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Optimal mechanism for selling two goods∗

Gregory Pavlov†

University of Western Ontario

February 15, 2010

Abstract

We solve for the optimal mechanism for selling two goods when the buyer’s demand charac-

teristics are unobservable. In the case of substitutable goods, the seller has an incentive to offer

lotteries over goods in order to charge the buyers with large differences in the valuations a higher

price for obtaining their desired good with certainty. However, the seller also has a countervailing

incentive to make the allocation of the goods among the participating buyers more efficient in

order to increase the overall demand. In the case when the buyer can consume both goods, the

seller has an incentive to underprovide one of the goods in order to charge the buyers with large

valuations a higher price for the bundle of both goods. As in the case of substitutable goods,

the seller also has a countervailing incentive to lower the price of the bundle in order to increase

the overall demand.

JEL classification: C78; D42; D82; L11

Keywords: Multidimensional screening; Price discrimination; Optimal selling strategies;

Mechanism design

1 Introduction

In this paper we solve for the optimal strategy for selling two heterogeneous goods when the buyer’s

demand characteristics are unobservable. While it is well known that the optimal strategy for

selling a single good is to post a ‘take-it-or-leave-it’ price (Riley and Zeckhauser (1983)), solving

for the case of several goods proved to be much harder because of a multidimensional nature of the

problem.1 The main insights into economics of multiproduct price discrimination are the following:

(i) the seller generally benefits from excluding a subset of the buyer’s types from purchasing any

goods (Armstrong (1996)); (ii) the seller generally benefits from offering bundles of goods at a

discount in addition to the individually priced goods (Adams and Yellen (1976), McAfee, McMillan

∗This paper incorporates parts of unpublished working paper titled “Optimal mechanism for selling substitutes.”
I thank Asher Wolinsky, Eddie Dekel, Jeff Ely, Maria Goltsman, Alejandro Manelli, Preston McAfee, Jean-Charles
Rochet, Peter Streufert, Charles Zheng, as well as seminar participants at Boston University, University of British
Columbia and CEA (Montreal, 2006). All mistakes are mine.

†Department of Economics, Social Science Centre, University of Western Ontario, London, Ontario, N6A 5C2,
Canada. E-mail: gpavlov@uwo.ca. Web page: http://www.ssc.uwo.ca/economics/faculty/pavlov/.

1See Rochet and Stole (2003) for a survey of recent literature.
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and Whinston (1989)); (iii) unlike in the case of a single good, the seller often benefits from using

lotteries as a part of the optimal selling mechanism (Thanassoulis (2004), Manelli and Vincent

(2006, 2007)).

We consider two different settings: the case of substitutable goods and the case of indivisible

goods. In the case of substitutable goods, the buyer can consume only a single unit of a good, and

thus it is never optimal to give the buyer a bundle of two goods. The optimal mechanism in this

case is a result of the interplay between the optimal use of stochastic contracts and the incentive

to exclude some buyers. In the case of indivisible goods, the buyer can consume both goods, and

the optimal mechanism is a result of the interplay between all three tools of multiproduct price

discrimination: exclusion, bundling and stochastic contracts.

The starting point of our analysis of the model of substitutable goods is the result in Pavlov

(2010) that says that there is no loss for the seller in optimizing over mechanisms where the buyer

either gets a good for sure, or gets no good.2 In the former case, however, the seller may find it

optimal to provide lotteries that determine whether the buyer receives the first good or the second

good. Thus each buyer who decides not to choose the null option, is guaranteed to get at least

the less desirable good of the two available. The willingness to pay for getting the more desirable

good is the difference in the buyer’s valuations between the two goods, which becomes a natural

screening variable in the seller’s problem. Note that it is efficient to assign to each type of the buyer

his most preferred good with certainty. However, the seller is inclined to assign lotteries to the

buyers with small differences in the valuations in order to charge the buyers with large differences

in the valuations a higher price for the option to get their most preferred good with certainty. This

is not the end of the story though, because the offered menu of options determines the size and

the shape of the exclusion region. Other things being equal, the share of the participating types is

larger if the buyer receives his most preferred good with certainty rather than some lottery. Hence

the seller’s incentive to use lotteries in order to extract extra payments from the buyer’s types with

high differences in the valuations comes into conflict with an incentive to make the allocation more

efficient in order to expand the share of participating types. We explicitly calculate the optimal

selling mechanism when the buyer’s types are uniformly distributed on a square, and discuss how

the seller’s conflicting incentives are resolved depending on the support of the distribution.

In the model of indivisible goods the seller can optimize over mechanisms in which the buyer

either gets no goods, or gets the more preferred good for sure and the less preferred good with

some probability (Pavlov (2010)). Therefore the probability of assigning the less preferred good

becomes a natural screening variable among the participating buyer’s types. Note that it is efficient

to assign the bundle of both goods to each type of the buyer who chooses to participate. However,

the seller is inclined to reduce the assignment of the less preferred good for some of the buyer’s

types in order to charge a higher price for the bundle. As in the model of substitutable goods, the

seller’s desire to price discriminate is mitigated by an incentive to improve the overall efficiency

of the allocation by offering just the bundle of two goods at a reduced price in order to raise the

2This property can be viewed as a natural extension of the ‘no-haggling’ result of Riley and Zeckhauser (1983) to
the case of multiple goods.
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overall demand. We explicitly calculate the optimal selling mechanism when the buyer’s types are

uniformly distributed on a square, and discuss how the seller’s conflicting incentives are resolved

depending on the parameters.

The rest of the paper is organized as follows. The model is presented in Section 2. The analyses of

the case of substitutable goods and the case of indivisible goods are in Section 3 and 4, respectively.

Conclusion is in Section 5. Long proofs and calculations for examples are in the Appendix.

2 Model

There is one buyer and one seller, who owns two indivisible goods.3 The buyer values good i at θi

which is known only to him. A pair of valuations θ = (θ1, θ2) is distributed according to an almost

everywhere positive bounded differentiable density f on the support Θ =
[
θ1, θ1

]
×
[
θ2, θ2

]
⊂ R2+.

This distribution is common knowledge.

All players have linear utilities. The buyer’s utility is θ1p1 + θ2p2 − T , where p = (p1, p2) is the
vector of allocations of each of the goods and T is his payment to the seller. The seller’s utility is

T .

We study the following two scenarios:

1. Substitutable goods (Thanassoulis (2004), Balestrieri and Leao (2008)). The buyer can con-

sume just one unit of any good. In this case pi is the probability that the buyer consumes

good i, and the feasible set is Σ =
{
p ∈ R2+ | p1 + p2 ≤ 1

}
.4

2. Indivisible goods (McAfee and McMillan (1988), McAfee, McMillan and Whinston (1989),

Manelli and Vincent (2006, 2007)). All goods are desirable from the point of view of the

buyer. In this case pi is the probability that the buyer gets good i, and the feasible set is

Σ =
{
p ∈ R2+ | 0 ≤ p1, p2 ≤ 1

}
.

By the revelation principle we can without loss of generality assume that the seller offers a direct

mechanism, which consists of a set Θ of type reports, an allocation rule p : Θ→ Σ, and a payment

rule T : Θ→ R.5 The seller’s problem is stated below.

Program I : max
(p,T )

E [T (θ)] subject to

Feasibility: p (θ) ∈ Σ for every θ ∈ Θ;
Incentive Compatibility: θ1p1 (θ) + θ2p2 (θ)− T (θ) ≥ θ1p1

(
θ′
)
+ θ2p2

(
θ′
)
− T

(
θ′
)
for every θ, θ′ ∈ Θ;

Individual Rationality: θ1p1 (θ) + θ2p2 (θ)− T (θ) ≥ 0 for every θ ∈ Θ.
3Throughout the paper we use masculine pronouns for the buyer and feminine pronouns for the seller.
4Note that the seller never benefits from assigning to the buyer a bundle of two goods, because then the buyer

would consume only the good that he values most. Thus we can denote by pi the probability that good i (and only
good i) is assigned to the buyer.

5The seller never benefits from randomized payments because the payoffs are linear in money. Thus there is no
loss of generality in restricting attention to deterministic payment rules.
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We call a mechanism (p, T ) admissible if it satisfies the above constraints. Denote the equilibrium

utility of the buyer of type θ by U (θ) = θ1p1 (θ) + θ2p2 (θ)− T (θ).
We require the distribution to satisfy a version of a ‘hazard rate condition’ which is standard in

the multidimensional mechanism design literature.6

Condition 1 The density f satisfies

3f (θ1, θ2) + θ1
∂f (θ1, θ2)

∂θ1
+ θ2

∂f (θ1, θ2)

∂θ2
≥ 0.

3 Substitutable goods

3.1 Reformulation of the seller’s problem

First, we simplify the seller’s problem in the case of substitutable goods using the following result.

Proposition 1 Under Condition 1 there is no loss for the seller in optimizing over mechanisms

that for every θ ∈ Θ satisfy:

p1 (θ) + p2 (θ) ∈ {0, 1} .

