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COMMUNICATION IN COURNOT OLIGOPOLY

MARIA GOLTSMAN AND GREGORY PAVLOV

Abstract. We study communication in a static Cournot duopoly model under the

assumption that the firms have unverifiable private information about their costs.

We show that cheap talk between the firms cannot transmit any information. How-

ever, if the firms can communicate through a third party, communication can be

informative even when it is not substantiated by any commitment or costly actions.

We exhibit a simple mechanism that ensures informative communication and interim

Pareto dominates the uninformative equilibrium for the firms.

Keywords : Cournot oligopoly; communication; information; cheap talk; mediation

JEL classification codes : C72, D21, D43, D82, D83

1. Introduction

It is well recognized in both the theoretical literature and the antitrust law that in-

formation exchange between firms in an oligopolistic industry can have several effects

(see, for example, Nalebuff and Zeckhauser (1986) and Kühn and Vives (1994)). On the

one hand, more precise information about the market allows the firms to make more

effective decisions. On the other hand, information exchange may facilitate collusion

and increase barriers to entry, which reduce consumer surplus. Therefore, assessing the

effects of communication on equilibrium prices and production is both interesting from

the theoretical point of view and important for developing guidelines for competition
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2 MARIA GOLTSMAN AND GREGORY PAVLOV

policy. This paper contributes to the discussion by studying the possibility of infor-

mative communication in a Cournot oligopoly model where the firms have unverifiable

private information about their costs.

There is a large literature on information exchange in oligopoly with private informa-

tion about costs. In a typical scenario, the firms participate in information exchange

before playing a one-shot Cournot game. Information is assumed to be verifiable, i.e. a

firm can conceal its private information but cannot misrepresent it. Examples include

Fried (1984), Li (1985), Gal-Or (1986), Shapiro (1986), Okuno-Fujiwara, Postlewaite

and Suzumura (1990), Raith (1996) and Amir, Jin and Troege (2010).1 Most of these

papers assume that each firm decides whether to share its information or not before it

observes the cost realization. (An exception is the paper by Okuno-Fujiwara, Postle-

waite and Suzumura (1990), which assumes that each firm decides whether to reveal

its cost realization after observing it.) The conclusion from this literature is that in

a Cournot oligopoly with linear demand, constant marginal cost and independently

distributed cost shocks, each firm finds it profitable to commit to disclose its private

information.

However, the assumption that private information is costlessly verifiable may be

restrictive. Ziv (1993) notes that that information about a firm’s cost function “is

part of an internal accounting system that is not subject to external audit and not

disclosed in the firm’s financial statements” (p. 456), which makes it potentially costly

or impossible to verify, and that even if the verification took place, punishment for

misrepresenting the information is unavailable in a one-shot game, because contracts

that prescribe such punishment may violate antitrust law. In some cases, external ver-

ification of information is impossible in principle, as when the communication between

firms takes the form of planned production preannouncements (an empirical investiga-

tion of information exchange via production preannouncements can be found in Doyle

1A related strand of literature (Novshek and Sonnenschein, 1982; Vives, 1984; Gal-Or, 1985; Kirby,
1988) studies information sharing between firms having private information about demand; Li (1985),
Raith (1996) and Amir, Jin and Troege (2010) cover both cost uncertainty and demand uncertainty.
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and Snyder (1999)). Therefore, one may wish to examine whether the conclusions of

the literature on information sharing in oligopoly are robust to the assumption that

information is verifiable.

Ziv (1993) addresses this question in the framework of a Cournot duopoly with linear

demand and constant marginal costs. He assumes that the marginal costs are private

information, and each firm can send a cheap-talk message to its competitors before

choosing its output. He shows that if the information is unverifiable, the conclusion

that each firm will be willing to share the information no longer holds. To understand

this result, suppose that there exists an equilibrium where each firm announces its

cost realization truthfully, the competitors take each announcement at face value, and

the output of each type of each firm is positive. Then, regardless of the true cost

realization, each firm would like to deviate and announce the lowest possible cost in

order to appear more aggressive and thus make the competitors reduce their output.

Various mechanisms to make unverifiable cost announcements credible have been

considered in the literature. For instance, different announcements can be accompanied

by appropriate levels of ‘money burning’ (Ziv, 1993). Alternatively, the announcements

can determine the amount of side payments in a collusive contract (Cramton and

Palfrey, 1990) or the level of future ‘market-share favors’ from the competitors in

repeated settings (Chakrabarti, 2010).

In this paper, we consider a Cournot duopoly model which generalizes the linear

demand-constant marginal cost setting that is considered in almost all previous work.

Each firm has unverifiable private information about the value of its marginal cost.

We assume that the game is played only once, the firms cannot commit to information

disclosure ex ante, and the communication between the firms cannot be substantiated

by any costly actions.

We show that in this setting, unless some cost types are so unproductive that they

prefer to shut down under all circumstances, no information transmission is possible

through one round of cheap talk (Theorem 1). This theorem generalizes the result
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of Ziv (1993) to a nonlinear setting where the techniques of that paper are no longer

applicable. More generally, we prove that no cheap talk game that lasts for a pre-

determined finite number of rounds has an informative equilibrium (Theorem 2).

However, we show that if the firms are allowed to use more complex communication

protocols than one-shot cheap talk, informative communication is possible. In partic-

ular, we consider the scenario where the firms can communicate through a neutral and

trustworthy third party (a mediator). The mediator can both receive costless and un-

verifiable reports from the firms about their cost realizations and send messages back to

the firms. In this setting, we show that for a range of parameters there exists a simple

communication protocol that makes information transmission possible in equilibrium

and leaves every type of every firm better off than in the Bayesian-Nash equilibrium

without communication (Theorem 3).2 The reason for this is that the mediator can

play the role of an information filter between the firms: a firm does not get to see the

competitor’s cost report directly, and the amount of information that it gets about the

competitor’s cost depends on its own report to the mediator.3 Therefore, even though

a higher cost report may lead to higher expected output by the competitor, it can

cause the mediator to disclose more precise information about the competitor, which

can make truthful reporting by the firms incentive compatible.4

Our paper belongs to the literature on mechanism design without enforcement,

where, unlike in the standard mechanism design approach, the principal cannot en-

force an outcome rule contingent on the agents’ messages, but can only suggest actions

2Liu (1996) considers communication protocols that make use of a third party (correlated equilibria)
in a Cournot oligopoly with complete information. He shows that the possibility of communication
does not enlarge the set of possible outcomes: the only correlated equilibrium is the Nash equilibrium.
We show that a similar result holds in our model too (Lemma 3). Therefore, for informative commu-
nication through a mediator to be possible, the mediator has to be able not only to send messages to
the firms, but to receive cost reports from them as well.
3The idea that introducing noise into communication in sender-receiver games can improve informa-
tion transmission was introduced by Myerson (1991) and analyzed in detail by Blume, Board and
Kawamura (2007).
4The idea that an informed party may be induced to reveal information by making the amount of
information it gets about its competitor contingent on its own message appears in Baliga and Sjöström
(2004), although the model and the results of that paper significantly differ from ours.
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to the agents.5 As a result, the firms are not doing as well as they could in a cartel

with enforcement power.6

Our results have two implications for competition policy. First, they add a new

aspect to the question of whether firms should be allowed to exchange disaggregated

versus aggregate data. This issue is currently viewed mainly from the perspective of

determining which of the regimes is more conducive to sustaining collusive equilibria

when the firms interact repeatedly. From this point of view, the exchange of disaggre-

gated data may be more harmful than the exchange of aggregate statistics, because, in

case of a deviation from the collusive agreement, the former regime allows to establish

the identity of the deviator (Kühn and Vives, 1994). For this reason, the competition

policy views the exchange of aggregate statistics more favorably (for example, Kühn

and Vives (1994) note that the European Commission “has no objection to the ex-

change of information on production or sales as long as the data does not go as far

as to identify individual businesses”). What we show is that information aggrega-

tion can have another effect: it can relax the incentive compatibility constraint of the

participants of the data exchange and thus lead to more information revelation.7

Second, our results contradict the notion that efficiency-enhancing exchange of un-

verifiable information is infeasible, and therefore the only possible purpose for the ex-

change of such information is to sustain a collusive agreement. For example, the 2010

OECD report on “Information Exchanges between Competitors under Competition

Law” states:

5Myerson (1982) provides a revelation principle for mechanism design problems without enforcement.
This approach has been used to study sealed-bid double auctions (Matthews and Postlewaite, 1989),
battle of the sexes (Banks and Calvert, 1992), bargaining in the shadow of war (Hörner, Morelli and
Squintani, 2011).
6See Cramton and Palfrey (1990) for the analysis of such cartels in a static setting. In the case of re-
peated interactions, cartel enforcement can be achieved by threats of future punishment (Chakrabarti,
2010).
7In their narrative analysis of the Sugar Institute, a cartel of sugar refiners that operated in the US
in 1928-1936, Genesove and Mullin (1997) note that the confidentiality procedures adopted by the
Institute in gathering and aggregating the data may have been adopted to insure incentive compati-
bility for participating firms. To our knowledge, this insight has never before been formalized within
a theoretical oligopoly model.
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Empirical evidence shows that the positive effects for consumers of pub-

lic announcements outweigh the possible collusive effects from the trans-

parency they generate. Because of this, it can be very difficult in practice

to distinguish whether public information exchanges have a procompet-

itive effect or simply facilitate collusion. One important factor that the

literature points out is that communications between firms may have lit-

tle value in facilitating coordination unless the information is verifiable.

Information which is not verifiable can be dismissed as “cheap talk” and

therefore disregarded. However, some have suggested that “cheap talk”

can assist in a meeting of minds and allow firms to reach an understand-

ing on acceptable collusive strategies. (p.34)

Similarly, Kühn (2001) notes that

Since communication about future conduct is about something that is

unobservable and unverifiable at the date of communication it cannot

be used to transmit private information about market data, because

firms would not have an incentive to reveal the truth. The problem of

non-credibility arises because there is asymmetric information about the

market environment. (pp. 183-184)

We show that this is not necessarily true, and that exchange of unverifiable information

can be efficiency-enhancing.

The rest of the paper is organized as follows. In Section 2 we describe an example that

illustrates the ideas behind our results. Section 3 contains a description of the model.

In Section 4 we analyze unmediated public communication (cheap talk) and show

that it cannot result in informative communication unless there exist unproductive

types. In Section 5 we exhibit a simple mediated mechanism that ensures informative

communication. Concluding comments are in Section 6. All proofs are relegated to

the Appendix unless stated otherwise.
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2. Example

Consider two symmetric firms producing a homogeneous good, the inverse demand

for which is P (Q) = 3 − Q. Each firm has a linear cost function, the value of the

marginal cost being its private information. Specifically, each firm can be either of

type L, with the marginal cost of 0, or H, with the marginal cost of 2. The types are

independently and identically distributed, and the probability of type L is p ∈ (0, 1).

Regardless of the type realization, each firm has a capacity constraint of x units, where

x ∈
(

1
3
, 1
)
.

Suppose that firm i’s expectation of the opponent’s output is Q−i. Then firm i’s

optimal output maximizes its profit function πi(qi, Q−i, ci) = (3 − qi − Q−i − ci)qi,

where ci is the marginal cost of firm i. It is easy to check that for a firm of type L,

the capacity constraint binds whenever its expectation of the opponent’s output does

not exceed 1, and such a firm will find it optimal to produce x. On the other hand,

the capacity constraint never binds for a firm of type H, and its optimal output is

qi (Q−i) = 1−Q−i
2

, which results in the profit of
(

1−Q−i
2

)2

.

