¢(+) over the interval (g, 1] C (g7, 1],
then there are at most M steps in P(q) for ¢ € (gn, gn-1] C (¢f,1]. For n =1, since P(q) =
(1-=19)c(g)+dc(1l), P and c have the same number of steps for ¢ € (¢1,1]. Suppose the statement
is true for n > 1, i.e. ¢(-) has M’ steps in (g, 1] and P (-) has at most M’ steps in (gn,gn—1]-
Now suppose ¢ (-) has M steps for ¢ € (¢n+1,1]. Then c(-) has M — M’ steps for ¢ € (gn+1, ¢n]-
Note that P (q) = (1 —9)c(q) + 06P(t(q)) and t(q) € (¢n, gn—1) for ¢ € (gn41,qn]. Hence, if ¢ is a
discontinuity point of P, then q is either a discontinuity point of ¢(-) or of P(¢(-)), or of both. Since
t(-) is increasing, P (t(q)) can have at most M’ discontinuity points for ¢ € (gn+1, ¢n]. Furthermore,
since ¢(-) and P(t(-)) are increasing, there are at most (M — M’) + M’ = M steps in P (-) over the
interval (¢n+1, qnl-

Let M denote the number of discontinuity points of ¢(-) on [g},1]. Since ¢() is constant over
[¢f — €0,q} + €0], the number of the inner jumps in P(-) over (¢n+1,gn] is bounded by M and is
nonincreasing in n for n strictly less than n and satisfying ¢, < ¢f + 9. We will show that there
are no more inner jumps in P(-) by the time we reach ¢,,, i.e. 6" =1 —¢. The argument goes as
follows : First select ¢/ such that (1 — &)™ > 1—¢. Let ng(8,¢') be the solution of 6™ =1 —¢’.
From the argument of Step 1, we know ¢, € (qn,,q; +€o) and there are at most M inner jumps in
P over (gng+1,Gno)- Secondly, suppose that after ng periods m inner jumps persist. Let ng(6,¢’)
be the solution of 6"~ =1 —¢'. We will show that after n(, periods at least one inner jump
collapses. By applying this argument till all the inner jumps disappear, we know it takes at most
n),(6,¢') periods, where n/(6,¢’) is the solution of 6™ = (1 — &)™ . Since 6™ > 1 —e = 6™, for
sufficiently large 6 we have nj < ny — 2. Therefore we can conclude that there are no inner jumps
in the seller’s acceptance function for all ¢ in (ga, ¢n,—2]. Hence, to complete the proof, we only
need to show that if there are m steps in P (q) for ¢ € (Gng+1, qn,), then there are at most m — 1
steps in P (q) for ¢ € (qny+1,qn;]-

Suppose two adjacent intervals (¢,+1,¢n] and (¢n+2,¢n+1] have the same number of discontinuity
points in P(-), denoted by m. Let (¢n 1, @n,2,---,qn.m) a0nd (¢gnt1,1, Gnt1,2,- - - gnti,m) denote
those discontinuity points, and define z, = (Xn,1,%n2,-- -, Tn,m), Where &, ; = qn; — qn,i—1 for
i=2,---,m,and Tp1 = qn1 — ¢nt+1- We first show that there is a linear mapping A,, such that

Tnt1 = Ap(d,m0)Tn. (See figure 3.)
< Insert Figure 3 >
Since ¢(-) is constant over (gp+2,dn+1], the jumps in P requires the jumps in t(-). We
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therefore have T(Qn+1,i) = {qn,i;Qn,iJrl}; i=1,...,m—1and T<Qn+1,m> = {Q'n,mzqnfl,l}a ie.,

R(gn+1,:) = P(qn) (Gni — Gn+1,i) + 0R(qn,i) = P (qn,i+1) (@nit1 — @n+1,i) + OR(gn+1,:) for i =

1,...,m — 1 and a similar equation for ¢ = m. Using the same trick as in the two type case
3 : ni—1—dn+1,i—1 __ 1-8)(v(qy)—clq; . _
(leading up to Equation 7), we have % 115,i+1 L= 6"*”(0(P(L(Tbo(zi)l)i(lg’l(z)zlo,i))' Since P(gyn,.i) =
(1= 0) 32" 6%c(t* (qng.i)) + 6™ c (1), we have  P(qng.i+1) — P (Gnp.i) = (1 — 8) ag(8,no), where
’I’L(]*l
ai (5,m0) = Y 8 (c(t* (gny,i+1)) = c(t* (gny.1))) - (C-3)
k=0
Letting by, ;(6,n0) = %, we obtain a linear mapping @, 11 = A, (8, 10)Zn,
boi+1 —bpa 0 - 0 0
0 bmg +1 —bn,g cee 0 0
AGm)=| SR | (e
0 0 0 bn,m—l +1 _bn,m
-1 -1 -1 -1 bn.m