Proof. See Proposition 2 in Pavlov (2010).7

This result states in the optimal mechanism the buyer either gets a good for sure (p1 + p2 = 1),

or gets no good (p1 + p2 = 0). One can view this result as an extension of the ‘no-haggling’ result

of Riley and Zeckhauser (1983). For the case of one good they have shown that the seller’s optimal

mechanism, when dealing with a risk-neutral buyer, is to quote a single ‘take-it-or-leave-it’ price;

so that the buyer either gets the good for sure, or gets no good. Note that Proposition 1 does

not rule out lotteries over goods as a part of the optimal mechanism, since there is no restriction

p1, p2 ∈ {0, 1}. As will be shown in the next section, the seller often finds it optimal to offer lotteries

as a part of the optimal mechanism.

Consider the buyer of type (θ1, θ2) and suppose θ1 ≥ θ2. If he chooses to purchase some non-null

allocation (p1, p2) at a price T then his utility is

θ1p1 + θ2p2 − T = (θ1 − θ2) p1 + θ2 − T

where the equality is due to p1 + p2 = 1. Thus the buyer is guaranteed to get at least the value of

the less preferred good (θ2), and his willingness to pay for a higher probability of the more preferred

good (p1) depends just on the difference in the valuations (θ1− θ2). Moreover, note that any buyer

of type
(
θ̃1, θ̃2

)
, such that θ̃1 − θ̃2 = θ1 − θ2, will choose the same contract as type (θ1, θ2) if θ̃2

6The condition for the case of n goods says that the density f satisfies

(n+ 1) f (θ) + θ · ∇f (θ) ≥ 0 for every θ ∈ Θ,

where ∇f is the gradient of f . See for example McAfee and McMillan (1988), Manelli and Vincent (2006).
7Balestrieri and Leao (2008) also provide this property for the case of two substitutable goods. In their model,

however, the buyer’s private information is one-dimensional.
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is sufficiently high (unless there exists another contract which gives him the same payoff), and will

choose the null allocation (0, 0) at zero price if θ̃2 is low enough.

Hence it is natural to conjecture that there is no loss for the seller in optimizing over the set of

mechanisms in which the screening is performed only on the differences in the valuations conditional

on participation. The next proposition shows that this is indeed the case.8

Denote the difference in the valuations by δ = θ1 − θ2. The set of possible differences in the

valuations is the interval
[
δ, δ
]
=
[
θ1 − θ2, θ1 − θ2

]
. Assume the seller offers a mechanism which

consists of a set of messages M =
[
δ, δ
]
∪ {∅}, an allocation rule α :

[
δ, δ
]
→ [0, 1], and a payment

rule t :
[
δ, δ
]
→ R. The set of messages includes all possible differences in the valuations, and a

special message ∅ that indicates that the buyer is not willing to participate and thus receives the

null allocation and no payment. The allocation rule α associates with each message report (other

than ∅) an allocation, α (δ) and 1− α (δ) being the probabilities that the buyer is assigned good 1

and 2, respectively, when the message is δ. The payment rule t associates with each message report

(other than ∅) a payment, t (δ) being the payment that the buyer pays when the message is δ. The

seller’s problem is stated below.

Program II : max
(α,t)

E [t (δ)] subject to

Feasibility: α (δ) ∈ [0, 1] for every δ ∈ [0, 1] ;
Incentive Compatibility: δα (δ)− t (δ) ≥ δα

(
δ′
)
− t

(
δ′
)
for every δ, δ′ ∈

[
δ, δ
]
.

Note that every such mechanism is individually rational, because message ∅ gives each type of the

buyer zero utility.

Proposition 2 Suppose mechanism (α, t) solves Program II. Then there exists mechanism (p, T )

that is outcome equivalent to mechanism (α, t) and solves Program I.

Let u (δ) = δα (δ) − t (δ). The payoff of the buyer of type (θ1, θ2) with a difference in the

valuation δ is u (δ) + θ2 if he chooses to participate, and is 0 if he chooses message ∅. Each type

of the buyer participates only if the payoff from participation is nonnegative. The profit from the

buyer of type θ is t (δ) = δα (δ)−u (δ) whenever u (δ) + θ2 ≥ 0, and 0 otherwise. Let us denote the

measure of the participating types for a given δ by

g (u (δ) , δ) =
∫
θ: θ1−θ2=δ,
u(δ)+θ2≥0

f (θ)dθ.

This allows us to rewrite the seller’s problem:

Lemma 1 Program II is equivalent to Program II’.

8The proof of this result is similar to the proof of a similar property in Gruyer (2005).
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Program II′: max
(α,u)

δ∫
δ

(δα (δ)− u (δ)) g (u (δ) , δ) dδ subject to

F : α (δ) ∈ [0, 1] for every δ ∈
[
δ, δ
]
;

IC : (i) α is nondecreasing; (ii) u (δ) = u (0) +
∫ δ
0 α
(
δ̃
)
dδ̃ for every δ ∈

[
δ, δ
]
.

Proof. Note that

E [t (δ)] =
δ∫
δ

(δα (δ)− u (δ)) g (u (δ) , δ)dδ.

Using a standard argument, it is possible to show that the set of incentive compatibility constraints

in Program II is equivalent to IC constraints in Program II’.9

The problem of the seller can be further simplified when the distribution of the valuations is

symmetric.

Lemma 2 Suppose the distribution (Θ, f) is symmetric, i.e. (i)
[
θ1, θ1

]
=
[
θ2, θ2

]
=
[
θ, θ
]
; (ii)

f (θ1, θ2) = f (θ2, θ1) for every (θ1, θ2). Then Program II is equivalent to Program II”.

Program II′′: max
(α,u)

δ∫
0

(δα (δ)− u (δ)) g (u (δ) , δ)dδ subject to

F : α (δ) ∈
[
1

2
, 1

]
for every δ ∈

[
0, δ
]
;

IC : (i) α is nondecreasing; (ii) u (δ) = u (0) +
∫ δ
0 α
(
δ̃
)
dδ̃ for every δ ∈

[
0, δ
]
.

Proof. In a symmetric environment there is no loss of generality in restricting attention to

symmetric mechanisms.10 In symmetric mechanisms we have α (δ) = 1−α (−δ) for every δ ∈
[
0, δ
]
.

Since α is nondecreasing, we must have α (δ) = 1− α (−δ) ≥ 1− α (δ), which implies α (δ) ≥ 1
2 for

every δ ∈
[
0, δ
]
.

For the rest of the paper we restrict attention to the symmetric case.

3.2 Properties of the optimal mechanism

In this section we discuss the properties of the solution to the seller’s problem. In the Appendix

we formulate Program II” as an optimal control problem and provide the necessary conditions for

optimality.11

A non-standard feature of Program II” is that for every δ the measure of participating types

g (u (δ) , δ) depends on u (δ), and thus on the mechanism offered by the seller. To fix ideas, let us

9See for example Myerson (1981).
10See for example Section 1 in Maskin and Riley (1984).
11The proofs of sufficiency of the necessary conditions and uniqueness of the solution are availble in the earlier

version of this paper (Pavlov (2006)).
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first consider a simpler problem, where the measure of participating types is given by h (δ) which

is independent of u. In this case, the marginal contribution of allocation α (δ) to the profit is given

by W (δ) = δh (δ)−
∫ δ
δ
h
(
δ̃
)
dδ̃. This expression illustrates the standard ‘rent extraction effect’: if

we increase α (δ), then we can charge type δ a higher price, but we will also have to leave higher

informational rents to all types above δ.12

Note that W (0) < 0 ≤W
(
δ
)
. If the marginal profit function W is continuous and crosses zero

from below only once, then it is optimal to assign the lowest possible allocation (here α = 1
2) to

the types below the crossing point and the highest possible allocation (α = 1) to the types above

the crossing point. If W crosses zero from below more than once, then one has to use the ‘ironing

technique’.13 In any case the optimal allocation α is determined by the exogenously given marginal

profit function W .

In Program II” the marginal contribution of allocation α (δ) to the profit is as follows:14

V (δ) = δg (u (δ) , δ)−
δ∫
δ

g
(
u
(
δ̃
)
, δ̃
)
dδ̃

︸ ︷︷ ︸
+

rent extraction effect

δ∫
δ

(
δ̃α
(
δ̃
)
− u

(
δ̃
)) ∂

∂u
g
(
u
(
δ̃
)
, δ̃
)
dδ̃

︸ ︷︷ ︸
participation effect

(1)

The first collection of terms is the ‘rent extraction effect’ illustrated above. The last term is the

effect on the profit of the allocation at δ through the participation decisions of the types above δ.

Increasing α (δ) raises the informational rents for all types δ̃ ≥ δ, and thus increases the measure of

the participating types by ∂
∂u
g
(
u
(
δ̃
)
, δ̃
)
. Every new participant of type δ̃ brings an extra profit of

δ̃α
(
δ̃
)
− u

(
δ̃
)
. Hence, unlike W , the marginal profit V endogenously depends on the mechanism

offered by the seller, and this complicates the problem.15

The solution retains some similarity to the solution to the simple problem without participation

effects. The seller might find it optimal to assign an inefficient allocation α (δ) < 1 to a given type

δ in order to reduce the informational rents to all types above δ. This concern is (nearly) absent

when δ is close to δ, and thus it is optimal to assign efficient allocations to such types. Since the

12The marginal contribution of allocation α (δ) to the profit is often presented in a different way:

W (δ) =


δ −

∫
δ

δ
h
(
δ̃
)
dδ̃

h (δ)


h (δ)

where the expression in the brackets is called the ‘virtual valuation’. See for example Myerson (1981), Riley and
Zeckhauser (1983).

