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Abstract

A seller and a buyer bargain over the terms of trade for an object. The seller receives

a perfect signal determining the value of the object to both players, while the buyer

remains uninformed. We analyze the infinite horizon bargaining game in which the

buyer makes all the offers. When the static incentive constraints permit first-best effi-

ciency, then under some regularity conditions the outcome of the sequential bargaining

game becomes arbitrarily efficient as bargaining frictions vanish. When the static in-

centive constraints preclude first-best efficiency, the limiting bargaining outcome is not

second-best efficient, and may even perform worse than the outcome from the one-period

bargaining game. With frequent buyer offers, the outcome is then characterized by re-

curring bursts of high probability of agreement, followed by long periods of delay in

which the probability of agreement is negligible.

*Department of Economics, University of Wisconsin-Madison. Madison, WI 53706.

E-mail: rjdeneck@facstaff.wisc.edu.

†Department of Economics, University of Western Ontario, London, Ontario N6A 5C2, Canada.

E-mail: mliang@uwo.ca.



1 Introduction

One of the most vexing problems in economics is why rational parties have such a difficult time

reaching mutually beneficial agreements. Even a casual glance at the evidence shows that bar-

gaining inefficiencies abound. These inefficiencies take on many forms : failure to reach agreement

when gains of trade exist (e.g., lawsuits that go to trial), delays in reaching agreement (e.g., labor

disputes such as strikes or work slowdowns (Cramton and Tracy, 1992)), the build-up of significant

expenses in brokering an agreement (e.g., lawyer fees), and settling on contractual terms that fail

to fully realize all gains from trade.1 Ever since Hicks (1932), economists have wondered why the

bargaining parties do not simply avoid such inefficiencies by settling immediately at the terms they

expect to eventually arrive at.

While some other theories have been advanced,2 the most popular explanation for the existence

of bargaining inefficiencies is that the parties lack information about an aspect critical to reaching

agreement. If this information is privately held, active negotiation may be necessary in order to

reveal the range of agreements that are acceptable to all parties. For example, when approaching a

seller of a piece of real estate, a potential buyer may not know the minimal offer the seller would be

willing to accept. The buyer can of course estimate the seller’s reservation value, but may fail in his

negotiations unless he makes an offer that even a seller with a high reservation value would accept.

Such an offer is generally not optimal from the buyer’s viewpoint, so some delay will necessarily

result. From the viewpoint of the literature on incomplete information bargaining, this delay is

not only a necessary evil, but acts as a useful device by which the parties can credibly convey the

strength of their bargaining positions. A seller who repeatedly rejects offers and leaves his house

on the market for a long time can credibly signal to the buyer that he is not eager to sell.

Unfortunately, this elegant explanation for bargaining inefficiencies has come under recent attack

from the literature on the Coase Conjecture (Fudenberg, Levine and Tirole (1985), Gul, Sonnen-

schein and Wilson (1986)). The Coase Conjecture literature studies the simplest asymmetric

information bargaining problem, in which a seller with known valuation makes repeated price offers
1Indeed, the screening literature explains distortions in contractual terms as an attempt to minimize informational

rents.
2For example, Fernandez and Glazer (1991) develop a complete information bargaining model in which, following

rejection of management’s wage offer, workers can either strike or continue to work at the existing wage. Because

management is not indifferent between these responses, there exists a multiplicity of equilibria involving immediate

settlement, but differing in the agreed upon wage. This multiplicity in turn permits equilibria involving delay in

agreement.
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for the sale of a single unit of an indivisible asset to a buyer whose valuation for the asset is private

information. According to the Coase Conjecture, if there is no restraint on the rate at which the

seller can make price offers, then in the limit as the length of the time period between successive

offers vanishes, the seller will offer the good for sale at the lowest possible buyer valuation.3 In

other words, bargaining inefficiencies can be explained only by exogenous limitations on the rate

at which offers can be revised. While there are undoubtedly some practical limitations on the

speed at which parties can formulate and interpret offers, these limitations are unlikely to be of

a magnitude sufficient to explain significant bargaining failures, such as protracted strikes or the

huge costs associated with major corporate lawsuits.4 As a consequence, the Coase Conjecture

questions the usefulness of asymmetric information as an explanation for bargaining inefficiencies.

If we are to retain asymmetric information as a foundation for the theory of bargaining, there

appear to be two possible avenues. First, we can question the validity of the Coase Conjecture.

One line of argument here maintains that concerns for reputation may guide player’s behaviors.

Papers in this vein are Ausubel and Deneckere (1989), who abandon the stationarity assumption

driving the Coase Conjecture, and Myerson (1991, pp. 399-402) and Abreu and Gul (2000), who

develop a psychological theory of bargaining. Another line of argument questions the validity

of backward induction, either on the basis of experimental evidence (Neelin, Sonnenschein and

Spiegel (1988)), or on theoretical grounds (Binmore (1988), Reny (1993), Rosenthal (1981), Samet

(1996)). Secondly, we can question the appropriateness of the one-sided incomplete information

private values model. For example, Myerson and Satterthwaite (1983) show that in the two-

sided incomplete information private values model inefficiency necessarily occurs in any sequential

equilibrium of any bargaining game, provided the supports of the distribution of buyer and seller

type are not separated. Unfortunately, extensive models with two-sided incomplete information

are very hard to analyze, and at present very little is known about their outcomes.

In the current paper, we instead investigate the consequences of allowing interdependencies

in player’s valuations, but retain the relative simplicity and elegance of the one-sided incomplete

information model. We believe this is a fruitful area for investigation because many real world

bargaining problems involve such interdependencies. For example, in lawsuits involving the health
3More precisely, this statement holds if the lowest possible buyer valuation strictly exceeds the seller’s valuation,

and a mild technical is satisfied (Analogous to assumptions (1) and (2) in the body of the current paper). The Coase

Conjecture also holds without these assumptions, provided attention is restricted to stationary equilibria.
4For a particularly striking example of the latter, see Cutler and Summers (1988).
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hazards of a manufacturer’s product, or the environmental consequence of a production method,

the manufacturer may have private information regarding the safety of his product or the risks

associated with his production method that is relevant to the welfare of potential victims. Similarly,

when negotiating the sale of an oil tract, the buyer may possess survey information regarding the

richness of the underlying deposit that is relevant to the owner’s willingness to sell. And in

wage bargaining, the worker may have superior knowledge about his level of human capital or

productivity. This level not only affects the worker’s value to his current employer, but also

his value to alternative employers, and hence his reservation value of staying with his current

employment.5

We consider an environment in which there is a single seller bargaining over the terms at which

to trade a single unit of an indivisible good. The seller receives a signal q ∈ [0, 1] determining his

reservation value c. The signal also affects the buyer’s valuation v, but the buyer is uninformed

about the realization of the signal. A prototypical example of this situation arises in the market

for used cars, where the seller may have information regarding the reliability of the car that is

relevant to the buyer, but not easily verifiable. Ever since the pioneering work of Akerlof (1970),

economists have been aware that such an environment can generate trading inefficiencies. Indeed,

if trade is to be efficient, the buyer’s expected value from trading must exceed the reservation value

of the seller of the most reliable car, for otherwise there exists no price at which both are willing

to trade. Assuming the seller’s cost to be increasing in q, inefficiencies will therefore necessarily

occur whenever this condition is violated, i.e. E(v) < c(1).

We study the welfare performance of the infinite horizon bargaining game in which the unin-

formed party (the buyer) makes all the offers. The literature on the Coase Conjecture analyzes a

special case of this model, in which the buyer’s valuation does not depend upon the seller’s signal.

Note that in this so-called private values case, there always exists a single price mechanism that is

both feasible and efficient (any price between the highest seller valuation and the buyer’s valuation

is a competitive equilibrium price). This observation raises a number of interesting questions.

Suppose first that interdependencies in valuations are not too strong, so that the static incentive

constraints still permit an efficient outcome to be attained, i.e. E(v) ≥ c(1). Do the same forces

that lie behind the Coase Conjecture in the private values case then cause the outcome of sequential
5 Alternatively, if the firm has superior information about the value of the worker’s productivity, and the worker

can capture some of this value in alternative employment situations, the reservation values of both players will be

positively related.
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bargaining to become efficient as bargaining frictions disappear? Next, suppose that the basic in-

centive constraints are such that every equilibrium outcome of every bargaining game must exhibit

some inefficiency, i.e. E(v) < c(1). Then where does the logic of the Coase Conjecture break down,

and how does the limiting delay manifest itself? Can we characterize the limiting delay schedule?

Does the uninformed party’s incentive to accelerate trade still operate so as to select a limiting

outcome that is second-best efficient?

Our paper brings both good and bad news. We prove that when the static incentive constraints

permit first-best efficiency, and v(·) is increasing, then as in the private values case, the outcome of

the sequential bargaining game becomes arbitrarily efficient when bargaining frictions are allowed

to vanish. At the same time, we also show that whenever the static incentive constraints preclude

first-best efficiency, the Coase Conjecture forces select a limiting outcome that does not maximize

the expected gains from trade. Finally, we show that when the informed party can make frequent

offers, the bargaining outcome is characterized by recurring bursts of high probability of agreement,

followed by long periods of delay in which the probability of agreement is negligible.

The two papers most closely related to the present one are Evans (1989) and Vincent (1989).

Evans considers a two-type example in which the buyer and seller differ only in their valuation

for the high quality car, and studies the impact of relative discount factors on the bargaining

outcome.6 Vincent allows much more general interdependencies in valuations, and introduces an

assumption guaranteeing existence of a Bayesian equilibrium. He also provides a two-type example

demonstrating the possibility of limiting delay.7 Neither of these papers, however, provides a

characterization of the limiting bargaining outcome, or delineates necessary and sufficient conditions

for delay to be present. They also do not explain how and why the Coase Conjecture forces operate

during the bargaining process, or determine the key factors influencing the length of delay.

The remainder of the paper proceeds as follows. Section 2 presents the model and explains

the notion of stationary equilibrium. Section 3 presents a simple two-type example that provides

intuition for our main results. Section 4 proves general existence of stationary equilibrium and,

under some (mild) regularity conditions, uniqueness of the supporting stationary triplet. Section

6Unfortunately, with equal discount factors Evans’ model becomes rather degenerate : when the fraction of high

quality cars falls below a critical threshold, every incentive compatible trading mechanism necessarily generates no

surplus. Meanwhile, when the threshold fraction is exceeded, a single take-it-or-leave it offer already leads to an

efficient outcome.
7However, Vincent’s example satisfies the condition E(v) < c(1), so that every Nash equilibrium of every bargain-

ing game necessarily exhibits inefficiency.
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5 provides a general characterization of the limiting equilibrium outcome as the discount factor

between successive buyer offers approaches 1. Section 6 proves that this outcome is not second-

best efficient when E(v) < c(1), and briefly presents the analogous model in which the buyer is the

informed party, with the seller making the offers. Section 7 concludes. All proofs are relegated to

three appendices, unless otherwise noted.

2 The Model

A buyer and a seller bargain over the terms at which to trade a single unit of an indivisible good.

The value of the good to each trader is determined by the realization of a random variable q

∈ [0, 1]. More precisely, the signal q respectively determines buyer and seller valuations through

the functions v(·) and c(·) :

b = v(q) s = c(q)

The functions v(·) and c(·) are required to be bounded and measurable.

We assume that one of the traders, the seller, is informed about the realization of the signal,

while his bargaining partner, the buyer, only knows the distribution of the signal.8 We say that

the model has private values if v(q) is constant, and that the model has interdependent values,

otherwise. We will be primarily interested in the interdependent values case, but allow private

values as a special case.

Because the functions v(·) and c(·) are general, we may without loss of generality assume that

the distribution of the signal is uniform. If necessary, we then reorder the signals so that the

function c(·) is increasing in q.9 Note, however, that we do not similarly restrict the function

v(·). We impose the regularity condition that v(·) and c(·) are left-continuous functions, that are

right-continuous at q = 0. We also make an assumption of economic significance, namely that it is

common knowledge amongst traders that the gains from trade are bounded away from zero :

Assumption 1 There exists ∆ > 0 such that v(q)− c(q) ≥ ∆ for all q ∈ [0, 1].

8See Section 6 for the analogous model in which the seller is the uninformed party.
9More precisely, given any bounded measurable function c′ : [0, 1] → R+, there always exists a measure preserving

bijection φ on [0, 1] such that c(q) = c′(φ(q)) is increasing in q.
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Assumption 1 implies that the extreme form of inefficiency described by Akerlof (1970) never

occurs.10 However, unlike in the private values case, the existence of a “gap” (Assumption 1) no

longer guarantees that first best efficiency is attainable. Specifically, we have :

Lemma 1 First best efficient trade is possible iff E(v(q)) =
∫ 1
0 v(q)dq ≥ c(1)

Proof : First best efficiency requires that all seller types q trade with probability one. This

implies that the expected transfer must be independent of the seller’s type (otherwise any seller

type would want to mimic the type that receives the highest expected transfer). Denoting this

transfer by t, seller individual rationality for type q = 1 requires that t ≥ c(1). Since the buyer’s

expected utility from participating in the mechanism equals E(v(q))−t, buyer individual rationality

then implies E(v(q)) ≥ t ≥ c(1). Q.E.D.

The bargaining protocol we wish to analyze in this paper is the infinite horizon bargaining game

in which the uninformed party makes all the offers. In this game, there are an infinite number of

time periods, indexed by n = 0, 1, 2, .... In each period n in which bargaining has not yet concluded,

the buyer starts by offering the seller a price p ∈ R+ at which trade is to occur. Upon observing

this offer, the seller can accept, in which case trade occurs at the proposed price and the game ends,

or the seller can reject, in which case play moves to the next period. Note that each terminal node

of the game can be identified with a pair (p, n). We assume that the traders are impatient and

discount surplus at the common rate r > 0. Let ζ be the length of the time interval between two

successive buyer offers, and δ = e−rζ the (common) discount factor. Then the terminal payoffs at

node (p, n) are δn(v (q)− p), for the buyer, and δn(p− c(q)), for the seller.