To start, consider the Bayesian-Nash equilibrium of the Cournot game where the

firms simultaneously choose their outputs. In this equilibrium, a firm of type L chooses

x and a firm of type H chooses qH that satisfies the equation

qH =
1− (px+ (1− p)qH)

2

The solution to this equation is qH = 1−px
3−p .

Now suppose that the firms can commit to truthfully disclosing their cost realization

to the competitor before making their production decisions. In this case, if the firms

learn that both of them are of type H, both will produce 1
3
; if they learn that one of the

firms is of type H and the other one of type L, the type-H firm will produce 1−x
2

. As

before, a type-L firm will produce x regardless of what it knows about the opponent.

It is straightforward to check that in this case, the ex ante expected profit of each firm
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is higher than in the case where the costs are private information.8 Therefore, if the

firms could participate in such an information-sharing agreement, they would have an

incentive to do so.

Suppose, however, that such an information-sharing agreement is infeasible, and

all a firm can do is make a public announcement about its marginal cost realization

before choosing its output level. The announcements are made simultaneously, and

are costless and unverifiable (“cheap talk”): a firm has no way to check whether its

opponent has told the truth about its marginal cost. Let us show that in this case, the

firms will not reveal their information truthfully in equilibrium.

Indeed, suppose a truthful equilibrium exists. In such an equilibrium, if a firm

truthfully announces type H, it will find it optimal to produce 1
3

if the opponent

announces H as well, and 1−x
2

if the opponent announces L. A firm of type L that

truthfully discloses its type will find it optimal to produce x no matter what the

opponent announces. Suppose that a type-H firm discloses its type truthfully. Then

with probability p it will learn from its opponent’s announcement that the opponent

will produce x, and with the remaining probability it will learn that the opponent will

produce 1
3
. But suppose that a type-H firm deviates and announces that its type is

L; then with probability p it will still learn that the opponent will produce x, but

with the remaining probability it will learn that the opponent will produce 1−x
2

< 1
3
.

Because the firm prefers the opponent to produce less, this deviation is profitable, and

a truthful equilibrium does not exist. Therefore, even though the firms have an ex ante

incentive to share their information, sharing it truthfully through cheap-talk messages

is impossible: a high-cost firm will have an incentive to pretend that its cost is low in

order to scare the opponent into producing less.9

8The difference in the ex ante expected profits between the complete information and the incomplete
information case equals p(1−p)2(3x−1)(81x+5p−21−21px)

36(3−p)2 , which is strictly positive for any p ∈ (0, 1) and
x ∈

(
1
3 , 1
)
.

9In principle, the cheap-talk game could have a mixed-strategy equilibrium where the messages were
partially informative about the types; however, in this example such equlilibria do not exist.
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To counteract this incentive, let us amend the information exchange scheme as fol-

lows. Suppose that, instead of announcing their types to each other, the firms report

them privately to a neutral trustworthy third party (a mediator). We still assume that

the reports are costless and unverifiable. If both firms have reported that they are

of type H, the mediator makes a public announcement to that effect; otherwise the

mediator remains silent. We will show that in equilibrium, both firms will have an

incentive to report truthfully, and their ex ante welfare will be higher than without

communication.

Indeed, if both firms have truthfully announced that they are of type H, then they

learn that this is the case, and each of them chooses to produce 1
3
. If a firm of type H

has truthfully reported its type, but the mediator remains silent, then the firm learns

that the opponent is of type L, and thus best responds with 1−x
2

. A firm of type L

always finds it optimal to produce x. Therefore, conditional on any type profile, the

equilibrium outputs are the same as in the case when the firms commit to disclosing

their types truthfully, and therefore the ex ante profit is also the same. Let us now

check that reporting truthfully is incentive compatible. Suppose a firm of type H

reports truthfully. Then, as in the case of full revelation, with probability p it will

learn that the opponent will produce x (and best respond with 1−x
2

), and with the

remaining probability it will learn that the opponent will produce 1
3

(and best respond

with 1
3
). If a type-H firm deviates and reports L, its opponent’s output will be equal to

x with probability p and 1−x
2

with probability 1−p, just as in case of full revelation; but

unlike that case, the firm will have to choose how much to produce without the benefit

of knowing how much the opponent will produce. Its best response to the lottery

over the opponent’s output is to produce 1
2
(1 −

(
px+ (1− p)1−x

2

)
). The deviation is

unprofitable if

p

(
1− x

2

)2

+ (1− p)
(

1

3

)2

≥

(
1−

(
px+ (1− p)1−x

2

)
2

)2
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which is true if p ≥ 3x+7
9(3x−1)

. It is also easy to check that a type-L firm will find it

profitable to report truthfully for any values of p ∈ (0, 1) and x ∈
(

1
3
, 1
)
.

The intuition for why the mechanism above is incentive compatible is that, at the

reporting stage, it makes the firms face a tradeoff between inducing the opponent to

produce less in expectation (by sending message L) and learning exactly how much

the opponent is going to produce (by sending message H). Different types of the firm

resolve this tradeoff differently. A type-H firm values information about how much

the opponent will produce; in contrast, a type-L firm always finds it optimal to choose

the same output level and thus faces no need to coordinate with the opponent. This

makes it possible for the firms to truthfully reveal their information and improve their

expected profit relative to the no-communication case.10

3. The model

We consider a model of Cournot competition between two firms, A and B, with

differentiated products. The inverse demand curve for firm i’s product is given by

P (qi, q−i) = max {ρ(qi)− βq−i, 0}, where qi is the output of firm i. We assume that

ρ(0) > 0 and −ρ′(qi) ≥ β > 0 for every qi ≥ 0. The interpretation is that the

products of the two firms are perfect or imperfect substitutes, and “own effect” on

demand is greater than the “cross effect”.11 Firm i’s cost function is C(qi, ci) such that

C(0, ci) = 0, ∂C(qi,ci)
∂qi

≥ 0 with strict inequality for qi > 0, and ∂2C(qi,ci)

∂q2i
≥ 0. A higher

value of the parameter ci is associated with higher firm i’s total cost and marginal cost:

∂C(qi,ci)
∂ci

≥ 0 and ∂2C(qi,ci)
∂ci∂qi

≥ 0. We assume that ci is privately observed by firm i, and

that cA and cB are independently distributed on C = [0, c] according to a continuous

distribution function F with density f > 0.

In Lemma 4 in the Appendix we show that rational behavior by the firms always

results in strictly positive prices, and thus we can take P (qi, q−i) = ρ(qi) − βq−i from

10Furthermore, it can be shown that for a range of parameters in this example, this mechanism is
ex ante optimal in the class of all incentive compatible communication mechanisms. The proof is
available upon request.
11This is a standard assumption: see for example, Gal-Or (1986).
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now on. The profit of firm i of type ci when it produces qi and its competitor produces

q−i is

(1) πi(qi, q−i, ci) = (ρ(qi)− βq−i) qi − C(qi, ci)

Let q(q−i, ci) be the set of best responses of firm i of type ci to the opponent’s output

q−i:

(2) q(q−i, ci) = arg max
qi≥0

πi(qi, q−i, ci)

We will impose the following conditions on the best response correspondence q:

(A1)

q(q−i, ci) is single-valued, continuous everywhere, C1 on {(q−i, ci) : q(q−i, ci) > 0}

(A2)

If q(q−i, ci) > 0, then
∂q(q−i, ci)

∂ci
≤ 0 and

∂q(q−i, ci)

∂q−i
∈ (−1 + δ, 0) for some δ > 0

(A3) q(0, 0) > 0, q(q(0, 0), 0) > 0

To guarantee A1 and A2, it is enough to assume that the components of the profit

are twice continuously differentiable and that ρ is “not too convex” (see Lemma 4 in the

Appendix for the precise statement). In particular, the best response is nonincreasing

in ci and q−i because of ∂2C(qi,ci)
∂ci∂qi

≥ 0 and β > 0. Condition A3 simply requires that

the most efficient type never chooses to shut down, even if facing the most efficient

opponent who chooses the monopoly output.

For some results in the next section, we will require that all types always choose

strictly positive output:

(A4) q(q−i, ci) > 0 for every q−i ∈ [0, q(0, 0)] and every ci ∈ C
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This can be guaranteed, for example, by assuming ∂C(0,ci)
∂qi

= 0 for every ci ∈ C (see

Lemma 4 in the Appendix).

Let us illustrate these conditions with an example.

Example 1. Let ρ(qi) = K − qi, C(qi, ci) = ci
γ
qγi such that K > 0, γ ≥ 1, and

β ∈ (0, 1). If γ > 1, then q(q−i, ci) equals 0 if K − βq−i ≤ 0, and solves the first-order

condition

K − 2q − βq−i − ciqγ−1 = 0

otherwise. It is easy to check that A1-A4 are satisfied. If γ = 1, then q(q−i, ci) =

max
{

0, 1
2

(K − βq−i − ci)
}

. It is easy to check that A1-A3 are satisfied, while A4 is

satisfied if c < K
2

.

Substituting q(q−i, ci) into the expression for the profit (1) we obtain the indirect

profit function of firm i:

(3) Πi(q−i, ci) = max
qi≥0

πi(qi, q−i, ci) = πi(q(q−i, ci), q−i, ci)

4. Unmediated communication

In this section, we allow the firms to communicate directly with each other using

costless and unverifiable messages before choosing their output levels. First, to provide

a benchmark, we describe what happens in the game with no communication. After

that we investigate the consequences of allowing one round of cheap talk communica-

tion. Finally, we look at games with any pre-determined finite number of rounds of

cheap talk communication.

It is well-known that in the complete-information Cournot game with two firms, the

unique intersection of the firms’ best responses determines not only the unique Nash

equilibrium strategy profile, but also the unique outcome of the iterated elimination
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of strictly dominated strategies.12 In our setting, we have an analogous result for the

game with no communication.13

Lemma 1. Suppose that conditions A1-A3 hold. Then in the game with no communi-

cation the profile of strategies where each firm plays according to

(4) qNC(ci) = q(QNC , ci) for every ci, where QNC =

∫
qNC(ci)dF (ci)

is the unique Bayesian-Nash equilibrium and the unique profile of strategies that sur-

vives iterated elimination of interim strictly dominated strategies.

Note that in the games with multiple equilibria, one possible role for preplay com-

munication is to allow the players to coordinate among equilibria. Given Lemma 1,

preplay communication in our setting cannot be used purely for coordination, but has

to involve some information revelation.

We consider the following game where the firms can engage in cheap-talk commu-

nication before making their output choices. Let MA and MB be the sets of pos-

sible messages for firms A and B. Each firm i sends a costless message mi ∈ Mi,

and the messages are publicly observed. Firm i’s pure strategy is thus a pair of

functions (mi(ci), qi(mi,m−i, ci)), where mi : C → Mi is a message strategy and

qi : Mi × M−i × C → R+ is the output strategy in the continuation game follow-

ing a pair of messages (mi,m−i) being observed.

Let us first consider the continuation game after a pair of messages (mi,m−i) is

observed. Let Fi(·|mi) be the c.d.f. of firm −i’s equilibrium beliefs about ci after it

has observed firm i’s message mi.
14 Similarly to Lemma 1, we can characterize what

happens in such a continuation game.

Lemma 2. Suppose that conditions A1-A3 hold. Then, in the game with one round of

cheap-talk communication after a pair of messages (mi,m−i) is observed, the profile of

12See for example Chapter 2 in Fudenberg and Tirole (1991).
13The proof of this Lemma follows from a more general result (Lemma 2).
14Fi does not depend on c−i, because the types are independently distributed.
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strategies given by

qi(mi,m−i, ci) = q (Q−i(mi,m−i), ci) for every ci,

where Qi(mi,m−i) =

∫
qi(Q−i(mi,m−i), ci)dFi(ci|mi), i ∈ {A,B}

is the unique Bayesian-Nash equilibrium and the unique profile of strategies that sur-

vives iterated elimination of interim strictly dominated strategies.

