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ROBUSTNESS AGAINST INCIDENTAL
PARAMETERS AND MIXING DISTRIBUTIONS*

By TiEMEN WOUTERSENT

Abstract

Neyman and Scott (1948) define the incidental parameter problem. In panel data
with T observations per individual and unobservable individual-specific effects, the in-
consistency of the maximum likelihood estimator of the common parameters is in general
O(T~1). This paper considers the integrated likelihood estimator and develops the inte-
grated moment estimator. It shows that the inconsistency of the integrated likelihood
estimator reduces from O(T~1) to O(T~2) if an information orthogonal parametrization
is used. It derives information orthogonal moment functions for the general linear model
and the index model with weakly exogenous regressors and thereby offers an approximate
solution for the incidental parameter problem for a wide range of models. It argues that
reparametrizations are easier in a Bayesian framework and shows how to use the O(7~2)-
result to increase the robustness against the choice of mixing distribution. The integrated
likelihood estimator is consistent and adaptive for asymptotics in which 7" oc N where
o > % The paper also shows that likelihood methods that use sufficient statistics for
the individual-specific effects can be viewed as a special case of the integrated likelihood

estimator.
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1 Introduction

ONE WAY to control for the heterogeneity in panel data is to allow for time-invariant, in-
dividual specific parameters. This fixed effect approach introduces many parameters into
the model which causes the ‘incidental parameter problem’ of Neyman and Scott (1948):
the maximum likelihood estimator is in general inconsistent. It follows from Liang (1987)
that this inconsistency is O(7~!) where T is the number of periods for which we observe an
individual.

Cox and Reid (1987) propose using a parametrization of the likelihood that is information-
orthogonal and then applying their conditional profile likelihood method. Lancaster (1997
and 2000) applies this orthogonality idea to panel data and develops an ‘integrated likelihood
estimator’. However, Lancaster does not present general results. This paper shows that the
inconsistency or bias of the integrated likelihood estimator is in general O(T~!) and that
information-orthogonality of the likelihood reduces this inconsistency to O(T~%). We derive
this result using a Laplace approximation for the ratio of integrals, as derived by Kass, Tier-
ney, and Kadane (1990). We show how to attain an information-orthogonal parametrization
of the likelihood for the general nonlinear model and for index models with lagged dependent
and exogenous variables. We develop the integrated moment estimator for models with gen-
eral predetermined or weakly exogenous regressors and fixed effects. Moreover, we extend
the integrated likelihood approach by allowing for implicitly defined likelihoods. We thereby
solve the incidental parameter problem up to O(7T?2) for a wide range of models, including
the dynamic linear, logit and probit model with fixed effects and predetermined variables.

Cox and Reid (1987 and 1993) only consider models in which the likelihood can be writ-
ten as an analytical function of the parameters of interest and the information-orthogonal
nuisance parameters. This requires that a particular differential equation can be solved ana-
lytically. The integrated likelihood does not require an analytical solution which implies that
the integrated likelihood can be used much more generally than the conditional profile like-
lihood method. This is an argument in favor of Bayesian analysis. Berger et al. (1999) give

an overview of integrated likelihoods methods but only mention ‘generality’ and ‘simplicity’



and ‘accounts for parameter uncertainty in special cases’ as advantages over profile likelihood
methods. We argue that the argument of implicit versus explicit reparametrization is a more
tangible advantage of integrated likelihoods. We show the information-orthogonal parame-
trizations of the models of the handbook chapters covering panel data by Chamberlain (1984)
and Honoré and Arellano (2001).

Alvarez and Arellano (1998) develop an alternative asymptotic where 7" increases at the
same rate as the number of individuals, N. We show that the integrated likelihood estimator
is asymptotically unbiased under this alternative asymptotic. Given that 7" is smaller than
N in most panel data, we argue that it might be more interesting to let T" increase at a slower
rate than IV; we also show that the integrated likelihood estimator is asymptotically unbiased
and adaptive as long as 7" oc N* where a > % This means that the asymptotic variance of
the integrated likelihood estimator equals the asymptotic variance of the infeasible maximum
likelihood estimator that assumes the values of the nuisance parameters to be known. This
implies efficiency of the integrated likelihood if T oc N¢ where a > %

We also consider fixed T asymptotics and show how the choice of a prior may induce
the mode of the posterior to be a consistent estimator for N — oco. We call such a prior a
frequentist prior and derive sufficient conditions for its existence. An interesting application
of the frequentist prior is the dynamic linear model with fixed effects. Blundell et al. (2000)
and Alvarez and Arellano (1998) give recent reviews of moment estimators for this model.
The integrated likelihood estimator is consistent for fixed T°, adaptive under stationairity and
T o« N® where a > %, and superconsistent for the non-stationary case.

For a couple of models, a sufficient statistic for the fixed effect has been found. These
models are the panel version of the logit, the Poisson, the Weibull models and the linear
model with known variance, see Chamberlain (1984 and 1985) for an overview. We show
that these likelihood methods that use a sufficient statistic for the fixed effect can be viewed
as a special case of the integrated likelihood estimator. Honoré and Kyriazidou (2000) de-
velop an estimator for the dynamic binary model that requires a continuous distribution of

all exogenous regressors. They use semiparametric matching in a space with dimension K



where K is the number of exogenous regressors and L the number of lags of y;;. Semiparamet-
ric matching decreases the rate of convergence of the estimator and Honoré and Kyriazidou
do not consider cases where L > 2. The integrated likelihood estimator with an explicit
parametrization reproduces the estimator by Honoré and Kyriazidou. If we use an implicit
parametrization, however, we do not need matching so that the rate of convergence increases
and adaptiveness can be achieved if T' oc N¢ where o > %

From a formal point of view, integrating out fixed effects is equivalent to a ‘random effects’
model with a prior distribution playing the role of a mixing distribution. By specifying
the mixing distribution over an information-orthogonal parametrization, the O(T~2) and
adaptiveness results apply to these models as well. We thus generalize Mundlak’s (1978)
linear random effects model to nonlinear models.

The argument against fixed effect models is usually that the set of models that can be
estimated is so small. The reason for aversion against random effects models is usually based
on the sensitivity to the choice of mixing distribution, see Nerlove (2000) and Trognon (2000)
for a recent exposition of these arguments. This paper gives an approximate solution for the
incidental parameter problem and thereby allows a fixed effect estimation for a much wider
class of models. Moreover, the same algebra can be used to increase the robustness of mixing
distributions by changing the interpretation of the prior.

This paper is organized as follows. Section 2 shows that the inconsistency of the in-
tegrating likelihood estimator is, in general, O(T~1). Section 3 shows that information-
orthogonality reduces this inconsistency to O(T~2) and gives the asymptotics for which
the integrated likelihood estimator is adaptive. Section 4 deals with random effects models
and shows that specifying the random distribution over information-orthogonal parameters
gives the same adaptiveness and O(T~2)-result. Section 5 gives examples. Section 6 shows
that ‘differencing out’ and ‘conditioning on a sufficient statistic’ are special cases of the inte-
grating out approach with an information-orthogonal parametrization. Section 7 derives the
integrated moment estimator for nonlinear models with predetermined variables and section

8 concludes.



2 An expression for the inconsistency

Suppose we observe N individuals for T" periods. Let the log likelihood contribution of the
™" spell of individual i be denoted by L. Summing over the contributions of individual i
yields the log likelihood contribution,
LB, A) = S 14BN,
t

where 3 is the common parameter and ); is the individual specific effect. Suppose that the
parameter 3 is of interest and that the fixed effect \; is a nuisance parameter that controls for
heterogeneity. This paper considers elimination of nuisance parameters by integration. This
Bayesian treatment of nuisance parameters is straightforward: Formulate a prior on all the
nuisance parameters and then integrate the likelihood with respect to that prior distribution
of the nuisance parameters, see Gelman et al. (1995) for an overview. For a panel data model
with fixed effects this means that we have to specify priors on the common parameters and

all the fixed effects. Chamberlain (1984) describes the problem of this method for panel data:

“In a Bayesian framework, § and A; would be treated symmetrically, with
a prior distribution for both. Since I [Chamberlain] am only going to use as-
ymptotic results on inference, however, a “gentle” prior distribution for 8 will be
dominated. That this need not be true for )\; is one of the interesting aspects of

our problem”.

Later in his handbook chapter, Chamberlain gives an example of an estimator for which
the inconsistency is O(T~!). One could try to find a prior that ensures the mode of the
posterior to be a consistent estimator for 3. In particular, one could structure this search by
interpreting the prior as a Jacobian. Finding a favorable prior is then equivalent to finding
a particular parametrization where the reparametrization generates the Jacobian or prior.
We discuss the integrated likelihood in this section and explore favorable reparametrizations
thereafter. Berger et al. (1999) review integrated likelihood methods in which flat priors

are used for both the parameter of interest and the nuisance parameters. The individual



specific nuisance parameters are then eliminated by integration. We denote the logarithm of

the integrated likelihood contribution by L(f3), i.e.
L@%ﬁ)::hl/}%“@MdAb
Summing over @ yields the logarithm of the integrated likelihood,
L@y =>"1p) =Y In / el B N,

After integrating out the fixed effects, the mode of the integrated likelihood can be used as

an estimator.! We thus define the integrated likelihood estimator (3 to be the mode of LI(/3).

~

B = arg mgmx L'(B).

The remainder of this paper studies properties of B and shows how to choose a parametriza-

tion that minimizes its mean squared error. At the mode, B, we have

. OL!
(i) = 25, -

The delta method gives
L;IB(B) = Lfa(ﬁo) +(3- 50)Lf35(3)
where 3 is a mean value on the line joining B and (B, and L[{*B(B) is the matrix of second

derivatives. We assume that L;; 3 () has full rank and omit the argument of expressions when

we evaluate them at the truth. This yields

: Lis(B). | L
= 2B\ 1 B
S L) _
(1) — _[L/{w(ﬁ)]flELé _ L[{w(ﬁ) 71L[§ —ELé

where E() denotes the expectation over the dependent variable and the regressors. The sec-

. . Lis(B),_q Ly—ELL . s .
ond argument in equation (1), [—57—] ~7— converges in probability to zero if N — oo.
ELL  EBLY
The first expression, however, depends on <7 = TB, which is a function of T but not of V.