In every period n, the information set of the buyer can be identified with a history of rejected

offers, (p0, p1, ..., pn−1). A pure behavioral strategy for the buyer therefore specifies, in every period

n, her current offer as a function of the n-history of rejected prices. Similarly, in every period n, the

information set of the seller can be identified with the same history concatenated with the current

offer, (p0, p1, ..., pn−1, pn). Let A denote acceptance of an offer, and R denote rejection of an offer.

A pure behavioral strategy for the seller specifies for each period n a decision in the set {A,R}, as

a function of his type q, and as a function of the history (p0, p1, ..., pn−1, pn).
10Assumption 1 implies that there always exists a feasible mechanim in which trade occurs with positive probability.

Indeed, consider the mechanism in which all seller types in [0, ε] trade at the price c(ε), and types q > ε do not

trade. The buyer’s expected utility in this mechanism equals E[v(q) − c(ε)|q ≤ ε]ε. Since the first term in this

expression converges to v(0) − c(0) ≥ ∆ > 0, there exists ε sufficiently small for which the above mechanism is

incentive compatible and individually rational.
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We are interested in the stationary equilibria of this bargaining game.11 Formally, a stationary

equilibrium is a sequential equilibrium in which the seller’s acceptance decision is based only upon

the current offer, and not on any other detail of the prior history. Thus, there exists a nondecreasing

(left-continuous) function P (q), such that seller type q accepts the offer pn in period n if and only

if pn ≥ P (q). Consequently, following any history (with no simultaneous seller deviations), the

buyer’s belief will always be a (left) truncation of the prior, i.e. a uniform distribution on an

interval of the form [qn, 1]. Furthermore, since in his acceptance decision the seller ignores all but

the current offer, when the buyer formulates her offer the prior history of the game will not matter,

except in so far as it is reflected in the cutoff level qn. The cutoff level qn therefore acts as a state

variable, so that stationary equilibria are Markovian.

In stationary equilibria, the acceptance function P (·) acts as a “static” supply curve to the

buyer, who faces a tradeoff between screening more finely and delaying agreement. Let Gq(z)

denote the buyer’s belief when the state is q (the uniform distribution on [q, 1]), and let gq(z)

denote the corresponding density. Also let W (q) denote the buyer’s maximized expected payoff

when the state is q. The buyer’s tradeoff is then captured by the dynamic programming equation :

W (q) = max
q′≥q

{

∫ q′

q
(v(z)− P (q′))gq(z)dz + δ(1−Gq(q′))W (q′)

}

. (1)

To understand (1), observe that if the current state is q and the buyer offers P (q′), thereby bringing

the state to q′, all seller types in the interval [q, q′] accept.12 Conditional on the offer being accepted,

the buyer’s net payoff from transacting with seller type z ∈ [q, q′] is v(z) − P (q′); the likelihood

of this happening is gq(z) = 1/(1 − q). Integrating over all possible seller types in [q, q′] then

yields the first term in (1). Rejection happens with probability (1 − Gq(q′)), moves the state to

q′, and results in the seller receiving the expected payoff W (q′) with a one-period delay. Letting

11The reason for our interest in stationary equilibria is that in the private values case, the literature has established

an intimate connection between stationarity of the informed party’s acceptance behavior and the Coase Conjecture

(Gul, Sonnenschein and Wilson, 1986). Furthermore, as we shall demonstrate in Section 4, under the assumption

of a “gap”, as far as equilibrium outcomes is concerned, there is no loss of generality in restricting attention to

stationary equilibrium outcomes.
12Strictly speaking, this reasoning is only correct if P (q) is strictly increasing in q (as will be the case when c(·)

is strictly increasing in q, see equation (3) below). If P (·) has a flat segment, and q′ is not the endpoint of this

segment, then by charging P (q′) the buyer induces more acceptances than indicated in (1). However, in this case it

is straightforward to show that the maximum in (1) is never attained on the interior of the flat segment (the buyer

always prefers to induce the largest state consistent with the offer P (q′)). The extra freedom allowed in (1), by

letting the seller select the state rather than the price, is therefore without consequence.
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R(q) = (1 − q)W (q) denote the buyer’s ex-ante expected payoff from trading with seller types in

the interval [q, 1], equation (1) can be simplified to :

R(q) = max
q′≥q

{

∫ q′

q
(v(z)− P (q′))dz + δR(q′)

}

. (2)

Let Υ(q) denote the argmax correspondence in (2). By the Generalized Theorem of the Maximum

(Ausubel and Deneckere, 1993) Υ is a nonempty- and compact-valued upper hemicontinuous cor-

respondence, and the value function R(·) is continuous. Since the objective function in (2) has

increasing differences in (q′, q), Υ is a nondecreasing correspondence, and hence single-valued at all

but at most a countable set of q.

In equilibrium, the seller’s acceptance decision must be optimal given the buyer’s offer behavior,

as described by (2). To see the implications of this requirement, define t(q) = minΥ(q); then we

must have13 :

P (q)− c(q) = δ(P (t(q))− c(q)). (3)

In other words, seller type q is indifferent between accepting the price P (q) and waiting one period

for the (higher) offer P (t(q)).

The triplet {P (·), R(·), t(·)} determines a stationary equilibrium path in the following way. In

the initial period, the buyer selects (possibly randomly) an offer P (q), for some q ∈ Υ(0). Following

this offer, all seller types in the interval [0, q] accept, and all seller types in (q, 1] reject. Since it is

necessarily the case that q > 0, Equation (3) implies that following rejection of the offer P (q) the

seller must necessarily come back with the offer P (t(q)), even if Υ(q) is not single-valued. While

the buyer may thus randomize in her initial offers, subsequent buyer offers are uniquely determined.

Following the offer P (t(q)), all seller types in the interval (q, t(q)] accept, and all seller types in the

interval (t(q), 1] reject. This process then continues : in case of rejection, the buyer raises her offer

to P (t2(q)), inducing all seller types in the interval (t(q), t2(q)] to accept, and so on, until the state

13Note that t(q) is continuous at any point q where T (q) is single-valued. Now consider any point q ∈ [0, 1] at

which the functions c(·), P (·) and P (t(·)) are continuous; since all of these functions are increasing, this excludes at

most a countable number of q. For any nonexcluded q, if the buyer induces the state q by offering P (q), then since

T is single-valued at q, the seller will necessarily offer P (t(q)) in the next period. For seller type q to be willing to

accept P (q) it must therefore be the case that P (q)− c(q) ≥ δ(P (t(q))− c(q)). But if we had strict inequality, and

the seller offered a price slightly below P (q), seller type q would still strictly prefer to accept, contradicting the fact

that P (q) is a reservation price. Consequently, for any non-excluded point q equation (3) must hold. Now if q is an

excluded point and q > 0 then there exists a sequence {qn} converging from below to q. Since each of the functions

c(·), P (·) and t(·) is left-continuous, it follows that (3) must in fact hold for all q > 0.
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q = 1 is reached.14

3 A Two-Type Example

In this Section, we present a simple two-type example to provide intuition for how and when the

Coase Conjecture forces operate to produce equilibrium limiting delay, when the discount factor

converges to one. The example allows us to derive an explicit closed form solution for the equi-

librium, thereby avoiding many of the technical intricacies present in the general model. Suppose

the seller’s cost and the buyer’s valuation function are respectively given by:

c(q) =







0 for q ∈ [0, q̂]

s for q ∈ (q̂, 1]
v(q) =







α for q ∈ [0, q̂]

s + β for q ∈ (q̂, 1]
, (4)

where α, β, and s are strictly positive (see Figure 1). As noted above, when the buyer’s valuation

function v(·) is constant, we obtain the private values model as a special case. In the present

example, this translates to the condition that α = s + β.

We will start by using backward induction to construct the stationary equilibrium, and then use

the explicit solution to both analyze the extent of the equilibrium limiting delay, and the economic

forces that underlie it. Our derivation proceeds at an intuitive level.15

Observe first that the buyer’s final equilibrium offer must be equal to the highest possible seller

cost, c(1) = s. Any lower offer would not be accepted by all remaining seller types, while any offer

greater than c(1) would be accepted with probability one, and hence dominated. Suppose now that

in equilibrium there are n periods of bargaining remaining before the game concludes. Since seller

types with valuation s do not accept until the final round, the offer in the current round, pn, will

have to keep seller types with valuation 0 indifferent between accepting in that round and waiting
14The triplet {P (·), R(·), t(·)} also describes the equilibrium continuation following nonequilibrium buyer offers p

: all seller types whose reservation price falls below p accept, and all other types reject. If q is the induced state,

and the offer satisfies the equation p = P (q), then following rejection the buyer raises her offer to P (t(q)). If p is

not in the range of the function P (·), so that we have p > P (q), then following rejection of p the buyer randomizes

between the minimum and maximum elements of P (T (q)) so as to rationalize type q’s acceptance of the previous

offer p. Note that the latter type of offer will never arise along the equilibrium path, for the buyer could have

lowered her offer to P (q), and still have induced the same acceptances.
15Deneckere (1992) uses a similar procedure to compute an explicit equilibrium for the two-type independent

private values model.
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n more periods to receive the final offer s, i.e.

P (q) = sδn, for q ∈ (qn, qn−1], (5)

where qn−1 denotes the highest buyer type whose acceptance price is pn, and where we use the

convention that q−1 = 1 and q0 = q̂. To determine the sequence of cutoff levels {qn}, we must

consider the buyer’s optimization problem. When the state is q1, the buyer must be indifferent

between offering p0 = s, which all remaining seller types accept, and offering p1 = sδ, which all

seller types in (q1, q0] accept, and returning in the next period with the final offer p0. Letting

mi = qi−1 − qi denote the period n ex-ante probability of agreement, we therefore have :

R(q1) = (α− sδ)m1 + δβm0 = (α− s)m1 + βm0,

Solving this equation for m1 yields m1 = β
s m0, where m0 = (1− q̂).

Similarly, when n > 1, at the state qn the buyer must be indifferent between making the offer

pn, which will be accepted by all seller types in (qn, qn−1], and making the next higher offer pn−1,

which will be accepted by all seller types in (qn, qn−2], i.e.

R(qn) = (α− sδn)mn + δR(qn−1) = (α− sδn−1)(mn + mn−1) + δR(qn−2). (6)

Solving for mn from (6) yields sδn−1(1− δ)mn = (α− sδn−1)mn−1 + δ(R(qn−2)−R(qn−1)). Also,

using the middle expression in (6) for R(qn−2) and the right-hand expression in (6) for R(qn−1),

yields R(qn−2)−R(qn−1) = −(α− sδn−2)mn−1. Combining the last two equations then produces

a difference equation in mn :

mn =
α

sδn−1 mn−1. (7)

Defining ρ = α
s , we may solve this difference equation by forward recursion, using the boundary

condition m1 = β
s m0 :

mn = ρn−1δ−
n(n−1)

2 m1 = ρn−1δ−
n(n−1)

2
βm0

s
(8)

Let us write mn(δ) to explicitly denote the dependence of the solution in (8) on δ, and let

N(δ) = min{n :
∑n

i=1 mi(δ) ≥ 1}. For simplicity, assume that we are in the generic case where
∑N

i=1 mi(δ) > 1. We may then summarize the solution as follows :

Proposition 1 Let v(·) and c(·) be given by (4), let 0 < qN−1 < ... < q0 = q̂ be defined recursively

by (7), and let pn be defined by (5). Then for all δ < 1 the unique stationary triplet is given by :
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P (q) = pn q ∈ [0, qn−1], if n = N

q ∈ (qn, qn−1], if n = 0, 1, · · · , N − 1

t(q) = qn−2 q ∈ [0, qn−1], if n = N

q ∈ (qn, qn−1], if n = 2, 3, . . . , N − 1

q ∈ (q1, 1], if n = 1

R(q) = pn−1(qn−1 − q) + δR(qn−2) q ∈ [0, qN−1], if n = N

q ∈ (qn, qn−1], if n = 2, 3, . . . , N − 1

q ∈ (qn, 1], if n = 1

According to Proposition 1, the buyer starts out by offering pN−1, which all seller types in

[0, qN−2] accept. Upon rejection, the buyer raises her offer to pN−2, which is accepted by all seller

types in (qN−2, qN−3], and so on until the state q0 is reached, at which point the seller makes her

final offer p0 = s. Bargaining therefore lasts for N(δ) periods.16

We are interested in the behavior of the above solution as δ converges to 1. To gain some

insight into this question, let us first consider the case where ρ ≥ 1. Note that this case includes

the private values model, where ρ = 1 + β
s > 1. The economic significance of the inequality ρ ≥ 1

is that it implies α > sδn = pn for all n ≥ 1, so that at any point in the game the buyer always

expects to earn a positive surplus if her offer pn is accepted. As we work backwards from the

terminal state, the buyer’s expected discounted surplus therefore grows, i.e. R(qn)−R(qn−1) > 0.

Since the buyer trades off gains from increased price discrimination against delayed receipt of the

continuation value, she will therefore become more reluctant to price discriminate as n increases.

Thus, the acceptance probability is higher in earlier stages of the bargaining process; formally this

is reflected in the fact that mn > mn−1 for all n > 1. Note that this inequality immediately implies

that the number of bargaining rounds N(δ) is finite, and uniformly bounded in δ.17 It follows that

the Coase Conjecture holds, for if bargaining can last for at most N rounds, the initial price is no

lower than δN−1s, and hence converges to s = c(1) as δ → 1. We conclude that when ρ ≥ 1 the

solution behaves qualitatively exactly like in the private values case.