Next we show that if some of the firms’ cost types are so unproductive that they prefer

to shut down under all circumstances, then the cheap-talk game can have informative

equilibria.

Example 1 (continued) Let C(qi, ci) = ciqi (i.e. γ = 1), and thus q(q−i, ci) =

max
{

0, 1
2

(K − βq−i − ci)
}

, and let c > K. Note that if ci ≥ K, then type ci is so

unproductive that it produces zero even if it is a monopolist: q(q−i, ci) = 0 for every

q−i ≥ 0. There exists the following equilibrium with informative cheap talk: firm A

sends one message when it is “productive” (cA < K) and another message otherwise;

firm B always sends the same message regardless of its costs. To see that this is an

equilibrium, first note that the “unproductive” types of firm A are indifferent between

sending both messages, because their profit is always zero. The “productive” types prefer

to tell the truth, because firm B behaves as a monopolist if it believes that firm A is

“unproductive”, and produces less if it believes that firm A is “productive”.15

The literature on oligopoly communication typically makes assumptions that rule

out the possibility of such unproductive cost types. So for the rest of this section we

investigate the possibility of informative cheap talk communication under the assump-

tion that all types always choose positive outputs (Condition A4).

The question whether informative cheap talk between oligopolists is possible has been

considered by Ziv (1993) in the context of a model with undifferentiated products, linear

demand and constant marginal cost (which corresponds to Example 1 with β = γ = 1).

15Note that this equilibrium is not equivalent to the outcome under no communication. The “pro-
ductive” types of firm A can credibly reveal their productivity, and thus enjoy lower expected output
of firm B than in the case of no communication.
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Ziv’s Proposition 3 shows that if the parameters are such that all cost types always find

it optimal to produce, no informative equilibrium exists.16 The logic behind this result

is simple. First, every cost type of, say, firm A is strictly better off if firm B produces

less. Second, firm B’s equilibrium output choice depends on its expectation of firm A’s

cost: the higher this expectation, the more firm B will choose to produce, regardless of

its cost type. Finally, if an informative cheap-talk equilibrium was possible, different

messages by firm A would induce firm B to have different expectations of firm A’s cost.

But then all types of firm A would have an incentive to deviate to the message that

minimizes firm B’s expectation of firm A’s cost.

We find that this intuitive argument is not applicable to the case where the demand

or the cost functions are nonlinear. In particular, the second step of the argument

breaks down: it could be the case that one message corresponds to a higher expected

level of the cost parameter than another, yet some types of the competitor choose

to produce more after hearing the second message than the first one. This point is

illustrated by the following numerical example.

Example 1 (continued) Let β = 1, γ = 3
2

and K = 10. To simplify the calcula-

tions, we will assume that the distribution of ci is discrete: namely, ci ∈ {cL, cM , cH},

where cL = 1, cM = 2, cH = 3, and Pr(ci = cL) = Pr(ci = cM) = 0.33, Pr(ci = cH) =

0.34.

Suppose that each firm sends message m′ if its type is cM and message m otherwise.

Then, upon hearing the pair of messages (m′,m′), it becomes common knowledge that

each firm’s type is cM . A straightforward calculation establishes that each firm i’s op-

timal output is then qi(m
′,m′, cM) ≈ 2.318. Similarly, if firm i has sent message m′

and firm j message m, firm j is sure that its opponent is of type cM , and firm i’s

posterior distribution over the opponent’s type places probability 0.34
0.33+0.34

≈ 0.507 on

cH , and the complementary probability on cL. The optimal outputs are qi(m
′,m, cM) ≈

16Formally, Proposition 3 states that a fully revealing equilibrium does not exist; however, what is in
fact proved is that no information transmission is possible through cheap talk.
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2.287, qj(m,m
′, cL) ≈ 2.992, qj(m,m

′, cH) ≈ 1.828. Therefore, qi(m
′,m, cM) < qi(m

′,m′, cM),

despite the fact that E[cj|m′] < E[cj|m].

This example shows that in a nonlinear setting, the optimal output following a mes-

sage profile depends not only on the expected value of the firm’s posterior distribution

over the opponent’s type, but on the other characteristics of this distribution as well.

However, using a different technique, we are still able to show that there are no infor-

mative equilibria in the game with one round of cheap talk.

Theorem 1. Suppose that conditions A1, A2 and A4 hold. Then the game with one

round of cheap talk communication has no informative equilibrium. That is, following

any equilibrium message profile (mi,m−i), the expected output of each firm i satis-

fies Qi (mi,m−i) = QNC, and firm i plays the same strategy as in the game without

communication: q (Q−i (mi,m−i) , ci) = qNC (ci), for every ci, i = A,B.

The result of Theorem 1 extends to the setting where the firms can engage in finitely

many rounds of cheap talk.17 Specifically, suppose there are T > 1 possible commu-

nication stages, at each stage t = 1, ..., T each firm simultaneously chooses a message,

and their choices become commonly known at the end of the stage. After that, the

firms choose outputs. We show that informative cheap talk is impossible in such a

game with a pre-determined finite number of rounds.18

Theorem 2. Suppose that conditions A1, A2 and A4 hold. Then the game with finitely

many rounds of cheap-talk communication has no informative equilibrium.

The impossibility of informative cheap-talk communication in our model stands in

contrast with a number of results on two-sided cheap talk with two-sided incomplete

information. For example, informative cheap-talk equilibria have been shown to exist

in the double auction game (Farrell and Gibbons, 1989; Matthews and Postlewaite,

17Games with multi-stage cheap talk have been studied both in the context of one-sided incomplete
information (Aumann and Hart, 2003; Krishna and Morgan, 2001), and two-sided incomplete infor-
mation (Amitai, 1996).
18It remains an interesting open question whether cheap talk can be informative when there is no
pre-determined bound on communication length.
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1989), in the arms-race game (Baliga and Sjöström, 2004), and in the peace negoti-

ations game (Hörner, Morelli and Squintani, 2011). However, in all these papers the

underlying games have multiple equilibria, and the ability to have different contin-

uation equilibria following different message profiles seems important for sustaining

informative communication. In our setting, there is a unique continuation equilibrium

for every posterior belief (Lemma 2), which makes it harder to sustain informative

communication.

5. Mediated Communication

In this section, we assume that, before choosing how much to produce, the firms can

communicate with a neutral and trustworthy third party (a mediator), which is initially

ignorant of the firm’s private information. Both firms, as well as the mediator, can send

private or public messages according to a mediation rule, or mechanism, which specifies

what messages the parties can send, in what sequence, and whether the messages are

public or private. After the communication has ended, the firms simultaneously choose

their outputs.

We assume that the mediator’s role is limited to participating in communication

between the firms and that it has no enforcement power over the firms’ output choices.

This distinguishes our setting from a standard mechanism design problem, where the

mechanism designer can enforce the mechanism outcome, and makes it a mechanism

design problem without enforcement. The literature on such problems, which dates

back to Myerson (1982), suggests that in certain settings, mediated communication

allows the players to strictly improve upon cheap talk.19

This is what we find in our model as well. Before exhibiting an informative mecha-

nism, however, let us note that if the mediator is able only to send, but not to receive,

messages from the firms, improving upon the uninformative Bayesian-Nash equilibrium

19See, for example, Banks and Calvert (1992), Goltsman, Hörner, Pavlov and Squintani (2009) and
Hörner, Morelli and Squintani (2011). However, in finite games with a sufficiently large number of
players, cheap talk can be as effective as mediated communication (see e.g. Forges, 1990 and Ben-
Porath, 2003).
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outcome is impossible. More formally, suppose all the mediator can do is send the firms

private messages mA and mB from some message sets MA and MB, generated according

to a commonly known probability distribution p ∈ ∆(MA×MB). (The Bayesian-Nash

equilibria of communication games of this form are called the strategic form correlated

equilibria of the game with no communication (Forges, 1993).) The following lemma is

an immediate consequence of the fact, established in Lemma 1, that the game without

communication is interim dominance solvable.

Lemma 3. Under conditions A1-A3, all strategic form correlated equilibria are out-

come equivalent to the Bayesian-Nash equilibrium of the game without communication.

If the mediator can also receive messages from the firms, this result is no longer

valid, as the example in Section 2 suggests. What we will do next is generalize the

mechanism described in the example, and provide sufficient conditions for it to result

in informative communication in our model.

Specifically, let c∗ ∈ (0, c), and consider the mechanism which works as follows. Each

firm i sends a private message ĉi ∈ [0, c], which is interpreted as the firm’s report about

its cost, to the mediator. The mediator then publicly announces one message, m0, if

min {ĉA, ĉB} ≤ c∗ and another message, m1, otherwise. After that, the firms choose

their outputs. Let us call such a mechanism the “min” mechanism with threshold

c∗.20

This mechanism induces a game between the firms, where a pure strategy for firm

i ∈ {A,B} consists of a reporting strategy ĉi(ci) and an output strategy qi(ci, ĉi,m),

where m ∈ {m0,m1}. We will say that the mechanism is incentive compatible

if it has an equilibrium where the firms report their types truthfully: ĉi(ci) = ci,

∀ci ∈ [0, c], i ∈ {A,B}.

As in Section 2, the idea behind this mechanism is to give each firm a choice between

having the competitor produce less in expectation and getting more information about

20This mechanism is similar to the AND mechanism analyzed by Lehrer (1991), Gossner and Vieille
(2001) and Vida and Āzacis (2012). Hugh-Jones and Reinstein (2011) suggest that a similar mecha-
nism may improve welfare in a matching problem where players suffer disutility from being rejected.
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how much the competitor will produce. Specifically, suppose that firm i reports ĉi ≤ c∗.

Then, if firm j has reported ĉj > c∗, the mediator will announce message m0, and firm

j will learn that firm i has reported its cost to be low. This will make firm j produce

less in expectation, which is favorable to firm i. However, firm i reporting ĉi ≤ c∗

also deprives it of an opportunity to learn anything about firm j’s report, because

the mediator will announce m0 regardless of firm j’s report. Conversely, reporting

ĉi > c∗ will result in firm j producing more in expectation, but will enable firm i to

learn whether ĉj is above or below c∗. The mechanism will be incentive compatible

if different types of the firm resolve this tradeoff differently: types above c∗ value

additional information about the opponent more than the reduction in the opponent’s

expected output, while types below c∗ exhibit the reverse preference.21

To guarantee the incentive compatibility of our mechanism, we will impose the fol-

lowing additional condition on the best response functions:

(A5) q(q−i, ci) is C2, and
∂2 ln (q (q−i, ci))

∂ci∂q−i
< 0 on {(q−i, ci) : q(q−i, ci) > 0}

To interpret this condition, note that

∂2 ln q(q−i, ci)

∂ci∂q−i
=

∂

∂ci

( ∂q(q−i,ci)
∂q−i

qi(q−i, ci)

)
= − ∂

∂ci

∣∣∣∣∣∣
∂2Πi
∂q2−i
∂Πi
∂q−i

∣∣∣∣∣∣


The denominator of the latter expression measures how much the indirect profit of firm

i changes with the expected output of the opponent, so it shows how much firm i values

a reduction in the opponent’s output. The numerator measures how convex the indirect

profit function is, and thus how much the firm values information about the opponent’s

output. Condition A5 is a “single-crossing condition” on firms’ preferences: it says that

21Similar logic lies behind the results of Seidmann (1990) and Watson (1996), who show that in a
sender-receiver game with two-sided private information, an informative equilibrium can exist even if
all the sender’s types have the same preference ordering over the receiver’s actions. This is because
different types of the receiver respond differently to the sender’s messages, and thus, from the sender’s
viewpoint, each message corresponds to a lottery over the receiver’s actions. Informative communica-
tion is possible if different sender types have a different preference ranking over these lotteries. This
effect has also been emphasized by Baliga and Sjöström (2004) in the context of an arms-race game.
Unlike our model, however, these settings admit informative cheap talk.
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the higher the firm’s cost, the more it values information about the opponent relative

to reduction in opponent’s expected output.