If ELé is nonzero, then (B — [39) will be nonzero for any N and B does not converge in prob-

ability to 3, for N — oo. This potential inconsistency is the integrated likelihood analogue



of the incidental parameter problem of Neyman and Scott (1948). Neyman and Scott (1948)
give some examples of fixed effect or incidental parameter models in which the maximum
likelihood estimator fails to be consistent for N — o0o. An intuition for their examples is that
the marginal likelihood of the incidental parameters is not sufficiently concentrated.? The
same intuition applies here. We will now study the properties of Lg’j in order to derive an
approximate solution to the incidental parameter problem. With some abuse of the notation,
the vector L;’I can be written as follows,

il f LﬁeLd)\
2) Ly = Jeldx

Kass et al. (1990, theorem 7) give a Laplace approximation® for ratios of integrals.

_lLfa,\,\(j\) lLf\,\A(j\)LfaA(j\)
2,00 2 {0

The expansion is valid for well behaved likelihoods. The following assumption states the

“ri L
2.,I_JLﬁe ax
@b =T =W

O,(T™).
regularity conditions as well as the substantive condition that the likelihood has a dominant

peak at A

Assumption 1: (i) With probability one, L'(3,\) is siz times continuously differentiable with
respect to A; (ii) with probability one, Lz;(ﬁ, A) is four times continuously differentiable with
respect to X; (iii) there exist & > 0 such that for all X € [Ao—e, Ao+€], limp—oo LZM(S\) > —00
and limr_ Liy(N) < 0; (iv) either {By, Mo} is an element of the interior of a convex set
© and L'(3,\) is concave for all i or {By, o} € © which is compact; (v) {3, A} # {Bg, Ao}
and {3, A} € © implies L(3,\) # L(By, Xo) (vi) E(|In L(B,\)| < 00) for all {3,\} € © (vii)
the dependent variable and the regressors are ergodic and strictly stationary with marginal

density p(x,y|B, A).

This assumption implies that L, is proportional to T. In general, L | )\(5\) and Lf; )\(5\) are

Op(T) so that the second and third term of equation (3) are Op(1). Thus, %LZ’I is Op (T71).

Averaging over individuals and taking expectations yields the following lemma.

Lemma 1 Let Assumption 1 hold. Then ﬁEL[I3 is O (T_l) .

7



Proof: See appendix 1.

Lemma 1 states an order result for the ‘score’ of the integrated likelihood. To derive a
theorem about the order of the asymptotic bias, we consider the second derivative of the
integrated likelihood, ﬁLéﬂ(B), in equation (1). This matrix converges to its expectation

which yields the following order result for the asymptotic bias.

Theorem 1
Let assumptions 1 hold. Then E(3 — By) is O (T1).

Proof: See appendix 2.

A slight adjustment of the proof yields that the asymptotic bias of the maximum likelihood
is of the same order, O (T_l) . Theorem 1 is of particular interest if the order of the squared
bias is equal or higher then the order of the variance. The variance of 3 is O((T'N)~!) where
NT is the number of observations. The squared bias is the dominant term of the mean

squared error of B under the following assumption.
Assumption 2: T o« N* where o < 1.

Assumption 2 states that 7" increases at the same or slower rate than N. Combining the
expression of (B — fy) in equation (1) with theorem 1 and assumption 3 yields the following

theorem.

Theorem 2
Let assumptions 1-2 hold. Then B — By is Op (Tﬁl) .

Proof: See appendix 3.

Theorem 2 states that the integrated likelihood is consistent with Op (T_l) , and that the
rate of convergence does not depend on how fast V increases as long as a < 1. It follows from
theorem 1 that this slow rate of convergence is the result of the asymptotic bias. In other
words, theorem 1 gives the degree of inconsistency of the integrated likelihood estimator,

O (T_l) , and thereby states an order result for the incidental parameter problem. It follows



from Liang (1987) and Ferguson (1991) that the degree of inconsistency of the maximum
likelihood estimator is of the same order, O (T_l) . The “invariance result” of the maximum
likelihood estimator implies that reparametrizations do not change the estimates. In par-
ticular, an information-orthogonal parametrization would yield the same estimates for (3 as
a parametrization that is not information-orthogonal. However, the integrating out method
does not have this invariance property and in the next section we show that information-

orthogonality can reduce the inconsistency to O(T~2) for the integrated likelihood estimator.

3 Orthogonality reduces the inconsistency to O(T~?)

In this section, we show that information-orthogonality reduces the inconsistency of the
integrated likelihood estimator from O(T~1) to O(T~2). A parametrization of the likelihood

is information-orthogonal if the information matrix is block diagonal. That is

ELgr(Bo,X0) = 0
l.e.

.
/ Lx(Bo, Mo)ePoroqy = 0,

Ymin
where y denotes the dependent variable, ¥ € [Ymin, Ymax] and {5y, Ao} denote the true value
of the parameters. Cox and Reid (1987) and Jeffreys (1961) use this concept and refer to it
as ‘orthogonality’. We prefer the term information-orthogonality to distinguish it from the
other orthogonality concepts and to stress that it is defined in terms of the properties of
the information matrix. See Tibshirani and Wasserman (1994) and Woutersen (2000) for an
overview of orthogonality concepts.

Chamberlain (1984), and Arellano and Honoré (2001) review panel data econometrics
in their handbook chapters. All but two of their models can be written in information-
orthogonal form.* Information orthogonality can require to trim the distribution of the error
term or to normalize the regressors. For example, the linear model with exogenous regressors
is information-orthogonal if we normalize the regressors to have mean zero, » , x;; = 0, for all

1. Normalizing regressors can be viewed as a reparametrization of the likelihood, see appendix



4 for details. In general, let the individual nuisance parameter that is not information-
orthogonal be denoted by f. We can interpret f as a function of § and information-orthogonal
A, f(B, ), and write the log likelihood as L(3, f(3,A)). Differentiating L(S3, f(/3,\)) with

respect to # and A yields

OLBIGN) _ g of
B 93

O’L(B, f(B,N) of of of 0% f
BYE = Lisgy tLiignas T M anan

where Ly is a score and therefore EL; = 0. Information orthogonality requires the cross-
2
derivative ZLBLBN) 4o he sero in expectation, i.e.

OB
of of of

This implies the following differential equation

of
4 EL EL;r— =0.
(4) 1+ ELirgs

If equation (4) has an analytical solution then L(3, f(3,\)) is an explicit function of {3, A}
and we refer to such a parametrization as an explicit parametrization. In most cases, however,
equation (4) has an implicit solution and we have to recover the Jacobian g—}‘ from this
implicit solution. In this case, L(3,\) has an implicit parametrization. The general nonlinear
model and the single index model have an information-orthogonal parametrization that is
implicit, as shown in appendix 5. The conditional likelihood approach of Cox and Reid
(1987) involves maximizing the likelihood with respect to its arguments and Cox and Reid
(1987 and 1993) as well as Lancaster (2000) only consider explicit parametrizations. An
implicit likelihood calls for a Bayesian framework in which we integrate out the implicitly
defined nuisance parameters. We thus extend the integrated likelihood approach to implicitly

defined likelihoods. For the remainder of the paper, we assume information-orthogonality.
Assumption 3: ELgx(By,\o) = 0.

Using the Laplace approximation of equation (3) and taking expectations gives

(5) pry = pri(y - Lpin® 1B ()
B 2 L\ () 2 (L4, (V)}2

10
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Given that information-orthogonality is defined at the true value, g, we use a Taylor ex-
pansion to write the approximation of EL;’I as a function of A\g. We omit the argument if

A = Ao and ignore terms that are O(7~1). This yields

N — Lin LA+ Ly 1 Liy — (L4)2,  LisnLiy
(6) ELﬂI_E[LB {—}+§{ MLZM H (L) H+0(T ),

see appendix 6 for details. The zero score property implies that EL}'3 = 0. The next two
lemmas show that information-orthogonality implies that the last two terms of equation (6)
are both O(T1!). The intuition for equation (6) being O(T!) is that the last two terms
would vanish if Lgy(A) = 0 for all A. That is, Lgx(A) = 0 for all A implies Lgyy = 0 and
Ly = 0. We only assume that E'Lgy = 0 but this is enough to ensure that ELé is O(T™1).

We give this result in two lemma’s.

Lemma 2 If ELS, =0 then E{—M&} is O(T1).
Proof: Differentiating both sides of the equation EL}'”\ = 0 with respect to A gives E{Lg)\Li-i-

L%M} = 0; see appendix 7 for details.

Lemma 3 If ELiy, =0 then E[{2~ A) H (AE? )g* ] is O(T1).

Proof: EL%A = 0 implies that EL%»\ = 0 is O(v/T); see appendix 8 for details.

Combining lemma 2 and 3 with the expansions of the last section gives a theorem about the

reduced asymptotic bias of the integrated likelihood estimator.

Theorem 3
Let assumptions 1-3 hold. Then EB — By is O (T’Q) .

Proof: See appendix 9.

By reducing the order of the bias, theorem 3 also limits the region in the space of asymp-
totics for which the bias is the dominant term of the mean squared error. This is reflected

in the fact that the following assumption is stronger than assumption 3.

Assumption 4: T oc N where a <

CAJl)—‘

11



Theorem 4
Let assumptions 1, 8 and 4 hold. Then B — By is Op (T_Q) .

Proof: See appendix 10.

By reducing the degree of inconsistency to O (T_Q) and increasing the rate of convergence
to T2, theorem 3 and 4 give an approximate solution to the incidental parameter problem
of Neyman and Scott (1948). An attractive feature of this ‘solution’ is that it is likelihood
based and gives exact inference in small samples. In contrast, bias-correction and most GMM
methods do not have this exact inference feature and can be sensitive to the choice of asymp-
totics. The author views the integrated likelihood as a convenient way to derive moments
that can be robust against misspecification of the parametric error term. In particular, the
parametric assumptions on the error term are irrelevant for the models with additive error
terms that are discussed in Arellano and Honoré (2001). Given that most panel datasets
have more individuals than time periods, we argue in the next subsection that the relevant
limiting distribution has 7" increasing at a slower rate than N. We show that the integrated
likelihood estimator is adaptive if T oc N¢ where o > % In section 4, we discuss priors on
A that are not flat. We can interpret these priors as mixing distributions and discuss how

theorems 3 and 4 can be used to increase robustness against the choice of mixing distribution.

3.1 Adaptive Estimation

Alvarez and Arellano (1998) develop an alternative asymptotic where 7" and N increase at
the same rate. Given that T is smaller than N in most panel data, we prefer an asymptotic
that includes cases in which 1" increases at a slower rate than N. Thus, we therefore assume

the following throughout this subsection
Assumption 5: T o« N where o > % and ELgy = 0.