When ρ < 1, however, the equilibrium takes on a different character from the private values

case. Indeed, with ρ < 1, it is always the case that when δ is sufficiently close to 1 there exists an

16In the nongeneric case where
PN

i=1 mi(δ) = 1, the buyer may randomize between the initial offers pN and pN−1,

so that bargaining can last for one additional period.
17Indeed, m1 = β

s (1− q̂) does not depend on δ.
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initial range of integers n ≥ 1 for which α < sδn. For such n the buyer expects to earn a negative

surplus when the seller accepts her offer pn. Working backwards from the state q0, the buyer’s

expected profits are decreasing in n, as long as the inequality α < sδn−1 continues to hold. Since the

buyer trades off gains from increased price discrimination against delayed receipt of the continuation

value, she will therefore become more eager to price discriminate as n increases. Formally, this is

reflected in the fact that the ex-ante acceptance probability mn is decreasing in n. Importantly,

observe that when δ approaches 1, the number of time periods over which the inequality α < sδn−1

holds increases without bound as the discount factor approaches 1. Consequently, unlike in the

private values case, real delay may occur, even in the limit, as bargaining frictions are allowed to

vanish.

To determine whether or not real delay occurs, let us calculate a =
∑∞

i=1 mi(1). If a > 1,18

we can define N̂ = min{n :
∑n

i=1 mi(1) ≥ 1}. Bargaining then lasts no more than N̂ periods,

regardless of the discount factor δ. As observed above, the Coase Conjecture then holds. This is

true despite the fact that when ρ < 1, for large δ the acceptance probability mn is decreasing in

n (1 < n ≤ N̂). If a = 1, the number of bargaining rounds is finite for any δ < 1, but increases

without bound as δ → 1. Nevertheless, as Proposition 2 below shows, the Coase Conjecture holds

for this case as well. Some simple computations show that the condition a ≥ 1 is equivalent to the

condition E(v) ≥ c(1).19 We conclude that in the two-type model the Coase Conjecture holds if

and only if the static incentive constraints permit an efficient outcome (see Lemma (1)).

When a < 1, then in the limit the backward construction “gets stuck” at the quantity q∗ = 1−a.

The reason for this is straightforward. By the definition of a, for any q > q∗ there exists an n < ∞

such that for all δ < 1 we have
∑n

i=1 mi(δ) ≥ 1 − q. For any such state, it will take no more

than n periods before the buyer makes her final offer, independently of the discount factor δ. Thus

for any state q > q∗, the Coase Conjecture applies, yielding the buyer a limiting expected surplus

˜R(q) = E[v(z)− c(1)|z ≥ q]. Now consider Figure 2 : the buyer makes an expected loss of (s− α)

on every trade in (q∗, q̂), and an expected gain of β on every trade in (q̂, 1). The point q∗ is such

that the buyer’s loss on the interval (q∗, q̂) is equal to the profit on the interval (q̂, 1). In other

words, the buyer’s limiting expected revenue is equal to zero at q∗, ˜R(q∗) = 0. Consequently, the

buyer’s incentive to accelerate trade vanishes at q∗.
18Note that when ρ ≥ 1, we have a = ∞, so that in this case the inequality a > 1 always holds.
19 Indeed, for ρ < 1 we have a = m0(1 + β

s
1

1−ρ ) = (1− q̂)(1 + β
s−α ). The inequality a ≥ 1 is therefore equivalent

to the condition E(v) = αq̂ + (β + s)(1− q̂) ≥ s.
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In fact, real delay must necessarily occur at the state q∗. The buyer must expect to make a

profit from trading with seller types q < q∗, i.e. trade at a price p ≤ α. Those types must prefer

accepting p immediately to waiting to receive the final offer c(1) = s, necessitating real delay. One

of the main breakthroughs in this paper is to figure out exactly how much delay there must be at the

state q∗. To this end, define τ such that a seller with valuation 0 is indifferent between accepting

the offer α and waiting a length of time τ to receive the offer s, i.e. α = e−rτs. Proposition 2 below

shows that the limiting delay must equal 2τ . The reason for the doubling of τ is the symmetry of

the situation. This symmetry can be most easily seen if for each n we select δ such that ρδ−n = 1,

so that pn = α. It then follows from equation (7) that mn+1 = mn, mn+2 = ρδ−(n+1)mn+1 =

δ−1mn+1 = δ−1mn = mn−1, etc. We conclude that it takes as much time to go from qn − ε to qn

as it does to go from qn to qn + ε. Observe that limδ→1 qn = q∗,20 and hence that the limiting real

delay to move from qn to qn + ε is equal to τ . It follows that the limiting acceptance price of type

q∗ must be p = e−2rτs = ρ2s.

To complete the description of the limiting outcome when a < 1, observe that for q < q∗

the buyer’s limiting continuation surplus is strictly positive (it is no lower than α − ρ2s). As a

consequence, the buyer has an incentive to accelerate trade, and the Coase Conjecture again applies

: for any ε > 0 there exists n < ∞ such that regardless of the discount factor it takes no more than

n steps for the buyer to trade with type q. We therefore have :21

Proposition 2 The Coase Conjecture obtains iff a ≥ 1. When a < 1, then as δ converges to 1,

all seller types in [0, 1 − a) trade immediately at the price sρ2, and all types in (1 − a, 1] trade at

the price s after a delay of length T discounted such that e−rT = ρ2, where ρ = α
s .

The two-type example shows us that it is the possibility of ex-post buyer regret (i.e., the buyer’s

expectation to earn a negative surplus should her offer be accepted) that slows down the bargaining.

This slowdown may or may not be sufficiently strong to produce limiting delay. Whether the

Coase Conjecture holds, and thus whether there is no limiting delay, depends on whether the

condition E(v) ≥ c(1) is satisfied. In the latter case, the buyer’s expected continuation surplus

remains bounded away from zero for all states q > 0, so the incentive to speed up receipt of this

continuation value dominates the buyer’s incentive to price discriminate. When E(v) < c(1)

the Coase Conjecture forces still operate at all values of the state where the buyer’s expected
20Since the acceptance price of qn is α, we must have qn ≤ q∗. But if the limδ→1 qn were less than q∗, then by

the definition of q∗ the buyer would earn negative expected surplus, a contradiction.
21Theorem 3 in Section 5 contains Proposition 2 as a special case, so we do not provide a formal proof here.
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continuation value remains bounded away from zero. However, there exists a state q∗ = 1− a for

which the limiting continuation value converges to zero. Near this state, the incentive to price

discriminate remains strong as the discount factor converges to one, allowing real delay to occur.

As a consequence, when δ is near one, the bargaining outcome is characterized by two short time

periods during which there is a high probability of agreement, interspersed with a long period of

delay in which the probability of agreement is negligible. The length of the delay is increasing in

c(1)− c(q∗), decreasing in v(q∗)− c(q∗), but does not depend on v(1).

Intuitively, it would appear that many of these properties do not depend on there being just two

types. However, there might now be more than one location in which there is limiting delay. It

is also unclear whether the length of the limiting delay can still be determined for general cost and

valuation functions, and whether it will depend more intricately on the global structure of those

functions (rather than just c(q∗), v(q∗) and c(1)). We address these questions in the next two

sections.

4 Existence and Uniqueness

For the special case of private values, Gul, Sonnenschein and Wilson (1986) demonstrate that there

exists a unique stationary triplet, and that all sequential equilibrium outcomes are the outcomes

of some stationary equilibrium, provided that Assumptions 1 holds and the seller’s cost function

satisfies a Lipschitz condition at q = 1:

Assumption 2 There exists L < ∞ such that c(1)− c(q) ≤ L(1− q) for all q ∈ [0, 1].

Theorem 1 below generalizes the Gul, Sonnenschein and Wilson result to the case of interde-

pendent values. The key step in establishing uniqueness of the stationary triplet is to show that

there exists a critical value of the state q1 < 1, such that in any sequential equilibrium, whenever

the state exceeds q1, the buyer must make an offer that all remaining seller types will accept (see

Lemmas A-1 and A-2 in Appendix A). This uniquely pins down a stationary triplet (R, t, P ) on the

interval [q1, 1]. We then use backward induction on the state, employing the functional equations

(2) and (3), to successively extend the triplet (R, t, P ) to the entire interval [0, 1].

Our construction differs from the one in Gul, Sonnenschein and Wilson (1986) in two crucial

ways. First, our extension is maximal in the sense that we construct a decreasing sequence of cutoff

levels {qn} with the property that for each n > 1 there exists no state less than qn+1 for which
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the buyer selects an offer acceptable to seller types in the interval [qn, 1]. We use this property

extensively in the proof of our characterization theorem in Section 5 (Theorem 3). Secondly, in

the private values case, the buyer’s expected surplus R(q) is decreasing in q. Assumption 1 then

guarantees that R(q) > 0 for all q ∈ [0, 1]. This property allows the extension process to terminate

in a finite number of steps (for a precise argument, see Ausubel and Deneckere, 1989, Lemma 2).

When valuations are positively related, however, R(q) may be increasing in q over some interval,

so it is quite conceivable that the extension procedure might never terminate. Our proof makes

essential use the maximality of the extension to establish that this cannot happen : bargaining

always ends in a finite number of rounds.22

Theorem 1 Suppose that Assumptions 1 and 2 hold. Then for any δ < 1 there exists a unique

stationary triplet (R(q), t(q), P (q)) on q ∈ [0, 1], and every sequential equilibrium outcome is the

outcome of some stationary equilibrium. Furthermore, there exists N(δ) < ∞ such that bargaining

concludes with probability one in N(δ) periods.

While Theorem 1 guarantees that bargaining will end in a finite number of periods, there is a

big difference with the private values case. When values are private, the number of bargaining

rounds remains bounded above as the discount factor approaches 1 (see Deneckere, 1992). With

interdependent values, this property cannot generally hold. Otherwise, the Coase Conjecture would

always apply, and according to Lemma 1 this is impossible whenever E(v(q)) < c(1). Under the

latter assumption, the number of bargaining rounds must necessarily increase without bound as the

discount factor approaches 1.

Our second result establishes existence of stationary equilibrium under extremely weak condi-

tions. We drop Assumption 2, and replace Assumption 1 with the much weaker condition :

Assumption 3 v(q) ≥ c(q), for every q ∈ [0, 1].

Our technique of proof consists of approximating v(·) and c(·) by functions that satisfy As-

sumptions 1 and 2, and arguing that an appropriate chosen limit of the stationary equilibria of the

approximating games is a stationary equilibrium of the limit game. This generalizes Ausubel and

Deneckere (1989, Theorem 4.2) to the case of interdependent values.

Theorem 2 Suppose Assumption 3 holds. Then there exists a stationary equilibrium.
22Vincent (1989, Theorem 1) adapts Gul, Sonnenschein and Wilson’s (1986) arguments to establish existence under

Assumptions 1 and 2, but his proof fails to demonstrate that the extension does not get stuck at some state q > 0.

Our proof also dispenses with Vincent’s requirement that v(·) be nondecreasing.
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5 Characterizing the limiting equilibrium path

In this section, we will use the results of Section 4 to characterize the limiting delay whenever the

buyer’s and seller’s valuation function are neoclassical,23 i.e. :

Assumption 4 v (·) and c (·) are step functions, each having at most a finite number of steps.

To describe the limiting revenue and acceptance functions, let us set q∗0 = 1, p∗0 = c (1), and

iteratively define

q∗n = max

{

q ∈ [0, q∗n−1) :
∫ q∗n−1

q
(v(z)− p∗n−1)dz ≤ 0

}

, (9)

whenever the set in (9) is nonempty, and q∗n = 0 otherwise, and

p∗n = c (q∗n) +
(v(q∗n)− c (q∗n))2

p∗n−1 − c (q∗n)
, (10)

ending the process whenever q∗n reaches 0. Note that Assumptions 1 and 4 guarantee that this

happens in a finite number of steps. Let us denote this number by K. In order to simplify the

proofs, we also make the following nondegeneracy assumption.

Assumption 5 The functions v (·) and c (·) are continuous at q∗n, for all n ∈ {1, ..., K}.

For each n ∈ {1, ...,K − 1} let us also define Tn as the solution to e−rTn = ρ2
n, where

ρn = (v(q∗n)− c (q∗n)) /
(

p∗n−1 − c (q∗n)
)

. (11)

The intuition behind the above construction is analogous to the intuition for the limiting solution

in the two-step example of Section 3. Let R̃ (q) and P̃ (q) respectively denote the buyer’s expected

revenue and the seller’s acceptance function, in the limit as the length of the time period between

successive offers converges to zero (our proofs below show that these limits are well defined, with

the possible exception of P̃ (q∗n), which is defined by making P̃ left-continuous). Then we have the

following generalization of Proposition 2:

Theorem 3 Suppose Assumptions 1, 4 and 5 hold. Let q∗n, p∗n and Tn be given by (9), (10) and

(11), respectively. Then in the limit, as δ → 1, the seller’s acceptance function and the buyer’s

23Note that arbitrary valuation functions can be arbitrarily closely approximated by neoclassical ones.
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revenue function converge to :

P̃ (q) = p∗n q ∈ [0, q∗n], if n = K − 1

q ∈ (q∗n+1, q∗n], if n = 0, ...,K − 2

R̃ (q) =
∫ q∗n

q (v(z)− p∗n)dz q ∈ [0, q∗n], if n = K − 1

q ∈ (q∗n+1, q∗n], if n = 0, ..., K − 2

Furthermore, the buyer successively offers {p∗K−1, ..., p
∗
0}, but delays trade for a length of time Tn

between the offers p∗n and p∗n−1.