Secondly, let N(d) be the number such that gy ) < ¢f + €0 < t(gn(s5)). Lemma C-1 implies
N(9) is uniformly bounded in §. Using the fact that ¢(-) is constant over (¢} — g, ¢7 + o) we know

that c(t¥ (gny.i+1)) — ¢(t* (gngy.i)) = 0 for k =0,1,...,n0 — N. Hence we may rewrite (C-3) as

N-1

a; (6,n0) = Y 8" NP ("N (g ig1)) — ("N (g i) (C-5)
k=0

Thirdly, let C; = {Zﬁ;}(c(t"o*NM (Gng.iv1)) — ¢t NF* (g, ) : 6 € (0,1)}. Note that
by definition both ng and ¢(-) are functions of 4. Hence, potentially C; may have infinitely many
elements.  However, since c(-) has at most M different values in (¢} + o, 1], there are only finitely
many elements in Cj.

Fourthly, let ' € C; x Cy x -+ x Cpp, and Ay, (a’) = {6 € (0,1) : kN:_Ol(c(t"O_NJrk (Gng.i+1)) —
c(tmo= N+ (g, ) =al,i=1,...,m}. We will show that there exists a ,» € (0,1) such that for
0 € Ap(a')N(dar, 1) and n > n((d, '), at least one element in z,, becomes negative, i.e., at least one
inner jump collapses. Let 6y = max{d, : @’ € C; X Cy X --- X Cy,}. Since there are only finitely
possible a/, we know Jy exists and is strictly less than 1. Applying the argument for all possible a,
we conclude that for § € (dp, 1), at least one inner jump collapses for n > n{. This then completes

the proof of Step 2. Henceforth, we therefore only consider the case where a’ € C; x Cy x -+ x C),

and 0 € A, (a’).
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Let a;(¢') = (1 — &’)a}. By (C-5) we have :
a; (6,n0) = (1+ 0O (1= 6"))a;(e) (C-6)

Define b;(e") = limgs—1 by,.i(6,n0) = % and

A = (%1_)111 Apy (6,m0). (C-7)

Let A1, Ag...., Ay, be the eigenvalues of A(e’) such that |A1| > |Ag| > -+ > |A\,], where | - | is the
absolute value of a complex number i.e. |a + Fi| = \/m . To simplify the argument we
assume all the eigenvalues are real and |[A1| > |[Aa| > -+ > |[A,[.22  From Claim 2(a) below,
without loss of generality we have Ay > A2 > -+ > A, > 0. Let v; be the eigenvector for A(e’)

corresponding to A;. For any vector x,, € R™, define

ﬁ(-rn) = Z Tn,i
i=1

We select v; such that B(v;) = 1 for all i = 1,...,m. Now expand any vector z, € R}, on
{v1,...,vm}, the eigenspace of A(e') :
m
o Zrn,ivi, where 7, ; € R. (C-8)
i=1
Let k, = 0" ™1+ O (1 - (5N)), e; the t¢th unit vector in R™, and select «; such that e,, =
>, a;v;. Then using (C-4), (C-6) and (C-7) we have

1 11—k,

Bt = An(B o), = - (AE) = (L= Ka) D)o + (2 B e
-— f;m (1= R + (1= k) Bl (C-9)
From (C-8) and (C-9), We_have
Fusti = (O = (1= )i + (1= R)Ban)an). (C-10

For any k and any two vectors x(8), y (§) € R¥, define z ~ y if lims_.; r=1fori=1,... k.
Using (C-10), Claim 1 below establishes that z,11 = r,41,101 for some n < ng(d,¢’). Therefore
from Claim 2(b) below, we obtain the desired result that for sufficiently large 0 at least one element

in x,41 becomes negative for some n less than ng.