In this asymptotic, the integrated likelihood estimator is asymptotically unbiased, nor-

mally distributed and adaptive. Theorem 3 states that (Ef3 — ;) is O(T~2). Thus, under

12



assumption 1, 2 and 5 we have
VNT(Ef — o2y — o)
(7) NT(ESB — (y) = O( ﬁ) =o(1) for N,T — 0.

Equation (7) shows that the integrated likelihood estimator is asymptotically unbiased. Using
this unbiasedness result, it can be easily shown that the integrated likelihood estimator B

has the following asymptotic distribution.
VNT(B = o) — N(0, )

where

(®) W= i (=Ll e (R () Ll

In the remainder of this subsection, we show that U equals the variance-covariance matrix of
the maximum likelihood estimator for known values of the nuisance parameters. Efficiency of
the infeasible maximum likelihood estimator implies adaptiveness of the integrated likelihood
estimator. We first show that the variance-covariance matrix of equation (8) can be simplified
to U = [ﬁE{(Lé) (Lé)’}]’l. The Hessian of the integrated likelihood estimator has the
following form.
L
pil _ Z dA
BB 5 [‘ eLl d\
f (Lﬂﬂ +L ﬂLl "

2 [ el d\ _Z L5)

i

J (L gt L L )el

fey dX }

A Laplace approximation and the information equality yields that ﬁ >
is op(Tfl/ 2), see appendix 11 for details. This yields

1 1 T-1/2
9) 7Bl =~ BLBLE +o(T7V?).

Thus, the variance-covariance matrix of equation (8) simplifies in our asymptotics® in which
T o« N® where o > %,

V= lim (LT

13



The Laplace approximation gives

Ly =L+ R

where appendix 1 shows that R is Op(1) and lemma 2 and 3 imply that ER® is O(T1).

Thus
Lt L N
g 2 5 10,17+ 0( —)
VNT VNT T
Lg
= — +o0,(1
ottt
Therefore,

BN ERY) = S E{LaLa'} + o(1).

This last equation states that the asymptotic variance of the integrated likelihood estimator

equals the asymptotic variance of the maximum likelihood estimator for Ag known. We

summarize the findings of this subsection in the following theorem.

Theorem 5

Let assumptions 1, and 5 hold. Let the asymptotic variance of BML = argmaxg L(3, \o)
equal ¥ = ﬁE {LgLg'}. Then the integrated likelihood estimator B s an adaptive estimator
and

VNT(3 — By) —a N(0,9).

Proof: See appendix 12.

Theorem 5 states that knowledge of A\g, the true value of the nuisance parameter, does not
change the asymptotic variance. This implies that the integrated likelihood estimator is
adaptive and is therefore efficient. See Bickel (1982), Newey (1990) and Bickel, Klaassen,
Ritov and Wellner (1993) for an overview of adaptive estimation. Note that the nuisance
parameters are not identified in the sense that v/ NT(A — X\g) = Op(v/N) and therefore
increases with IN. Nevertheless, the assumed asymptotics and ELgy = 0 ensure that the
integrated likelihood estimator is adaptive. Theorem 5 excludes superconsistent estimators

by assuming that B w1 converges at the rate of v/ NT'. Superconsistency usually implies that

14



Lg is Op(T) and [Lgg] ! is Op(T?). Using the approximations of equation (3) and (9) shows
that L[I3 is Op(T) and [Léﬂ]_l is O,(T?) under regularity conditions. This implies that the
integrated likelihood is superconsistent for those cases. Unit roots are usually studied in
linear models so we conclude this section by considering the dynamic linear model with fixed

effects:

Yit = Yi,t—18 + fi + €it where Fey = O,E&??t < oo for Egjgeqy=0for s#Atandt=1,..,T.

Lancaster (2000) conditions on ;o and suggests the following information-orthogonal parametrization,

T
1 T-—t

i = Yol — )\ifb(ﬂ) h b = — O

fi = yio(1 = B) + Nie”"?) where b(3) T; —
Analogue to the quasi-maximum likelihood estimator of White (1982), we assume normality
of the error terms in order to derive the integrated likelihood estimator. The estimator,
however, depends only on the first two moments of y;; and is superconsistent in the sense
that T\/N(B — ) = Op(1), see appendix 13 for details. In the next section, we show that

the dynamic linear model belongs to a class of models for which the integrated likelihood

estimator is consistent for fixed T" and N — oo.

3.2 Fixed T Asymptotics

Suppose that T is rather small so that an asymptotics in which T"oc N* where « > % is not
satisfactory. Above we showed how to reduce the inconsistency from Op(T™1) to O,(T~?)
and in this section we discuss a class of models for which we can derive consistent estimators
for T' being constant and N — oo. Note that we can specify an independent” prior on the

information-orthogonal A without changing the results of the last sections: E % = 0 implies

E82 {L+In7(\)}

RITD) = 0 and the earlier theorems still hold. However, the integrated likelihood

contribution changes slightly:

LY(3) =In / Lir(N)dA.

[ Lgelm(N)dx

Telady . = 0. A frequentist prior can

We define a prior () to be a frequentist prior if E

sometimes be found by a reparametrization. Suppose we have two information-orthogonal

15



parametrizations, {3, A} and {3, A\*}. Consider the following change of variable

L'(B) = ln/sid)\

© 0N
= In [ £ —d\".
ON*
The Jacobian g;; can be interpreted as a prior on A* in the sense that assuming the prior 59;;

is equivalent to a reparametrization. Sufficient conditions for the existence of a frequentist

prior can be stated in terms of 88)\); or in terms of a characterization of {3, A}. The next

theorem states a primitive condition for consistency on the parametrization {3, A\}.

Theorem 6
Suppose ELgy = 0, Lgxy = 0, and ELﬁAS\ = 0 where X denotes the posterior mean. Let
assumption 1 hold and the solution to ELé(ﬁ) = 0 be unique. Assume that N — oo and that
T is fived. Then

VN(B = By) — N(0,0)

where

U = (= Bk = AR (L) Vs B ]

Proof: See appendix 14

FExamples of models where the assumption of theorem 6 hold are the exponential model
with hazard fje®?, the Poisson model, and the dynamic linear model with fixed effects that
we discussed in the last section. It can be easily shown that the shape of the frequentist
prior depends on the parametrization. Using a frequentist prior yields a consistent estimator

for N — oo and an adaptive estimator for T" oc N® where a > =. We return to fixed T

Wl

asymptotics in section 6.2 in which we show that the integrated likelihood estimator can be

viewed as a generalization of the sufficiency principle.

4 Priors and Mixing Distributions

In fixed effect models, the analysis is conditional on the fixed effects. Therefore, the distrib-

ution of the fixed effects is not specified® and does not need to be estimated. An alternative
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estimation strategy is to estimate the parameters of interest and the distribution of the het-
erogeneity simultaneously. Such models are usually referred to as ‘random effect’ or ‘mixing’
models, see Hsiao (1986) for an overview. Obviously, the fact that the mixing distribution
is unobserved complicates its estimation. Hsiao (1986), Lancaster (1990) and Van den Berg
(2000) argue that the estimates of the parameter of interest are sensitive to the choice of
mixing distribution. So there is arguably a need for some robustness against a wrong choice
of mixing distribution or its imprecise estimation. Integrating out fixed effects is formally
equivalent to a ‘random effects’ model with a prior distribution playing the role of a mixing
distribution and we use this fact extensively in this section. We show that the adaptiveness
and O,(T?)-result of the previous section also hold for the random effects model if one
specifies the mixing distribution as a function of the orthogonal nuisance parameter.

Let v be the parameter vector describing the mixing distribution and let the logarithm
of the mixing distribution be denoted by M (v, A) where M(v, \) is bounded and vy does not
contain elements of the common parameter (3. If we interpret M(y,\) as a prior then it is
a function of A only. Integrating out the mixing distribution or prior gives an ‘integrated
likelihood’ as a function of the common parameters. Analogue to the last section, we have

il J LZae'Lwer)‘
B [ el +Md) )
To determine the order of ELZ;I, we use the Laplace approximation of Kass et al. (1990) and
Tierney et al. (1989),

. My Ly, (A Ly (ML (A) + Maa (A
LglzL};(A)—M’\(,)\)L)()\)—l ' ABAA( ) _ 1 ( N ,\,\,\( ) o ( )}+Op(T’1).
L) 2L+ Ma(h) 2 {ZhL(0) + Man(V)?
Note that Myy is Op(1) and therefore
1 1
: — = — +0,(T7?)
Li(3) + M (V) Lix
Li\,\,\()\) + M/\/\A()\) _ Lz\,\x L 0,(T72),
{Li,(A) + M (V)2 (L3n)?
see appendix 15 for details. This yields
; con ML) 1L () 1 LML) _
(10) Ly = L5 - EASAPAN B O,(T1).

L) 2L,0) T2 {10
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Under certain regularity conditions given below, w is O(T~"/?) and E(w)
L5, (A) L5, (N)

is O(T~1). Thus, ignoring the mixing distribution gives the same Laplace approximation

as in previous sections. After integrating out the mixing distribution or prior we have a

function, L', that depends only on the common parameters. This distribution concentrates

and therefore its mode and marginal posterior give, asymptotically, the same inferences for

(3. The following theorem states that using a non-flat prior or mixing distribution M does

not effect the results of theorem 4 and 5 in the sense that the rate of convergence is T2 if

T o« N® where a < % and the estimator is adaptive if o > %

Assumption 6: The mizing distribution M is a function of v and X\ where {3U A} = 0. If
M is interpreted as the logarithm of a prior then M is a function of X only. With probability
one, M is two times continuously differentiable with respect to X. Let 0 < e™ < 0o be bounded

over the whole domain of v and X and let eM(o20) > (.

Theorem 7

Let assumptions 1, 3, 4 and 6 hold. Let
o 1 Ry
- - 1 L +]\/Id)\.
{5,4} = arg max NT; n'/e

Then B — g is Op (T_Q) .
Let assumptions 1, 5 and 6 hold. Let the asymptotic variance of BML = argmaxg L(3, \o)

equal U = ﬁE{LﬂLB’}. Then the integrated likelihood estimator 3 is adaptive and
VNT(f - ) —a N(0, V).

Proof: Assumption 1 ensures identification and assumption 6 implies that the derivative
of the logarithm can be approximated by the Laplace approximation of equation (3). The

previous theorems use the same approximation and the result follows immediately.

An intuition for theorem 7 is that (3 is ‘information-orthogonal’ to all other parameters

in the sense that
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O*L(B,N) + M(y,\) _ O*L(B, ) + M(v,\)
930 =0 and B DBON

In this interpretation, vy can be viewed as another nuisance parameter that is information-

=0.

orthogonal to 3. Consequently, the inconsistency of the estimate of B must be O (T*Q) .