In addition, we will impose a condition that guarantees that each firm’s output

sufficiently varies with respect to its type:

(A6) lim
ci→∞

q(q−i, ci) = 0 for every q−i ≥ 0

Example 1 (continued) In this example, ∂2 ln q(q−i,ci)
∂ci∂q−i

=
2β(2−γ)qγ−1

i

(−2qi−ci(γ−1)qγ−1
i )

3 . Therefore,

A5 holds if γ < 2, and A6 is always satisfied.

Condition A5 implies that to ensure that the “min” mechanism is incentive com-

patible, it is enough to choose threshold c∗ to be the type that is indifferent between

reporting ĉ ≤ c∗ and ĉ > c∗: if type c∗ is indifferent, then any type above c∗ will strictly

prefer reporting ĉ > c∗, and any type below c∗ will strictly prefer reporting ĉ ≤ c∗.

The following theorem shows that when the support of the cost distribution is large

enough, such c∗ can be found.

Theorem 3. Suppose that conditions A1-A3, A5 and A6 hold, and that c is large

enough. Then there exists c∗ ∈ (0, c) such that the “min” mechanism with threshold c∗

is incentive compatible.

It remains an open question whether it is possible to construct an informative mech-

anism when conditions A5 or A6 do not hold. Suppose, for example, that A5 holds

with the reverse inequality for every (q−i, ci). A natural guess is that one could con-

struct an informative “max” mechanism, whereby the mediator announces whether

max {ĉA, ĉB} ≤ c∗. However, this guess is incorrect: if such a mechanism was in place,

a low cost report would both lower the opponent’s output and result in more infor-

mation about the opponent, and therefore every cost type would have an incentive

to send a low report. We conjecture that in that case, informative communication is
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impossible. We also conjecture that A6 could be somewhat relaxed; however, suffi-

cient heterogeneity in the behavior of different cost types seems essential for sustaining

informative communication.

The next theorem shows that whenever a “min” mechanism is incentive compatible,

it interim Pareto dominates the Bayesian-Nash equilibrium without communication for

the firms.

Theorem 4. If an incentive compatible “min” mechanism exists, then every type of

every firm is better off under this mechanism than in the Bayesian-Nash equilibrium

without communication. If, in addition, condition A4 holds, then every type of every

firm is strictly better off.

The intuition behind this theorem is that, when a “min” mechanism is in place,

reporting ĉ ≤ c∗ results in higher expected profit for every type than the Bayesian-

Nash equilibrium without communication. This is because in both cases, the firm gets

no information, but reporting ĉ ≤ c∗ results in lower expected output by the opponent

than the uninformative equilibrium. Since reporting ĉ ≤ c∗ is possible for every type

and the mechanism is incentive compatible, in equilibrium every type’s expected profit

must be at least as high as the one guaranteed by this action.

While we are unable to provide a general result on how the total surplus and the con-

sumer surplus under the “min” mechanism compare to those in the no-communication

equilibrium, the following example shows that in some cases, the “min” mechanism

results in a higher total surplus (although a lower consumer surplus).

Example 1 (continued) Suppose that β = γ = 1 and ci ∼ U [0, c]. Then an incen-

tive compatible “min” mechanism exists if and only if c > 2
3
K. If K ∈

(
3
2
c− ε, 3

2
c
)
,

then every type’s output is strictly positive both under the incentive compatible “min”

mechanism and in the no-communication Bayesian-Nash equilibrium (the proof is in
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the Appendix). Under this condition, the ex ante expected total surplus in the no-

communication equilibrium equals

TSNC =
4

9

(
K − c

2

)2

+
c2

16

and the total surplus under the incentive-compatible “min” mechanism equals

TSmin =
4

9

(
K − c

2

)2

+
c2

16
+
c∗ (c− c∗)2 (17c+ 11c∗)

144 (c+ c∗)2

where c∗ is the threshold of the incentive compatible “min” mechanism (which depends

on K and c). The ex ante expected consumer surplus in the no-communication equi-

librium equals

CSNC =
2

9

(
K − c

2

)2

+
c2

48

and the consumer surplus under the incentive-compatible “min” mechanism equals

CSmin =
2

9

(
K − c

2

)2

+
c2

48
− c∗ (c− c∗)2 (5c− c∗)

144 (c+ c∗)2

It is obvious that TSNC < TSmin and CSNC > CSmin. Intuitively, information

sharing makes oligopolists coordinate their outputs, which reduces the variability of

aggregate output. This decreases consumer surplus, because it is a convex function of

output.22

Other incentive compatible mechanisms exist in our model as well. For example, one

can show that in the case of homogeneous good, linear demand and constant marginal

cost (Example 1 with β = γ = 1), under certain conditions the following “N -step min

mechanism” is incentive compatible and superior to the “min” mechanism in terms

of ex ante profit: the mediator announces a public message mk (k = 0, 1, . . . , N) if

min {ĉA, ĉB} is between ck and ck+1, where 0 = c0 < c1 < . . . < cN < cN+1 = 1.

It is also plausible that in some cases, mechanisms where the mediator sends private

22Note that if the firms could commit to revealing their information truthfully, the ex ante expected
total surplus would also be higher and the consumer surplus lower than in the no-communication
equlilibrium: see e.g. Amir et al. (2010).
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messages may improve upon public mechanisms. For example, suppose that only firm

A has private information about costs, and firm B’s cost is commonly known. In this

case, public or deterministic mechanisms cannot support informative communication:

firm A can precisely anticipate firm B’s output choice, and thus there is no residual

uncertainty about firm B’s output, which is essential for sustaining information rev-

elation by firm A. Nonetheless, one can construct an informative mechanism of the

following form. After receiving the cost report from firm A, the mediator sends a noisy

(but informative) private signal to firm B, and, in addition, a blind carbon copy of this

signal is sent to firm A if and only if its reported costs are high. As a result, the types

of firm A that report high costs expect on average a higher output by firm B, but are

compensated by information useful for predicting firm B’s output.

6. Discussion

Our model can be extended to accommodate the case of more than two firms. Specif-

ically, suppose that the inverse demand for firm i’s product is max {ρ (qi)− βq−i, 0},

where q−i =
∑

j 6=i qj is the aggregate output of all firms other than i, and, as before, let

q(q−i, ci) be the best response function of each firm. The proofs of Lemma 1, Lemma

2 and Theorem 1 go through once we replace the second part of Condition A2 by a

stronger assumption ∂q(q−i,ci)
∂q−i

∈ (− 1−δ
n−1

, 0).23

The proof of Theorem 2 also extends to the case of more than two firms, if Condition

A2 is modified as above. However, this theorem, as well as Theorem 1, covers only the

case where all the communication between the firms is public. With two firms, this is

clearly without loss of generality, but with three or more firms, one can also consider

communication protocols whereby each firm can send private messages to a subset of

23To see how the proof of Theorem 1 should be modified, fix any firm i, and let (mi,m−i) be a
message profile. Let BR−i(qi|m−i) =

∑
j 6=i qj , where (qj)j 6=i are a solution to the system of equations

qj = BRj(q−j |mj), j ∈ {1, . . . , n} \ {i} (this solution, and therefore the function BR−i, depends on

mi and qi). Then define
(
q

i
, qi, q−i

, q−i

)
analogously to

(
q

A
, qA, qB

, qB

)
. As in Theorem 1, we get

(1 − δ)
(
q−i − q−i

)
≥ qi − qi

. The definition implies that
∑

j 6=i

(
qj − qi

)
≥ q−i − q−i

. Combining

these inequalities and summing up over i results in (1−δ) (n− 1)
(∑n

i=1

(
qi − qi

))
≥
∑n

i=1

(
qi − qi

)
,

which is impossible unless qi = q
i

for every i.
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other firms. There are reasons to expect that the result of Theorem 2 will no longer

hold once private communication is allowed: indeed, Ben-Porath (2003) proves that

in a finite game, any communication equilibrium that assigns only rational probabil-

ities to outcomes can be replicated by a sequential equilibrium of some unmediated

communication protocol, if the number of players is at least three. Despite the fact

that Ben-Porath’s result is not directly applicable in this case because of the finiteness

assumption, it might be possible to extend it to cover at least some simple communica-

tion equilibria (such as the “min” mechanism) in our model. Finally, if we extend the

definition the “min” mechanism as the mechanism that informs the firms whether the

minimum of the reported costs is above or below a certain threshold, then we expect

the proof of Theorem 3 to go through.

Next, suppose that, instead of cost shocks, the firms face private demand shocks.

In particular, suppose θi is a private (iid) demand shock that affects firm i as follows:

P (qi, q−i, θi) = max {ρ (qi, θi)− βq−i, 0} with ρθ < 0. Then we can define the best

response function q (q−i, θi), make the same assumptions A1-A6 with θi in place of ci,

and replicate all the analysis.

The question of whether any of the results would extend to the case where cost or

demand shocks are correlated is more difficult. To see why, suppose that each firm

receives a signal about a common cost parameter. Now each firm might prefer to be

perceived as having a high cost signal rather than a low cost signal, because if the

opponent believes the report about the high cost signal, then it may decide to produce

less. We leave this question for future research.

Finally, one may also ask whether the results of the paper apply to a Bertrand model

with differentiated products. Because prices are strategic complements, each firm will

have an incentive to overstate its type, which is the opposite of what happens in the

Cournot model. Nevertheless, we believe that, when the assumptions are adjusted to

reflect this change, the results of the paper will go through with the “max” mechanism
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(the mediator announcing whether the maximum of the cost reports exceeds a certain

threshold) replacing the “min” mechanism in Theorem 3.

7. Appendix

7.1. Proofs of Section 3.

Lemma 4. (i) ρ(qi) − βq−i ≥ 0 for every pair (qi, q−i) that is rationalizable for

some for some (ci, c−i).

(ii) Suppose C(qi, ci) is C2 in qi,
∂Ci(qi,ci)

∂qi
is C1 in ci, ρ is C2, and, for some ε >

0, ρ′′(qi)qi + (1− ε) ρ′(qi) < 0 for every qi. Then q(q−i, ci) is single-valued,

continuous at every (q−i, ci), C1 on {(q−i, ci) : q(q−i, ci) > 0}. If q(q−i, ci) > 0,

then ∂q(q−i,ci)
∂ci

≤ 0 and ∂q(q−i,ci)
∂q−i

∈ (− 1
1+ε

, 0).

(iii) Suppose A1 and A2 hold, and ∂C(0,ci)
∂qi

= 0 for every ci ∈ C. Then q(q−i, ci) > 0

for every q−i ∈ [0, q(0, 0)] and every ci ∈ C.

Proof. (i) Let q be the revenue-maximizing output when q−i = 0, i.e. q = arg max
qi≥0

P (qi, 0) qi.

Since |ρ′(qi)| ≥ β, q cannot be greater than ρ(0)
β

. This, together with the fact that

the revenue is continuous in qi, implies that q exists. Since the revenue is zero at

qi = 0 and qi = ρ(0)
β

, the solution is interior and satisfies the first-order condition:

ρ′ (q) q + ρ (q) = 0.