29By slightly modifying the proof, we get the same result when some eigenvalues have the same absolute values or

when they are complex numbers.
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Proof of Step 3 : We first prove that ny < 72 < n}, + 1, implying ¢f —e1 < ¢a < gn, < ¢F + €1
according to Step 1. It then follows that ¢,, —gs < 2e1, so that ¢, —2(gn, —qa) > Gn, —4€1 > ¢ —<0.
From Step 1 we know that 6"2%! = dp < dp(e) < 6". Hence 7 < nf + 1. Observe also that
lime 0 P(gn,) = ¢(1), lim. g p(e) = p < 1 and lim._,0 6™ = 1. Hence for sufficiently small ¢ we
have §™ < 8™ or fi > ny.

Secondly, we show that the P (¢}) = pj. We do this in 3 steps :

Step 3.1 : Show that 3 &; > &y and ny(e,8) such that ny(e,8) > a(e,8) > ni(e,d) and such
that ¥§ > 01, we have mp, 5 € ((1 = €)My, (c,6), Mn,(c,5)]- Show furthemore that this implies
that the total delay in [gn,—1,Gn,], (n2(g,9) — n1(e,d) — 2)(, converges to T, where T satisfies
T = (1-e) 7 2 o).

(ng+ny—1)
—~r2rol

From the analogue to Equation (8), we know that my,/m,, = (p()é )27 Let

P(¢in2) = (p(e)e
V¢ < ¢1 we have (¢, na(e,0)) € (1 —¢, 1]. This can be done because lim¢_¢ (¢, 7(¢,d)) = 0, and

r¢(no+ny—1) . . ol
melnzpm =l )"2~™ denote this ratio, and choose ¢; and ny(e, §) > (e, d) such that

because lim,,, oo (¢, n2;n1) = o0o. Observe now that (for sufficiently small ¢) e="¢"t = §™ =

r¢(ng—ny—2) ré(na(Q)+ny —1)
2 2

1 — ¢, so we have lime_gp(e)e =limc,o(1—¢)p(e)e = limc_o (1 —¢)
[ (C,ng)}m =1 — ¢, implying that lim¢_,o{(no —ny —2) =T.

Step 3.2 : Show that g,, > ¢ — be1.
(ratm 1) yra—ni=2i

() Mp,—; = (p(e) 6~ Moy, 44 for all ¢ such that ng —ny — 2i > 0.

(b) Since p (¢) e I p ()6~ ™, we have ng +ny — 1 < 27, This implies that for all
i <ng—n—1, we have no —ny —2i >0 and ny +1 < n.

It follows from (a) and (b) that 7221, ms(¢) = 312" mn, i(¢) < 312", a(C) <
S 1 mi(Q) = gny — gn. Hence, gny—1 = gn, — 3020 Ly mi(C) = an, — 2(gn, — aa) > ¢f — 5e1.
Step 3.3 : Show that P(q}) = p?.
In the proof of Step 2, we have shown that forn = N, ... ny, xp41 = 4, (d, no) T, lims_o Ay, (0,10)
= A(¢) and that we need at most M pairs of (ng,e’) to kill off all inner jumps. For each pair of
(no, "), Equations (C-5) and (C-6) imply that we can rewrite A,, (§,n9) = 6~ "(1+O(1—§V))A for

n = N,...,ny, where A is one of finitely many possible linear mappings. Hence, there exists a suf-

ficiently large j € Z, such that for sufficiently large §, we have % > 6 "p(e)) forn=N,...,n;.

n3tN-1
)

Therefore my,, > p () 6™ tmp,_1 > (p(e)’ 6~ )" "Nmy. Let j' = j(ny — N). Suppose
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lims—1 Gno457 > qf —€0.  Analogously to Equation (8), we have

i’ +nq—1 .
7%)”24’]’77‘“

}Hnl Mnpy4j0 = lim (p (E) 4 M,y

—1

no4j’4ny—1
2

> lim(p(¢) 6™ yrata’ = (g (e) 5_%)n1—NmN

T -1

g 3(@nati’ D+ L +N-1)
:(%iniw((,ng)p(s) T z my
—

/ i'(G+3-2m-G-Hn+1-1)

z (1—¢) fm v (¢,mo) ™o 6~ > my

i (G+t-2m-G-Hn+1-1)
=(1—-¢)limd~ : R “my
d—1

i(G+L—2ny —G-HHnv+1-1)

=(1-¢)lim(1—¢)" 2 my (C-11)

—1

Note that for large § we have j ((j + % —2)ny — (j — %)N +1-— %) > 0. Hence, Equation (C-11)
implies limgs_,1 Mp,45. > (1 —e)my. Since N is uniformly bounded in § and m,, is continuous

my
MN—-1

in 4, lims_,1 = d' exists as well. Thus by gnv_1 > ¢ + €0 and Lemma C-1, we have
my > d'my—_1 > d'n. We conclude that lims_.1 g, 45, < max{q; —eo,lims_1 gn, —(1—¢)mpy} < ¢f.
Let ¢ be the delay from ng + j/ to ng, ie. e = (1 —¢)’.