13The optimality conditions in this case are roughly as follows. The marginal profit functionW must cross zero from
below at every point where α changes its value. If on a given interval (δ1, δ2) we have α = 1

2
then

∫
δ2

δ1
W (δ) dδ ≤ 0,

if α ∈
(
1

2
, 1
)
then

∫
δ2

δ1
W (δ) dδ = 0, and if α = 1 then

∫
δ2

δ1
W (δ) dδ ≥ 0. See for example Myerson (1981), Riley and

Zeckhauser (1983), Guesnerie and Laffont (1984).
14For details see equation (8) in the Appendix.
15 Incidentally, the mathematical structure of the resulting problem is very similar to the model of Rochet and

Stole (2002), who study the problem of nonlinear pricing when the buyers have heterogeneous outside options. The
main difference is that their model has quadratic costs. The solutions to these two models are qualitatively different:
in Rochet and Stole (2002) the optimal allocation is (for the most part) separating, while in our model there is a
significant amount of pooling.
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‘participation effect’ is always nonnegative, it can only reinforce the incentive to have ‘no distortion

at the top’.

Proposition 3 In the optimal mechanism there exists δ∗ ∈
[
0, δ
)
such that α (δ) = 1 for every

δ ∈
(
δ∗, δ

]
.

Riley and Zeckhauser (1983) have shown that in the problem without participation effects the

optimal allocation always takes a simple two-step form: there exists δ∗ ∈
[
0, δ
)
such that all types

below δ∗ get the lowest possible allocation (here α = 1
2) and all types above δ∗ get the highest

possible allocation (α = 1). In our problem the seller sometimes strictly benefits from assigning

interior allocations α ∈
(
1
2 , 1
)
to a subset of types.

Example 1 Let the distribution of the valuations be uniform on Θ = [c, c+ 1]2 where c ≥ 0. The

optimal mechanism is as follows.

(i) When c ∈ [0, 1]:

(α (δ) , t (δ)) =

(
1,
2

3
c+

1

3

√
c2 + 3

)
for every δ ∈ [0, 1]

(ii) When c ∈ (1, c) (where c ≈ 1.372):

(α (δ) , t (δ)) =

{ (
27
32 +

(
9
32 − 1

4c
)√
16c+ 9, 1

3c+
3
8 +

1
8

√
16c+ 9

)
(
1, 1

3c+
41
96 +

(
1
12c+

1
32

)√
16c+ 9

) if

if

δ ∈
[
0, 13

)

δ ∈
(
1
3 , 1
]

(iii) When c ∈ [c,+∞):

(α (δ) , t (δ)) =





(
1
2 ,

2
3c+

1
3

√
c2 + 3

2

)

(
1, 1

6 +
2
3c+

1
3

√
c2 + 3

2

) if

if

δ ∈
[
0, 13

)

δ ∈
(
1
3 , 1
]

When c is small, it is optimal to offer the buyer an option to purchase any good he likes at

a given price (see Figure 1). The reason why the seller does not gain from offering lotteries is as

follows. First, note that it is not too costly to exclude buyers since c is small, and by doing so

the seller can raise the prices across the board on all options she plans to offer. Second, since the

size of the exclusion region is relatively large, the seller can attract many new buyer’s types by

offering them efficient allocation rather than lotteries. In other words, the ‘participation effect’,

which pushes towards a more efficient allocation, dominates the ‘rent extraction effect’.

When c is large, it is optimal to offer a fair lottery
(
1
2 ,
1
2

)
over the goods (at a discount), in

addition to the option of purchasing any good at a given price (see Figure 2). The exclusion region

in this case is relatively small because all the buyer’s types can be charged a high price. There is

little to be gained by making the allocation more efficient, since not so many of the buyer’s types

were left out. Hence the ‘participation effect’ is dominated in this case by the ‘rent extraction

8



C C+1
1
θ

2
θ

(1,0)

(0,1)

(0,0)

C

C+1

Figure 1: Optimal allocation in Example 1 when c ∈ [0, 1].

C C+1
1
θ

2
θ

(1,0)

(0,1)

(0,0)

C

C+1

(½,½)

Figure 2: Optimal allocation in Example 1 when c ∈ [c,+∞).
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C C+1
1
θ

2
θ

(1,0)

(0,1)

(0,0)

C

C+1

(a,1-a)

(1-a,a)

Figure 3: Optimal allocation in Example 1 when c ∈ (1, c).

effect’, which pushes towards offering an inefficient allocation (a fair lottery) to the buyers with

small difference in the valuations in order to charge the other buyers a higher price for the option

to get their preferred good for sure.

When c is in the intermediate range, it is optimal to offer biased lotteries (α, 1− α) and (1− α, α)
over the goods (at a discount), in addition to the option of purchasing any good for sure at a given

price (see Figure 3). Neither the ‘participation effect’, nor the ‘rent extraction effect’ is strong

enough to dominate, and the form of the optimal mechanism is the result of a trade-off between

them.

The optimal menus are remarkably simple in a sense of containing a very few point contracts.

The technical reason for this is roughly as follows. The seller’s optimal control problem is of a

‘bang-bang’ nature in α. A number of pooling regions for α emerge due to the presence of the

monotonicity constraint, but there are only very few such regions. We conjecture that generically

the optimal menus are simple in this sense.16,17

16 If allocation α is strictly increasing on an interval, then by Lemma 4 in the Appendix the marginal profit function
V must be equal to zero throughout this interval. Differentiating V with respect to δ we get the condition:

·

V (δ) = g (u (δ) , δ) + δα (δ)

(
∂

∂u
g (u (δ) , δ)

)
+ δ

(
∂

∂δ
g (u (δ) , δ)

)

+g (u (δ) , δ)− (δα (δ)− u (δ))

(
∂

∂u
g (u (δ) , δ) dδ

)

= 2g (u (δ) , δ) + δ

(
∂

∂δ
g (u (δ) , δ)

)
+ u (δ)

(
∂

∂u
g (u (δ) , δ)

)
= 0

This expression depends just on the rent schedule u and the exogenously given distribution of valuations. Intuitively,
it takes a quite special distribution to make this condition hold on a nondegenerate interval. For more discussion of
this issue see the earlier version of this paper (Pavlov (2006)).

17Balestrieri and Leao (2008) show that the seller sometimes finds it optimal offer a menu which contains continuum
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Figure 4: Profit comparison in Example 1: optimal vs the best deterministic mechanism.

It is interesting to compare the expected profits from the fully optimal mechanism and the best

deterministic mechanism, which makes no use of the lotteries. It is possible to show that the relative

gain from using a fully optimal mechanism is at most about 1.2% (see Figure 4).18 The next example

demonstrates that there are situations when deterministic mechanisms perform much worse than

the fully optimal mechanisms that use lotteries. This example is with a discrete distribution, but

it is possible to construct a similar example with a continuous distribution.19

Example 2 There are three types: (1, 0), (0, 1), and
(
1
2 ,
1
2

)
, with probabilities 1

4 ,
1
4 and 1

2 , respec-

tively. In the optimal mechanism type (1, 0) gets the first good at a price 1, type (0, 1) gets the second

good at a price 1, and type
(
1
2 ,
1
2

)
at a price 1

2 gets a lottery that delivers a good with certainty,

with probability 1
2 it is the first good and with probability 1

2 it is the second good. To see that this

mechanism is optimal note that the allocation is efficient, payoff of each type of the buyer is zero,

and no type wants to deviate. Hence the seller captures the whole efficient surplus (34) and cannot

do any better.

The best deterministic mechanism is a ‘take-it-or-leave-it’ price T̂ at which the buyer can get

the good he likes best. Any price other than 1
2 or 1 is obviously dominated. Both T̂ = 1

2 and T̂ = 1

result in the profit of 12 . Hence the relative gain in the expected profit from using the fully optimal

mechanism rather than the best deterministic mechanism is 50%.20,21

of lotteries. We conjecture that this result is due to the fact that in their model the buyer’s private information is
one-dimensional.

18See Appendix for the formulas of the expected profits.
19For more discussion of this issue see the earlier version of this paper (Pavlov (2006)).
20Thanassoulis (2004) also argues in favor of using stochastic contracts, but he only provides an example where the

gain in profit is 8%.
21This example is similar in spirit to the examples in Adams and Yellen (1976), which are used to demonstrate the

superiority of mixed bundling menus over the individual pricing of the goods.

11



4 Indivisible goods

4.1 Reformulation of the seller’s problem

First, we simplify the seller’s problem in the case of indivisible goods using the following result.

Proposition 4 Under Condition 1 there is no loss for the seller in optimizing over mechanisms

that for every θ ∈ Θ satisfy:

If (p1 (θ) , p2 (θ)) �= (0, 0) then pi (θ) = 1 for some i = 1, 2.

Proof. See Proposition 2 in Pavlov (2010).

When the distribution of the valuations is symmetric, we get additional restrictions on the set

of potentially optimal mechanisms.