Note that no type ci ∈ C will find it optimal to choose output higher than q re-

gardless of the conjecture about the opponent’s play. This is because such outputs

result in (weakly) lower revenue than q (not just when q−i = 0, but for every q−i ≥ 0),

and strictly higher cost (because ∂C(qi,ci)
∂qi

> 0 when qi > 0). Hence, if (qi, q−i) is

rationalizable, then

ρ (qi)− βq−i ≥ ρ (q)− βq = (−ρ′ (q)− β) q ≥ 0

where the first inequality is because ρ′ < 0 and β > 0, the equality is by definition of

q, and the second inequality is due to |ρ′ (q)| ≥ β.
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(ii) Note that

(5)
∂2πi(qi, q−i, ci)

∂q2
i

= ρ′′(qi)qi+2ρ′(qi)−
∂2C(qi, ci)

∂q2
i

< (1 + ε) ρ′ (qi) ≤ − (1 + ε) β < 0

for every qi ≥ 0. Thus πi is strictly concave in qi, and therefore q is single-valued.

By the Theorem of the Maximum, q is continuous in (q−i, ci). Note that q equals 0 if

ρ(0)− βq−i − ∂Ci(0,ci)
∂qi

≤ 0, and solves the first-order condition

ρ′(qi)qi + ρ(qi)− βq−i −
∂Ci(qi, ci)

∂qi
= 0

otherwise. By the Implicit Function Theorem, q is continuously differentiable in (q−i, ci)

whenever q(q−i, ci) > 0, i.e. ρ(0)− βq−i − ∂Ci(0,ci)
∂qi

> 0, with

∂q(q−i, ci)

∂ci
=

∂2Ci(qi,ci)
∂qi∂ci

∂2πi(qi,q−i,ci)
∂q2i

≤ 0,
∂q(q−i, ci)

∂q−i
=

β
∂2πi(qi,q−i,ci)

∂q2i

.

Using (5) we get ∂q(q−i,ci)
∂q−i

∈
(
− 1

1+ε
, 0
)
.

(iii) Let q be as defined in part (i). Then

∂π(0, q−i, ci)

∂qi
= ρ (0)− βq−i −

∂C (0, ci)

∂qi

≥ ρ (0)− (−ρ′ (q)) q ≥ ρ (0)− ρ (q) > 0

where the first inequality uses the facts that that β ≤ −ρ′ (q), q−i ≤ q, and ∂C(0,ci)
∂qi

= 0;

the second inequality uses the first-order condition for q. Thus q(q−i, ci) > 0 for every

q−i ∈ [0, q(0, 0)] ⊆ [0, q].

7.2. Proofs of Section 4.

Proof of Lemma 2. Let

BRi (q−i | mi) =

∫
q (q−i, ci) dFi (ci | mi) for i ∈ {A,B}

Let MA = M and MB = N be the sets of equilibrium messages for firms A and B,

respectively, and (m,n) be a representative element of M × N . Then the expected
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outputs in a Bayesian-Nash equilibrium following messages (m,n) satisfy

(6) QA(m,n) = BRA (QB (m,n) | m) , QB (m,n) = BRB (QA (m,n) | n)

Let H(qA, qB) = (BRA(qB|m), BRB(qA|n)). By A2, H maps the interval [0, q(0, 0)]2

into itself. A2 also implies that for every ci and Q−i 6= Q′−i:

(7)
∣∣q (Q−i, ci)− q

(
Q′−i, ci

)∣∣ < (1− δ)
∣∣Q−i −Q′−i∣∣

This in turn implies that H is a contraction mapping in the sup norm.

Consider the sequence
{
Qk
A, Q

k
B

}∞
k=0

defined by

Q0
A = Q0

B = 0;

(Qk
A, Q

k
B) = H(Qk−1

A , Qk−1
B ), k ≥ 1

and for k ≥ 1, let

Iki =
[
min

{
Qk−1
i , Qk

i

}
,max

{
Qk−1
i , Qk

i

}]
Because H is a contraction mapping on [0, q(0, 0)]2, the sequence

{
Qk
A, Q

k
B

}∞
k=0

con-

verges. By continuity of BRi(·|mi), its limit satisfies (6) and thus defines the expected

outputs in a Bayesian-Nash equilibrium.

Next, let us prove that any strategy qi(mi,m−i, ci) of firm i that survives k rounds of

elimination of interim strictly dominated strategies has to satisfy
∫
qi(mi,m−i, ci)dF (ci|mi) ∈

Iki . Indeed, the statement holds for k = 1: for every i,
∫
q−i(m−i,mi, c−i)dF (c−i|m−i) ≥

0 implies that any strategy qi(mi,m−i, ci) such that qi(mi,m−i, ci) > q(0, ci) is interim

strictly dominated for type ci. Thus the first round of elimination leaves only strategies

such that
∫
qi(mi,m−i, ci)dF (ci|mi) ∈ [0, BRi(0|mi)] = I1

i . Suppose that the statement

holds for k ≥ 1, i.e. k rounds of elimination result in strategies for firm −i such that∫
q−i(m−i,mi, c−i)dF (c−i|m−i) ∈ Ik−i. Conditional on firm −i using such strategies,
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any strategy qi(mi,m−i, ci) of firm i such that

qi(mi,m−i, ci) /∈
[
q(max

{
Qk−1
−i , Q

k
−i
}
, ci), q(min

{
Qk−1
−i , Q

k
−i
}
, ci)
]

=
[
min

{
q(Qk−1

−i , ci), q(Q
k
−i, ci)

}
,max

{
q(Qk−1

−i , ci), q(Q
k
−i, ci)

}]
is interim strictly dominated for type ci. Therefore, firm i’s strategies surviving k + 1

rounds of elimination satisfy∫
qi(mi,m−i, ci)dF (ci|mi) ∈

[
min

{
BRi(Q

k−1
−i |mi), BRi(Q

k
−i|mi)

}
,

max
{
BRi(Q

k−1
−i |mi), BRi(Q

k
−i|mi)

}]
=
[
min

{
Qk
i , Q

k+1
i

}
,max

{
Qk
i , Q

k+1
i

}]
= Ik+1

i

Let (QA(m,n), QB(m,n)) = limk→∞(Qk
A, Q

k
B) be the equilibrium expected output

following messages (m,n). ThenQi(m,n) = limk→∞min
{
Qk−1
i , Qk

i

}
= limk→∞max

{
Qk−1
i , Qk

i

}
for i = A,B. Therefore, any strategy profile that survives iterated elimination of in-

terim strictly dominated strategies has to satisfy
∫
qi(mi,m−i, ci)dF (ci|mi) = Qi(m,n),

and the only strategy profile that survives the elimination is the one satisfying qi(mi,m−i, ci) =

q(Qi(m,n), ci), which is the condition for the Bayesian-Nash equilibrium.

Before proving Theorems 1 and 2, we need some preliminary results. Suppose there

exists an informative cheap talk equilibrium. The fact that the equilibrium is infor-

mative implies that max {|M |, |N |} ≥ 2. We will assume, without loss of generality,

that every message induces a different distribution over the opponent’s output. To

state this assumption formally, let σi(·|ci) be a probability distribution over Mi defin-

ing the message strategy of firm i, and let G−i(x|mi) = Pr (Q−i(mi,m−i) ≤ x|mi) =∫ ∫
1{Q−i(mi,m−i)≤x}dσ−i(m−i|c−i)dF (c−i) be the distribution function of firm −i’s ex-

pected output conditional on firm i sending message mi. Then we will assume that

G−i(x|mi) 6= G−i(x|m′i), ∀mi,m
′
i ∈Mi, i ∈ {A,B}.
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Lemma 5. Suppose A1-A4 hold. For every m,m′ ∈ M such that m 6= m′, there

exist n, n′ ∈ N such that QB(m,n) > QB(m′, n) and QB(m,n′) < QB(m′, n′). Sym-

metrically, for every n, n′ ∈ N such that n 6= n′, there exist m,m′ ∈ M such that

QA(m,n) > QA(m,n′) and QA(m′, n) < QA(m′, n′).

Proof. Suppose the conclusion of the lemma does not hold for m,m′ ∈M ; e.g. ∀n ∈ N ,

QB(m,n) ≥ QB(m′, n). This implies that ∀x ≥ 0, G(x|m) ≤ G(x|m′). Then the

difference in expected profit of type cA from sending message m as opposed to m′ is∫
ΠA (qB, cA) dG (qB | m)−

∫
ΠA (qB, cA) dG (qB | m′)

=

∫
dΠA (qB, cA)

dqB
(1−G (qB | m)) dqB −

∫
dΠA (qB, cA)

dqB
(1−G (qB | m′)) dqB

= −β
∫
q (qB, cA) (G (qB | m′)−G (qB | m)) dqB ≤ 0

where the first equality is obtained through integration by parts (the validity of inte-

gration by parts is guaranteed by Theorem II.6.11 of Shiryaev (2000), which applies

because the support of qB is bounded and ΠA is decreasing in qB), and the second

equality is by the Envelope Theorem. Moreover, A4 implies that q (qB, cA) > 0 for

every (qB, cA), so, because G(x|m) 6= G(x|m′), the inequality is strict. Hence every

type cA strictly prefers sending message m′ to message m, which is a contradiction.

Lemma 6. Suppose A1-A4 hold. For every n, n′ ∈ N such that n 6= n′, ∃q∗(n, n′) =

(q∗A(n, n′), q∗B(n, n′)) such that q∗B(n, n′) = BRB(q∗A(n, n′)|n) = BRB(q∗A(n, n′)|n′). More-

over, ∃m,m′ ∈ M s.t. q∗A(n, n′) is strictly between QA(m,n) and QA(m′, n). A sym-

metric statement holds for any m,m′ ∈M such that m 6= m′.

Proof. By Lemma 5, there must exist m,m′ ∈ M such that QA (m,n) > QA (m,n′)

and QA (m′, n) < QA (m′, n′).

Let

ψ (qA) := BRB (qA | n′)−BRB (qA | n)
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and

φ (qA; m̃, ñ) := BRB (qA | ñ)−BR−1
A (qA | m̃)

Function φ is increasing in qA, sinceBR−1
A is steeper thanBRB. By (6), φ (QA(m̃, ñ); m̃, ñ) =

0 for every (m̃, ñ).

Note that

(8) ψ (QA (m,n)) = φ (QA(m,n);m,n′) > φ (QA(m,n′);m,n′) = 0

where the equalities use (6); the inequality holds because QA (m,n) > QA (m,n′) and

because φ is increasing. Similarly,

(9) ψ (QA (m′, n)) = φ (QA(m′, n);m′, n′) < φ (QA (m′, n′) ;m′, n′) = 0

Since the best responses, and thus ψ, are continuous, from (8) and (9) it follows that

there exists q∗(n, n′) at which BRB (· | n) and BRB (· | n′) intersect, and q∗A(n, n′) is

strictly between QA(m,n) and QA(m′, n) by construction.

For i ∈ {A,B}, let q
i

= inf(m,n)∈M×N Qi(m,n); that is, ∀(m,n) ∈M×N , Qi(m,n) ≥

q
i
, and ∀ε > 0, ∃(m,n) ∈M×N : Qi(m,n) ≤ q

i
+ε. Similarly, let qi = sup(m,n)∈M×N Qi(m,n).

Note that qi is finite, because Qi(m,n) ≤ qi(0, 0) <∞. By definition, q
i
≤ qi; the fact

that the equilibrium is informative implies that q
i
< qi (indeed,if q

i
= qi = qi, then

Qi(m,n) = qi, ∀(m,n) ∈ M ×N ; therefore, Qj(m,n) is also constant with respect to

(m,n), and the equilibrium is uninformative).