Letting ¢ and &1 go to zero, Steps 3.1 and 3.2 yield P (¢) = p? for ¢ € (lims_, Gny+5',47]- This
completes the proof of Step 3.

Proof of Step 4 : Similarly to the proof that P(q) = ¢(1) for q € (¢}, 1] , first define
g =inf{q: %i_{%P(q) =pi} (C-12)

Note that by Step 3, we have P (¢7) = pi. Hence, ¢ is well defined. Similarly to the argument
in Lemma 2, we can show that ¢ = ¢35, i.e. that the buyers limiting revenue is equal to R (q) for

all ¢ > ¢35, and that the seller’s limiting acceptance function is equal to p} on the interval (g3, ¢7]-

Q.E.D.

Proof of Claims 1-3
Claim 1 x,41 = Tp41,101 for some ng < n < ny(d,e’).

Proof : Note that \; and v; depend on A (¢’) only and hence remain constant as § goes to 1.
Since B(ny) = Yoimq Tngyi = Doiey Tngyis We know 7 i = O(8(2n,)). Let N = % Consider the
following three cases :
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Case 1 : (1 — kpy)B(xny) = 0(rng1). Let n(e’,6) = ng + N'.  Then lims_,; 0" "0 =
lime oe "< = 1 and lims_; &, = 1. Hence, from (C-10), we obtain Trtilll =X\ +0(1-9),
i=mng, ...,nand Tpp1 R AT 0r 100 o+ AT ) U Since i‘—l < 1, we have lims_,; (1 —
5N)_1(i‘—i)"_"0 = 0.  Combining this with r,,; = O( B(zn,)), we obtain r,; = o(r,1) for
i=2,...,m. Hence xp41 = A]" "rpy.101 = rpy1,101. Since limg_q 077" =1 and §no—mo =1 —¢/,
we obtain n < n{(d,&") when § is sufficiently large.

Case 2: 71,1 = 0((1 — kny)B(2n,)). From Claim 3, we know a1 # 0. Hence, 7, 411 =
a1(1 = Kpgy)B(xp,). This implies that for all n > ng+1, r,,1 and «; have the same sign. Therefore
from (C-10) we have T;:% > A1 — (1 = Ky) for all n > ng + 1. Let n/(d,e',¢”) be such that
670 =1 —¢” > 1—¢. Hence 1 — ks =" and B(z,) = O(|rpa|). Select &” and ¢ sufficiently
small so Ay — (1 — k) still dominates A\; — (1 — k,,) for all ¢ = 2,...,m. Lettingn =n' + N’
and using the similar argument as in Case 1, we obtain 41 = rp41,1v1 and n < ng when ¢ is
sufficiently large.

Case 3: 701 = Y01 (1 — Kngy)B(xn, ), Where 7y, is a function of § satisfying limys_,;|vn,| > 0

and lims 1 |yn,| < 00. From (C-10) we obtain ==t = X — (1 — kp,) + % Hence, if v,, < 0,
no, o

Tng41,1 < Tng+1,2
T

it is possible to have P
o

, & potential threat to our goal x,, = r,1v1. Hence for this
case, we need a better estimate of r, ;. To simplify the argument, we only consider the worst case:
Yno < 0, and B(xn,) = O(|rny,2|)- From Case 1, we obtain z,41 = A~ "7, 101 + A5~ 01y, 202 for
no+ N’ <n <ng+2N'. If there exists an n < ng + 2N’ such that either (1 — k,)5(x,) = 0o(rn,1)
or rp1 = 0o((1 — kp)B(zy)) holds then by applying Case 1 or Case 2, respectively, we obtain
Tp/41 R Tpr41,101 for some n' < ny , which completes the proof. Now consider the case that for every
n=mny+ N, ...,no+2N’, we have r, 1 = ypa1(1 — K,)B(z,). This implies z,41 = Ay "7y, 202,
B(xnt1) = A3 "rp 0 + O(1 — k) and % = X+ O(1 — Ky). Since lims_,1 k, = 1, using

(C-10) recursively, we have

B(Zny+1) NI B(y)

B(En,) B(@ng)