Corollary 1 Suppose the distribution (Θ, f) is symmetric, i.e. (i)
[
θ1, θ1

]
=
[
θ2, θ2

]
=
[
θ, θ
]
; (ii)

f (θ1, θ2) = f (θ2, θ1) for every (θ1, θ2). There is no loss for the seller in optimizing over mechanisms

that for every θ ∈ Θ satisfy:

If (p1 (θ) , p2 (θ)) �= (0, 0) and θi > θj then pi (θ) = 1.

Proof. In a symmetric environment there is no loss of generality in restricting attention to

symmetric mechanisms.22 Note that in symmetric mechanisms we have p2 (θ2, θ1) = p1 (θ1, θ2),

p1 (θ2, θ1) = p2 (θ1, θ2), T (θ2, θ1) = T (θ1, θ2).

Incentive compatibility for type (θ1, θ2) requires

θ1p1 (θ1, θ2) + θ2p2 (θ1, θ2)− T (θ1, θ2) ≥ θ1p1 (θ2, θ1) + θ2p2 (θ2, θ1)− T (θ2, θ1)
= θ1p2 (θ1, θ2) + θ2p1 (θ1, θ2)− T (θ1, θ2)

which implies

(θ1 − θ2) (p1 (θ1, θ2)− p2 (θ1, θ2)) ≥ 0.

Hence, if (p1 (θ) , p2 (θ)) �= (0, 0) and θ1 > θ2, then by Proposition 4 we must have p1 (θ) = 1.

Since the optimal mechanism is symmetric, we can solve just for the case θ1 ≥ θ2. If the buyer

of type (θ1, θ2) chooses to purchase some non-null allocation (p1, p2) at the price T , then his utility

is θ1 + θ2p2 − T . Thus the buyer is guaranteed to get at least the value of his most preferred good

(θ1), and his willingness to pay for a higher probability of the less preferred good (p2) depends just

on the valuation of the second good (θ2). Moreover, note that any buyer of type
(
θ̃1, θ2

)
, such that

θ̃1 ≥ θ2, will choose the same contract as type (θ1, θ2) if θ̃1 is sufficiently high (unless there exists

another contract which gives him the same payoff), and will choose the null allocation (0, 0) at zero

price if θ̃1 is low enough.

22See for example Section 1 in Maskin and Riley (1984).
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As in the case of substitutable goods, it is natural to conjecture that there is no loss for the

seller in optimizing over a smaller set of mechanisms in which the screening is performed only on

valuation for the less preferred good (θ2) conditional on participation.

Assume the seller offers a mechanism which consists of a set of messages M =
[
θ2, θ2

]
∪ {∅},

an allocation rule β :
[
θ2, θ2

]
→ [0, 1], and a payment rule t :

[
θ2, θ2

]
→ R. The set of messages

includes all possible valuations for the second good, and a special message ∅ that indicates that

the buyer is not willing to participate and thus receives the null allocation and no payment. The

allocation rule β associates with each message report (other than ∅) an allocation, 1 and β (θ2)

being the probabilities that the buyer is assigned good 1 and 2, respectively, when the message

is θ2. The payment rule t associates with each message report θ2 a payment t (θ2). The seller’s

problem is stated below.

Program III : max
(β,t)

E [t (δ)] subject to

Feasibility: β (θ2) ∈ [0, 1] for every θ2 ∈
[
θ2, θ2

]
;

Incentive Compatibility: θ2β (θ2)− t (θ2) ≥ θ2β
(
θ′2
)
− t

(
θ′2
)
for every θ2, θ

′
2 ∈

[
θ2, θ2

]
.

Proposition 5 Suppose mechanism (β, t) solves Program III. Then there exists mechanism (p, T )

that is outcome equivalent to mechanism (β, t) and solves Program I.

Let u (θ2) = θ2β (θ2) − t (θ2). The payoff of the buyer of type (θ1, θ2) is u (θ2) + θ1 if he

chooses to participate, and is 0 if he chooses message ∅. Each type of the buyer participates

only if the payoff from participation is nonnegative. The profit from the buyer of type (θ1, θ2) is

t (θ2) = θ2β (θ2)− u (θ2) whenever u (θ2) + θ1 ≥ 0, and 0 otherwise. Let us denote the measure of

the participating types for a given θ2 by

g (u (θ2) , θ2) =
∫
u(θ2)+θ1≥0,

θ1≥θ2

f (θ1, θ2)dθ1.

This allows us to rewrite the seller’s problem:

Lemma 3 Program III’ is equivalent to Program III.

Program III′: max
(β,u)

θ2∫
θ
2

(θ2β (θ2)− u (θ2)) g (u (θ2) , θ2)dθ2 subject to

F : β (θ2) ∈ [0, 1] for every θ2 ∈
[
θ2, θ2

]
;

IC : (i) β is nondecreasing; (ii) u (θ2) = u (θ2) +
∫ θ2
θ
2

β
(
θ̃2

)
dθ̃2 for every θ2 ∈

[
θ2, θ2

]
.

Proof. Note that

E [t (δ)] =
θ2∫
θ
2

(θ2β (θ2)− u (θ2)) g (u (θ2) , θ2)dθ2.

13



Using a standard argument it is possible to show that the set of incentive compatibility constraints

in Program III is equivalent to IC constraints in Program III’.23

4.2 Properties of the optimal mechanism

As in the case of substitutable goods it is possible to set up the seller’s problem given by Program

III’ as an optimal control problem and obtain the necessary conditions for optimality. Formally

Program III’ is very similar to Program II”, and thus we omit the technical details and just focus

on the intuition and the results.

The marginal contribution of allocation β (θ2) to the profit is as follows

V (θ2) = θ2g (u (θ2) , θ2)−
θ2∫
θ2

g
(
u
(
θ̃2

)
, θ̃2

)
dθ̃2

︸ ︷︷ ︸
+

rent extraction effect

θ2∫
θ2

(
θ̃2β

(
θ̃2

)
− u

(
θ̃2

)) ∂

∂u
g
(
u
(
θ̃2

)
, θ̃2

)
dθ̃2

︸ ︷︷ ︸
participation effect

(2)

As in the case of substitutable goods there is the ‘rent extraction effect’ and the ‘participation

effect’. The first effect is slightly different in this case: the lower bound of the support of θ2 is

θ2 ≥ 0, while the lower bound of the support of δ is 0, and thus there is less incentive to assign

inefficient allocations (especially when θ2 is high).

As in the case of substitutable goods it is possible to show that there is ‘no distortion at the top’,

i.e. β = 1 when θ2 is sufficiently high.24 Also the seller sometimes benefits from offering lotteries

as is demonstrated by the next example.

Example 3 Let the distribution of the valuations be uniform on Θ = [c, c+ 1]2 where c ≥ 0. The

optimal mechanism is as follows.

(i) When c = 0:

(β (θ2) , t (θ2)) =

{ (
0, 2

3

)
(
1, 4

3 − 1
3

√
2
) if

if

θ2 ∈
[
0, 23 − 1

3

√
2
)

θ2 ∈
(
2
3 − 1

3

√
2, 1
]

(ii) When c ∈ (0, c) (where c ≈ 0.077):

(β (θ2) , t (θ2)) =

{ (
β̃ (c) , T (c)

)

(
1, T (c)

)
if

if

θ2 ∈ [c, c+ ỹ (c))
θ2 ∈ (c+ ỹ (c) , c+ 1]

where β̃ is increasing in c, β̃ (0) = 0 and β̃ (c) = 1.

(iii) When c ∈ [c,+∞):

(β (θ2) , t (θ2)) =

(
1,
4

3
c+

2

3

√
c2 +

3

2

)
for every θ2 ∈ [c, c+ 1]

23See for example Myerson (1981).
24This result was also derived in Manelli and Vincent (2007) using a different technique.
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Figure 5: Optimal allocation in Example 3 when c = 0.

When c = 0, the optimal mechanism is deterministic: the buyer can either get any one good at

the price 2
3 , or get the bundle of two goods at the price 4

3 − 1
3

√
2 ≈ 0.862 (see Figure 5).25 As long

as c is slightly above zero, the optimal mechanism is stochastic: the buyer can either get any one

good for sure and the second good with probability β at a price T , or get the bundle of the two

goods at a higher price T (see Figure 6). When c is sufficiently above zero, the optimal mechanism

again becomes deterministic: the buyer is only offered the bundle of the two goods (see Figure 7).

As discussed above, this is possibly due to the fact that both the ‘rent extraction effect’ and the

‘participation effect’ push towards efficient allocations when c is sufficiently high.

As in the case of substitutable goods, the optimal menus are very simple, and we conjecture that

this must be true generically.26 The relative profit gain from using fully optimal mechanism rather

than the best deterministic mechanism in this example is very small: about 0.13% (see Figure 8).27

5 Conclusion

We have solved for the optimal mechanism for selling two goods when the buyer’s demand char-

acteristics are unobservable. In the case of substitutable goods, the seller has an incentive to offer

lotteries over goods in order to charge the buyers with large differences in the valuations a higher

price for obtaining their desired good with certainty. However, the seller also has a countervailing

25Manelli and Vincent (2006) give conditions for the optimality of deterministic mechanisms under the assumption
that the lower bound of the support of the valuations is zero. Their results imply that the optimal mechanism is
deterministic when c = 0, but they say nothing about the case c > 0.