Proof of Theorem 1. Suppose an informative equilibrium exists. Let us first prove that

(10) (1− δ)
(
qA − qA

)
≥ qB − qB

For this, it is sufficient to prove that for any ε > 0, however small,

(11) (1− δ)
(
qA − qA

)
> qB − qB − 2ε
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Fix any ε > 0. By definition of qB, there exists (m,n) ∈M ×N such that QB(m,n) ∈

(qB − ε, qB]. Similarly, there exists (m′, n′) ∈M×N such thatQB(m′, n′) ∈
[
q
B
, q
B

+ ε
)

.

Since q
B
< qB, QB(m,n) > QB(m′, n′) if ε is small enough.

If n = n′, bothQ(m,n) = (QA(m,n), QB(m,n)) andQ(m′, n′) = (QA(m′, n′), QB(m′, n′))

satisfy the equation qB = BRB(qA|n). Then by A2, and since QA(m,n) < QA(m′, n′),

we have

(12) (1− δ) (QA(m′, n′)−QA(m,n)) > QB(m,n)−QB(m′, n′)

Since QA(m′, n′) ≤ qA and QA(m,n) ≥ q
A

, we have qA − qA ≥ QA(m′, n′)−QA(m,n).

By the choice of (m,n) and (m′, n′), we also have QB(m,n)−QB(m′, n′) > qB−qB−2ε.

Combining this with (12), we get (11).

If n 6= n′, by Lemma 6 there exists q∗ (n, n′) = (q∗A (n, n′) , q∗B (n, n′)) such that

q∗B(n, n′) = BRB(q∗A(n, n′)|n) = BRB(q∗A(n, n′)|n′), and q∗A(n, n′) ∈ (QA(m̂, n), QA(m̃, n))

for some m̂, m̃ ∈M . There are three cases to consider.

Case 1: QA(m,n) < q∗A(n, n′) < QA(m′, n′).

The first inequality, together with the fact that both Q(m,n) and q∗(n, n′) satisfy

the equation qB = BRB(qA|n), implies

(13) (1− δ) (q∗A(n, n′)−QA(m,n)) > QB(m,n)− q∗B(n, n′)

Similarly, the second inequality implies

(14) (1− δ) (QA(m′, n′)− q∗A(n, n′)) > q∗B(n, n′)−QB(m′, n′)

Summing up (13) and (14) gives (12), which, as when n = n′, implies (11).

Case 2: q∗A(n, n′) ≤ QA(m,n) < QA(m′, n′).

Like in Case 1, q∗A(n, n′) < QA(m′, n′) implies (14). Since q
A
≤ QA (m̂, n) < q∗A(n, n′),

we have qA − qA ≥ QA(m′, n′)− q∗A(n, n′). Since q∗(n, n′) and Q(m,n) lie on the curve

qB = BRB(qA|n), which is downward sloping, q∗B(n, n′) ≥ QB(m,n) > qB − ε. Hence,

q∗B(n, n′)−QB(m′, n′) > qB − qB − 2ε. Combining this with (14), we get (11).
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Case 3: QA(m,n) < QA(m′, n′) ≤ q∗A(n, n′).

Like in Case 1, QA(m,n) < q∗A(n, n′) implies (13). Since q∗A(n, n′) < QA(m̃, n) ≤ qA,

we have qA − qA ≥ q∗A(n, n′)−QA(m,n). Since q∗(n, n′) and Q(m′, n′) lie on the curve

qB = BRB(qA|n′), which is downward sloping, q∗B(n, n′) ≤ QB(m′, n′) < q
B

+ ε. Hence,

QB(m,n)− q∗B(n, n′) > qB − qB − 2ε. Combining this with (13), we get (11).

Symmetrically, we can show

(1− δ)
(
qB − qB

)
≥ qA − qA

which is in contradiction with (10) and the fact that δ ∈ (0, 1).

Proof of Theorem 2. Note that nowhere in the proof of Theorem 1 did we use the fact

that each firm’s cost types are distributed according to the same distribution F . In

fact Theorem 1 holds even if we assume that the cost types of firms A and B are

distributed according to distributions FA and FB, respectively, independently of each

other.

Specifically, first note that in the case of different prior distributions, FA and FB, in

the game without cheap talk communication by Lemma 2 there is a unique Bayesian

Nash equilibrium, which is also a unique outcome of the iterated dominance procedure.

This strategy profile is given by qNCi (ci) = q
(
QNC
−i , ci

)
, whereQNC

i =
∫
q(QNC

−i , ci)dFi (ci)

for i = A,B. Next, following the steps of the proof of Theorem 1, one can verify that

in the game with one round of cheap talk, following any message profile (mi,m−i) the

expected quantity of firm i satisfies Qi (mi,m−i) = QNC
i , for i = A,B. Following any

message profile firm i plays the same strategy as in the no-communication equilibrium:

q (Q−i (mi,m−i) , ci) = q
(
QNC
−i , ci

)
, for every ci, i = A,B.

Next, suppose there exist no informative t-round cheap talk equilibrium. We will

show that then every t + 1-round cheap talk equilibrium is uninformative as well.

Suppose the message profile in the first round is (mA,mB), and the posterior be-

liefs are (FA (· | mA) , FB (· | mB)). The continuation game starting from period 2 has

no informative cheap talk equilibrium. That is, the expected quantities are always
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the same as in the game without communication,
(
QNC
A , QNC

B

)
calculated for beliefs

(FA (· | mA) , FB (· | mB)):

QNC
A = BRA

(
QNC
B | mA

)
, QNC

B = BRB

(
QNC
A | mB

)
Thus if in t + 1-round cheap talk game there exists an informative equilibrium,

then there exists an outcome equivalent informative equilibrium where the firms use

the same first-period communication strategies, and use babbling strategies in the

remaining periods. However this implies that in one-round cheap talk game there

exists an outcome equivalent informative equilibrium where the firms use the same

first-period communication strategies as above, which is a contradiction with Theorem

1.

7.3. Proofs of Section 5. Consider a “min” mechanism with threshold c∗ ∈ (0, c).

After m1 is announced, the expected output of firm −i is QH2 (c∗) that solves

(15) Φ (Q−i, c
∗) = Q−i −

1

1− F (c∗)

∫ ∞
c∗

q (Q−i, ci) dF (ci) = 0

Lemma 7. Suppose that conditions A1–A3 and A6 hold. For every c∗, there exists a

unique QH2 (c∗) that solves (15), and thus there exists a unique continuation equilibrium

following message m1, which is symmetric. The function QH2(c∗) is continuous and

decreasing in c∗, QH2 (0) = QNC, lim
c∗→∞

QH2 (c∗) = 0.

Proof. Note that Φ is continuous in all variables by A1 and the continuity of F ;

Φ (0, c∗) = − 1
1−F (c∗)

∫∞
c∗
q (0, ci) dF (ci) < 0 by A3. Let Q′−i > Q−i; then

Φ(Q′−i, ci)− Φ(Q−i, ci) = Q′−i −Q−i −
1

1− F (c∗)

∫ ∞
c∗

(
q
(
Q′−i, ci

)
− q (Q−i, ci)

)
dF (ci)

≥ Q′−i −Q−i

where the inequality is by A2. Therefore equation (15) has a unique solution, which we

will call QH2 (c∗). The function QH2 (c∗) is continuous by Theorem 2.1 in Jittorntrum

(1978). Let us prove that QH2 (c∗) is decreasing in c∗. First, note that for any Q−i,
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the function 1
1−F (c∗)

∫∞
c∗
q (Q−i, ci) dF (ci) decreases in c∗. Indeed, if c̃∗ < c∗, then

1

1− F (c̃∗)

∫ ∞
c̃∗

q (Q−i, ci) dF (ci)−
1

1− F (c∗)

∫ ∞
c∗

q (Q−i, ci) dF (ci)

(16)

=
1

1− F (c̃∗)

∫ c∗

c̃∗
q (Q−i, ci) dF (ci)−

F (c∗)− F (c̃∗)

(1− F (c̃∗))(1− F (c∗))

∫ ∞
c∗

q (Q−i, ci) dF (ci)

≥ 1

1− F (c̃∗)

∫ c∗

c̃∗
q (Q−i, ci) dF (ci)−

F (c∗)− F (c̃∗)

1− F (c̃∗)
q(Q−i, c

∗)

=
F (c∗)− F (c̃∗)

1− F (c̃∗)

(
1

F (c∗)− F (c̃∗)

∫ c∗

c̃∗
q (Q−i, ci) dF (ci)− q(Q−i, c∗)

)
≥ 0

where both inequalities follow from A2. Therefore, if c̃∗ < c∗, and QH2 (c̃∗) < QH2 (c∗),

then

QH2 (c∗)−QH2 (c̃∗)

=
1

1− F (c∗)

∫ ∞
c∗

q
(
QH2 (c∗) , ci

)
dF (ci)−

1

1− F (c̃∗)

∫ ∞
c̃∗

q
(
QH2 (c̃∗) , ci

)
dF (ci)

≤ 1

1− F (c∗)

∫ ∞
c∗

q
(
QH2 (c̃∗) , ci

)
dF (ci)−

1

1− F (c̃∗)

∫ ∞
c̃∗

q
(
QH2 (c̃∗) , ci

)
dF (ci) ≤ 0

which contradicts the assumption QH2 (c̃∗) < QH2 (c∗) (the first inequality above fol-

lows from A2 and QH2 (c̃∗) < QH2 (c∗), and the second from (16)). By definition,

QH2(0) =

∫ ∞
0

q
(
QH2(0), ci

)
dF (ci)

and therefore QH2(0) = QNC . Finally, lim
c∗→∞

QH2 (c∗) = 0 by A6.

Let QL (c∗) be the expected output of firm −i if m0 was announced and firm i re-

ported ĉi < c∗, and let QH1 (c∗) be the expected output of firm −i if m0 was announced

and firm i reported ĉi > c∗. Then QL (c∗) and QH1 (c∗) solve

(17) Ψ
(
QL
−i, Q

H1
−i , c

∗) = QL
−i −

∫ c∗
0
q
(
QL
−i, ci

)
dF (ci)−

∫∞
c∗
q
(
QH1
−i , ci

)
dF (ci) = 0

Ω
(
QL
−i, Q

H1
−i , c

∗) = QH1
−i − 1

F (c∗)

∫ c∗
0
q
(
QL
−i, ci

)
dF (ci) = 0
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Lemma 8. Suppose that conditions A1–A3 hold. For every c∗ there exist unique QL (c∗)

and QH1 (c∗) that solve equations (17), and thus there exists a unique continuation

equilibrium after public message m0, which is symmetric. Both QL(c∗) and QH1(c∗)

are continuous; QL(c∗) is increasing and QH1(c∗) is decreasing in c∗; QL(c∗) ≤ QH1(c∗);

QL (0) > 0; lim
c∗→∞

QL (c∗) = lim
c∗→∞

QH1 (c∗) = QNC.

Proof. Denote

Ψ
(
QL
−i, c

∗) = QL
−i−

∫ c∗

0

q
(
QL
−i, ci

)
dF (ci)−

∫ ∞
c∗

q

(
1

F (c∗)

∫ c∗

0

q
(
QL
−i, ĉ

)
dF (ĉ) , ci

)
dF (ci)

Note that QL
−i (c

∗) is defined by Ψ
(
QL
−i (c

∗) , c∗
)

= 0.