Mundlak (1978) increases the robustness of a random effects estimator by allowing for
correlation between the random effect A and the mean of the exogenous regressors, T; =
% > . Mundlak considers only the linear model and writes the random effect A as a
linear function of z; plus random noise. Chamberlain (1980 and 1982) gives reasons why the
fixed effect might depend on x; other than through Z;. Consider writing the fixed effect as
Ai = v(z;,0) +n where v(x;,0) is a continuous function in 6 and 7 has a distribution that

does not depend on 8 or x;. Suppose we want to estimate the following model
Yit = Ti3 + AN + e where g ~ N(0, (72) and \; = v(x;,0) +n,

where x;; is a vector of exogenous regressors. The distributional assumptions are not restric-
tive since the integrated likelihood method yields a projection estimator for the linear model
with exogenous regressors. By writing the likelihood as a function of Z;; = x;; — T; we ensure

orthogonality between 3 and .

9L
= Ty = 0.
960N ;m”
We can write the estimation problem in the form

(11) max [ eHBNEMOTN) gy
B0,y

where M (60,7, \) is implied by v(z;, #) and the distribution of 7. The requirements of theorem
7 are satisfied and 8 can be estimated up to O,(T2) or adaptively. This approximation
result holds for all models for which we can find an explicit parametrization of the nuisance
parameter. Therefore, equation (11) with an information-orthogonal parametrization is a
generalization of Mundlak’s (1978) framework to nonlinear models. Thus, specifying the
prior or mixing distribution in terms of an informational orthogonal nuisance parameter

yields a robust and potentially adaptive estimator.
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5 Examples

In this section we discuss two examples. The example of the gamma distribution illustrates
that the inconsistency of the integrated likelihood estimator is O,(72). The second example
is an ‘inference problem’ by Neyman and Scott (1948) and we show that the integrated

likelihood provides a natural solution to this problem.
5.1 Gamma distribution with individual parameters

Consider the gamma distribution and assume that we observe 1" observations per individual
for N individuals. The observations are independent of each other and have the following
density function

Yit ~ Gamma(e, f;)

where « is a common parameter and f; is a person specific nuisance parameter. We are

interested in estimating «, the relative variance of this gamma distribution. As shown in

appendix 16, f; is not informational-orthogonal to « but an information-orthogonal para-
fi

meterization can be derived. In particular, defining A\; = < as the new nuisance parameter

yields an information-orthogonal parametrization. In this parametrization, we have
yit ~ Gamma(a, al;).

Thus, we changed the parametrization of the model but none of the assumptions. In the
new parametrization, the likelihood contribution of individual ¢ has the following form

a,,a—1 —alyi

(12) o, \) = H ) ylit(a)e fori=1,..,N.

Integrating with respect to \; yields the integrated likelihood contribution,.

2 " i “(aN) T —ai 37, Vit a—1
el \;) = /szcl,\,:/(a ) %e Vi T (v )dAi

()T
oTo 1_([t() a,l) / )\iTae_a)‘iZtyitd)\i

7
[ (v ) (Ta-l—l)
ol (o) (3 )
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To derive the score of the integrated likelihood, we take the logarithm of £7,
=lngt =(a—1) Zlnylt +InT'(Ta+1) —In(a) —=TInT(a) — (T + 1) ln(z Yit)-
t
Differentiating with respect to « gives
1
= Iny; + TY(T 1)——-T Tl it)-
th nyis + TY(Ta+1) - — = T(a) n(thy»

The equation ELL = 0 is uniquely solved for & = ag. Appendix 17 shows that the integrated
likelihood estimator is consistent for either 7" or NV going to infinity where the inconsistency
of the maximum likelihood is O(T1).

Suppose we want to use a nonflat prior for A, e.g. m(A) = A\. This prior is neither proper
nor bounded. Integrating the likelihood with respect to the prior and taking logarithms
yields

LY = (a—1) Zlnyit +InT(Ta+2) —2In(a) = TInT'(a) — (Tx + 2) ln(z Yit)-
t t
Differentiating with respect to « gives

2
Bho= S 0T 2) = 2 1ol =Y
t

EL! = Ty(Ta+2)— % — TY(Ta) = is O(T™).

«

1
a(Ta+1)
Note that

2
Loo =T/ (Ta+2) + = = Ty/(a)

so that L is O(T1). Thus, the inconsistency (N — o) of the integrated likelihood estima-

tor, gLLI ,is O(T~?) in this example. Note that using the prior 7(\) = X in Gamma(c, a)) is

equivalent to the parametrization Gamma(ca, o‘g‘ ) since %ﬁ\ = \. For this reason, we use the

term ‘integrated likelihood’ for all priors that correspond to an alternative parametrization

of the likelihood.

lgraph “bias” about here]
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The graph shows the performance of the estimators for small 7" and N — oo. The
absolute bias is shown as a function of T. We choose the true value of the parameter of
interest, ag = 1. A nice feature of this example is that the distribution of f does not effect
the small T performance of the estimators and that the variance of the estimators is the
same. Using a flat prior, the integrated hazard estimator asymptotically unbiased. If we
use the prior 7(\) = A then the bias order result seems to be relevant for small T" since the
absolute bias is approximately % In contrast, the absolute bias of the maximum likelihood

estimator decreases at the rate %
5.2 Neyman and Scott (1948), example 2

Neyman and Scott (1948) consider several examples in which the maximum likelihood esti-
mator fails to be consistent. Their example 2 (page 4) assumes a model where the dependent

variable y;; has a common variance but allows for individual means.

Yit ~ N()\i,O'Q).

Neyman and Scott note that the inconsistency of the maximum likelihood estimator for o2

is O(T~1). We show that the integrated likelihood is unbiased and a consistent estimator.
Obviously, the log likelihood contribution of individual ¢ is

_log02 . Zt(yit - )\i)Q

L' =
2 2T o2

Note that o2 and \; are information-orthogonal. Let the likelihood contribution of individual

i be denoted by £,

’ 1 a —0)° . Ty — \)?
o o (T_T eXp{_E(Zt(y;Q y) (y )

where ¥; = ), yit /T. We integrate with respect to the nuisance parameter \; to derive the

integrated likelihood contribution, £47.

. - g 1 2 _ g2 T(y;
SZ,I — Qi d)\; o (T_T eXp{——(Zt(ylt yz) + (y
2 o2

- 2l — gi)*

o2

)2

———)}dAi
—(T-1)

);

o« o exp(
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see appendix 18 for details. This yields

——)logo® —

il _ -1 o (it — i)?
== 2 02

Differentiating with respect to the parameter of interest, o2, gives

r-11 (yie — 5i)°
)_+Zt I .

2 o2 o

il —(

o2 T

Thus, the integrated likelihood estimator for o2 is

-~ 1 > Wit — ¥i)?
5 LN 2aWit — YT
7 N; T—1

Note that Eo? = 02 and that the integrated likelihood estimator is consistent and unbiased
for fixed 7. This estimator of o2 is usually obtained with an ‘ad hoc’ solution: replacing T" by
(T'—1) in the denominator. With the integrated likelihood estimator, no ‘ad hoc’ adjustment

is required.

6 ‘Differencing out’ and ‘Sufficient Statistic’ as special cases

6.1 ‘Differencing out’

For a couple of models we can difference out the fixed effect and then derive a consistent
estimator for the common parameters. This class of models seems to be limited to:

(i). The Weibull and exponential hazard model with exogenous regressors. The likelihood
of the differenced logarithms of the durations does not depend on the fixed effects.

(ii). The linear regressor model with exogenous regressors: y; = ;3 + \; + €;x where

FEeip =0 and Ee?t < oo. Regressing v+ — y;,t1—1 on x; — x;—1 yields a consistent estimator.

For both models, we can attain an information-orthogonal parametrization.
ad. (i). For the Weibull model, Cox and Reid (1987) show that the orthogonal fixed

aXit¥(2) where o is the Weibull parameter and ), z; = 0.

effect can be written as f; = e
Integrating the likelihood with respect to A; yields the likelihood for the first differenced

data, see Lancaster (2000).
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ad. (ii). If we require ), x; = 0 in the linear model then 3 and \; are information-
orthogonal.? Assuming normality of £;; and integrating out the fixed effects yields the usual
GLS difference estimator. This estimator requires the first two moments of the error term

to be finite but does not require normality.
6.2 ‘Sufficient Statistic’

For a small class of models, we can eliminate the nuisance parameters by conditioning on
a sufficient statistic. This class seems to be limited to the following fixed effects models of
the exponential family: the Poisson, logit, Weibull, and linear model with known variance.
Lancaster (2000) shows that the integrating out method yields the usual moment functions
for the Poisson model. The informative observations in a logit model are of those individuals
that have both possible outcomes. The likelihood of these observations does not depend on
the individual effect so there is no need for integration. Conditioning on a sufficient statistic
in the Weibull or linear model with known variance yields the ‘difference’ estimator. We
discussed in the last subsection that these ‘difference estimators’ are special cases of the more
general integrated likelihood estimator with information-orthogonal fixed effects. Cox and
Reid (1987, page 8) present their conditional profile likelihood method as a generalization
of eliminating nuisance parameters by sufficient statistics. By conditioning on maximum
likelihood estimates of the nuisance parameters given (3, Cox and Reid derive the following

objective function.!®

(13) LOR(B) = L(8,A) — 5 1n [Lan(6, )]

Differencing with respect to 3 gives

1 Las(8,A) . 1Lya(8,A) 0A

CR(73y _ \
B = BN+ 37 6% T2 (5 98

where g—é = —i—fi + Op(T1Y). Thus

_ lL)\)\ﬂ(ﬁ, 5\) B lLA)\)\(ﬁv S‘)Lﬂ)\(ﬁv 5‘)
2 Ln(B,A) 2 L3,(8, )

LGR(B) = Ls(5, ) Op(1 ).
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The last expression is the approximation of Lé as was given in equation (3). Thus, the

conditional profile likelihood can be viewed as an approximation of the integrated likeli-
hood method. Although both methods use information-orthogonal parametrizations, the
conditional profile likelihood requires an explicit parametrization of the likelihood. As we
discussed above, an implicit parametrization suffices for the integrated likelihood method.
This advantage of Bayesian analysis is not confined to panel data. If we can write f as an
analytical function of # and A, i.e. A = g(3,\), then we can obviously write the likelihood
function in terms of B and A. The question is, however, whether there exist an analytical
solution to the differential equation of equation (4). In his review of Cox and Reid (1987),
Critchley (1987) wonders “How often are the differential equations'! soluble analytically?”.
An analytical solution is a necessary condition for writing the likelihood as an analytical
function of # and A. An example of Hills (1987), however, shows that being able to write A
as a function of 8 and f does not imply that f can be written as an explicit function of
and \: “the inverse of this transformation is not explicit and therefore it is not possible to
write the likelihood function in the form L(/3,\)”. A reparametrization is relatively easy in

a Bayesian framework since we only need the Jacobian g—?