26Manelli and Vincent (2007) prove that the set of potentially optimal mechanisms is very large and includes
mechanisms with complicated menus. Since their proof is not constructive, it is hard to assess what kind of irregular
distributions are needed to rationalize those mechanisms.

27See Appendix for the formulas of the expected profits.
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Figure 7: Optimal allocation in Example 3 when c ∈ [c,+∞).
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Figure 8: Profit comparison in Example 3: optimal vs the best deterministic mechanism.

incentive to make the allocation of the goods among the participating buyers more efficient in order

to increase the overall demand. In the case when the buyer can consume both goods, the seller has

an incentive to underprovide one of the goods in order to charge the buyers with large valuations a

higher price for the bundle of both goods. As in the case of substitutable goods, the seller also has

a countervailing incentive to lower the price of the bundle in order to increase the overall demand.

The models and techniques considered in this paper can be applied to other settings. For exam-

ple, Rochet and Stole (2002) study optimal nonlinear pricing when the buyers have heterogeneous

outside options and the seller has convex costs. It is easy to address the same question when the

seller has constant marginal costs with the techniques used here. Gruyer (2005) studies optimal auc-

tion design when the seller has a single good for sale, can prohibit reallocation of the good between

bidders and is bound to the sell the good. The bidders are assumed to form a ‘well-coordinated’

cartel, so that they behave as a single buyer maximizing the sum of the bidders’ payoffs. Our model

of substitutable goods can be used to derive the optimal auction in this setting and dispense with

the assumption that the seller is bound to sell the good. We just need to reinterpret the buyer’s

valuation for good i to be bidder i’s value for the auctioned good, and the probability of obtaining

good i to be the probability that bidder i is the winner of the auction.

6 Appendix

6.1 Proofs for Section 3

Proof of Proposition 2. Suppose (p, T ) solves Program I, (α, t) solves Program II and (p, T )

results in a higher profit than (α, t). Denote by U the utility schedule generated by mechanism

(p, T ). By Proposition 1 we can assume that p1 (θ) + p2 (θ) ∈ {0, 1} for every θ ∈ Θ.
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Consider two types θ, θ′ ∈ Θ such that (i) θ1 − θ2 = θ′1 − θ′2 = δ for some δ ∈ R; (ii)

p1 (θ) + p2 (θ) = p1
(
θ′
)
+ p2

(
θ′
)
= 1. Note that

U
(
θ′
)
≥ θ′1p1 (θ) + θ

′
2p2 (θ)− T (θ) = δp1 (θ) + θ′2 − T (θ)

= θ1p1 (θ) + θ2p2 (θ)− T (θ) +
(
θ′2 − θ2

)
= U (θ) +

(
θ′2 − θ2

)

where the inequality is due to the incentive compatibility, and the first two equalities make use of

(i) and (ii). Similarly

U (θ) ≥ U
(
θ′
)
−
(
θ′2 − θ2

)
.

Hence

U
(
θ′
)
= U (θ) +

(
θ′2 − θ2

)

For every relevant δ ∈ R find the type θ (δ) that maximizes the seller’s profit:

max
θ∈Θ

T (θ) subject to θ1 − θ2 = δ and p1 (θ) + p2 (θ) = 1

Introduce a new direct mechanism, which consists of a set Θ of message reports, an allocation

rule p̂ : Θ→ Σ, and a payment rule T̂ : Θ→ R. Let p̂ and T̂ for every θ ∈ Θ such that θ1 − θ2 = δ

be defined as follows

(
p̂1 (θ) , p̂2 (θ) , T̂ (θ)

)
=

{
(p1 (θ (δ)) , p2 (θ (δ)) , T (θ (δ)))

(0, 0, 0)

if

if

p1 (θ) + p2 (θ) = 1

p1 (θ) + p2 (θ) = 0

Notice that the new mechanism
(
p̂, T̂

)
is admissible in Program II, and is at least as profitable as

the original mechanism (p, T ). However, (α, t) solves Program II which gives a contradiction.

We rewrite the seller’s problem given in Program II” as an optimal control problem. We deal

with the monotonicity constraint in a standard way by introducing an auxiliary control variable

z :
[
δ, δ
]
→ R+ such that

·
α (δ) = z (δ), and in addition allow the state variable α to have upward

jumps.28

Program II′′′: max
z,α,u

δ∫
0

(δα (δ)− u (δ)) g (u (δ) , δ)dδ subject to

Feasibility: α (δ) ≥ 1
2 η (δ)

1− α (δ) ≥ 0 η (δ)

Incentive Compatibility:
·
u (δ) = α (δ) λ1 (δ)
·
α (δ) = z (δ) λ2 (δ)

z (δ) ≥ 0 µ (δ)

Transversality conditions: α (0), α
(
δ
)
, u (0) and u

(
δ
)
are free

28See for example Guesnerie and Laffont (1984).
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Next we derive the necessary conditions for optimality.29 Form the Lagrangian

L
(
z, α, u, η, η, λ1, λ2, µ; δ

)
= (δα− u) g (u, δ) + λ1α+ λ2z + η

(
α− 1

2

)
+ η (1− α) + µz

First we maximize L with respect to z.

L∗ = (δα− u) g (u, δ) + λ1α+ η
(
α− 1

2

)
+ η (1− α)

with the conditions

µz = 0, µ = −λ2 ≥ 0 and
·
α = z ≥ 0. (3)

Next we get a system of Hamiltonian equations:





·

λ1 = −∂L∗

∂u
= g (u, δ)− (δα− u) ∂

∂u
g (u, δ)

·

λ2 = −∂L∗

∂α
= −δg (u, δ)− λ1 − η + η

(4)

The transversality conditions imply the following boundary requirements for λ1 and λ2:

λ1 (0) = λ1
(
δ
)
= λ2 (0) = λ2

(
δ
)
= 0 (5)

The co-state variables λ1, λ2 are continuous throughout.30 Moreover, λ2 is equal to zero at the

points where the state variable α jumps.31 The remaining conditions are

η

(
α− 1

2

)
= 0, η ≥ 0 and α ≥ 1

2
; (6)

η (1− α) = 0, η ≥ 0 and α ≤ 1.

Here is one implication of these optimality conditions:

0 = λ1
(
δ
)
− λ1 (0) =

δ∫
0

·

λ1

(
δ̃
)
dδ̃ (7)

= −
δ∫
0

(
g
(
u
(
δ̃
)
, δ̃
))
dδ̃ +

δ∫
0

(
δ̃α
(
δ̃
)
− u

(
δ̃
)) ∂

∂u
g
(
u
(
δ̃
)
, δ̃
)
dδ̃

where the first equality follows from (5), and the last from (4).

29See Theorem 7 in Chapter 3 in Seierstad and Sydsæter (1987).
30 In general the co-state variables may have discontinuities at the points where the state variables jump. However

this happens only when each jump in the state variable has an explicit cost, which is not the case here. See Theorem
7 in Chapter 3 in Seierstad and Sydsæter (1987).

31See Theorem 7 in Chapter 3 in Seierstad and Sydsæter (1987).
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Define a marginal profit function as follows:

V (δ) = δg (u (δ) , δ) + λ1 (δ) = δg (u (δ) , δ) + λ1
(
δ
)
−

δ∫
δ

·

λ1

(
δ̃
)
dδ̃ (8)

= δg (u (δ) , δ)−
δ∫
δ

(
g
(
u
(
δ̃
)
, δ̃
))
dδ̃ +

δ∫
δ

(
δ̃α
(
δ̃
)
− u

(
δ̃
)) ∂

∂u
g
(
u
(
δ̃
)
, δ̃
)
dδ̃

where the last equality follows from (4) and (5). Note that equation (7) is equivalent to V (0) = 0.

The next result reworks the optimality conditions into a set of requirements on the marginal

profit function V . Part (i) of the result gives requirements for separation of types on an interval,

and parts (ii)-(iv) are the ‘ironing conditions’ for pooling types on an interval.32

Lemma 4 Let
(
z, α, u, η, η, λ1, λ2, µ

)
satisfy the necessary conditions. Then the following condi-

tions must be satisfied.

(i) If α is strictly increasing on (δ1, δ2) then V = 0 on this interval.

(ii) If α = 1
2 on (δ1, δ2) then δ1 = 0; V (δ2) = 0 unless δ2 = δ;

∫ δ2
δ1
V
(
δ̃
)
dδ̃ = k for some k ≤ 0.

Also
∫ δ
δ1
V
(
δ̃
)
dδ̃ ≥ k and

∫ δ2
δ
V
(
δ̃
)
dδ̃ ≤ 0 for every δ in the interval.

(iii) If α = α̂ ∈
(
1
2 , 1
)
on (δ1, δ2) then V (δ1) = 0 unless δ1 = 0; V (δ2) = 0 unless δ2 = δ;∫ δ2

δ1
V
(
δ̃
)
dδ̃ = 0. Also

∫ δ
δ1
V
(
δ̃
)
dδ̃ ≥ 0 ≥

∫ δ2
δ
V
(
δ̃
)
dδ̃ for every δ in the interval.