P11 = a1 (1l — Ky ) B(2n,) (7%)\?—%4—1 + AT+ )\’f_"“_l

) (C-13)

ﬂ(wno-uv’)
AN B(@ng)

ﬁ(zn+

Letting fno(N') = YoM + 1+ % + -+ and using W)l) =X+ O(1 — ky),

we can further rewrite (C-13) to

n—no
Tnt11 = a1 (1 = Ky )B(2n,) (A’f”ﬂfno(N') + A?"‘)kA’S) : (C-14)

k=N’+1
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Using (C-14), § (2n,) R Tne,2 and B(xp11) = Ay~ "1y, 2, We obtain

Tn+41,1 A1 n—n ’ ' A1 n—ngo—k
BT~ a1l — kg 21 of (N')+ Al 0
L 001~ ) (( W 3 ()

_ _ —A2 ﬁ n—no—N’ ﬁ N’ / A2
=t =) (525 + () COY fos (V) + 322

Since ry,,1 = Yna1(l—ky)B(xy,) foralln =no+N', ..., ng+2N" and % > 1, we have (A—l) oo (N')+

)\1)‘_2)\2 = 0. Hence vy 4+on'1 = /\1%’\"‘/\2 Combining this with (C-10) we obtain ~,4+; < 7, for all

n > ng+ 2N’'.  Select ¢ € (0,¢') such that il Z,, > 1. Let n/(d,&',€"”) be the solution of

67’0 = ¢ < &', Since lims_,1(1 — k) = €”, by a similar argument as above (let n’ take the role
of ng and replace N’ with 0) we have

Tn+1,1 —)\2 + g” )\1 —¢ n—n' < )\2 — EN>>
—— = ai(l — Ky + n + .
B(zni1) il ) ( AL — A2 (>\2—€”) 7 A=A

"

e’ /\ _ /
Since v, + )\1 AQ < Yng+2nN’ + )\1 )\2 < v and =5, > 1, for n n' + N’ we have

(1 = kn)B(zy) = 0o(rn,1). Applying a similar argument as in Case 1, we have z, 41 = 741,101 and

n < n{, when ¢ is sufficiently large. Q.E.D.

Claim 2 (a) \; > 0, fori=1,...,m and (b) if x,, = rp1v1 then for sufficiently large § at least

one element in x, is negative.

Proof : Let h(\) = det(A(e') — MI). It can be shown that h(y) > 0 for all y <0, h(b; +1) <0
forall j=1,--- ,;m—1 and h(by,) < 0 if by, = min{by + 1,...,b,,—1 + 1,b,,}. Hence, \; > 0, for
i =1,...,m and there exists at least one eigenvalue in (0, min{b; + 1,bo + 1, ;b1 + 1,01 }).
From Z;nzl Aj = E;-n:_ll(bj + 1) + by, we know that \; > min{b; +1,...,b,—1 + 1,b,,} =b > 0.
If b = b; + 1 for some j < m, then (A — A\ I)v; = 0 implies (b; + 1 — A1)v; — bj11v;41 = O.
Hence, sign(vy ;) #sign(vi,j41) or v1,; = vi,;41 = 0. However, vi ; = v1 j4+1 = 0 induces v1 =0

which yields a contradiction. We can therefore conclude that sign(v; ;) #sign(vi j41). A similar

argument applies to the case where b = b,,. Q.E.D.
Claim 3 e,, = >.", a;v;, for some o € R™ and a1 # 0, i.e. e, cannot be generated by
{vo, ..., Um}.

Proof : Let S be the space generated by va,..., v, and V = [v1 v2...v,]. Suppose e, € S,

ie. en = Y ,u; = Va for some o # 0 with @y = 0. Then using V'AVa = Aa, we
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have V~1Ae,, = (0, Adgaz, A3 a3, ..., Apyy)’.  Premultiplying by V yields (0,...,0, —by,, by,) =
V(0, Aoaa, A3 a3, -, Amai) = Do ih o A v € S, Since both —by,€m,—1 4 ben, and e, are in S,
and since S is a vector space, we know that e,,_; € S. By induction, we can similarly show that

€ms Em—1,---, €1 € 5, yielding a contradiction to the fact that S is of dimension m — 1. Q.FE.D.

Q.E.D.
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Figure 1: “Bargaining with Interdependent Values” (Deneckere and Liang)
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Figure 2: “Bargaining with Interdependent Values” (Deneckere and Liang)




Figure 3: “Bargaining with Interdependent Values” (Deneckere and Liang)
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