/&M:'&%#

Thus, the information-orthogonality can be used for a wider class of models than considered
by Cox and Reid (1987 and 1993). Berger et al. (1999) consider inference in the presence
of nuisance parameters and mention generality and simplicity as arguments in favor of the
integrated likelihood method (over the profile likelihood). To the author, however, implicit
versus explicit parametrization is a more tangible advantage of the Bayesian approach. We
therefore formulate all theorems in terms of the integrated likelihood estimator. Cox and
Reid (1987 and 1993) and Ferguson, Cox and Reid (1991) do not consider panel data. Given
that all the theorems are based on the approximation of equation (3), they also hold for the
conditional profile likelihood. The following theorem follows directly from theorem 4 and 5.
The conditional profile likelihood estimator is denoted by BC pr, and maximizes the objective

function of equation (13).
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Theorem 8
Let assumptions 1, 8 and 4 hold. Then BCPL — g is Op (T_Q) .
Let assumptions 1 and 5 hold and let the asymptotic variance of BML = argmaxg L(3, \o)

be U = ﬁE{LBLﬂ’}. Then BCPL is an adaptive estimator and
Vv NT(BCPL — Bo) —a N(0, ).

Proof: Assumption 1 implies identification. The difference between the scores of the con-
ditional profile likelihood and the integrated likelihood is O(T!) and the result follows

immediately.

The beauty of the integrating out approach is its combination of simplicity and gener-
ality: It is as easy or easier to compute than competing methods and ‘differencing out’ or

‘conditioning methods’ can be viewed as special cases.

7 Predetermined Variables

Neyman and Scott (1948) describe the incidental parameter problem by showing that the
maximum likelihood estimator fails to be consistent in a couple of examples. The regressors
of these examples are all exogenous but the incidental parameter problem obviously remains
when the assumption of exogeneity is relaxed. In the previous sections, we showed that the
incidental parameter problem can be solved by using an information-orthogonal parametriza-
tion of the likelihood. This framework allows for predetermined regressors that are lagged
dependent variables. Quite often, however, one is not willing to specify the stochastic process
of such general predetermined variables. In their handbook chapter, Arellano and Honoré
(2001) note, “almost nothing is known about nonlinear models with general predetermined
variables”. This section derives new estimators for single index models with general predeter-
mined variables and fixed effects. The following definition generalizes Chamberlain’s (1984)

concept of conditional strict exogeneity to predetermined or weakly exogenous variables. A
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regressor x is conditionally weakly exogenous if
(14) P(yit|wit, .-y Tit, -y i, M) = P(yat|in, .., 2, Ai) for all i,

where x;; can include lagged values of y;;. For models with weakly exogenous regressors, the
technique to condition on a sufficient statistic cannot work. A sufficient statistic for the inci-
dental parameter A; would be a function of y;1, ..., y;7. Conditioning requires the distribution
of the sufficient statistic conditional on the predetermined regressors of all periods. This
distribution is not specified since the regressors are only required to be predetermined. The
integrated likelihood approach allows for some misspecification of the likelihood but requires
that ELg(3q, Ao) = 0 and ELgx (B, o) = 0. For predetermined variables, we propose using
a moment function that has zero expectation at the true values for 3 and A and whose deriv-
ative with respect to A is zero in expectation. Thus, the moment function Q(3, ) is an
information-orthogonal moment function if (i) EQg(By, Ao) = 0 and (ii) EQgxr(By, o) = 0
where {3, Ao} denotes the true values of the parameters of interest and the vector of nui-
sance parameters. The function Q(3, A) plays the same role as the score function Lg of the
previous section. Its dependence on A is reduced by a particular parametrization and the
next step is to integrate out A with respect to the likelihood.

Consider the binairy choice model with predetermined variables, Pr(Yy; = 1) = f(p;)
where p;; = x4 + A\ and f() denotes a density function. The logit, probit and all other
parametric binairy choice models fall in this class. Let L, denotes the log likelihood diffen-
tiated with respect to ju;; and L., denotes the second derivative. We propose the following

moment function for this class of models.

J Qi(B,X)er dx
Z [ eltdA

where

Qs(8) =

7
T—1

(15) QZ} (67 )‘) = Z wit{Luit - (ELMi,tlii,t |I§,7 57 )‘i)(ELMz',t+1Mi,,t+1 |CL‘§+17 67 )‘i)_lLMz‘,t+1}7
t=1

where x;; denotes a vector of predetermined variables and a:f = {xi,...,i+}. Note that

Q};(ﬁ,)\) is information-orthogonal since % =1 and
T
EQ: =FE +{L — B(L LB ) =0
Q[”\(ﬁ) - szt{ Kithit ( Kitkit mi,’ﬁ’ i)} =0
t=1
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The same vector moment can be used for the General Linear Model. Suppose yit = G(1;;)+€it
where g1, = X3+ \i, G() is a known function, E(e;t|t) = 0 and E(e?|2!) < co. Assuming
normality and homoscedasticity of the error term yields a quasi likelihood. Applying the
moment function of equation (15) to the linear model with predetermined variables yields a

familiar'? moment function:

T-1

Q5(B) =D mit(ei — cint).

i=1 t=1
Identification conditions are given in appendix 19 and Woutersen (2000) gives a general
discussion how orthogonality concepts simplify identification proofs. The moment function

of equation (15) can be adapted to deal with endogenous regressors,

T-1
Q%(/B) = Z mi,t—l{LHit - (ELMit“it|:Civ7 )\i)(EL“i,t+1“i,t+1|:Civt+17 )‘i)_lLMtH}‘
t=1

Note that x;; 1 can be replaced by an instrument z;; that is independent of L, and L, i

for all ¢. In both cases, Q};(ﬁ) is information-orthogonal. Analogue to the previous theorems

about score functions, we now derive a theorem for information-orthogonal moment functions.

Theorem 9
Suppose [3 = arg mlng{Qé(ﬁ)’Qé(ﬁ)}, EQz =0, EQgx =0 and T oc N* where o > % Let
assumption 1 hold and the solution to EQé(ﬁ) = 0 be unique. Then

VNT(3 - 3y) — N(0,T)

where
W = [ B(Qs L) [ E(QsQ)] o E (a7

Proof: See appendix 20.

8 Conclusion

This paper develops the integrated moment estimator and extends the integrated likelihood
estimator to implicitly defined likelihoods. It shows that the integrated likelihood method

yields an approximate solution to the incidental parameter problem of Neyman and Scott
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(1948) for information-orthogonal likelihoods. A nice feature of the integrated likelihood
method is its generality: ‘differencing’ and ‘sufficient statistic’ estimators were shown to be
special cases. In a Bayesian framework, reparametrization of a nuisance parameter only
requires an expression of the Jacobian. Berger et al. (1999) ignore this advantage but, to
the author, this is the most tangible argument in favor of Bayesian analysis. All but two
models considered by Chamberlain (1984) and Arellano and Honoré (2001) are information-
orthogonal with an explicit parametrization. Using an implicit parametrization, we derived
new estimators for the single index models with lagged dependent variables that converge at
a faster rate than existing ones.

In their conclusion, Arellano and Honoré (2001) note, “almost nothing is known about
nonlinear models with general predetermined variables.” Using information-orthogonality,
we derive new estimators for the general linear model and single index model with fixed effects
and predetermined variables. It thus seems that implicit parametrizations and informational
moment functions are very promising approaches to study models with general predetermined
variables and many nuisance parameters.

It was also shown that the prior could be interpreted as a mixing distribution so that the
robustness of the random effects model could be increased. If it is considered to be important
that empirical results can be replicated by people with different ideas about the prior or
intestable aspects of the mixing distribution, then it is important to limit the influence of

priors and mixing distributions. This paper makes a contribution to attaining that goal.
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9 Appendices

Appendix 1. Lemma 1: Let assumption 1 hold. Then ﬁ

Proof: Equation (3) in the text states that

Ll =

[‘l;z L’
f el d\

PN
3

= Lz(N)

1 L};,\,\(S\)

1 L,\,\,\()\)L%,\(S\)

2,00 2 (L

cancel we derive a Taylor approximation around .

iNeNie

where the second and third term are in general O(1). To ensure that these terms do not

ELLis O (T7').

Op(T7)

; 1 L5y 1L5uE6 -
L = L+ L5 (A = N) + 2L (A = N2 = =82 4 S8 B o (712,
; A=) gLl (A =07 = A 4 SRR s 0 )
The definition of A implies that
M) = Ly + (A = Ao)Lix(X) = 0, and
. L
A=Xo) = === is O,(T7")
Ly - F
Similarly,
A 7 A 7 1 7
Ly(A) = Ly + (A= Xo) ,\,\+§()\—)\0)2 Ao T = (A= A0)” L (A) = 0.
This yields
. Lk _
(A= 20) = ===+ Op(T7),
L3x
and
. Ly 1L%,,, L}
G=d) = -T2 - 3 EAR L 015
159 Lyx "L
A=20)? = (F)+0,(17%7)
Li,
1 1 1
—— = — 4+ 0, (T = —— +0,(T73?
TR Z N 7 N
Using these terms in the Taylor expansion gives the following
) 1L w1 Lg\MLgA _
Ly = L+ L= o) + = Lpi (A= )2 — 222 | SR L () (7 1/2)
’ 2 25 2L T
o L5LG, 1 L5,,Lgy LY 1, L 1L 1 LA
= Ly = g () 5 () L — 5+ g e 0T )
Lia Ly Lha 153 153 {L} A}
_ L%_{Lzﬂ)\Lg\%Lzﬂ»\}_}_l{LZ)\)\J’_}(LZ)\)Q}LZﬂ'»\ +1{LZ>\A (L ) M Ly BA}—J—O(
L 2 L L 2 L5y (L3,)?
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Thus

Note that the information equality implies that E{L, + (L%)?} = 0 and that L%}AA - EL%AA

is O(\/T). Thus,

Ly, + (L)% L Liy + (L) L — Ly, -
B{=2 )= = {22 =P s O(T ).
A A A A
This gives
. Li Ly + L 1 Li, — (L) L
T AL A LyonLia
ELy' = B~} 4 (== 1 T 0T )
A A A
which is O(1). Therefore, NlTELé isO(T'). Q.ED.