(iv) If α = 1 on (δ1, δ2) then V (δ1) = 0 unless δ1 = 0; δ2 = δ;
∫ δ2
δ1
V
(
δ̃
)
dδ̃ = k for some k ≥ 0.

Also
∫ δ
δ1
V
(
δ̃
)
dδ̃ ≥ 0 and

∫ δ2
δ
V
(
δ̃
)
dδ̃ ≤ k for every δ in the interval.

Proof. (i) When α is strictly increasing, then by condition (3) we have z > 0 and thus

λ2 = −µ = 0. Hence
·

λ2 = 0 on this interval. By condition (6) we also have η = η = 0 on this

interval. Hence, by condition (4), V = 0.

(ii) By monotonicity of α we must have δ1 = 0. Also note that λ2 (δ1) = 0 by the transversality

condition (5). By condition (6) we have η ≥ 0 and η = 0 on this interval.

If δ2 < δ then λ2 (δ2) = 0, since α changes its value at δ2. Note that this implies that at the left

limit of δ2 we have

0 ≤
·

λ2
(
δ−2
)
≤ −V

(
δ−2
)

where the first inequality follows from condition (3) which requires λ2 ≤ 0, the second inequality is

by condition (4) and the fact that η ≥ 0 and η = 0 on this interval. At the right limit of δ2 we have

0 ≥
·

λ2
(
δ+2
)
≥ −V

(
δ+2
)

32See for example Guesnerie and Laffont (1984), Myerson (1981).
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where the first inequality follows from λ2 ≤ 0, the second inequality is by condition (4) and condition

(6) which requires η = 0 and η ≥ 0 outside the interval [δ1, δ2]. Since V is continuous, we conclude

that V (δ2) = 0.

If δ2 = δ then λ2 (δ2) = 0 by the transversality condition (5). Hence in either case we must have

0 = λ2 (δ2)− λ2 (δ1) =
δ2∫
δ1

·

λ2

(
δ̃
)
dδ̃

Since η ≥ 0 and η = 0 on this interval, by condition (4) we have

δ2∫
δ1

V
(
δ̃
)
dδ̃ = −

δ2∫
δ1

η
(
δ̃
)
dδ̃ =: k ≤ 0

Also note that

0 ≥ λ2 (δ) = λ2 (δ)− λ2 (δ1) =
δ∫
δ1

·

λ2

(
δ̃
)
dδ̃

which by condition (4) implies

δ∫
δ1

V
(
δ̃
)
dδ̃ = −

δ∫
δ1

η
(
δ̃
)
dδ̃ ≥ k

Finally, note that

0 ≥ λ2 (δ) = λ2 (δ)− λ2 (δ2) = −
δ2∫
δ

·

λ2

(
δ̃
)
dδ̃

which by condition (4) implies

δ2∫
δ

V
(
δ̃
)
dδ̃ = −

δ2∫
δ

η
(
δ̃
)
dδ̃ ≤ 0

The proofs of (iii) and (iv) are similar to the proof of (ii) and therefore omitted.

Proof of Proposition 3. Assume that in the optimal mechanism α (δ) < 1 for every δ ∈
[
0, δ
)
.

Then by Lemma 4 we must have
∫ δ
0 V (δ)dδ ≤ 0.

On the other hand by condition (7) we have

δ∫
0

(δα (δ)− u (δ)) ∂
∂u
g (u (δ) , δ)dδ =

δ∫
0

g (u (δ) , δ)dδ > 0

Hence the ‘participation effect’ in the formula for V (δ) is strictly positive for a subset of types of

positive measure. Thus

δ∫
0

V (δ)dδ >
δ∫
0

(
δg (u (δ) , δ)−

δ∫
δ

g
(
u
(
δ̃
)
, δ̃
)
dδ̃

)
dδ = 0
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where the equality follows from integration by parts. This gives a contradiction.

Calculations for Example 1

Let δ̂ be such that

c+ u
(
δ̂
)
= 0. (9)

It is straightforward to show that δ̂ ∈ [0, 1] exists and is unique. Notice that

g (u (δ) , δ) =

{
1− δ + c+ u (δ)
1− δ

if

if

δ ∈
[
0, δ̂
)

δ ∈
(
δ̂, 1
] .

Thus if δ ∈
[
0, δ̂
)
then the marginal profit (see equation (8)) is

V (δ) = δ (c+ 1− δ + u (δ))−
δ̂∫
δ

(
c+ u

(
δ̃
))
dδ̃ −

1∫
δ

(
1− δ̃

)
dδ̃ +

δ̂∫
δ

(
δ̃α
(
δ̃
)
− u

(
δ̃
))
dδ̃(10)

= δ

(
2 (c+ 1)− 3

2
δ + u (δ)

)
− cδ̂ − 1

2
+

δ̂∫
δ

(
δ̃α
(
δ̃
)
− 2u

(
δ̃
))
dδ̃

= δ

(
2 (c+ 1)− 3

2
δ + 3u (δ)

)
+ cδ̂ − 1

2
+ 3

δ̂∫
δ

δ̃α
(
δ̃
)
dδ̃

where the last equality follows from integration by parts and equation (9).

If δ ∈
(
δ̂, 1
]
then

V (δ) = δ (1− δ)−
1∫
δ

(
1− δ̃

)
dδ̃ =

1

2
(1− δ) (3δ − 1)

Also note that

·

V (δ) =

{
2c+ 2 + 3u (δ)− 3δ
2− 3δ

if

if

δ ∈
[
0, δ̂
)

δ ∈
(
δ̂, 1
] and

··

V (δ) =

{
3 (α (δ)− 1)
−3

if

if

δ ∈
[
0, δ̂
)

δ ∈
(
δ̂, 1
] .

Hence the marginal profit V is (weakly) concave on
[
0, δ̂
)
and is concave on

(
δ̂, 1
]
. Notice that

·

V

is discontinuous at δ̂ unless c = 0:

·

V
(
δ̂
−
)
= 2− c− 3δ̂ ≤ 2− 3δ̂ =

·

V 2

(
δ̂
+
)
. (11)

Equation (7) can be rewritten as follows:

V (0) = cδ̂ − 1
2
+ 3

δ̂∫
0

δ̃α
(
δ̃
)
dδ̃ = 0. (12)
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Case 1. α (δ) = 1 for every δ ∈ [0, 1].
In this case u (δ) = u (0) + δ, and

∫ δ
0 δ̃α

(
δ̃
)
dδ̃ = 1

2δ
2. Using equation (12) we get

δ̂ =
1

3

(√
c2 + 3− c

)

and from equation (9) we find

u (0) = −
(
2

3
c+

1

3

√
c2 + 3

)
.

Thus the marginal profit when δ ∈
[
0, δ̂
)
can thus be rewritten as follows

V (δ) = δ

(
2 (c+ 1) +

3

2
δ + 3u (0)

)
+ cδ̂ − 1

2
+
3

2
δ̂
2 − 3

2
δ2 = δ

(
2−

√
c2 + 3

)

Hence V is nonnegative on [0, 1] when c ∈ [0, 1], and thus by Lemma 4 the candidate α is indeed

optimal (see Figure 1). The payment for every δ is

t (δ) = δα (δ)− u (δ) = −u (0) = 2

3
c+

1

3

√
c2 + 3 = T (c) .

The expected profit is

Π(c) = Pr {max (θ1, θ2) ≥ T (c)} · T (c)

where

Pr {max (θ1, θ2) ≥ T (c)} = 1− 1
9

(√
c2 + 3− c

)2
.

Case 2. α (δ) is not identically equal to one on [0, 1].

In this case V is strictly concave on
[
0, δ̂
)
and is strictly concave on

(
δ̂, 1
]
. First we argue that

δ̂ < 1
3 . Assume δ̂ ≥ 1

3 , then concavity together with (11) and the facts that V (0) = V (1) = 0 and

V
(
δ̂
)
≥ 0 imply that V is strictly positive almost everywhere on (0, 1), and thus α (δ) �= 1 cannot

be optimal.

Since δ = 1
3 is the only place where V (δ) crosses zero from below, by Lemma 4 we have α (δ)

equal to some constant α ∈
[
1
2 , 1
)
on the interval

[
0, 13

)
.

Notice that u (δ) = u (0) + αδ, and
∫ δ
0 δ̃α

(
δ̃
)
dδ̃ = 1

2αδ
2 for δ ∈

[
0, 13

)
. Using equation (12):

3

2
αδ̂

2
+ cδ̂ − 1

2
= 0. (13)

and from equation (9) we find

u (0) = −c− αδ̂. (14)
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Thus the marginal profit when δ ∈
[
0, δ̂
)
can be rewritten as follows

V (δ) = δ

(
2 (c+ 1)− 3

2
δ + 3u (0) + 3αδ

)
+ cδ̂ − 1

2
+
3

2
αδ̂

2 − 3
2
αδ2

= δ

(
2− c− 3αδ̂ − 3

2
(1− α) δ

)

where the last equality uses equations (13) and (14). Also note that

1

3∫
0

V (δ)dδ =
δ̂∫
0

δ

(
2− c− 3αδ̂ − 3

2
(1− α) δ

)
dδ +

1

3∫

δ̂

1

2
(1− δ) (3δ − 1)dδ

= −αδ̂3 − 1
2
cδ̂
2
+
1

2
δ̂ − 2

27
=
1

6

(
cδ̂
2
+ δ̂ − 4

9

)

where the last equality uses equation (13).