By A1 and the continuity of F , Ψ is continuous. By A3,

Ψ (0, c∗) = −
∫ c∗

0

q (0, ci) dF (ci)−
∫ ∞
c∗

q

(
1

F (c∗)

∫ c∗

0

qi (0, ĉ) dF (ĉ) , ci

)
dF (ci) < 0

By A2,

Ψ (q (0, 0) , c∗) = q (0, 0)−
∫ c∗

0

q (q (0, 0) , ci) dF (ci)

−
∫ ∞
c∗

q

(
1

F (c∗)

∫ c∗

0

q (q (0, 0) , ĉ) dF (ĉ) , ci

)
dF (ci) > 0

If Q′−i > Q−i, then

Ψ(Q′−i, c
∗)−Ψ(Q−i, c

∗) = Q′−i −Q−i −
∫ c∗

0

(
q
(
Q′−i, ci

)
− q (Q−i, ci)

)
dF (ci)

−
∫ ∞
c∗

(
q

(
1

F (c∗)

∫ c∗

0

q
(
Q′−i, ĉ

)
dF (ĉ) , ci

)
− q

(
1

F (c∗)

∫ c∗

0

q (Q−i, ĉ) dF (ĉ) , ci

))
dF (ci)

≥ Q′−i −Q−i − (1− δ)
∫ ∞
c∗

(
1

F (c∗)

∫ c∗

0

(
q (Q−i, ĉ)− q

(
Q′−i, ĉ

))
dF (ĉ)

)
dF (ci)

= Q′−i −Q−i − (1− δ)1− F (c∗)

F (c∗)

∫ c∗

0

(
q (Q−i, ĉ)− q

(
Q′−i, ĉ

))
dF (ĉ)

≥ Q′−i −Q−i − (1− δ)2(1− F (c∗))(Q′−i −Q−i)

= (Q′−i −Q−i)(1− (1− δ)2(1− F (c∗))) > 0
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where the inequalities follow from A2. Therefore for every c∗ there exists a unique

QL (c∗) ∈ (0, q(0, 0)) such that Ψ
(
QL (c∗) , c∗

)
= 0, and a unique QH1 (c∗) defined by

Ω
(
QL (c∗) , QH1 (c∗) , c∗

)
= 0. The functions QL (c∗) and QH1 (c∗) are continuous by

Theorem 2.1 in Jittorntrum (1978).

Next we show that QL (c∗) ≤ QH1 (c∗). If QL (c∗) > QH1 (c∗), then

QL (c∗)−QH1 (c∗) =

∫ ∞
c∗

q
(
QH1 (c∗) , ci

)
dF (ci)−

1− F (c∗)

F (c∗)

∫ c∗

0

q
(
QL (c∗) , ci

)
dF (ci)

≤ (1− F (c∗))
(
q
(
QH1 (c∗) , c∗

)
− q

(
QL (c∗) , c∗

))
< (1− F (c∗))

(
QL (c∗)−QH1 (c∗)

)
which is a contradiction (the inequalities follow from A2).

Next, note that the function 1
F (c)

∫ c
0
q
(
QL, ci

)
dF (ci) decreases in c for every QL.

Indeed, if c̃∗ < c∗, then

1

F (c∗)

∫ c∗

0

q
(
QL, ci

)
dF (ci)−

1

F (c̃∗)

∫ c̃∗

0

q
(
QL, ci

)
dF (ci)(18)

=
1

F (c∗)

∫ c∗

c̃∗
q
(
QL, ci

)
dF (ci)−

F (c∗)− F (c̃∗)

F (c∗)F (c̃∗)

∫ c̃∗

0

q
(
QL, ci

)
dF (ci)

≤ 1

F (c∗)

∫ c∗

c̃∗
q
(
QL, ci

)
dF (ci)−

F (c∗)− F (c̃∗)

F (c∗)
q
(
QL, c̃∗

)
=
F (c∗)− F (c̃∗)

F (c∗)

(
1

F (c∗)− F (c̃∗)

∫ c∗

c̃∗
q
(
QL, ci

)
dF (ci)− q

(
QL, c̃∗

))
≤ 0

where the inequalities follow from A2.

Let us now show that QL(c∗) is increasing in c∗. Suppose that c̃∗ < c∗ and QL(c̃∗) >

QL(c∗). Then Ψ(QL(c̃∗), c∗) > Ψ(QL(c∗), c∗), because Ψ is strictly increasing in QL.
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Since Ψ(QL(c∗), c∗) = 0 and Ψ(QL(c̃∗), c̃∗) = 0, we get

0 < Ψ(QL(c̃∗), c∗)−Ψ(QL(c̃∗), c̃∗)(19)

=

∫ c̃∗

0

q
(
QL(c̃∗), ci

)
dF (ci) +

∫ ∞
c̃∗

q
(
QH1 (c̃∗)

)
dF (ci)

−
∫ c∗

0

q
(
QL(c̃∗), ci

)
dF (ci)−

∫ ∞
c∗

q

(
1

F (c∗)

∫ c∗

0

q
(
QL(c̃∗), ĉ

)
dF (ĉ) , ci

)
dF (ci)

≤ −
∫ c∗

c̃∗

(
q
(
QL(c̃∗), ci

)
− q

(
QH1 (c̃∗)

))
dF (ci) ≤ 0

where the second inequality follows from A2, (18), and definition of QH1; the third in-

equality follows from c̃∗ < c∗, QL(c̃∗) ≤ QH1(c̃∗) and A2. Hence we get a contradiction.

Therefore, QL(c̃∗) ≤ QL(c∗), and

QH1(c∗)−QH1(c̃∗) =
1

F (c∗)

∫ c∗

0

q
(
QL(c∗), ci

)
dF (ci)−

1

F (c̃∗)

∫ c̃∗

0

q
(
QL(c̃∗), ci

)
dF (ci)

≤ 1

F (c̃∗)

∫ c̃∗

0

q
(
QL(c∗), ci

)
dF (ci)−

1

F (c̃∗)

∫ c̃∗

0

q
(
QL(c̃∗), ci

)
dF (ci) ≤ 0

where the first inequality follows from (18), and the second from QL(c̃∗) ≤ QL(c∗) and

A2. This proves that QH1(c∗) is decreasing in c∗.

Next,

QH1 (0) = q
(
QL (0) , 0

)
≤ q (0, 0)

by A2, and therefore

q
(
QH1 (0) , 0

)
≥ q (q (0, 0) , 0) > 0

where the first inequality is by A2 and the second by A3. Therefore, by A1 and the

fact that f > 0,

QL (0) =

∫ ∞
0

q
(
QH1 (0) , ci

)
dF (ci) > 0

Finally, lim
c∗→∞

QL (c∗) = lim
c∗→∞

QH1 (c∗) = QNC by (17) and the definition of QNC .
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For firm i of type ci, let ∆Π (ci; c
∗) be the gain from reporting ĉi < c∗ relative to

reporting ĉi > c∗ when the “min” mechanism with threshold c∗ is in place:

∆Π (ci; c
∗) = Πi

(
QL (c∗) , ci

)
− F (c∗) Πi

(
QH1 (c∗) , ci

)
− (1− F (c∗)) Πi

(
QH2 (c∗) , ci

)
= Πi

(
QL (c∗) , ci

)
− Πi

(
QH1 (c∗) , ci

)
− (1− F (c∗))

(
Πi

(
QH2 (c∗) , ci

)
− Πi

(
QH1 (c∗) , ci

))
By the Envelope Theorem,

∆Π (ci; c
∗) = β

(
F (c∗)

∫ QH1(c∗)

QL(c∗)

q (q−i, ci) dq−i − (1− F (c∗))

∫ QL(c∗)

QH2(c∗)

q (q−i, ci) dq−i

)

= β

(∫ QH1(c∗)

QL(c∗)

q (q−i, ci) dq−i − (1− F (c∗))

∫ QH1(c∗)

QH2(c∗)

q (q−i, ci) dq−i

)

Lemma 9. Suppose that conditions A1–A3 and A5 hold. If ∆Π (c; c∗) = 0, then either

∆Π (c′; c∗) = 0, ∀c′ ≥ c; or ∂∆Π(c;c∗)
∂c

< 0.

Proof. Suppose first that∫ QH1(c∗)

QL(c∗)

q (q−i, c) dq−i = (1− F (c∗))

∫ QH1(c∗)

QH2(c∗)

q (q−i, c) dq−i = 0

Then ∀c′ ≥ c, ∀q−i > min
{
QL (c∗) , QH2 (c∗)

}
, q (q−i, c

′) = 0. Hence ∆Π (c′; c∗) = 0,

∀c′ ≥ c.

Suppose next that∫ QH1(c∗)

QL(c∗)

q (q−i, c) dq−i = (1− F (c∗))

∫ QH1(c∗)

QH2(c∗)

q (q−i, c) dq−i 6= 0

Since QH1 (c∗) ≥ QL (c∗) (Lemma 8), we have∫ QH1(c∗)

QL(c∗)

q (q−i, c) dq−i = (1− F (c∗))

∫ QH1(c∗)

QH2(c∗)

q (q−i, c) dq−i > 0

This in turn implies QL(c∗) < QH1(c∗), q
(
QL (c∗) , c

)
> 0 and (since q (q−i, c) ≥ 0)

QL (c∗) > QH2 (c∗).

Let Q(c) = min {q−i ≥ 0 : q(q−i, c) = 0}. The value of Q(c) is determined by the

first-order condition: Q(c) = 1
β

(
ρ(0)− ∂C(0,c)

∂qi

)
. The function Q(c) is differentiable and
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decreasing in c. The fact that q
(
QL (c∗) , c

)
> 0 implies that QL (c∗) < Q(c). Finally,

by the definition of Q(c),
∫ QH1(c∗)

QL(c∗)
q(q−i, c)dq−i =

∫ min{Q(c),QH1(c∗)}
QL(c∗)

q(q−i, c)dq−i.

Condition A5 implies that for q−i ∈
(
QL (c∗) , Q(c)

)
,

(20)
∂q (q−i, c)

∂c
<

∂q(QL(c∗),c)
∂c

q (QL (c∗) , c)
q (q−i, c)

Equation (20) implies

(21)∫ min{Q(c),QH1(c∗)}

QL(c∗)

∂q (q−i, c)

∂c
dq−i <

∂q(QL(c∗),c)
∂c

q (QL (c∗) , c)

∫ min{Q(c),QH1(c∗)}

QL(c∗)

q (q−i, c) dq−i

Since q
(
QL (c∗) , c

)
> 0 and q(q−i, c) is decreasing in q−i, we have q (q−i, c) > 0, ∀q−i ∈[

QH2 (c∗) , QL (c∗)
)
. Therefore, by A5, ∂q(q−i,c)

∂c
>

∂q(QL(c∗),c)
∂c

q(QL(c∗),c)
q (q−i, c) for every q−i ∈[

QH2 (c∗) , QL (c∗)
)
, and thus

(22)

∫ QL(c∗)

QH2(c∗)

∂q (q−i, c)

∂c
dq−i >

∂q(QL(c∗),c)
∂c

q (QL (c∗) , c)

∫ QL(c∗)

QH2(c∗)

q (q−i, c) dq−i

Suppose first that Q(c) < QH1(c∗). Then equations (21) and (22) and the fact that

q(Q(c), c) = 0 imply

∂∆Π (c; c∗)

∂c
= βF (c∗)

∫ Q(c)

QL(c∗)

∂q (q−i, c)

∂c
dq−i + βF (c∗)

dQ(c)

dc
q(Q(c), c)

(23)

− β (1− F (c∗))

∫ QL(c∗)

QH2(c∗)

∂q (q−i, c)

∂c
dq−i

<

∂q(QL(c∗),c)
∂c

q (QL (c∗) , c)
β

(
F (c∗)

∫ Q(c)

QL(c∗)

q (q−i, c) dq−i − (1− F (c∗))

∫ QL(c∗)

QH2(c∗)

q (q−i, c) dq−i

)

=

∂q(QL(c∗),c)
∂c

q (QL (c∗) , c)
∆Π (c; c∗) = 0
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Now suppose that Q(c) > QH1(c∗). Then equations (21) and (22) imply

∂∆Π (c; c∗)

∂c
= β

(
F (c∗)

∫ QH1(c∗)

QL(c∗)

∂q (q−i, c)

∂c
dq−i − (1− F (c∗))

∫ QL(c∗)

QH2(c∗)

∂q (q−i, c)

∂c
dq−i

)(24)

<

∂q(QL(c∗),c)
∂c

q (QL (c∗) , c)
β

(
F (c∗)

∫ QH1(c∗)

QL(c∗)

q (q−i, c) dq−i − (1− F (c∗))

∫ QL(c∗)

QH2(c∗)

q (q−i, c) dq−i

)

=

∂q(QL(c∗),c)
∂c

q (QL (c∗) , c)
∆Π (c; c∗) = 0

Finally, suppose that Q(c) = QH1(c∗). Then ∂∆Π(c+;c∗)
∂c

is given by the first line in (23),

and ∂∆Π(c−;c∗)
∂c

is given by the first line in (24). Since q(Q(c), c) = 0 and Q(c) = QH1(c∗),

we have ∂∆Π(c+;c∗)
∂c

= ∂∆Π(c−;c∗)
∂c

< 0.