To interpret Theorem 3, observe that when the state q satisfies q > q∗1 , the buyer’s expected

revenue is strictly positive. The Coase Conjecture forces thus cause her to accelerate trade, and

in the limit propose the concluding offer c (1) instantaneously. As in the two type case, this also

explains why the seller’s acceptance function over the interval (q∗1 , 1] is equal to c(1). At q = q∗1

the buyer’s revenue becomes zero, and there no longer is any incentive to accelerate trade. As a

consequence, there is real delay at q = q∗1 . The length of this delay, T1, is determined so that the

seller of type q∗1 is indifferent between accepting the price p∗1 and waiting for a length of time T1 to

receive the price p∗0 = c(1), i.e. p∗1 − c(q∗1) = ρ2
1(c(1)− c(q∗1)). The equation for p∗1 is derived in an

analogous fashion to the two type case.

Over the interval (q∗2 , q∗1 ] the buyer’s expected revenue is again positive, so again the Coase

Conjecture causes her to offer the price p∗1 instantaneously. As a consequence the seller’s acceptance

function over the interval (q∗2 , q∗1 ] is equal to p∗1, and so on.

For the special case where K ≤ 2, the proof of Theorem 3 follows from Corollary 1 and Theorem

3′, below. The proof for the general case consists of a finite number of repetitions of the arguments

for K = 2, because the acceptance price p∗n takes on an analogous role over the interval (q∗n−1, q∗n]

to that of the acceptance price p∗0 = c (1) over the interval (q∗1 , 1].

Suppose then that K ≤ 2, so that either q∗1 = 0 or q∗2 = 0. Define

q̃ = inf{q : lim
δ→1

P (q) = c(1)}. (12)

Note that by Lemma A-2 we have P (q) = c (1), for all q ≥ q1, regardless of the length of time

between periods, so q̃ is well defined. Our next lemma shows that q̃ = q∗1 , i.e. that the buyer’s

limiting revenue is equal to R̃ (q) for all q ≥ q∗1 , and that the seller’s limiting acceptance function

is equal to p∗0 = c(1) on the interval (q∗1 , 1]. Essentially, the proof of Lemma 2 consist of showing

that the Coase Conjecture applies on the interval (q∗1 , 1].
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Lemma 2 Suppose Assumptions 1, 4 and 5 hold. Then q̃ = q∗1 .
24

An immediate consequence of Lemma 2 is the following generalization of Proposition 2 :

Corollary 1 Suppose Assumptions 1 , 4 and 5 hold. Then the Coase Conjecture holds if and only

if q∗1 = 0 .25

Indeed, if q∗1 > 0 and Assumptions 1, 4 and 5 hold, then by Lemma 2 we necessarily have

P̃ (0) < c(1). Thus, q∗1 = 0 is necessary for the Coase Conjecture to hold. Now if q∗1 = 0, then

Lemma 2 implies that P̃ (q) = c(1) for all q > 0. What remains to be shown is that there cannot

be any delay at q = 0, i.e. that P̃ (0) = c(1). This requires a more sophisticated proof, along the

lines of the proof of the Coase Conjecture for the private values case when there is no “gap.”

Corollary 1 reduces the question of whether or not the limiting bargaining outcome is efficient

to the question of whether or not q∗1 = 0. Since the condition q∗1 = 0 is equivalent to the condition

E[v(z)− c(1)| z ≥ q] ≥ 0 for all q, we may rephrase Corollary 1 as :

Corollary 2 Suppose Assumptions 1 , 4 and 5 hold. Then the Coase Conjecture holds if and only

if E[v(z)− c(1)| z ≥ q] ≥ 0 for all q.

Observe that in the two-type case, whenever Assumption 1 holds, the condition E[v(z) − c(1)|

z ≥ q] ≥ 0 is equivalent to the condition E(v) ≥ c(1). As a consequence, we were able to conclude

that the Coase Conjecture held if and only if the static incentive constraints admit an efficient

outcome. In general, however, it is possible that E(v) ≥ c(1) but that E[v(z) − c(1)| z ≥ q] = 0

for some q ∈ (0, 1), so that q∗1 > 0. Our next example illustrates this.

Example : Modify the example from Section 3 as follows. Pick ε > 0 and s > 0, and select α

and so that q∗1 > ε. Now redefine v on [0, ε] so that v(q) = γ, and select γ sufficiently large that

E(v) ≥ c(1).

In the above example, it is feasible for trade to occur at the price c(1), but because q∗1 > 0

the limiting bargaining outcome exhibits real delay (see Corollary 1). In order for there not to

be any limiting delay, the condition E(v) ≥ c(1) therefore generally needs to be strengthened.

However, suppose the function v(·) is nondecreasing and Assumption 1 holds. Then the condition

24A careful perusal of the proof of Lemma 2 reveals that Assumptions 4 and 5 may be replaced by the weaker

condition that v(·) is nondecreasing in a right neighbourhood of q∗1 .
25The proof of Corollary 1 actually shows that Assumption 1 and the condition q∗1 = 0 are sufficient to imply the

Coase Conjecture.
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E(v) ≥ c(1) is equivalent to the condition of Corollary 2, and hence both necessary and sufficient

for the absence of delay.

Our remaining task is to determine the extent of the equilibrium delay when q∗1 > 0.26 As we

saw in Section 3, determining this delay is equivalent to finding the limiting acceptance price of

type q∗1 .

Theorem 3′ Suppose that Assumptions 1, 4 and 5 hold, and suppose that q∗1 > 0. Then the

acceptance price at q∗1 converges to p∗1 as δ tends to 1.

The proof of Theorem 3′ is long and hard. The essential ideas are as follows. Assumption 4

implies that c(·) can have at most M jumps (M < ∞), and hence that P (·) can have at most M

jumps in the interior of any interval (qn, qn−1]. We show that any such jumps can persist for at

most an arbitrarily small amount of real time when δ is sufficiently large. Now because q∗1 > 0

there is real delay at q∗1 . There will therefore exist a neighborhood of q∗1 such that whenever δ

is sufficiently large there are no inner jumps in P (·). As a consequence, when the state is qn+1

the buyer will be indifferent between inducing the state qn and the state qn+1. It is this property

which allows us to estimate the a relationship between mn and mn+1, in a fashion analogous to

the two-type case (see the derivations leading up to equation (7)), and therefore to calculate the

limiting delay at q∗1 .

6 The efficiency of sequential bargaining

Suppose that the condition of Lemma 1 is violated, so that we necessarily have q∗1 > 0. We would

like to know whether the limiting solution described in the previous section is then ex-ante efficient,

i.e. maximizes the gains from trade over all incentive compatible and individually rational trading

outcomes. To see that this cannot generally be the case, let us first consider the two-type example

studied in Section 3 (see Proposition 2). Note that in the limiting outcome, all seller types in

the interval [0, q̂] have the same valuation, and hence are indifferent between trading at time 0 at

the price sρ2, and trading at time T at the price s (where e−rT = ρ2). However, in the limiting

outcome, only types q in the interval [0, q∗1 ] (where q∗1 = 1 − a) trade at time zero; the remainder

trade at time T . Social welfare can thus be increased by having all types q ∈ (q∗1 , q̂] trade at time

26Note that whenever E(v) < c(1), it is necessarily the case that q∗1 > 0.
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zero at the price sρ2 instead. Indeed, all such seller types are indifferent between these two options,

and the buyer pays the same discounted price, but gets to trade earlier.27

The two-type example gives a clear and unambiguous answer, but leaves open the possibility

that for more general type distributions the limiting bargaining mechanism might sometimes achieve

the constrained welfare optimum. We will now slightly alter the argument from the two-type case

to demonstrate that this is never the case. Indeed, under Assumptions 4 and 5 there exists an

ε > 0 such that c(q∗1 + ε) = c(q∗1). Just as in the two-type case, we can therefore improve welfare

by letting all types in the interval (q∗1 , q∗1 + ε) trade at the price p∗1 at the same time as type q∗1 .

Incentive compatibility is maintained, for each of these seller types is indifferent between this option

and trading after a delay of length T1 at a price p∗0 = c(1). Hence we have shown :

Theorem 4 Suppose Assumptions 1, 4 and 5 hold, and suppose that q∗1 > 0. Then the limiting

bargaining outcome is not ex-ante efficient, i.e. there exists an incentive compatible and individually

rational mechanism that yields higher expected gains from trade.

Theorem 4 shows that whenever E(v) < c(1), there exist feasible mechanisms that yield higher

welfare than in the frictionless bargaining outcome of our model. Consequently, when values are

strongly interdependent, many of the lessons we have learned from the private values model may

be overturned . As an example of this, we demonstrate below that the relative performance of

different bargaining institutions may depend significantly on the degree to which valuations are

interdependent.

Ever since Ronald Coase’s (1972) famous paper, a central tenet of bargaining theory has been

that a player’s inability to commit to walking away from the bargaining table may not only seriously

undermine her bargaining power, but may also enhance the efficiency of the bargaining outcome. In

other words, the welfare distortions are lower when the uninformed party lacks commitment power

than when she has perfect commitment power. We claim that when values are interdependent,

this conclusion may be reversed. To see this, let us again consider the two-type example studied

in Section 3, and let us assume that the fraction of high valuation seller types is sufficiently small

that q∗1 > 0, i.e. q̂ > β/(s + β − α). Amongst all incentive compatible mechanisms, the one

27In the resulting mechanism, the buyer will enjoy strictly positive expected surplus; this means we can increase

the probability of trade on the interval (q̂, 1] above ρ2, thereby further increasing welfare. We can maintain incentive

compatibility by raising the price paid by seller types in [0, q̂] in such a way as to keep them indifferent between the

two options. The ex-ante optimal mechanism obtains when the probability of trade over the interval [0, q̂] cannot

be raised any further without making the buyer sustain losses.
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most preferred by the buyer is the one in which she gets to make a single take-it-or-leave-it offer

(see Samuelson (1984)). Since there are relatively few high valuation seller types, the buyer’s

optimal take-it-or-leave-it offer is equal to zero. Under perfect commitment power social welfare

therefore coincides with the buyer’s expected revenue, i.e. equals αq̂. At the same time, the

limiting bargaining outcome from Section 3 has trade occur immediately with seller types in [0, q∗1 ],

and with delay discounted to ρ2 with seller types in (q∗1 , 1]. In the absence of commitment power,

welfare therefore equals αq∗1 + ρ2[α(q̂ − q∗1) + β(1 − q̂)] = αq̂ − ρβ(1 − q̂) < αq̂, i.e. falls short of

welfare under perfect commitment! Intuitively, this can happen because with relatively few high

valuation types the inefficiencies associated with ordinary monopsony power are smaller than the

inefficiencies caused by the Coase Conjecture forces.

Our welfare analysis also applies to the reverse bargaining model in which the buyer is the

informed party, and the seller makes all the offers. To see this, let us assume that types are

ordered such that v(·) is a non-increasing function, so that it can be interpreted as a demand

curve.28 Assumption 2 then becomes : there exists L < ∞ such that v(q)−v(1) ≤ L(1−q) for all q

∈ [0, 1]. In a stationary equilibrium, the buyer adopts a stationary acceptance strategy, accepting

the offer p when his signal is q if and only if p ≤ P (q). The seller’s value function R(q) must then

satisfy a dynamic programming equation analogous to (2):

R(q) = max
q′≥q

{

∫ q′

q
(P (q′)− c(z))dz + δR(q′)

}

(13)

Let t(q) be the minimum element from the argmax correspondence associated with (13); the buyer’s

acceptance function must then satisfy the indifference equation :

v(q)− P (q) = δ(v(q)− P (t(q))). (14)

By analogy, we may define

q∗1 = max
{

q ∈ [0, 1) :
∫ 1

q
(v(1)− c(z))dz ≤ 0

}

,

p∗1 = v (q∗1)− (v(q∗1)− c (q∗1))2

v(q∗1)− v (1)
,

and similarly for {q∗n, p∗n} when n > 1. With these definitions, all of our results apply immediately.

For example, under Assumptions 1, 4 and 5, there is limiting delay if and only if q∗1 > 0. In the latter
28This model is of independent interest, for it can be interpreted as a model of a durable goods monopoly, in which

the seller is subject to learning-by-doing (in case c(·) is decreasing), or sells exhaustible resources (in case c(·) is

increasing).
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case, there is a delay for a length of time discounted to ρ2, where ρ = (v(q∗1)−c (q∗1))/(v(q∗1)−v (1)),

and so on.

7 Conclusion

In this paper, we considered a bilateral trading situation, in which there is one-sided incomplete in-

formation. We analyzed the infinite-horizon bargaining game in which the uninformed party makes

all the offers, but departed from the standard model by allowing valuations to be interdependent.

We showed that the Coase conjecture forces are still very much operative, but that there may be

limiting delay, at states for which the uninformed party’s limiting expected payoff vanishes. Under

these circumstances, when the discount factor is sufficiently large, bargaining will characterized by

short periods with substantial likelihood of agreement, followed by long periods with very low prob-

ability of agreement. Such delay may occur even if the static incentive and individual rationality

constraints permit an efficient outcome to be obtained, unless additional regularity conditions are

imposed. We also demonstrated that when the static incentive constraints do not permit first best

efficiency, then from a welfare viewpoint the limiting bargaining outcome displays “excessive delay.”