Appendix 2. Theorem 1: Let assumption 1 hold. Then E(B — By) is O (T’l) .
Proof:  Equation (1) in the text states that

I Yo I I Yo I I
Lag(B),  ELg  Lgg(B) L — ElLg
NT | NT NT NT

(B = Bo) = —I
The elements of the matrix ﬁLég(B) are just the averages of the second derivatives,

, / L};eL d\
1 Lz,I _
( 6) BB 85 Z j el d\

)2}el dx L L’d)\ /‘ Liel'dx

_ f {Ljs — (L
= 2 fele)\ Z N le)\ fele)\ J

i

J el dx | [ Liel dx
fele)\ H [eltdx
O(1). Lemma 1 states that N,ﬁ is O(T~1) so that —[

}
I I I
that B([22e)) 1L PLay i 0(1/(NT)). Note that ELB

.-
The elements of > ,[{ V] are proportional to NT so that [—L’i\’?;ﬂ)]_l

is

1BLG -1
—~7 is O(T~"). We now show

has expectation zero so that
Lip(B), \ Ljg — BLjp L) Lis(B), -, L~ ELp
e ) = B{((—1" — B e }
NT NT NT NT NT
I (73 I (7 I R
where (Livﬁ—j(,ﬂ)]’l —E[L%j(,ﬁ)]’l) and LBN];:LB are O(1/v/NT). Thus, E(3—f3,) is O(T!) for

E(

N being constant or increasing. ).E.D.
Note that the intermediate value 3 & [B, Bo] converges to 3, as B converges to 3;. Thus

ﬁLég(B) converges in probability to the Hessian ELﬁﬁ

’NT
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Appendix 3. Theorem 2: Let assumptions 1-2 hold. Then B — Bg is Op (T’l) .
Proof: The proof is trivial for constant T'. For increasing 7', we prove the theorem in three

steps.
Identification: Consider the following objective function Qo(3,\) = EL(3,\). The as-

sumptions (v), {5,A\} # {Bg, o} and {B,\} € © implies L(3,\) # L(By, Xo), and (vi),
E(|In L(B,A\)| < 00), imply that Qo(3, A) is uniquely maximized at {3y, Ao}.

Consistency: We first prove consistency under the assumption that the parameter space is
compact: Let {8y, Ao} € © which is compact. A Laplace approximation of L yields the

following

LY(B) = LY(B,A) + (LA (A)]) + Op(T7)

= LB, ) + op(T") where v > 0

il i A
where 7y is arbitrarily close to zero. Thus, the difference between L Néﬂ ) and £ ]S,B 7’3‘) is o(T771).

. LI(B)
The function ~NT

is bounded and continuous over a compact set. Assumption (vii) implies

that % is ergodic and stationair so that the assumptions of Newey and McFadden (1994,

Lemma 2.4) are satisfied. Therefore, L;m@) converges uniformly to Qo(3,A) = EL(/3,\) and
consistency follows from of Newey and McFadden (1994, Theorem 2.1).

Instead of assuming that the parameter space is compact we now assume that {3, Ao}
is an element of the interior of a convex set © and LY(3,)) is concave for all i. All the
requirements of Newey and McFadden (1994, Theorem 2.7) are satisfied and consistency of
the integrated likelihood estimator follows.

Note that the Laplace approximation of this proof differs from the Laplace approxima-
tions of L;I(ﬁ) that are offered in the text. This reflects the fact that interpreting the
integrated likelihood estimator as a solution to its first order conditions is more restrictive
than necessary. The rates of convergence, however, are easier found by analyzing the first
order conditions, %ﬁg(m = 0. Newey and McFadden (1994) maximize the objective func-
tions to prove consistency and then analyze the first order conditions to derive the rate of

convergence of the maximum likelihood and other estimator. A similar approach is followed

here.
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Rate of Convergence: Equation (1) gives an expression for (3 — 3,). Assumption 2 ensures
ELL
that the term that causes the bias in equation (1), =7, is of the same or higher order than

. : LL-ELL . LEs(B),_1 .
the term that induces the variance, -==. Appendix 2 shows that [£Z=]""is O(1). Thus,

N
[%]—1?\,—? is Op(T™1). Q.-E.D.
Appendix 4. Handbook Chapters

For linear models, we assume normality of the error terms in order to derive a likelihood.
The resulting moment estimators are a function of the first two moments of the error term.
That is, the only substantial restriction is that the first two moments are finite. In this
methodology, robustness is proven by showing that the moment estimator is a consistent
estimator for a class of models or likelihoods. Trimming of the error is applied in order to
make the error normality distribution hold. In particular, trimming is applied to ensure that
the zero mean condition holds. In this case, symmetry of the error distribution is a substantial
condition along with the first two moments being finite. This yields the estimator of Honoré
(1992) as well as subsequent papers that apply trimming, e.g. Kyriazidou (1997), Honoré
and Kyriazidou (1999).

The models that are considered by Chamberlain(1984) are information-orthogonal or can
be reparametrized such that they are information-orthogonal. The linear model and ex-
ponential model with exogenous regressors are information-orthogonal if we normalize the
regressors to have mean zero, ), x;; = 0, for all . The information-orthogonal parametriza-
tion of the dynamic linear model with fixed effects is discussed in section 3. Conditioning on
sufficient statistics is a special case of the integrated likelihood and discussed in section 6.2.

Arellano and Honoré (2001) review recent development in panel data econometrics. Be-
sides the models mentioned above they also discuss models with a multiplicative nuisance pa-
rameter and the dynamic logit model. The multiplicative models are information-orthogonal
after the transformations that are discussed in Arellano and Honoré (2001) section 2.4. and
after normality of the error term is assumed. This yields a quasi integrated likelihood estima-
tor that coincides with the moment estimators discussed in the handbook chapter. Honoré

and Kyriazidou (2000) derive a very creative estimator for the logit model with exogenous re-
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gressors and one lagged dependent variable. The parametrization is explicit and information-
orthogonal if their matching technique is used. Appendix 5 gives an implicit parametrization
for this model as well as other single index models. As we discuss in section 7, choosing a dif-

ferent %{; for each period yields a common estimator for the linear model with predetermined

variables.

Appendix 5. Information Orthogonality in the general nonlinear model
Consider the following classes of panel data models:

(i). Let the observations for a single agent be stochastically independent and dependent
on unknowns only through p,;, = v; + i3, where v; denotes an individual specific fixed effect
and x;; a vector of exogenous regressors that can include lagged dependent variables. The
panel Poisson, logit and probit models are of this single index form.

(ii). Let yiy = G (i3 +v;) +ei, where g4 ~ N(0,02); G() is unrestricted and v; is a fixed
effect and x;; a vector of exogenous regressors that can include lagged dependent variables.

(iii) As model (ii) but now we require Ee;; = 0, Ee? < oo and the distribution of € to
be known. This includes moving the average for g, t = 1, ..., 7. Given that some parameters

of the error distribution are usually unknown, this class is merely of theoretical interest.

In this appendix, we show how information-orthogonality can be obtained for these classes
of panel data models and discuss some generalizations of model (ii). The parameters 3 and
A; are information-orthogonal if the following condition is satisfied:

0L(B,v(B,))

E o\Op

=0 at {5y, Ao}

where L denotes the conditional log likelihood function (conditional on z) and A; the in-
dividual parameter in information-orthogonal reparametrization. The information matrix is
evaluated at the true value; therefore, E% has to hold at {3y, Ao }. We can rewrite L(3, v;)

as L1, - py7), where p;; = xitf3 + v;; then (we omit the subscript 7) :

OL _000L _ 0u~ 0L Op _ v 0L
O O\ Ov _8)\;8% dv _8)\;8,%'
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We can rephrase the information-orthogonality condition as:

02L v L ov O gt o1 7}
OBON 0N 0pov 6)\ 66

{aut}aut fmt
- 8)\ Z or, _8)\ {Z Hik g

This gives
Oy ov
P2 b = PO B ) =0
which gives, omitting subscripts for p :

@ _ _EZt Lypis _ _Zt it B Ly,
op EY Ly >t ELyy

The solution for this differential equation is:

v+
A= Z / ELy,dp.
This solution can be easily checked by total differentiation. We calculate (numerically) the

integrated log likelihood:

ZLI Zln/ eld\ = Zln/oo L‘”dv

where A =", [*° EL,,dp.
If the regressor x;; is a (K x 1) vector then we want to (information) orthogonalize the fixed
effects (incidental parameters) to all common parameters.

This gives us the following differential equations:

9L

=0forj=1,..K.

And the solution is similar to the above (but now = is a vector):
vi+Tit B
A=>" / EL,du,
t — 00

and

oA
81)2’

= Z ELuu(Ui + iL‘Ztﬁ)
t
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For model (ii), we also need that o2 is information-orthogonal to \ :

: 1 1
L*B,\,0%) = 3 In(270%) — p(y — g(pir))?
OL™ (B3, \,0?) 1 1 9
9oz = 552 T ga W~ 9(u))
*L™(B, A\ 0%) 1 LB\ 0?)
90?0y o2 Ot .

it 2
The score has expectation zero, i.e. F W = 0. Therefore
it

62Lit(6,)\,02) B iE(aQLit(B’ )\70.2)

= = 0.
00201 o? 00201

The linear model with individual effects is a degenerated case of model (ii) and (iii):
Yit = fge + it = TitfS + vi + Eit

where x;; can include lagged values of y;;. Two remarks about the linear model:

(i) The error term enters additively in model 1T and III and therefore the log likelihood
contribution of the s spell of individual i can be written in terms of g;;,i.e. L* (Yit — i) =
L(git). The linearity assumption, y;; = pu;; + i+ implies that all the derivatives with respect
to p can also be written as functions ;. This implies that FL,, is not a function of z; and
therefore % = EL,, = c for any density function.

(ii) If the regressors w; are exogenous then we have to deal with a somewhat strange
modelling strategy: The assumptions of the model imply that changes of y;; are modelled as
changes in x;; and, therefore, the change or differences regression should be applied without
the introduction of individual effects. As shown in section 6, the change regression a special

case of the integrated likelihood method.

Appendix 6. From A to Ao

Proof: Equation (3) in the text states that

i J Lé}eyd)‘ — () — lL,ie,\,\(j‘) ng\AA(S‘)LZ‘»\(S‘)
S Jerax T2 () 2 {14, ()P

L Op(T™ ).
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We use the Laplace and Taylor expansions given in appendix 1 in order to derive an approx-
imation whose remainder term is O(T~1!).