Case 2.1. α ∈
(
1
2 , 1
)
.

By Lemma 4 in this case we must have
∫ 1

3

0 V (δ) dδ = 0, which gives

δ̂ =
1

6c

(√
16c+ 9− 3

)
.

Using equation (13) we get

α =
27

32
+

(
9

32
− 1
4
c

)√
16c+ 9.

Notice that α is strictly decreasing in c. Also α = 1 when c = 1, and α = 1
2 when c = c ≈ 1.372.

Every participating type δ ∈
[
0, 13

)
chooses allocation (α, 1− α) (see Figure 2). Their payment is

t (δ) = δα (δ)− u (δ) = −u (0) = c+ αδ̂ =
1

3
c+

3

8
+
1

8

√
16c+ 9 = T (c)

Every participating type δ ∈
(
1
3 , 1
]
chooses allocation (1, 0). Their payment is

t (δ) = δα (δ)− u (δ) = −u (0) + 1
3
(1− α) = c+ αδ̂ +

1

3
(1− α)

=
1

3
c+

41

96
+

(
1

12
c+

1

32

)√
16c+ 9 = T (c)

The expected profit is

Π(c) = Pr {αmax {θ1, θ2}+ (1− α)min {θ1, θ2} ≥ T (c)} · T (c) + Pr
{
|δ| ≥ 1

3

}
·
(
T (c)− T (c)

)
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where

Pr {αmax {θ1, θ2}+ (1− α)min {θ1, θ2} ≥ T (c)}

= 1−
(
27

32
+

(
9

32
− 1
4
c

)√
16c+ 9

)(
1

6c

(√
16c+ 9− 3

))2

and Pr
{
|δ| ≥ 1

3

}
= 4

9 .

Case 2.2. α = 1
2 .

By Lemma 4 in this case we must have
∫ 1

3

0 V (δ) dδ ≤ 0, which gives

δ̂ ≤ 1

6c

(√
16c+ 9− 3

)
. (15)

Using equation (13) we get

δ̂ =
2

3

(√
c2 +

3

2
− c
)

It is possible to verify that inequality (15) is satisfied whenever c ≥ c. Every participating type

δ ∈
[
0, 13

)
chooses allocation

(
1
2 ,
1
2

)
(see Figure 3). Their payment is

t (δ) = δα (δ)− u (δ) = −u (0) = c+
1

6
δ̂ =

2

3
c+

1

3

√
c2 +

3

2
= T (c)

Every participating type δ ∈
(
1
3 , 1
]
chooses allocation (1, 0). Their payment is

t (δ) = δα (δ)− u (δ) = −u (0) + 1
6
= c+ αδ̂ +

1

6

=
1

3
c+

41

96
+

(
1

12
c+

1

32

)√
16c+ 9 = T (c)

The expected profit is

Π(c) = Pr

{
1

2
θ1 +

1

2
θ2 ≥ T (c)

}
· T (c) + Pr

{
|δ| ≥ 1

3

}
·
(
T (c)− T (c)

)

where

Pr

{
1

2
θ1 +

1

2
θ2 ≥ T (c)

}
= 1− 2

9

(√
c2 +

3

2
− c
)2

and Pr
{
|δ| ≥ 1

3

}
= 4

9 .

The best deterministic mechanism

Note that if the seller offers only individual goods then the optimal price and profit are given in

Case 1 above. The relative (percentage) profit gain from using the fully optimal mechanism vs the

best deterministic mechanism is given in Figure 4.
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6.2 Proofs for Section 4

Proof of Proposition 5.

Suppose (p, T ) solves Program I, (β, t) solves Program III and (p, T ) results in a higher profit

than (β, t). Denote by U the utility schedule generated by mechanism (p, T ). By Corollary 1 we

can assume that for every θ such that θ1 > θ2: if (p1 (θ) , p2 (θ)) �= (0, 0) then p1 (θ) = 1.
Consider two types θ, θ′ ∈ Θ such that (i) θ1 > θ2, θ

′
1 > θ′2; (ii) θ2 = θ′2; (iii) p1 (θ) = p1

(
θ′
)
= 1.

Note that

U
(
θ′
)
≥ θ′1p1 (θ) + θ

′
2p2 (θ)− T (θ) = θ′1 + θ

′
2p2 (θ)− T (θ)

= θ1 + θ2p2 (θ)− T (θ) +
(
θ′1 − θ1

)
= U (θ) +

(
θ′1 − θ1

)

where the inequality is due to the incentive compatibility, and the first two equalities make use of

(ii) and (iii). Similarly

U (θ) ≥ U
(
θ′
)
−
(
θ′1 − θ1

)
.

Hence

U
(
θ′
)
= U (θ) +

(
θ′1 − θ1

)

For every relevant θ̂2 ∈ R find the type θ
(
θ̂2

)
that maximizes the seller’s profit:

max
θ∈Θ,θ1≥θ2

T (θ) subject to θ2 = θ̂2 and p1 (θ) = 1

Introduce a new direct mechanism, which consists of a set Θ of message reports, an allocation

rule p̂ : Θ→ Σ, and a payment rule T̂ : Θ→ R. Let p̂ and T̂ for every θ ∈ Θ such that θ2 = θ̂2 be

defined as follows

(
p̂1 (θ) , p̂2 (θ) , T̂ (θ)

)
=

{ (
p1

(
θ
(
θ̂2

))
, p2

(
θ
(
θ̂2

))
, T
(
θ
(
θ̂2

)))

(0, 0, 0)

if

if

p1 (θ) = 1

p1 (θ) = p2 (θ) = 0

Notice that the new mechanism
(
p̂, T̂

)
is admissible in Program III, and is at least as profitable as

the original mechanism (p, T ). However, (β, t) solves Program III which gives a contradiction.

Calculations for Example 3

Let θ̂2 be such that

u
(
θ̂2

)
+ θ̂2 = 0. (16)

It is straightforward to show that θ̂2 ∈ [0, 1] exists and is unique. Notice that

g (u (θ2) , θ2) =

{
c+ 1+ u (θ2)

c+ 1− θ2
if

if

θ2 ∈
[
c, θ̂2

)

θ2 ∈
(
θ̂2, c+ 1

] .
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Thus if θ2 ∈
[
c, θ̂2

)
then the marginal profit is

V (θ2) = θ2 (c+ 1+ u (θ2))−
θ̂2∫
θ2

(
c+ 1+ u

(
θ̃2

))
dθ̃2 −

c+1∫

θ̂2

(
c+ 1− θ̃2

)
dθ̃2 +

θ̂2∫
θ2

(
θ̃2β

(
θ̃2

)
− u

(
θ̃2

))
dθ̃2

= θ2 (2 (c+ 1) + u (θ2))−
1

2
(c+ 1)2 − 1

2

(
θ̂2

)2
+
θ̂2∫
θ2

(
θ̃2β

(
θ̃2

)
− 2u

(
θ̃2

))
dθ̃2

= θ2 (2 (c+ 1) + 3u (θ2))−
1

2
(c+ 1)2 +

3

2

(
θ̂2

)2
+ 3

θ̂2∫
θ2

θ̃2β
(
θ̃2

)
dθ̃2

where the last equality follows from integration by parts and equation (16). If θ2 ∈
(
θ̂2, c+ 1

]
then

V (θ2) = θ2 (c+ 1− θ2)−
c+1∫
θ2

(
c+ 1− θ̃2

)
dθ̃2 =

1

2
(c+ 1− θ2) (3θ2 − (c+ 1))

Note that V (θ2) is nonnegative on
(
max

{
θ̂2,

1
3 (c+ 1)

}
, c+ 1

]
. Also note that

·

V (θ2) =

{
2c+ 2 + 3u (θ2)

2c+ 2− 3θ2
if

if

θ2 ∈
[
c, θ̂2

)

θ2 ∈
(
θ̂2, c+ 1

] and
··

V (θ2) =

{
3β (θ2)

−3
if

if

θ2 ∈
[
c, θ̂2

)

θ2 ∈
(
θ̂2, c+ 1

] .

Hence V is (weakly) convex on
[
c, θ̂2

)
and is strictly concave on

(
θ̂2, c+ 1

]
. Notice that

·

V is

continuous at θ̂2 by equation (16).

An analog of equation (7) in this case is

0 = −
θ̂2∫
c

(
c+ 1+ u

(
θ̃2

))
dθ̃2 −

c+1∫

θ̂2

(
c+ 1− θ̃2

)
dθ̃2 +

θ̂2∫
c

(
θ̃2β

(
θ̃2

)
− u

(
θ̃2

))
dθ̃2 (17)

= c (c+ 1 + 2u (c))− 1
2
(c+ 1)2 +

3

2

(
θ̂2

)2
+ 3

θ̂2∫
c

θ̃2β
(
θ̃2

)
dθ̃2.

Note that equation (17) implies that V (c) = (c+ 1 + u (c)) c ≥ 0. Hence, unless c = 0, there is

exists at most a single point on (c, c+ 1) where V crosses zero from below.