The inability of the bargaining game in which the uninformed party makes all the offers to

replicate the ex-ante efficient outcome opens up an interesting avenue for future research. Indeed,

other institutions may then yield superior outcomes. This could help explain why parties sometimes

resort to other mechanisms, such as arbitration. Even staying strictly within the framework of

infinite horizon bargaining, interesting questions arise. For example, it is a well accepted wisdom

that in order to promote efficiency in bargaining, the power should go the party that has the private

information. Ausubel and Deneckere (1989b) lend some credibility to this belief, by showing that

with private values, the bargaining game in which the informed party makes all the offers yields

the efficient outcome (even when bargaining frictions are present). With interdependent values,

first best efficiency cannot be attained when the static incentive constraints do not permit so,

and as we saw above may not be attained when they do so. Thus, it remains an open question

whether transferring bargaining power to the party that has superior information generally improves

bargaining efficiency.
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Appendix A : Proof of Theorem 1

Consider first the one-period bargaining problem, starting at an arbitrary state q < 1. Since

the buyer’s offer is final, the seller’s reservation price then coincides with his cost. Thus the buyer

selects y ∈ [q, 1] to maximize :

π(y; q) =
∫ y

q
(v(z)− c(y))dz

Lemma A-1 establishes that if q is sufficiently near 1, then in the one-period bargaining game the

buyer will select an offer that all remaining seller types accept. Despite the presence of monopsony

power, in this case there are no allocative distortions.

Lemma A-1 Suppose that Assumptions 1 and 2 hold. Then there exists q < 1 such that for all

q > q the unique maximizer of π(y; q) is y = 1.

Proof : Let ε = ∆/2; by left-continuity of v(·) there exists q1 < 1 such that v(q) ≥ v(1)−ε for all

q > q1. Let q2 = 1−∆/(2L), and define q = max{q1, q2}. Then we have π(y; q) =
∫ y

q (v(z)−c(y))dz

≤
∫ y

q (v(z)− c(1) + L(1− y))dz = π(1; q)−
∫ 1

y (v(z)− c(1)−L(y − q))dz, where the first inequality

follows from Assumption 2. Using the fact that q > q1 the term under the integrand can in turn

be bounded below by v(1) − ε − c(1) − L(y − q) ≥ ∆/2 − L(1 − q) > 0. Thus if y < 1 we have

π(y; q) < π(1; q), as was to be demonstrated. Q.E.D.

The intuition behind Lemma A-1 is straightforward. When the buyer raises output marginally

from y < 1, the increased acceptance probability raises her expected payoff by at least ∆. The

cost associated with raising output is that all seller types who would have accepted previously will

now be receiving a higher offer. When q approaches 1, the number of such seller types becomes

arbitrarily small, so raising output will be profitable unless the rate at which the offer must be

increased is unbounded. Assumption 2 prevents this from happening.

Define S(q) = arg max π(y; q) and let q1 = inf{q : 1 ∈ S(q)}; the previous result implies that

q1 < 1. Lemma A-2 shows that when the state exceeds q1 and there is more one bargaining period

remaining, the buyer will still “clear the market” by making the offer p = c(1). This is not obvious,

for in the infinite horizon model the acceptance price of any seller type q ∈ [q1, 1] will generally

exceed c(q).

Lemma A-2 Suppose that Assumptions 1 and 2 hold. Then in every sequential equilibrium, after

any history in which it is the buyer’s turn to move and the state q > q1, the buyer makes the offer

c(1), and all remaining seller types accept.

23



Proof : Since in equilibrium the seller can never expect an offer p > c(1) (Fudenberg, Levine and

Tirole, 1985, Lemma 2), the seller will accept any such price with probability one. This implies

that the buyer’s (ex-ante) equilibrium continuation payoff is bounded below by π(1; q). At the

same time, Samuelson (1984) has shown that the optimal static mechanism for the buyer involves

a take-it-and-leave-if offer to the seller. Consequently, Lemma A-1 implies that in any sequential

equilibrium, after any history in which it is her turn to move, the most the buyer can expect

as a continuation payoff is π(1; q). Combining both results, we see that the buyer’s equilibrium

continuation payoff equals π(1; q), and is uniquely attained by offering p = c(1), which the seller

accepts. Q.E.D.

Lemma A-2 yields a unique candidate stationary triplet (R, t, P ) on the interval [q1, 1] :



















R(q) = maxy≥q
∫ y

q (v(z)− c(y))dz

t(q) = min arg maxy≥q
∫ y

q (v(z)− c(y))dz

P (q) = (1− δ)c(q) + (1− δ)δc(t(q)) + δ2c(1)

, (A-1)

This is the easiest to see when q > q1, for then (A-1) reduces to t(q) = 1 and R(q) = π(1; q), as

required by Lemma A-2. Furthermore, if contrary to the equilibrium the seller is offered a price

p < c(1), he will expect the buyer to return with the counteroffer c(1) in the next period, and

therefore will accept p iff p ≥ (1− δ)c(q)+ δc(1), as indicated in (A-1). The same argument applies

at q = q1 if t (q1) = 1. Meanwhile, if t(q1) < 1, application of equation 3, and using the fact that

t(q1) > q1, yields the stated formula for P (q1). That (A-1) is a stationary triplet is shown in the

next lemma.

Lemma A-3 Consider the triplet defined in (A-1). Then R(q) = maxy≥q{
∫ y

q (v(z) − P (y))dz +

δR(y)} > 0 and t(q) = min arg maxy≥q{
∫ y

q (v(z)− P (y))dz + δR(y)}, for all q ∈ [q1, 1].

Proof : First, we prove that R(q) as defined in (A-1) satisfies R(q) > 0 for all q ∈ [q1, 1]. Let

q ∈ [q1, 1], w = lim infε↓0 v(q + ε), and c = limε↓0 c (q + ε). By Assumption 1, we have w ≥ c+∆.

Consequently, there exists ε > 0 such that v (q′) > c (q + ε) for all q′ ∈ (q, q + ε) . The definition of

R(·) then implies that R (q) > 0.

By the definition of q1, we know that t (q) = 1 for all q > q1, so that (A-1) yields P (q) =

(1− δ) c (q) + δc (1) . Furthermore, R(q) > 0 implies that we must have t(q1) > q1. Hence, for all
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q ∈ [q1, 1], we have

max
y≥q

{∫ y

q
(v(z)− P (y))dz + δR(y)

}

= max
y≥q

{∫ y

q
(v(z)− (1− δ)c(y)− δc(1))dz + δ

∫ 1

y
(v(z)− c(1))dz

}

= max
y≥q

{

(1− δ)
∫ y

q
(v(z)− c(y))dz + δ

∫ 1

q
(v(z)− c(1))dz

}

=
∫ 1

q
(v (z)− c (1)) dz = R (q) .

The one before last equality follows from the fact that maxy≥q{
∫ y

q (v(z) − c(y))dz} =
∫ 1

q (v(z) −

c(1))dz. Since
∫ 1

q (v(z)−c(1))dz is constant, we also have arg maxy≥q{
∫ y

q (v(z)−P (y))dz+δR(y)} =

arg maxy≥q{
∫ y

q (v(z)− c(y))dz} = t (q) . Q.E.D.

Proof of Theorem 1 : Given a stationary triplet on the interval [qn, 1], we extend it in a

unique way to a stationary triplet on a larger interval [qn+1, 1] . For q ∈ [0, 1], let R1(q) be the

buyer’s profit when constrained to select the state in [qn, 1], and let Υ1 be the corresponding argmax

correspondence:






R1(q) = maxy∈[qn,1]
∫ y

q (v(z)− P (y))dz + δR(y)

Υ1(q) = arg maxy∈[qn,1]
∫ y

q (v(z)− P (y))dz + δR(y)
.

Also, extend P (q) to the entire interval [0, 1] by setting P1(q) = (1 − δ)c(q) + δP (t1(q)), where

t1 (q) = minΥ1 (q). Next, for q ∈ [0, qn] let R2 (q) denote the buyer’s profit when constrained to

select the state in [q, qn] (using the extended acceptance function):






R2(q) = maxy∈[q,qn]
∫ y

q (v(z)− P1(y))dz + δR1(y)

Υ2(q) = arg maxy∈[q,qn]
∫ y

q (v(z)− P1(y))dz + δR1(y)
.

Finally, define qn+1 = max {q ≥ 0 : R1 (q) ≤ R2 (q)} whenever the latter set is nonempty, and

qn+1 = 0 otherwise.

We now claim that qn+1 < qn. To see this, note that R2 (qn) = δR1 (qn) < R1 (qn), and

that by the theorem of the maximum R1 and R2 are continuous functions. For q ∈ [qn+1, 1]

define P (q) = P1(q), R(q) = R1(q), t(q) = t1(q) if q > qn+1, and t(qn+1) = t2(qn+1)̇. We also

claim that (P, t, R) is a stationary triplet on [qn+1, 1]. To show this, we need to establish that

for any q ∈ [qn+1, qn) it is the case that R1 (q) = maxy∈[q,1]
∫ y

q (v(z) − P (y))dz + δR1(y). But

if the maximizer y ∈ [q, qn), we would have R1 (q) = R2 (q), contradicting the definition of qn+1.

Consequently, y ∈ [qn, 1] and the required equality holds by construction.
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Next, we claim that R (qn+1) > 0. Let t̄ (q) = maxΥ (q), and let ε be such that q+ε ∈ (q, t̄ (q)).

Since t̄ (q) is feasible from the state q + ε, we have R (q + ε) ≥
∫ t̄(q)

q+ε (v (z)− P (t̄ (q))) dz

+δR (t̄ (q)). It then follows from R (q) =
∫ t̄(q)

q (v (z)− P (t̄ (q))) dz + δR (t̄ (q)) that

R (q + ε) ≥ R (q)−
∫ q+ε

q
(v (z)− P (t̄ (q)))dz (A-2)

Since q + ε is feasible from q, we also have

R (q) ≥
∫ q+ε

q
(v (z)− P (q + ε)) dz + δR (q + ε) (A-3)

Plugging (A-2) into (A-3) yields

(1− δ)R(q) ≥
∫ q+ε

q

(

(1− δ)v(z)− P (q + ε) + δP (t̄(q))
)

dz

≥
∫ q+ε

q

(

(1− δ)
(

v(z)− c(q + ε)
)

− δ
(

P (t(q + ε)− P (t̄(q))
))

dz (A-4)

As shown in the proof of Lemma A-3, the first term under the integrand is bounded away from 0 for

sufficiently small ε. We will have proven the claim if we can show that limε↓0(P (t(q+ε)−P (t̄(q)) = 0.

Since Υ (q) is a nondecreasing continuous correspondence, we have limε↓0 t(q+ε) = t̄(q). The above

equality can therefore fail only if P (·) has a discontinuity at t̄ (q). However, if this is the case, we

necessarily have t (q + ε) = t̄ (q) when ε is sufficiently small. Otherwise the buyer could select t̄(q)

when the state is q + ε, thereby lowering the price discontinuously, and increasing his profit.

Finally, we will show that it takes only a finite number of extensions before qn+1 reaches 0.

Suppose to the contrary that limn→∞ qn = q∞ > 0. Since P (qn) = (1− δ)
∑n

j=0
(

δn−jc
(

tn−j(q)
))

+ δn+1c (1), it must be the case that limn→∞ P (qn) = c+(q∞), where c+ (q)

denotes the right hand limit of c (q). By Assumption 1 there exists n0 > 0 such that ∀n > n0

and all q ∈ (q∞, qn0 ] we have 0 < v(q) − P (qn0) < v̄, where v̄ = sup{v (q) : q ∈ [0, 1]}. Let

ε = (1−δ)R(qn0 )
v̄ . We will show that qn − qn+1 ≥ ε for all n > n0, contradicting the assumption that

{qn} converges to q∞. To see this, observe that

R(qn+1) =
∫ t(qn+1)

qn+1

(v(z)− P (t(qn+1)))dz + δR(t(qn+1))

≤ v̄(qn − qn+1) + δR(t(qn+1))

≤ v̄(qn − qn+1) + δR(qn+1)

The last inequality follows because v(q) − P (qn0) > 0 for q ∈ [q∞, qn0 ] implies that the function

R(q) is decreasing in q for q ∈ [q∞, qn0 ]. Indeed, if q′ > q then R(q) ≥
∫ t(q′)

q (v (z)− P (t (q′))) dz
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+δR (t (q′)) = R(q′) +
∫ q′

q (v(z)− P (t(q))) dz > R(q′). Hence we have,

qn − qn+1 ≥
(1− δ)R(qn+1)

v̄
≥ (1− δ)R(qn0)

v̄
= ε,

where the last inequality follows again from the monotonicity of R (·) on [q∞, qn0 ]. Q.E.D.
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Appendix B : Proof of Theorem 2

Consider a sequence ∆n > 0 such that ∆n ↓ 0, and a sequence qn < 1 such that qn ↑ 1. For each

n, define vn(q) = v(q) + ∆n, and cn(q) = c(q) for q ≤ qn, and cn(q) = c(qn) + [c(1) − c(qn)] q−qn
1−qn

,

for q > qn. Observe that the game with valuation functions {vn(·), cn(·)} satisfies the assumptions

of Theorem 1, and so has a stationary triplet {Rn, Pn, tn}.

Since [0, 1] is compact, it follows from Prohorov’s Theorem (Billingsley, 1968, p.37) that the

sequence Pn has a weakly convergent subsequence (more precisely, Prohorov proves this for the

right continuous versions of Pn, but the result is obviously true if we take left continuous versions

instead). By taking this subsequence, and renumbering indices, we may without loss of generality

assume that the original sequence {Pn} is weakly convergent. Thus, Pn converges “in distribution”

to a left-continuous nondecreasing function P (q), i.e. Pn(q) → P (q) at every point q where P (·) is

continuous.

Next, we claim that each Rn is Lipschitz continuous, with Lipschitz constant v̄ + c(1) +

∆n. Indeed, we know that Rn (·) is continuous and that its left-hand derivative, R−n (q) =

limε↓0
Rn(q)−Rn(q−ε)

ε = −(vn(q)−Pn(tn(q)), exists and is bounded by v̄+c(1)+∆n. Using reasoning

analogous to the proof of the mean value theorem, we obtain that for any two values x1, x2 in [0, 1],

|Rn (x1)−Rn (x2)| ≤ (v̄ + ∆n + c(1)) |x1 − x2| .