1 Lﬁ,\,\ 1 L,\,\,\Li A

2Ly, 2 {L,) |+ 0.

i
IJLB ::lg[ (A A)'+ QJ%QAA(A —-A)
Using the expansions of appendix 1 yields

Li(A) = Ly + (A= Xo) Ly + = ()\ AO)QL,\A,\‘F (A )\0)3L>\,\>\,\‘|‘ ()\ X0)* Lixan(A) = 0.

6
The following relations are helpful for approximating ELgI.

3 — _Lg\ _ng\)\)\{( )2 1L§\)\>\(L_§\3 _l Lg\

i 7 7 i 7 ) } ( i
L)\)\ 2 L)\)\ L)\)\ 2 L)\)\ L)\)\ 6 L)\)\

)P Lisan + Op(T72)

Gon? = (BB dhs o

L5 Ly "Ly
1 1
= — + 0,(T™%/?)
Ly ELj,
1 1 EL:, — Lk 1
' — i _|_2 i A\ i A\ -I-O(T_3) —_ —.+O(T_3)
(L4y)? (ELY,)?  Li\(BLY,)? (EL,)?
1 1
: = L O(T™).
(L4y)? (EL,)?

Using these terms in the Taylor expansion for Lgl gives the following

ELY = E[L Lf\LZ; 1 LA)\)\ ',\( Li )24+ 1( L} 2L 1 L};,\,\ 1 L,\,\,\L};,\}

- - i i i i T 5T

7 ’ Ly 2 Ly, L, 2 L, g 2 Ly, 2 {L},}?

LIy + Lfm} + L + (£3)? }L@M LB - (L3)? W AMLﬁA} Lo(T-
35 2T, T, 2 I, V)

+0(T™h

= Bl {

We complete the proof by showing that

Liy+ (L5)? L

=2 .
Lix Lia

The proof of this last statement is slightly more general then necessary so that will be helpful

for proving Lemma 2. Consider

L+ (A Hiy _ e + (E)?, L = E%M}Hog—l)

= N 7 EL
A A A A
since E[{L%, + (L)%} = 0. Using E{Lﬂ»\ ELﬂAA} =0and 77— = EL’ +Op(T73/2) gives
Ly + (L3)?, L 1 T o Ly Li (L — ELjy,) _
EH A\ A } 8 ]——E[( i )2 A A LVB B }+O(T 1).

Ly L VTOUBLY VTVT VT
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i Li,—EL:
The terms % and (_%&) have expectation zero and their asymptotic distribution is

normal with mean zero. It is trivial to show that the product of three normally distributed
stochasts with mean zero has expectation zero. Consider n ~ N(0,X) where ¥ is a 3 x 3
matrix. Write 1y as 1y = pyans+p13n3+¢c1 where €1 is uncorrelated with 77, and 73. Similarly,

Ng = pPo3fjz + €2 where €2 is uncorrelated with 73.This gives

E(mmons) = E{(p12n2 + p13n3 +€1)n2n3}
= E{(p1am2 + p13n3)m273}

= E{(p12p23ns + P1373)Pa3nanz} = 0.

Thus,

(Lz,\,\ - EL%,\,\)

VT

= m-+ Op(Tfl/Q)

L
VT

and the expectation of the product of these three terms is O(T_1/2). We use a similar proof

= N2+ Op(T_l/Q) =13+ Op(T_l/Q)

i iv2. Lt —EL!
Lemma 2 and therefore ignore the fact that 7y = 3. Thus, E[{ LA?EZ(Z-ALAA) } BA?EU;\/\ 221 s

O(T~1). Q.E.D.

Appendix 7. Lemma 2

To be shown: If ELjy =0 then E{E#&} is O(T~1).
AX . . .
Differentiating EL%A = 0 with respect to A gives EL%M-l—EL%ALg = 0. Thus, E{ﬂ%&} -

0 and

Li Lt + L° Li L: + L Li Lt + L°
BAHA BAX BTN BAX BTN BAX
E{——7——} P{—7——} - B{——7}

L Liy EL,
Y (LiaLh + L%AA)(EUA,\ - Lf\A)}
L5NELY
B (Lz,\Li\ + LEAA)(ELQ)\ — L4,)
B (BLSy)?
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. 1 1 ELi, L 1 ~3/9 . .
since g~ = g + LQ/:/\ELQ/\: = BIL + O(T3/?). This gives
E{ L}BALQ + L}i»\} _ B (L%ALg\)(ELg\A - L&A)} + B (L%M - EL}BAA)(ELg\A - L&A)}
i CIENE (BLL,)
1 T T Ly Li ELL, — L
= —F{ - : BA T\ A\ ’\’\}+O( )
VT VELL, B, VT VT VT

L i1
The terms —2 and FEaazlan) ave expectation zero and their asymptotic distribution

15 (BL3—15,)
VT VT VT
is normal with mean zero. As shown above, the product of three normally distributed

stochasts with mean zero has expectation zero. Q.FE.D.

Appendix 8. Lemma 3

To be shown: If ELj, =0 then E[{ ’“ (L’\) H (M Lo ] is O(T1).

T )2
Obviously,
Liy — (LV?,  DonLby,, LinLi (L3)2,  LhaLia 1
P ! = e P e o
Ly (L — ELY ) (L3)?,  LhwL _
py Py Sy Dy oy
L T 3Ly L} Lﬂ/\ EL,\,\,\

o AN TPA —1
N R v v, e RAC O

since Ly, and (L}, — ELY,,) are O(V/T), and % and —\/% have an asymptotic distribution

that is normal with mean zero. Q.FE.D.

Appendix 9. Theorem 3
Let assumptions 1-3 hold. Then EB — By is O (T’Q) .
Proof: The proof follows the proof of theorem 1 in appendix 2. Equation (1) in the text

states that

I Ve I T = T I
(3 po) = (28D ELs _ Lap(B) 1 L — BLs
‘ NT ' NT ' NT NT
fi f 1 I 9 LLy(B), 4 ELL. . .
It follows from Lemma 3 and 4 that 7 FELg is O (T ) Thus, E[—5=]"" 7] is O (T ) )

I (7 I I I (A I (7 I 1
Lgs(B), 1L~ ELg, _ ([Lﬂﬂ(ﬁ)]fl o Les(B), Ly —ELg
NT NT NT NT NT
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I (7 I (7 I_grl 1
where (Lgvﬁ—éﬁ)]_l - E[L%Z(FB)} 1y and LHN?L are O(1/vV NT) so that E([ ﬁ(ﬂ)] 115 N?Lﬁ)

O(1/(NT)). Assumption 3 ensures O(1/(NT)) is O(T~2) and the result follows. Q.E.D.

Appendix 10. Theorem 4

Let assumptions 1, 8 and 4 hold. Then B — By 15 Op (T’Q) .

Proof: The proof closely follows the proof of theorem 2 in appendix 3, the only difference
being that the bias, EB — By, is of a lower order. The order of the variance is still the inverse

of the number of observations. Thus.

— o= {8~ EB)} +{EB ~ Bo} = Op(1/VNT) + 0 (T"?).
Assumption 4 states that T oc N where a < % So that B — o is Op (T_Q) . Q.E.D.

Appendix 11.

To be shown

1

1
NTELM ELﬁLﬁ +0(1/VT).

By definition,
i1 z Ll
L5 = 662 erd)\
[{Li,+ LiLy Yel dX

- Y - gy

i %

A Laplace approximation gives

Liys + LLYy! el dx
Z I B?ele)\ b= Z{Lﬁﬁ +L[3( A)?2 +Op(1)}

= Z{Lﬂﬂ-&-LB 5’} 4+ Op(N) = Lgg + L3 + Op(N).

The information inequality states that E(Lgg +L?3) = 0. Therefore, (Lgg +L?3) is Op(VNT).

This yields
1

1
~7ELbs = e ELELY +0p(T7'7%).

Appendix 12.
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Using a central limit theorem and the delta method yields that / NT' (B — ) is asymptotically

normally distributed,

VNT(f = Bo) = N(0,9).
As shown in the text and appendix 11,
U= L E{LgLs'}

Q.E.D.

Appendix 13. Unit Root
To be shown: TV N(3 — ) = O,(1) if 3= 1.

. 1 5 5 B N
L'= =5 > (G = Gi1B = A "P)? where i = 41 — yo.
t

Integrating the likelihood contribution with respect to A gives the integrated likelihood con-
tribution. Note that g? e?®) does not depend on f.
. /e—%zt(ﬂt—ﬂtlﬂAe"’(ﬁ))Qd)\
_ ;b(m / o3 Snmm15-1)? gf
_ eb(m;ézxyt—ytflw /e—%{ﬁ—w(m)}df

o B =5 T (W—yt-10)°+5 (yr—ye—15)*

where we omit the subscript ¢. Differentiating with respect to 3 yields

B = 60+ - e - T
t

Ly = V@)=Y 4 +TT1
t

where b(8) = 33, LB, b(B) = £ X (T — )81, b(8)" = £ X,(T —t)(t = 1)5"2.
In particular, if 5 =1 then

1§T: T——Zt_—l.

t=1

41



Thus L%’I is Op(T) and Lé is Op(TV/N). The second derivative Lgé is 0,(T?) and Léﬂ is
O,(T%N) and the result follows.

Appendix 14. Theorem 6

To be shown

VN(B -8, — N(0,¥) where
1

U= [ B e B (L) Vi E L™

Proof: The assumption Lgyy = 0 implies that Lgy is not a function of A so that the Taylor

expansion around Ag has the following form:

- J Lgetdx E'/’{LB()\O) + (A= Xo)LgateldA
A7 [eldx [ eLdx ‘

This yields
S = Xg)eldx

ELé(ﬁo) = ELg(By, M) + ELpx(By) Tetdx

Xeld\

—v is uncorrelated with Lgy. It was assumed that the

since the posterior mean A= T
solution to EL;;(B) = 0 be unique. Thus, all the conditions for the method of moment
estimator are satisfied and consistency follows from Newey and McFadden (1994, Theorem
2.6). The variance-covariance matrix and the asymptotic normality follow from Newey and

McFadden (1994, Theorem 3.4). @.E.D. Note that condition (vii) of assumption 1 is not

neccesary for theorem 6.

Appendix 15. Mixing Distributions
The Laplace approximation in the text states that

MNIA) 1 Lin () ELZ,\(X){LZ,'\,\,\(X) + M (A}
L) 2ZL(0+Ma(y) 2 (I () + Ma (V)

Ly = Li(\)— +0,(T7Y).