Case 1. β (θ2) = 1 for every θ2 ∈ [c, c+ 1].
In this case u (θ2) = u (c) + (θ2 − c), and

∫ θ2
c
θ̃2β

(
θ̃2

)
dθ̃2 =

1
2

((
θ̂2

)2
− c2

)
. Using equation

(16):

u (c) = u
(
θ̂2

)
−
(
θ̂2 − c

)
= −2θ̂2 + c

Equation (17) yields

θ̂2 =
2

3
c+

1

3

√
c2 +

3

2
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and thus

u (c) = −1
3
c− 2

3

√
c2 +

3

2
.

The marginal profit when θ2 ∈
[
c, θ̂2

)
can thus be rewritten as follows

V (θ2) =
3

2
(θ2 − c)2 + 2

(
1

2
c+ 1−

√
c2 +

3

2

)
(θ2 − c) +

1

3
c

(
2c+ 3− 2

√
c2 +

3

2

)

Note that θ̂2 >
1
3 (c+ 1) and thus V (θ2) ≥ 0 for θ2 ∈

[
θ̂2, c+ 1

)
. By an analog of Lemma 4 it

is enough to show that
∫ θ2
c
V
(
θ̃2

)
dθ̃2 ≥ 0 for every θ2 ∈

[
c, θ̂2

)
.

θ2∫
c

V
(
θ̃2

)
dθ̃2 =

1

2

(
(θ2 − c)2 + 2

(
1

2
c+ 1−

√
c2 +

3

2

)
(θ2 − c) +

2

3
c

(
2c+ 3− 2

√
c2 +

3

2

))
(θ2 − c)

The quadratic polynomial x2+2
(
1
2c+ 1−

√
c2 + 3

2

)
x+ 2

3c
(
2c+ 3− 2

√
c2 + 3

2

)
has no real roots

if (
1

2
c+ 1−

√
c2 +

3

2

)2
<
2

3
c

(
2c+ 3− 2

√
c2 +

3

2

)

which holds when c > c ≈ 0.077. Hence
∫ θ2
c
V
(
θ̃2

)
dθ̃2 ≥ 0 for every θ2 ∈

[
c, θ̂2

)
when c ∈ [c,+∞).

Every participating type gets an allocation (1, 1) (see Figure 7). The payment for every θ2 is

t (θ2) = θ2β (θ2)− u (θ2) = c− u (c) = 4

3
c+

2

3

√
c2 +

3

2
= T (c) .

The expected profit is

Π(c) = Pr {θ1 + θ2 ≥ T (c)} · T (c)

where

Pr {θ1 + θ2 ≥ T (c)} = 1− 2
9

(√
c2 +

3

2
− c
)2

.

Case 2. β (θ2) is not identically equal to one on [c, c+ 1].

By an analog of Lemma 4, and due to the properties of V discussed above, the optimal β is a

step function

β (θ2) =

{
β

1

if

if

θ2 ∈ [c, θ∗2)
θ2 ∈ (θ∗2, c+ 1]

where β ∈ [0, 1), and θ∗2 is such that V (θ∗2) = 0 and
∫ θ∗

2

c
V
(
θ̃2

)
dθ̃2 ≤ 0 (with an equality if

β ∈ (0, 1))
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Let us guess that θ∗2 < θ̂2, which implies θ̂2 >
1
3 (c+ 1). Hence

u (θ2) =

{
u (c) + β (θ2 − c)
u (c) + β (θ∗2 − c) + (θ2 − θ∗2)

if

if

θ2 ∈ [c, θ∗2)
θ2 ∈ (θ∗2, c+ 1]

(18)

and
θ2∫
c

θ̃2β
(
θ̃2

)
dθ̃2 =





1
2β
(
(θ2)

2 − c2
)

1
2β
(
(θ∗2)

2 − c2
)
+ 1

2

(
(θ2)

2 − (θ∗2)2
) if

if

θ2 ∈ [c, θ∗2)
θ2 ∈ (θ∗2, c+ 1]

Using equation (16):

u (c) = −2θ̂2 + βc+ (1− β) θ∗2 (19)

Equation (17) yields

3
(
θ̂2 − c

)2
+ 2c

(
θ̂2 − c

)
− 1
2
(1− β)

(
3 (θ∗2 − c)2 + 2c (θ∗2 − c)

)
− 1
2
= 0 (20)

The marginal profit when θ2 ∈ [c, θ∗2) can thus be rewritten as follows

V (θ2) =
3

2
β (θ2 − c)2 +

(
−6
(
θ̂2 − c

)
+ 3 (1− β) (θ∗2 − c) + (2− c)

)
(θ2 − c) (21)

+3
(
θ̂2 − c

)2
− 3
2
(1− β) (θ∗2 − c)2 + c−

1

2

and thus

θ∗
2∫
c

V
(
θ̃2

)
dθ̃2 =

1

2
β (θ∗2 − c)3 +

1

2

(
−6
(
θ̂2 − c

)
+ 3 (1− β) (θ∗2 − c) + (2− c)

)
(θ∗2 − c)2 (22)

+

(
3
(
θ̂2 − c

)2
− 3
2
(1− β) (θ∗2 − c)2 + c−

1

2

)
(θ∗2 − c)

Case 2.1. β ∈ (0, 1).
Denote x = θ̂2 − c and y = θ∗2 − c. We can rewrite (20), V (θ∗2) = 0 (using (21)) and∫ θ∗

2

c
V
(
θ̃2

)
dθ̃2 = 0 (using (22)) as follows





3x2 + 2cx− 1
2 (1− β)

(
3y2 + 2cy

)
− 1

2 = 0

3x2 − 6xy + 3
2y
2 + (2− c) y + c− 1

2 = 0
1
2

(
6x2 − 6xy + βy2 + (2− c) y + 2c− 1

)
y = 0

We numerically check that the solution
(
x̃ (c) , ỹ (c) , β̃ (c)

)
is such that β̃ (c) is increasing, β̃ (0) = 0

and β̃ (c) = 1.

Every participating type θ2 ∈ [c, c+ ỹ (c)) chooses an allocation
(
1, β̃ (c)

)
(see Figure 6). Using

equations (18) and (19) we can compute their payment

t (θ2) = θ2β (θ2)− u (θ2) = c
(
1 + β̃ (c)

)
+ 2x̃ (c)−

(
1− β̃ (c)

)
ỹ (c) = T (c)
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Every participating type θ2 ∈ (c+ ỹ (c) , c+ 1] chooses an allocation (1, 1). Using equations (18)

and (19) we can compute their payment

t (θ2) = θ2β (θ2)− u (θ2) = 2c+ 2x̃ (c) = T (c)

The expected profit is

Π(c) = Pr
{
max {θ1, θ2}+ β̃ (c)min {θ1, θ2} − T (c) ≥ max

{
0, θ1 + θ2 − T (c)

}}
· T (c)

+Pr
{
θ1 + θ2 − T (c) ≥ max

{
0,max {θ1, θ2}+ β̃ (c)min {θ1, θ2} − T (c)

}}
· T (c)

where

Pr
{
max {θ1, θ2}+ β̃ (c)min {θ1, θ2} − T (c) ≥ max

{
0, θ1 + θ2 − T (c)

}}

= 2ỹ (c)

(
1− 2x̃ (c) +

(
1− 1

2
β̃ (c)

)
ỹ (c)

)

and

Pr
{
θ1 + θ2 − T (c) ≥ max

{
0,max {θ1, θ2}+ β̃ (c)min {θ1, θ2} − T (c)

}}

= (1− ỹ (c))2 − 2 (x̃ (c)− ỹ (c))2 .

Case 2.2. β = 0.

The only possibility not covered by Cases 1 and 2.1 is when c = 0. Similar to Case 2.1 we can

represent condition (20), V (θ∗2) = 0 (using (21)) and
∫ θ∗

2

c
V
(
θ̃2

)
dθ̃2 ≤ 0 (using (22)) as follows





3x2 − 3
2y
2 − 1

2 = 0

3x2 − 6xy + 3
2y
2 + 2y − 1

2 = 0
1
2

(
6x2 − 6xy + 2y − 1

)
y ≤ 0

The solution is: (x, y) =
(
2
3 − 1

6

√
2, 23 − 1

3

√
2
)
≈ (0.431, 0.195). The payments and the expected

profit can be computed using the formulas from Case 2.1 (with c = 0). The allocation is given in

Figure 5.

The best deterministic mechanism

Let T be the price of allocations (1, 0) and (0, 1), and T be the price of a bundle (1, 1). Note

that if the seller offers only the bundle then the expressions for the optimal price and profit are

given in Case 1 above. If both individual goods and bundle are offered, then the optimal prices

maximize

2T (c+ 1− T )
(
T − T − c

)
+ T

((
c+ 1−

(
T − T

))2 − 1
2

(
T −

(
T − T

))2
)
.

We checked numerically that it is optimal to offer just a bundle when c > c′ ≈ 0.05, and it is optimal
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to offer both a bundle and individual goods when c < c′ ≈ 0.05. The relative (percentage) profit

gain from using the fully optimal mechanism vs the best deterministic mechanism is given in Figure

8.
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