This in turn implies that {Rn} is an equicontinuous family of functions, and hence has a subse-

quence which converges uniformly to a continuous limit R. Again, by taking a further subsequence

if necessary, we may assume that the original sequence converges to R.

Let Jn(q) = maxq′≥q{
∫ q′

q (v(z)−Pn(q′))dz+δRn(q′)} and J(q) = maxq′≥q{
∫ q′

q (v(z)−P (q′))dz+

δR(q′)}. Because Pn converges “in distribution” to P , and Rn converges uniformly to R, the

hypotheses of the Generalized Theorem of the Maximum (Ausubel and Deneckere, 1989, p. 527)

are satisfied. Since for each n we have Jn = Rn, it follows that J(q) = limn→∞Rn(q) = R(q), i.e.

(2) holds.

It remains to be shown that (3) is also satisfied. Consider any q ∈ [0, 1) where t(·), P (·), and

P (t(·)) are continuous. Since each of these functions is nondecreasing, at most countably many q are

excluded. We will first argue that for such q equation (3) must hold. Observe first that since q is a

continuity point of P (·), we have limn→∞ Pn(q) = P (q). Secondly, since cn(·) converges uniformly

to c(·), we have limn→∞ cn(q) = c(q). Thirdly, the Generalized Theorem of the Maximum implies

that any cluster point of {tn(q)} belongs to Υ(q). Since t(·) is continuous at q, Υ(·) is single-valued
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at q, and hence limn→∞ tn(q) = t(q). Finally, let p be any accumulation point of the sequence

{Pn(tn(q))}. We claim that p = P (t(q)). First, let us show that p ≥ P (t(q)). To this effect, let

rk ↑ t(q) and sk ↓ t(q) be sequences of continuity points of P (·). Then for all k, there exists N(k)

such that for all n ≥ N(k) we have tn(q) ∈ (rk, sk). Consequently, Pn(rk) ≤ Pn(tn(q)) ≤ Pn(sk),

for all n ≥ N(k). Since rk and sk are continuity points of P (·), it follows upon taking limits as

n → ∞ that P (rk) ≤ p ≤ P (sk). Exploiting left-continuity of P (·), and again taking limits as

k →∞, we then obtain P (t(q)) ≤ p ≤ lims↓t(q) P (s). Secondly, suppose that contrary to the claim

we have p > P (t(q)). We will show that for large n this contradicts that tn(q) is a profit-maximizing

choice for the buyer. Indeed, observe that
∫ rk

q (v(z)−Pn(rk))dz + δRn(rk)−Rn(q) =
∫ rk

tn(q)[v(z)−

Pn(tn(q))]dz + [Pn(tn(q)) − Pn(rk)][rk − q] +δ[Rn(rk) − Rn(tn(q))]. Now letting n = N(k), and

letting k →∞, we see that the above expression converges to [p−P (t(q))][t(q)−q]. Next, we claim

that t(q) > q, showing that for large k the choice rk dominates the choice tN(k)(q), the desired

contradiction. Indeed, suppose to the contrary that t(q) = q. Then there must exist ε > 0 such

that t (q + ε) = t (q). For if we have t (q + ε) > t (q) for all ε > 0 then P (t (q + ε)) ≥ p > P (t (q)),

contradicting continuity of the function P (t(·)) at q. Now let q′ ∈ (q, q + ε) be a continuity

point of t (·). Then since tn (q′) ≥ q′ for every n, we would obtain the contradiction q = t (q′) =

limn→∞ tn (q′) ≥ q′, so we must have t (q) > q. We conclude that limn→∞ Pn(tn(q)) = P (t(q)).

Now observe that since {Pn, Rn, tn} is a stationary triplet, we have for each n :

Pn(q)− cn(q) = δ(Pn(tn(q))− cn(q)).

By taking limits as n → ∞, we see that (3) must hold for all but at most a countable number of

q. Finally, consider any of the excluded q ∈ [0, 1], and select as sequence of nonexcluded qk such

that qk ↑ q. Since (3) holds for all k, and since the functions Pn(·), cn(·), and Pn(tn(·)) are all

left-continuous, we see upon taking limits as k → ∞ that (3) also holds at q. We conclude that

{P (·), R(·), t(·)} is a stationary triplet for the game with valuations functions v(·) and c(·). Q.E.D.
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Appendix C : Characterization of the Limit

Lemma C-1 For any ε > 0, there exists a finite integer N and a constant η > 0 such that

t (q)− q ≥ η for all q ∈ (q∗1 + ε, q1) and qN ≤ q∗1 + ε, for all δ < 1.

Proof : Note that R(q) − R(t(q)) =
∫ t(q)

q (v(z) − P (t(z)))dz. Consequently,
∫ t(q)

q (v(z) −

P (t(q)))dz = R(q) − δR(t(q)) = (1 − δ)R(q) + δ(R(q) − R(t(q)) = (1 − δ)R(q) + δ
∫ t(q)

q (v(z) −

P (t(z)))dz. Combining the outer inequalities then yields :

(1− δ)
∫ t(q)

q
v(z)dz −

∫ t(q)

q
(P (t(q))− δP (t(z))) dz = (1− δ)R(q) (C-1)

Note that P (t(q)) − δP (t(z)) ≥ (1 − δ)c(t(q)) ≥ 0 , v ≤ v̄ and R(q) ≥ R̃ (q). Substituting into

(C-1) then yields t(q) − q ≥ R̃(q)
v̄ . Since R̃(q) is continuous and strictly positive over [q∗1 + ε, 1],

d = minq∈[q∗1+ε, q1] R̃(q) exists and is strictly greater than 0. Hence, t(q)− q is uniformly bounded

from below by η = d
v̄ . Let N be the smallest integer greater than 1−(q∗1+ε)

η ; then qN ≤ q∗1 + ε.

Q.E.D.

Proof of Lemma 2 : First, we claim that q̃ ≥ q∗1 . If q∗1 = 0, the inequality is trivial, so

suppose that q∗1 > 0. Observe that since for all q > q̃ we have limδ→1 P (q) = c(1), it is the

case that R̃ (q) = φ (q) for all q > q̃, where φ (q) =
∫ 1

q (v(z)− c (1))dz. Next, observe that

v (q∗1) < c (1). Indeed, if we had v (q∗1) ≥ c (1), then since (by Assumptions 4 and 5) v (·) must

be constant in a neighborhood of q∗1 , we would have φ′ (q) ≤ 0 in a right neighborhood of q∗1 ,

contradicting the definition of q∗1 . Suppose now that contrary to the claim we had q∗1 > q̃. Since

φ′ (q∗1) = v (q∗1) − c (1) < 0, this would imply that R̃ (q) = φ (q) < 0 in a left neighborhood of q∗1 .

But this is impossible since for every δ < 1 we have R (q) > 0, and hence R̃ (q) = limδ→1 R (q) ≥ 0.

Next, we show that q̃ ≤ q∗1 . Suppose to the contrary we had q̃ > q∗1 . Select any q′ ∈ (q∗1 , q̃).

From Lemma C-1, we know that it takes at most a finite periods for the buyer to offer price c(1)

regardless of δ. This implies P̃ (q′) = c(1), which contradicts to the definition of q̃. Q.E.D.

Proof of Corollary 1 : It remains to be shown that there can be no limiting delay at q∗1 = 0,

i.e. that P̃ (0) = c(1). Suppose to the contrary that lim infδ→1 P δ(0) = b < c(1). In the generic

case where ˜R(0) > 0, select q̃1 ∈ (0, 1) and define q′ = 0. The second part of the proof of Lemma

2 now applies literally, with q̃1 taking the place of q̃, yielding the desired contradiction.

Next, let ˜R(0) = 0. Define N(ζ) be the smallest index such that qN(ζ) ≤ 0. We will show that

limζ→0 N(ζ)ζ = 0, which then implies P̃ (0) = c(1). Observe that q1 > 0, for q1 = 0 would imply
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that N(ζ) = 1, which completes the proof. It therefore follows from the definition of q1 that if

yq = sup S(q) = arg maxy′∈[q,1] π(y′; q) then yq < 1 for all q ∈ [0, q1), so that
∫ yq

q (v(z)− c(yq))dz >
∫ 1

q (v(z)− c(1))dz ≥ 0. Select x ∈ (0, q1). By the Theorem of the Maximum
∫ yq

q (v(z)− c(yq))dz is

continuous in q. Hence d = minq∈[0,x] {
∫ yq

q (v(z) − c(yq))dz} exists and is strictly greater than 0.

Hence, applying the definition of R and the inequality P (q) ≤ (1− δ)c(q) + δc(1), we obtain

R(q) ≥
∫ yq

q
(v(z)− P (yq))dz + δ

∫ 1

yq

(v (z)− c(1))dz

≥ δ
∫ 1

q
(v(z)− c(1))dz + (1− δ)

∫ yq

q
(v(z)− c(yq)) dz

≥ (1− δ)
∫ yq

q
(v(z)− c(yq)) dz ≥ (1− δ) d.

Now from (C-1) we obtain q − t(q) ≥ R(q)
v̄ ≥ (1−δ)d

v̄ . Hence for any ε < x, it takes at most

n (δ) periods to move from state 0 to state ε, where n(δ) is the smallest integer greater than εv̄
(1−δ)d .

From Lemma C-1, there exists an N0 such that qN0 ≤ ε. Hence N (ζ) ≤ n(δ) + N0. Since

limζ→0 ζN (ζ) ≤ limζ→0 ζ(n (δ) + N0) = limζ→0
ζεv̄

(1−e−rζ)d = εv̄
rd , by letting ε go to zero we obtain

limζ→0 ζN (ζ) = 0 Q.E.D.

Proof of Corollary 2 : From the first part of the proof of the Lemma 2, we know that E[v (z)−

c (1) |z ≥ q] ≥ 0 for all q implies q∗1 = 0. Otherwise we would have E[v (z)− c (1) |z ≥ q] < 0 for q

in a left neighborhood of q∗1 . Conversely, the condition q∗1 = 0 and the definition of q∗1 immediately

imply that E[v (z)− c (1) |z ≥ q] ≥ 0 for all q. Q.E.D.

Proof of Theorem 3′ : By Assumptions 4 and 5, there exists ε0 > 0 such that v(q) = v(q∗1)

and c(q) = c(q∗1) for all q ∈ [q∗1 − ε0, q∗1 + ε0]. Let ρ = v(q∗1 )−c(q∗1 )
c(1)−c(q∗1 ) . The proof then consists of four

steps :

1. Show that for a length of real time approximately discounted to ρ the state qn (constructed in

Theorem 1) stays in a neighborhood of q∗1 . More precisely, for any ε ∈ (0, c(1)−v(q∗1 )
2(c(1)−c(q∗1 )) ) and

any ε1 < ε0
6 , there exists δ0 < 1 such that for all δ ≥ δ0, n1(ε, δ) satisfying δn1 = 1− ε, and

n′2(δ) satisfying δn′2 = ρ, we have qn ∈ (q∗1 − ε1, q∗1 + ε1) for all n satisfying n1 ≤ n ≤ n′2 + 1.

2. Show that for sufficiently large δ, we have t(q) = qn−1 for all q ∈ (qn+1, qn], n1(ε, δ) −2 ≤

n ≤ n̄ (δ), where n̄ (δ) = max {n : qn ≥ q∗1 − ε0}. In other words, there are no inner jumps

in the seller’s acceptance function for all q in the neighborhood (qn̄, qn1−2] of q∗1 . Note that

from Step 1 we have n̄ > n′2 > n1 and that n̄− n1 becomes arbitrarily large as δ0 goes to 1.
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3. Similarly to the two step case, because there are no inner jumps in P (·) within any interval

(qn+1, qn] for n satisfying n1−2 ≤ n ≤ n̄−1, we have R(qn) = (qn−1−qn)(v(q∗1)−P (qn−1))+

δR(qn−1) = (qn−2 − qn)(v(q∗1) − P (qn−2)) + δR(qn−2), for n satisfying n1 ≤ n ≤ n̄. Letting

ρ (ε) = v(q∗1 )−c(q∗1 )
P (qn1 )−c(q∗1 ) , we therefore get a similar relation between the discount factor δ and

mn = qn−1 − qn, i.e. mn+1
mn

= δ−(n−n1−1)ρ (ε). Define n̂(ε, δ) to be the turning period, that

is the solution to ρ(ε)δ−(n̂−1) ≤ 1 < ρ(ε)δ−n̂, or δρ (ε) ≤ δn̂ < ρ (ε). We show that qn̂ < qn1 ,

that there exists a qn2 such that qn̂ > qn2 ≥ q∗1 − 5ε1, and that the length of the delay in

[qn2 , qn1 ] must satisfy e−rT = (1− ε)−2 ρ2 (ε). By letting ε → 0 and ε1 → 0, we further prove

that P̃ (q∗1) = p∗1.

4. Prove that P̃ (q) = p∗1 for q ∈ (q∗2 , q∗1 ].

Proof of Step 1 : First, given ε > 0 and δn1 = 1− ε, we have

P (qn1) = (1− δ)
n1−1
∑

j=0

δjc(tj (qn1)) + δn1c (1) ≤ (1− δ)
n1−1
∑

j=0

δjc(q1) + δn1c (1)

= c (1)− ε(c(1)− c(q1)) < c(1).

The inequality c (q1) < c (1) follows from the definition of q1 = inf{q : t(q) = 1}. Otherwise, by the

left continuity of c (·), and Assumption 4 we can find q′ < q1 such that c (q) = c(1) for all q ∈ (q′, 1].