By assumption, the prior and mixing distribution cannot be a function of 3. If this dependence
would not have been ruled out then the Laplace approximation would have one more term,

~

Mpg(A). This term is O(1) so that the Laplace approximation would not be the same, up to
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O,(T1), as in the previous section. Note that My is Op(1) and therefore

= T 0,0
L) + Mu(A) L (D) L(O(EL5() + Maa(A) - L
LQM(X)-HL[,\)\,\(S\) Ly, -2
{L ()‘|‘]\/[)\)\(5\)}2 - L&AQ +OP(T )
Thus,
MANLLA) 1 Lia (V) 1L, (WL () + Man (V)

oI _ i 5y -1
L = O ) T s ) 2 Ly iy o)

Appendix 16. Gamma Distribution
The density has the following form
—fiYit

f‘“yn o
fit, --yirl|e, fi) = H fore=1,...,N.

This yields,

L = Talnfi+(a_1)z yzt fzzyzt+T1nF()
t
T
Ly = Zy,t, Ly = f27 and Lfazf.

Thus, EL¢y = % # (. We can interpret f; as a function of a and the information-orthogonal

nuisance parameter \;. Equation (4) states the following differential equation.
of
EL EL;r— =0.
18+ ELf155

In this case,

T Taof _ 0
fi f2 da
ofi _ fi
O a’

A solution is f;(a, \) = aX. This implies the following log likelihood,

Li(a,)\i) =Talna+Taln )\ + (o —1) Zlnyit —a\; Zyit —TInT(a).
t t
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Differentiating with respect to a and \; gives
; T
1 . [ — .
a\; (av)‘l) - \; Et Yit,

and the parametrization is information-orthogonal,

; T
ELZO()\, (a07 >‘0,i) = )\0 - ZEtlt =0.
y? t

Appendix 17.
To be shown

a —, a for N — oo or T' — oo.

The moment function has the following expectation,

ELL, =Y Elnyy+T¢(Ta+1) - é — T(a) = TEI(Y yir)-
t t

Note that

yit ~ Gamma(a,a);) and therefore

Flngy = —ln(a) - In +v(a)
see Lancaster (1990), appendix 1. Similarly,
Zyit ~  Gamma(Ta,a);) and therefore
Elniyit = —In(a) —In\ +¢¥(Ta).
t

Thus,
E Zlnyit - ET anyit =Ty (o) — TY(T o).
t t

This gives

Brle) = EY {inga} — TE{n(Y ya)} + T6(Ta+1) = T (a)

= Ty(a0) ~ Th(Tao) ~ Tib(a) + Th(Ta +1) ~ —.
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Note that ¢(T'a + 1) = ¢(T'a) + 7= and therefore
ELL(a) = Ty(ag) —Tep(a) — T(Tag) + T(Ta)
Elga(@) = ~T¢/() + 1%/ (Ta),
which is negative, see Lancaster (1990). Thus EL.(a) = 0 is uniquely solved for a = ay.

Consistency follows from Newey and McFadden (1994, Theorem 2.6).

We concentrate the likelihood by replacing A; by its maximum likelihood estimator.

i T
L)\(a7)‘i) - N _azyil‘n'
g t

Thus
. T

L Zt Yit

Differentiating the concentrated log likelihood with respect to a gives

1
t;

Lg(a,j\i) = T+Tlna+Tln\ —|—Zlnyit — S\iZyit — Ty ()
t t

= Tha —Tanyit +T1nT+Zlnyit — Ty ().
t t

Note that
E) Inyy - ETInY yy = Ty(a) — Te(Ta),
¢ ¢
see Lancaster (1990, appendix 1). This gives
EL (a,\) =Tlha+TInT — Ty(a)
which is O(1). The second derivative has the following form,
Lia(0, ) = = = T4/ ().

Besides the incidental parameter bias, this maximum likelihood estimator also has the small
sample bias of O((NT)™1). We assume that N is increasing so that we are left with the
incidental parameter bias,

EL (o, \)

A _ DLala, A -1
Eao—a = %—T;D'(a)—i_o(T )
o Mot f%(;)”(“) is O(T1).
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Appendix 18. Neyman and Scott Example:

bl — /Qi d\; o /O’ exp{— 1(Zt(y2t 5i)* + T _QAi)Q)}d)\i-

02 o

L _7.)\2
Note that Et(y;+yz) does not depend on \; and therefore

EI o (T_Texp( Zt(ylt yl) *O’/\/_/

o/NT

Note that [ /\/_ exp{— 1Tyz—}d)\ =1 and therefore

L 0.)2
ol OCO,—(T—l)eXp( _ Zt(yth Yi) ).
o

Appendix 19.

Local Identification. Consider the derivative of the moment function Q;’,I(ﬁ) at 3=

z Lt
i e d\
Qﬂﬂ - 5 Z J eL’ d\

f {Qps + QsLy'te" dA iy iy
- T e @
A Laplace approximation and the following equation
T—1
EQ%ﬂ(ﬁ) = Z{m?tELMtﬂit - mitmi,t“‘lELHi,tHi,t} = _EQ%L%
t=1

irin Lt
imply that ), {I{L B}_I;Lfd)\}e dA} is o(NT'). This yields

exp{— (—i)Q}d)\i.

607

KiT M -

1 I 1 Ip1r
1
= —ﬁEQﬂLB, +o(1)
where we assume that T oc N where a > % Suppose ;g is a vector, then
T-1
i —1
Qzﬁ(ﬁ) = Z{wit{LlJ‘it — (ELp;ypy, i, B, )\i)(EL/vLi,t+1/~/'i,t+1|wi7t+1767)\i) L#t+1}
t=1
EQgLg = —Qbs(B)
T—1
= - {gjitx;:tELuituit - mitx;:,t+1ELHt+1Mt+1}
t=1
T—1
= — (a:itxgt — mi,t—lx;t)EL#it#it — xﬂm;lELNﬂ#n —+ LE‘Z”T_lingEL
t=2
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Thus, local identification is ensured when ﬁEQéB or the asymptotically equivalent matrix

EQgLg' is positive definite.

Global Identification.
The following Laplace approximation shows that, for identification, we only need to evaluate
Q};(ﬁ, 5\) where ) is the maximum likelihood estimate of A for given f3.
/ Qf;(ﬁa %\)eLi(B”\)d)\ — QL3N + leaA,\(ﬁa A) ng\)\)\(/Ba S\)pr\(ﬁaj\)
JeHENax CUUTRLLGBA T LGP
= Q5(8,)) + 0p(1).

Q3 () Op(T7Y)

Honoré and Hu (1999) ensure global identification by using moments that converge at a
rate slower than the inverse of root of the number of observations. These relatively slow
converging moments shrink the parameter space that needs to be considered so that only local
identification needs to be proven. One can apply the same technique here. In particular, the
maximum likelihood estimator converges at a slow rate, 3y, — 8 = Op(NT)~V/2) +O(T~1),
where assuming 1 ensures global identification. Analogue to Honoré and Hu (1999), one
can require the integrated moment estimator B to be in a shrinking neighborhood of B ML
This ensures global identification under the condition of local identification of the integrated

moment estimator and global identification of the maximum likelihood estimator.

Appendix 20. Predetermined Variables

To be shown

VNT(3 - 3,) — N(0,¥) where

~

= arg mﬂin{% (B)QE(B)}-

Information orthogonality of the moment function implies that Q%A is O,,(\/T ) and EQ}”\ +

[ @j(Bo,N)e™ oV ax
{ i eL* (B0, M) g

approximation as for the integrated likelihood. This gives

EQZ;M = 0. To evaluate the integral Qé =y

we use the same Taylor

Q5 = Qb+ 0,(1).
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Analogue to Lemma 2 and 3, information-orthogonality implies that

Q%AI& + Q};A,\

E{ - }is O(T™1) and
L)\)\

Liy, — (L3)? |, Lin @ .
Bl Sy By o),

This gives
EQ; = o),
ZB’I = Qg-l—()p(l) and
Qfa oF N
= = 10/ =)+ 0,(T7V?).
\/W \/W ( T3) p( )
Thus

T (QRQY = =(@s)(Qs) +o(1)

= HE((Qs)@s)'} + o))

Consider the derivative of the moment function le(ﬁ)

z le)\
B Z fele)\
f{Qgﬂ + QﬂLz ,}ey dA

=2 T el dx Z(%J)(

i

i7I j—
Qﬁﬂ -

A Laplace approximation and the following equation

T-1

EQ%ﬂ(ﬁ) = Z{w?tELlJ'itlJ'it - witwi7t+1EL#i,t#i,t} =
t=1

i i, L
imply that )", {I{L B}_LLZ)\}Q dA} is o(NT'). This yields

1 I 71

1
— ——EQsLs +o(1
NT QpLg +o(1)

NT
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where our assumption 17" « N® where o > % is crucial for the last step. The regularity

conditions of assumption 1 and the algebra above implies that
VNT(B = o) — N(0,)

where

1

1 el _
U = [mEQpLpl ™ [ EQsQy 5 EQsLs) -

Q.E.D.
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Figure 1: The Absolute Inconsistency of (3., 3; with 7(X\) = A, and 3; with 7(\) = 1.
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Notes

1As N — oo, using the marginal posteriors is asymptotically equivalent. Considering the
mode of the posterior, however, simplifies the algebra.

2Lancaster (2000) gives a historical overview of the incidental parameter problem and
notes that Neyman and Scott (1948) was cited 207 times in 1997 alone (science citation
index).

3 An earlier version of this paper used a Taylor expansion around Ay and than an usual
Laplace approximation in the second step. Using Kass et al. (1990) reduces the algebra
without changing any of the theorems.

4The transformation model of Abrevaya (1998) and one discrete choice model by Honoré
and Kyriazidou (2000) are not information-orthogonal. Both models require infinite support
for the regressor, can be estimated using a sign function and will be discussed in a separate
paper that deals with ‘information-orthogonality’ of sign functions.

®Equation (9) and (??) are true for any asymptotics that have T increasing; we maintain
“T"oc N* where a > %” to ensure asymptotic unbiasedness.

6In appendix 5 we derive information-orthogonal parametrizations for linear models with
more than one autoregressive term.

"independent of 3.

8For this reason, Lancaster (2000) calls it a ‘semiparametric model’.
9In fact, even exactly orthogonal in the sense that Lgy = 0.

10Cox and Reid (1987), equation 10.

"Equation (4) in our notation with N = 1.

12This moment function is mentioned by Anderson and Hsiao (1981), Griliches and Haus-
man (1986), Holtz-Eakin, Newey, and Rosen (1988), and Arellano and Bond (1991) amongst
others.
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