Lemma 10. Suppose that conditions A1–A3 and A5 hold. There exists η > 0 such

that for every ci ∈ [0, c] and every q−i ≤ q(0, 0)

(25) q
(
q′−i, ci

)
≥ q (q−i, ci) + ηq (q−i, ci)

(
q−i − q′−i

)
∀q′−i ∈ (0, q−i) .

Proof. Let η = inf

{
−

∂q(q̃−i,0)
∂q−i

q(q̃−i,0)
| q̃−i ∈ [0, q(0, 0)]

}
. It is well defined since, by A3,

q (q̃−i, 0) > 0 for every q̃−i ∈ [0, q(0, 0)], and ∂q(q̃−i,0)
∂q−i

is continuous by A1. By A2,

η > 0.

If q (q−i, ci) = 0, then (25) clearly holds. If q (q−i, ci) > 0, then, by A2, q (q̃−i, ci) > 0

for every q̃−i ∈ [0, q−i]. By A5,

∂q(q̃−i,ci)
∂q−i

q (q̃−i, ci)
<

∂q(q̃−i,0)
∂q−i

q (q̃−i, 0)
≤ −η

Thus for every q′−i ∈ (0, q−i),

q (q−i, ci)− q
(
q′−i, ci

)
=

∫ q−i

q′−i

∂q (q̃−i, ci)

∂q−i
dq̃−i ≤ −ηq (q−i, ci)

(
q−i − q′−i

)
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Lemma 11. Suppose that conditions A1–A3 and A5 hold. If QL (c∗) ≥ QH2 (c∗), then

(26) ∆Π (c∗; c∗) ≤ βq
(
QL (c∗) , c∗

)
(1− F (c∗))

(
QH2 (c∗)− η

2

(
QL (c∗)−QH2 (c∗)

)2
)

where η > 0 satisfies (25).

Proof. By Lemma 10, there exists η > 0 such that (25) holds for every c∗ and every

q−i ≤ q(0, 0). In particular, since QL (c∗) ≤ q(0, 0), we have that for every q−i ∈[
QH2 (c∗) , QL (c∗)

]
,

q (q−i, c
∗) ≥ q

(
QL (c∗) , c∗

)
+ ηq

(
QL (c∗) , c∗

) (
QL (c∗)− q−i

)
Therefore∫ QL(c∗)

QH2(c∗)

q (q−i, c
∗) dq−i ≥ q

(
QL (c∗) , c∗

) ∫ QL(c∗)

QH2(c∗)

(
1 + η

(
QL (c∗)− q−i

))
dq−i

= q
(
QL (c∗) , c∗

) ((
QL (c∗)−QH2 (c∗)

)
+
η

2

(
QL (c∗)−QH2 (c∗)

)2
)

(27)

For every q−i ∈
[
QL (c∗) , QH1 (c∗)

]
, q (q−i, c

∗) ≤ q
(
QL (c∗) , c∗

)
, and thus

(28)

∫ QH1(c∗)

QL(c∗)

q (q−i, c
∗) dq−i ≤ q

(
QL (c∗) , c∗

) (
QH1 (c∗)−QL (c∗)

)
Equations (27) and (28) imply

∆Π (c∗; c∗) = β

(
F (c∗)

∫ QH1(c∗)

QL(c∗)

q (q−i, c
∗) dq−i − (1− F (c∗))

∫ QL(c∗)

QH2(c∗)

q (q−i, c
∗) dq−i

)

≤ β

 F (c∗) q
(
QL (c∗) , c∗

) (
QH1 (c∗)−QL (c∗)

)
−(1− F (c∗))q

(
QL (c∗) , c∗

) ((
QL (c∗)−QH2 (c∗)

)
+ η

2

(
QL (c∗)−QH2 (c∗)

)2
)


= βq
(
QL (c∗) , c∗

) (
QH1 (c∗)−QL (c∗)

)
−(1− F (c∗))

((
QH1 (c∗)−QH2 (c∗)

)
+ η

2

(
QL (c∗)−QH2 (c∗)

)2
)
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Note that by definition of QH1 (c∗) and QL (c∗),

QH1 (c∗)−QL (c∗) = (1− F (c∗))

(
QH1 (c∗)− 1

1− F (c∗)

∫ ∞
c∗

q
(
QH1 (c∗) , ci

)
dF (ci)

)
≤ (1− F (c∗))QH1 (c∗)

Thus

∆Π (c∗; c∗) ≤ βq
(
QL (c∗) , c∗

)
(1− F (c∗))

(
QH2 (c∗)− η

2

(
QL (c∗)−QH2 (c∗)

)2
)

Lemma 12. Suppose that conditions A1–A3, A5 and A6 hold. Let ĉ > 0 be such

that qi (0, ĉ) ≤
(√

1
2η

+QL (0)−
√

1
2η

)2

, where η > 0 satisfies condition (25) (such ĉ

exists by A6 and the fact that QL (0) > 0 by Lemma 8). If F (ĉ) < 1, then there exists

c∗ ∈ (0, c) such that the “min” mechanism with threshold c∗ is incentive compatible.

Proof. By Lemma 9, it is enough to show that there exists c∗ ∈ (0, c) such that

∆Π (c∗; c∗) = 0.

Note that ∆Π (ci; c
∗) is continuous in ci and c∗ (since Πi is continuous in (q−i, ci),

ci is continuously distributed, and QL (c∗), QH1 (c∗), and QH2 (c∗) are continuous in c∗

(Lemmas 7 and 8)). Thus it is enough to show that ∆Π (0; 0) > 0, and ∆Π (c∗; c∗) ≤ 0

for some c∗ ∈ (0, c).

By Lemmas 7 and 8, QH2 (0) = QNC > QL (0). By A2 and A3, q
(
QL (0) , 0

)
≥

q (q (0, 0) , 0) > 0. Therefore

∆Π (0; 0) = Πi

(
QL (0) , 0

)
− Πi

(
QH2 (0) , 0

)
= β

∫ QH2(0)

QL(0)

q (q−i, 0) dq−i > 0

If q
(
QL (ĉ) , ĉ

)
= 0, then Πi

(
QL (ĉ) , ĉ

)
= 0, and thus ∆Π (ĉ; ĉ) ≤ 0.

Suppose that q
(
QL (ĉ) , ĉ

)
> 0. Note thatQL (ĉ) ≥ QL (0) (Lemma 8), andQH2 (ĉ) ≤

q (0, ĉ) ≤
(√

1
2η

+QL (0)−
√

1
2η

)2

by A2.
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Thus

QL (ĉ)−QH2 (ĉ) ≥ QL (0)−
(√

1

2η
+QL (0)−

√
1

2η

)2

=

√
2

η

(√
1

2η
+QL (0)−

√
1

2η

)
> 0

Therefore Lemma 11 applies, and

∆Π (ĉ; ĉ) ≤ βq
(
QL (ĉ) , ĉ

)
(1− F (ĉ))

(
QH2 (ĉ)− η

2

(
QL (ĉ)−QH2 (ĉ)

)2
)

≤ βq
(
QL (ĉ) , ĉ

)
(1− F (ĉ))

((√
1

2η
+QL (0)−

√
1

2η

)2

− η

2

(√
2

η

(√
1

2η
+QL (0)−

√
1

2η

))2
)

= 0

Proof of Theorem 3. Follows from Lemma 12.

Proof of Theorem 4. By Lemma 8, QL(c∗) ≤ QNC ; therefore πi(qi, Q
L(c∗), ci) ≥ πi(qi, Q

NC , ci),

for every qi ≥ 0 and ci ∈ [0, c], and πi(qi, Q
L(c∗), ci) > πi(qi, Q

NC , ci) if qi > 0. This

implies that Πi(Q
L(c∗), ci) ≥ Πi(Q

NC , ci).

Consider firm i of type ci. If ci < c∗ and it reports its type truthfully, its in-

terim expected profit equals Πi(Q
L(c∗), ci) ≥ Πi(Q

NC , ci). If ci ≥ c∗ and it re-

ports its type truthfully, its interim expected profit equals F (c∗)Πi(Q
H1(c∗), ci) + (1−

F (c∗))Πi(Q
H2(c∗), ci) ≥ Πi(Q

L(c∗), ci) ≥ Πi(Q
NC , ci), where the first inequality follows

from the incentive compatibility of the “min” mechanism.

By condition A4, q(q−i, ci) > 0, for every q−i ∈ [0, qi(0, 0)], ci ∈ [0, c]. There-

fore q(QNC , ci) > 0, so Πi(Q
NC , ci) < πi(qi(Q

NC , ci), Q
L(c∗), ci) ≤ Πi(Q

L(c∗), ci). Thus

max
{

Πi(Q
L(c∗), ci), F (c∗)Πi(Q

H1(c∗), ci) + (1− F (c∗))Πi(Q
H2(c∗), ci)

}
> Πi(Q

NC , ci),

and every type is strictly better off under the “min” mechanism than in the Bayesian-

Nash equilibrium without communication.
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Calculations for Example 1. Suppose that β = γ = 1 and ci ∼ U [0, c]. Then the

solutions to equations (15) and (17) are given by

QL(c∗) =
1

3

(
K − c

2

)
− (c− c∗)2

6 (c+ c∗)
;

QH1(c∗) =
1

3

(
K − c

2

)
+

(2c+ c∗) (c− c∗)
6 (c+ c∗)

;

QH2(c∗) =
1

3

(
K − c

2

)
− c∗

6

Lemma 9 implies that the “min” mechanism with threshold c∗ is incentive compatible

if and only if ∆Π(c∗; c∗) = 0. In this case, substituting the above expressions into the

definition of ∆Π(c∗; c∗) and equating to zero results in

K =
3c∗

2
− c

4
− 2(c∗)2 − 7c∗c+ c2

8(c∗ + c)

Let c∗(K) be the value of c∗ that solves this equation; then c∗(K) increases in K

(because the right-hand side is strictly increasing in c∗) and reaches c when K = 3
2
c.

Therefore an incentive compatible “min” mechanism exists whenever K < 3
2
c.

Lemmas 7 and 8 imply that every type’s output is strictly positive under the “min”

mechanism with threshold c∗ if and only if q(QH1(c∗), c) > 0. If K = 3
2
c, then c∗(K) = c

and QH1(c∗) = c
3

= QNC , so q(QH1(c∗), c) = q(QNC , c) = 1
2

(
K − c

3
− c
)

= c
12
> 0. By

continuity of c∗(K), QH1(c∗) and q(q−i, ci), this implies that q(QH1(c∗), c) > 0 if K is

close enough to 3
2
c.
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