This would imply t(q′) = 1, yielding a contradiction. Since P̃ (q∗1 + ε1) = c (1), there exists a δ0

such that for all δ > δ0, P (qn1) < P (q∗1 + ε1). Hence, we obtain qn1 < q∗1 + ε1.

Secondly, from the proof of Theorem 1, we know that R(q) > 0 for all q ∈ [0, 1]. Hence,

0 < R(q∗1 − ε1) =
∫ q∗1

q∗1−ε1

(v(z)− P (t(z))) dz +
∫ 1

q∗1

(v(z)− P (t(z)))dz

≤ (v(q∗1)− P (t(q∗1 − ε1)))ε1 +
∫ 1

q∗1

(v(z)− P (t(z)))dz. (C-2)

The second inequality uses the fact that v(z) = v(q∗1) over the interval [q∗1 − ε1, q∗1 ], and that P (·) is

increasing. Lemma 2 shows that R̃ (q∗1) = 0 which implies that the second term in (C-2) converges

to 0 as δ → 1. Hence for sufficiently large δ, (C-2) implies v(q∗1) > P (t(q∗1 − ε1)) > P (q∗1 − ε1).

Now observe that there exists n′ such that q∗1 − ε1 < qn′ ≤ t(q∗1 − ε1). Since in equilibrium a

seller with type qn′ would accept a price P (qn′) rather than a price c(1) after n′ periods, we have

P (qn′)−c(qn′) ≥ δn′ (c (1)− c(qn′)) . This implies δn′ ≤ P (qn′ )−c(q∗1 )
c(1)−c(q∗1 ) < v(q∗1 )−c(q∗1 )

c(1)−c(q∗1 ) . Hence n′2 < n′

and qn′2+1 > q∗1 − ε1.
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Proof of Step 2 : We first prove that if there are M steps in c(·) over the interval (qn, 1] ⊂ (q∗1 , 1],

then there are at most M steps in P (q) for q ∈ (qn, qn−1] ⊂ (q∗1 , 1]. For n = 1, since P (q) =

(1− δ) c (q)+ δc (1), P and c have the same number of steps for q ∈ (q1, 1]. Suppose the statement

is true for n ≥ 1, i.e. c(·) has M ′ steps in (qn,1] and P (·) has at most M ′ steps in (qn, qn−1].

Now suppose c (·) has M steps for q ∈ (qn+1, 1]. Then c (·) has M −M ′ steps for q ∈ (qn+1, qn].

Note that P (q) = (1− δ) c (q) + δP (t (q)) and t(q) ∈ (qn, qn−1] for q ∈ (qn+1, qn]. Hence, if q is a

discontinuity point of P , then q is either a discontinuity point of c(·) or of P (t(·)), or of both. Since

t(·) is increasing, P (t(q)) can have at most M ′ discontinuity points for q ∈ (qn+1, qn]. Furthermore,

since c(·) and P (t(·)) are increasing, there are at most (M −M ′) + M ′ = M steps in P (·) over the

interval (qn+1, qn].

Let M̄ denote the number of discontinuity points of c(·) on [q∗1 , 1]. Since c(·) is constant over

[q∗1 − ε0, q∗1 + ε0], the number of the inner jumps in P (·) over (qn+1,qn] is bounded by M̄ and is

nonincreasing in n for n strictly less than n̄ and satisfying qn < q∗1 + ε0. We will show that there

are no more inner jumps in P (·) by the time we reach qn1 , i.e. δn1 = 1− ε. The argument goes as

follows : First select ε′ such that (1− ε′)M̄ > 1− ε. Let n0(δ, ε′) be the solution of δn0 = 1− ε′.

From the argument of Step 1, we know qn0 ∈ (qn1 , q
∗
1 + ε0) and there are at most M̄ inner jumps in

P over (qn0+1, qn0 ]. Secondly, suppose that after n0 periods m inner jumps persist. Let n′0(δ, ε
′)

be the solution of δn′0−n0 = 1 − ε′. We will show that after n′0 periods at least one inner jump

collapses. By applying this argument till all the inner jumps disappear, we know it takes at most

n′1(δ, ε
′) periods, where n′1(δ, ε

′) is the solution of δn′1 = (1 − ε′)M̄ . Since δn′1 > 1 − ε = δn1 , for

sufficiently large δ we have n′1 < n1 − 2. Therefore we can conclude that there are no inner jumps

in the seller’s acceptance function for all q in (qn̄, qn1−2]. Hence, to complete the proof, we only

need to show that if there are m steps in P (q) for q ∈ (qn0+1, qn0 ], then there are at most m − 1

steps in P (q) for q ∈ (qn′0+1,qn′0 ].

Suppose two adjacent intervals (qn+1,qn] and (qn+2,qn+1] have the same number of discontinuity

points in P (·), denoted by m. Let (qn, 1, qn,2, . . . , qn,m) and (qn+1, 1, qn+1,2, . . . , qn+1,m) denote

those discontinuity points, and define xn = (xn,1, xn,2, . . . , xn,m), where xn,i = qn,i − qn,i−1 for

i = 2, · · · ,m, and xn,1 = qn,1 − qn+1. We first show that there is a linear mapping An such that

xn+1 = An(δ, n0)xn. (See figure 3.)

< Insert Figure 3 >

Since c(·) is constant over (qn+2,qn+1], the jumps in P requires the jumps in t(·). We
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therefore have Υ(qn+1,i) = {qn,i, qn,i+1}, i = 1, . . . ,m − 1 and Υ(qn+1,m) = {qn,m, qn−1,1}, i.e.,

R(qn+1,i) = P (qn,i) (qn,i − qn+1,i) + δR(qn,i) = P (qn,i+1) (qn,i+1 − qn+1,i) + δR(qn+1,i) for i =

1, . . . ,m − 1 and a similar equation for i = m. Using the same trick as in the two type case

(leading up to Equation 7), we have qn,i−1−qn+1,i−1
xn,i

= (1−δ)(v(q∗1 )−c(q∗1 ))
δn−n0 (P (qn0,i+1)−P (qn0,i))

. Since P (qn0,i) =

(1− δ)
∑n0−1

k=0 δkc(tk (qn0,i)) + δn0c (1) , we have P (qn0,i+1)− P (qn0,i) = (1− δ) ai(δ, n0), where

ai (δ, n0) =
n0−1
∑

k=0

δk (

c(tk (qn0,i+1))− c(tk (qn0,i))
)

. (C-3)

Letting bn,i(δ, n0) = v(q∗1 )−c(q∗1 )
δn−n0ai(δ,n0)

, we obtain a linear mapping xn+1 = An(δ, n0)xn,

An (δ, n0) =

























bn,1 + 1 −bn,2 0 · · · 0 0

0 bn,2 + 1 −bn,3 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · bn,m−1 + 1 −bn,m

−1 −1 −1 · · · −1 bn,m

























. (C-4)

Secondly, let N(δ) be the number such that qN(δ) ≤ q∗1 + ε0 < t(qN(δ)). Lemma C-1 implies

N(δ) is uniformly bounded in δ. Using the fact that c(·) is constant over (q∗1 − ε0, q∗1 + ε0) we know

that c(tk (qn0,i+1))− c(tk (qn0,i)) = 0 for k = 0, 1, . . . , n0 −N . Hence we may rewrite (C-3) as

ai (δ, n0) =
N−1
∑

k=0

δn0−(N−k)(c(tn0−N+k (qn0,i+1))− c(tn0−N+k (qn0,i))) (C-5)

Thirdly, let Ci = {
∑N−1

k=0 (c(tn0−N+k (qn0,i+1)) − c(tn0−N+k (qn0,i))) : δ ∈ (0, 1)}. Note that

by definition both n0 and t(·) are functions of δ. Hence, potentially Ci may have infinitely many

elements. However, since c(·) has at most M̄ different values in (q∗1 + ε0, 1], there are only finitely

many elements in Ci.

Fourthly, let a′ ∈ C1 × C2 × · · · × Cm and ∆m(a′) = {δ ∈ (0, 1) :
∑N−1

k=0 (c(tn0−N+k (qn0,i+1))−

c(tn0−N+k (qn0,i))) = a′i, i = 1, . . . , m}. We will show that there exists a δa′ ∈ (0, 1) such that for

δ ∈ ∆m(a′)∩(δa′ , 1) and n > n′0(δ, ε
′), at least one element in xn becomes negative, i.e., at least one

inner jump collapses. Let δ0 = max{δa′ : a′ ∈ C1 × C2 × · · · × Cm}. Since there are only finitely

possible a′, we know δ0 exists and is strictly less than 1. Applying the argument for all possible a′,

we conclude that for δ ∈ (δ0, 1), at least one inner jump collapses for n > n′0. This then completes

the proof of Step 2. Henceforth, we therefore only consider the case where a′ ∈ C1×C2×· · ·×Cm

and δ ∈ ∆m(a′).
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Let ai(ε′) = (1− ε′)a′i. By (C-5) we have :

ai (δ, n0) = (1 + O
(

1− δN)

)ai(ε′) (C-6)

Define bi(ε′) = limδ→1 bn0,i(δ, n0) = v(q∗1 )−c(q∗1 )
ai(ε′)

and

A (ε′) = lim
δ→1

An0(δ, n0). (C-7)

Let λ1, λ2,···, λm be the eigenvalues of A(ε′) such that |λ1| ≥ |λ2| ≥ · · · ≥ |λm|, where | · | is the

absolute value of a complex number i.e. |α + βi| =
√

α2 + β2. To simplify the argument we

assume all the eigenvalues are real and |λ1| > |λ2| > · · · > |λm|.29 From Claim 2(a) below,

without loss of generality we have λ1 > λ2 > · · · > λm > 0. Let vi be the eigenvector for A(ε′)

corresponding to λi. For any vector xn ∈ Rm, define

β(xn) =
m

∑

i=1

xn,i

We select vi such that β(vi) = 1 for all i = 1, . . . ,m. Now expand any vector xn ∈ Rm
++ on

{v1, . . . , vm}, the eigenspace of A(ε′) :

xn =
m

∑

i=1

rn,ivi, where rn,i ∈ R. (C-8)

Let κn = δn−n0(1 + O
(

1− δN
)

), ei the ith unit vector in Rm, and select αi such that em =
∑m

i=1 αivi. Then using (C-4), (C-6) and (C-7) we have

xn+1 = An(δ, n0)xn =
1
κn

(A(ε′)− (1− κn)I)xn + (
1− κn

κn
β(xn))em

=
1
κn

m
∑

i=1

((λi − (1− κn))rn,i + (1− κn)β(xn)αi)vi. (C-9)

From (C-8) and (C-9), we have

rn+1,i =
1
κn

((λi − (1− κn))rn,i + (1− κn)β(xn)αi). (C-10)

For any k and any two vectors x(δ), y (δ) ∈ Rk, define x ≈ y if limδ→1
xi
yi

= 1 for i = 1, . . . , k.

Using (C-10), Claim 1 below establishes that xn+1 ≈ rn+1,1v1 for some n < n′0(δ, ε
′). Therefore

from Claim 2(b) below, we obtain the desired result that for sufficiently large δ at least one element

in xn+1 becomes negative for some n less than n′0.

29By slightly modifying the proof, we get the same result when some eigenvalues have the same absolute values or

when they are complex numbers.
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Proof of Step 3 : We first prove that n1 < n̂ < n′2 + 1, implying q∗1 − ε1 < qn̂ < qn1 ≤ q∗1 + ε1

according to Step 1. It then follows that qn1−qn̂ < 2ε1, so that qn1−2(qn1−qn̂) > qn1−4ε1 > q∗1−ε0.

From Step 1 we know that δn′2+1 = δρ < δρ(ε) ≤ δn̂. Hence n̂ < n′2 + 1. Observe also that

limε→0 P (qn1) = c(1), limε→0 ρ (ε) = ρ < 1 and limε→0 δn1 = 1. Hence for sufficiently small ε we

have δn̂ < δn1 or n̂ > n1.

Secondly, we show that the P̃ (q∗1) = p∗1. We do this in 3 steps :

Step 3.1 : Show that ∃ δ1 ≥ δ0 and n2(ε, δ) such that n2(ε, δ)̇ > n̂(ε, δ) > n1(ε, δ) and such

that ∀δ > δ1, we have mn2(ε,δ) ∈ ((1 − ε)mn1(ε,δ),mn1(ε,δ)]. Show furthemore that this implies

that the total delay in [qn2−1, qn1 ], (n2(ε, δ) − n1(ε, δ) − 2)ζ, converges to T, where T satisfies

e−rT = (1− ε)−2 ρ2 (ε) .

From the analogue to Equation (8), we know that mn2/mn1 = (ρ (ε) δ−
(n2+n1−1)

2 )n2−n1 . Let

ψ(ζ, n2) = (ρ (ε) e
rζ(n2+n1−1)

2 )n2−n1 denote this ratio, and choose ζ1 and n2(ε, δ) > n̂(ε, δ) such that

∀ζ < ζ1 we have ψ(ζ, n2(ε, δ)) ∈ (1− ε, 1]. This can be done because limζ→0 ψ(ζ, n̂(ε, δ)) = 0, and

because limn2→∞ ψ(ζ, n2;n1) = ∞. Observe now that (for sufficiently small ζ) e−rζn1 = δn1 =

1 − ε, so we have limζ→0 ρ (ε) e
rζ(n2−n1−2)

2 = limζ→0 (1− ε) ρ (ε) e
rζ(n2(ζ)+n1−1)

2 = limζ→0 (1− ε)

[ψ (ζ, n2)]
1

n2(ζ)−n1 = 1− ε, implying that limζ→0 ζ(n2 − n1 − 2) = T .

Step 3.2 : Show that qn2 ≥ q∗1 − 5ε1.

(a) mn2−i = (ρ (ε) δ−
(n2+n1−1)

2 )n2−n1−2imn1+i for all i such that n2 − n1 − 2i > 0.

(b) Since ρ (ε) δ−
(n2+n1−1)

2 ≤ 1 < ρ (ε) δ−n̂, we have n2 + n1 − 1 ≤ 2n̂. This implies that for all

i ≤ n2 − n̂− 1, we have n2 − n1 − 2i > 0 and n1 + i ≤ n̂.

It follows from (a) and (b) that
∑n2−1

i=n̂+1 mi(ζ) =
∑n2−n̂−1

i=1 mn2−i(ζ) ≤
∑n2−n̂−1

i=1 mn1+i(ζ) ≤
∑ n̂

i=n1+1 mi(ζ) = qn1 − qn̂. Hence, qn2−1 = qn1 −
∑n2−1

i=n1+1 mi(ζ) ≥ qn1 − 2(qn1 − qn̂) ≥ q∗1 − 5ε1.

Step 3.3 : Show that P̃ (q∗1) = p∗1.

In the proof of Step 2, we have shown that for n = N, . . . , n1, xn+1 = An(δ, n0)xn, limδ→0 An (δ, n0)

= A (ε′) and that we need at most M̄ pairs of (n0, ε′) to kill off all inner jumps. For each pair of

(n0, ε′), Equations (C-5) and (C-6) imply that we can rewrite An (δ, n0) = δ−n(1+O(1− δN ))A for

n = N, . . . , n1, where A is one of finitely many possible linear mappings. Hence, there exists a suf-

ficiently large j ∈ Z, such that for sufficiently large δ, we have mn+1
mn

≥ δ−nρ(ε)j for n = N, . . . , n1.

Therefore mn1 ≥ ρ (ε)j δn1−1mn1−1 ≥ (ρ (ε)j δ−
n1+N−1

2 )n1−NmN . Let j′ = j (n1 −N). Suppose
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limδ→1 qn2+j′ ≥ q∗1 − ε0. Analogously to Equation (8), we have

lim
δ→1

mn2+j′ = lim
δ→1

(ρ (ε) δ−
n2+j′+n1−1

2 )n2+j′−n1mn1

≥ lim
δ→1

(ρ (ε) δ−
n2+j′+n1−1

2 )n2+j′−n1(ρ (ε)j δ−
n1+N−1

2 )n1−NmN

= lim
δ→1

ψ (ζ, n2) ρ (ε)2j′ δ−
j′((2n2+j′−1)+ 1

j (n1+N−1))

2 mN

≥ (1− ε) lim
δ→1

ψ (ζ, n2)
2j′

n2−n1 δ−
j′((j+ 1

j−2)n1−(j− 1
j )N+1− 1

j )
2 mN

= (1− ε) lim
δ→1

δ−
j′((j+ 1

j−2)n1−(j− 1
j )N+1− 1

j )
2 mN

= (1− ε) lim
δ→1

(1− ε)−
j((j+ 1

j−2)n1−(j− 1
j )N+1− 1

j )
2 mN (C-11)

Note that for large δ we have j
(

(j + 1
j − 2)n1 − (j − 1

j )N + 1− 1
j

)

≥ 0. Hence, Equation (C-11)

implies limδ→1 mn2+j′ ≥ (1− ε) mN . Since N is uniformly bounded in δ and mn is continuous

in δ, limδ→1
mN

mN−1
= d′ exists as well. Thus by qN−1 ≥ q∗1 + ε0 and Lemma C-1, we have

mN ≥ d′mN−1 ≥ d′η. We conclude that limδ→1 qn2+j′ ≤max{q∗1−ε0, limδ→1 qn2−(1−ε)mN} < q∗1 .

Let t′ be the delay from n2 + j′ to n2, i.e. e−rt′ = (1− ε)j .

Letting ε and ε1 go to zero, Steps 3.1 and 3.2 yield P̃ (q) = p∗1 for q ∈ (limδ→1 qn2+j′ , q∗1 ]. This

completes the proof of Step 3.

Proof of Step 4 : Similarly to the proof that P̃ (q) = c(1) for q ∈ (q∗1 , 1] , first define

q̃ = inf{q : lim
ζ→0

P (q) = p∗1}. (C-12)

Note that by Step 3, we have P̃ (q∗1) = p∗1. Hence, q̃ is well defined. Similarly to the argument

in Lemma 2, we can show that q̃ = q∗2 , i.e. that the buyers limiting revenue is equal to R̃ (q) for

all q ≥ q∗2 , and that the seller’s limiting acceptance function is equal to p∗1 on the interval (q∗2 , q∗1 ].

Q.E.D.

Proof of Claims 1-3

Claim 1 xn+1 ≈ rn+1,1v1 for some n0 < n < n′0(δ, ε
′).

Proof : Note that λi and vi depend on A (ε′) only and hence remain constant as δ goes to 1.

Since β(xn0) =
∑m

i=1 xn0,i =
∑m

i=1 rn0,i, we know rn0,i = O(β(xn0)). Let N ′ = 1√
ζ . Consider the

following three cases :
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Case 1 : (1 − κn0)β(xn0) = o(rn0,1). Let n(ε′, δ) = n0 + N ′. Then limδ→1 δn−n0 =

limζ→0 e−r
√

ζ = 1 and limδ→1 κn = 1. Hence, from (C-10), we obtain ri+1,1

ri,1
= λ1 + O(1 − δ),

i = n0, . . . , n and xn+1 ≈ λn−n0
1 rn0,1v1 + · · · + λn−n0

m rn0,mvm. Since λi
λ1

< 1, we have limδ→1(1 −

δN )−1( λi
λ1

)n−n0 = 0. Combining this with rn0,i = O( β(xn0)), we obtain rn,i = o(rn,1) for

i = 2, . . . , m. Hence xn+1 ≈ λn−n0
1 rn0,1v1 ≈ rn+1,1v1. Since limδ→1 δn−n0 = 1 and δn′0−n0 = 1−ε′,

we obtain n < n′0(δ, ε
′) when δ is sufficiently large.

Case 2: rn0,1 = o((1 − κn0)β(xn0)). From Claim 3, we know α1 6= 0. Hence, rn0+1,1 ≈

α1(1−κn0)β(xn0). This implies that for all n > n0 +1, rn,1 and α1 have the same sign. Therefore

from (C-10) we have rn+1,1
rn,1

> λ1 − (1 − κn) for all n > n0 + 1. Let n′(δ, ε′, ε′′) be such that

δn′−n0 = 1− ε′′ > 1− ε′. Hence 1− κn′ ≈ ε′′ and β(xn′) = O(|rn′,1|). Select ε′′ and ζ sufficiently

small so λ1 − (1 − κn) still dominates λi − (1 − κn) for all i = 2, . . . , m. Letting n = n′ + N ′

and using the similar argument as in Case 1, we obtain xn+1 ≈ rn+1,1v1 and n < n′0 when δ is

sufficiently large.

Case 3: rn0,1 = γn0α1(1− κn0)β(xn0), where γn0 is a function of δ satisfying limδ→1|γn0 | > 0

and limδ→1|γn0 | < ∞. From (C-10) we obtain rn0+1,1

rn0,1
= λ1 − (1 − κn0) + 1

γn0
. Hence, if γn0 < 0,

it is possible to have rn0+1,1

rn0,1
< rn0+1,2

rn0,2
, a potential threat to our goal xn ≈ rn,1v1. Hence for this

case, we need a better estimate of rn,1. To simplify the argument, we only consider the worst case:

γn0 < 0, and β(xn0) = O(|rn0,2|). From Case 1, we obtain xn+1 ≈ λn−n0
1 rn0,1v1 +λn−n0

2 rn0,2v2 for

n0 + N ′ ≤ n ≤ n0 + 2N ′. If there exists an n ≤ n0 + 2N ′ such that either (1− κn)β(xn) = o(rn,1)

or rn,1 = o((1 − κn)β(xn)) holds then by applying Case 1 or Case 2, respectively, we obtain

xn′+1 ≈ rn′+1,1v1 for some n′ < n′0 , which completes the proof. Now consider the case that for every

n = n0 + N ′, . . . , n0 + 2N ′, we have rn,1 = γnα1(1− κn)β(xn). This implies xn+1 ≈ λn−n0
2 rn0,2v2,

β(xn+1) = λn−n0
2 rn0,2 + O(1 − κn) and β(xn+1)

β(xn) = λ2 + O(1 − κn). Since limδ→1 κn = 1, using

(C-10) recursively, we have

rn+1,1 ≈ α1(1− κn0)β(xn0)
(

γn0λ
n−n0+1
1 + λn−n0

1 + λn−n0−1
1

β(xn0+1)
β(xn0)

+ · · ·+ β(xn)
β(xn0)

)

(C-13)

Letting fn0(N
′) = γn0λ1 + 1 + β(xn0+1)

λ1β(xn0 ) + · · · + β(xn0+N′ )

λN′
1 β(xn0 )

and using β(xn+1)
β(xn) = λ2 + O(1 − κn),

we can further rewrite (C-13) to

rn+1,1 ≈ α1(1− κn0)β(xn0)

(

λn−n0
1 fn0(N

′) +
n−n0
∑

k=N ′+1

λn−n0−k
1 λk

2

)

. (C-14)
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Using (C-14), β (xn0) ≈ rn0,2 and β(xn+1) ≈ λn−n0
2 rn0,2, we obtain

rn+1,1

β(xn+1)
≈ α1(1− κn0)

(

(
λ1

λ2
)n−n0fn0(N

′) +
n−n0
∑

k=N ′+1

(
λ1

λ2
)n−n0−k

)

= α1(1− κn0)
(

−λ2

λ1 − λ2
+ (

λ1

λ2
)n−n0−N ′

(

(
λ1

λ2
)N ′

fn0(N
′) +

λ2

λ1 − λ2

))

Since rn,1 = γnα1(1−κn)β(xn) for all n = n0+N ′, . . . , n0+2N ′ and λ1
λ2

> 1, we have (λ1
λ2

)N ′
fn0(N

′)+

λ2
λ1−λ2

= 0. Hence γn0+2N ′,1 ≈ −λ2
λ1−λ2

. Combining this with (C-10) we obtain γn+1 ≤ γn for all

n > n0 + 2N ′. Select ε′′ ∈ (0, ε′) such that λ1−ε′′

λ2−ε′′ > 1. Let n′(δ, ε′, ε′′) be the solution of

δn′−n0 = ε′′ < ε′. Since limδ→1(1− κn′) = ε′′, by a similar argument as above (let n′ take the role

of n0 and replace N ′ with 0) we have

rn+1,1

β(xn+1)
≈ α1(1− κn′)

(

−λ2 + ε′′

λ1 − λ2
+ (

λ1 − ε′′

λ2 − ε′′
)n−n′

(

γn′ +
λ2 − ε′′

λ1 − λ2

))

.

Since γn′ + λ2−ε′′

λ1−λ2
≤ γn0+2N ′ + λ2−ε′′

λ1−λ2
< − ε′′

λ1−λ2
and λ1−ε′′

λ2−ε′′ > 1, for n = n′ + N ′ we have

(1− κn)β(xn) = o(rn,1). Applying a similar argument as in Case 1, we have xn+1 ≈ rn+1,1v1 and

n < n′0 when δ is sufficiently large. Q.E.D.

Claim 2 (a) λi > 0, for i = 1, . . . ,m and (b) if xn ≈ rn,1v1 then for sufficiently large δ at least

one element in xn is negative.

Proof : Let h(λ) = det(A(ε′)− λI). It can be shown that h (y) > 0 for all y ≤ 0, h (b1 + 1) < 0

for all j = 1, · · · ,m − 1 and h(bm) < 0 if bm = min{b1 + 1, . . . , bm−1 + 1, bm}. Hence, λi > 0, for

i = 1, . . . ,m and there exists at least one eigenvalue in (0,min{b1 + 1, b2 + 1, · · · , bm−1 + 1, bm}).

From
∑m

j=1 λj =
∑m−1

j=1 (bj + 1) + bm, we know that λ1 > min{b1 + 1, . . . , bm−1 + 1, bm} = b̄ > 0.

If b̄ = bj + 1 for some j < m, then (A − λ1I)v1 = 0 implies (bj + 1 − λ1)vj − bj+1vj+1 = 0.

Hence, sign(v1,j) 6=sign(v1,j+1) or v1,j = v1,j+1 = 0. However, v1,j = v1,j+1 = 0 induces v1 = 0

which yields a contradiction. We can therefore conclude that sign(v1,j) 6=sign(v1,j+1) . A similar

argument applies to the case where b̄ = bm. Q.E.D.

Claim 3 em =
∑m

i=1 αivi, for some α ∈ Rm and α1 6= 0, i.e. em cannot be generated by

{v2, . . . , vm}.

Proof : Let S be the space generated by v2, . . . , vm and V = [v1 v2 . . . vm]. Suppose em ∈ S,

i.e. em =
∑m

i=2 αivi = V α for some α 6= 0 with α1 = 0. Then using V −1AV α = Λα, we
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have V −1Aem = (0, λ2α2, λ3 α3, . . . , λmαm)′. Premultiplying by V yields (0, . . . , 0,−bm, bm)′ =

V (0, λ2α2, λ3 α3, . . . , λmαm)′ =
∑m

i=2 λi αivi ∈ S. Since both −bmem−1 + bmem and em are in S,

and since S is a vector space, we know that em−1 ∈ S. By induction, we can similarly show that

em, em−1, . . . , e1 ∈ S, yielding a contradiction to the fact that S is of dimension m− 1. Q.E.D.

Q.E.D.
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Figure 1: \Bargaining with Interdependent Values" (Deneckere and Liang)
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Figure 2: \Bargaining with Interdependent Values" (Deneckere and Liang)
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Figure 3: \Bargaining with Interdependent Values" (Deneckere and Liang)
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