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BOUND OF THE MIXED PROPORTIONAL
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1 Introduction

WE RECONSIDER THE EFFICIENCY BOUND for the semi-parametric Mixed Proportional Haz-
ard (MPH) model with parametric baseline hazard and regression function. This bound was
first derived by Hahn (1994). One of his results is that if the baseline hazard is Weibull,
the efficiency bound is singular, even if the model is semi-parametrically identified!. This
implies that neither the Weibull parameter nor the regression coefficients can be estimated
at the v/N rate? (Van der Vaart (1998), Theorem 25.32).

Hahn’s result has had an impact on the use of MPH models in empirical research. The
singularity of the efficiency bound seems to confirm the results of simulation studies, see e.g.
Baker and Melino (2000), that suggest that it is difficult to estimate both the baseline hazard
and the distribution of the random effects (or unobserved heterogeneity) with a sufficient
degree of accuracy with the sample sizes that one encounters in practice. Indeed Honoré’s
(1990) estimator for the parameters of a semi-parametric Weibull MPH model converges at a

rate that is (much) slower than v/ N. Altogether these results seem to imply that although the
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MPH model is semi- and even non-parametrically identified, the estimation of the parameters
in a semi-parametric MPH model requires a larger dataset than usual.

In this note we show that this impression is false. In particular, we show that the efficiency
bound is singular if and only if the parametric model of the (integrated) baseline hazard is
closed under the power transformation. The Weibull baseline hazard is the most prominent
member of this class of models. All models that are closed under the power transformation
have a baseline hazard that is either 0 or co in 0. The restriction that the baseline hazard
in 0 is bounded away from 0 and oo rules out that the baseline hazard model is closed under
the power transformation and this implies that the efficiency bound is nonsingular with this
restriction.

We also show that the MPH model is semi-parametrically identified if we restrict the
baseline hazard in 0 to be bounded away from 0 and co. Hence, there are (at least) two
restrictions that are sufficient for semi-parametric identification: (i) the restriction that the
mean of the unobserved random effect is finite (Elbers and Ridder (1982)3), and (ii) the
restriction that the baseline hazard in 0 is bounded from 0 and infinity. The first restriction
does not preclude that the efficiency bound is singular, the second restriction does. Hence,
estimators that impose the second restriction can be /N consistent. Indeed, the rank es-
timator that has been proposed by Bijwaard and Ridder (2001) and the quantile censoring
estimator of Ridder and Woutersen (2001) both are v/N consistent for the baseline haz-
ard and regression parameters in the semiparametric MPH model with parametric baseline
hazard and regression function. The finite mean assumption is not sufficient to obtain /N
consistent estimators in the semi-parametric MPH model. In particular, Ishwaran (1996) has
shown that the rate of convergence approaches /N if all moments of the distribution of the
unobserved random effect are finite.

The plan of the paper is as follows. In section 2 we give the semi-parametric MPH model
and its efficiency bound as obtained by Hahn (1994). We also give an example that shows
that if we change the Weibull baseline hazard slightly so that it is bounded from 0 and oo in

0, then the information bound becomes nonsingular. Section 3 contains the main result and



section 4 concludes.
2 The Semi-parametric MPH Model: Identification and Effi-
ciency Bound

2.1 The semi-parametric MPH model

We consider the semi-parametric MPH model for the conditional distribution of 1" given a

vector of nonconstant covariates X
(1) 0(t| X,7) = Alt,a)e” X el

with parametric baseline hazard A(¢, «) and regression function e#'X and (a, 3) in a parameter
space that is the product of a parameter space for a;, A, and a parameter space for 3, B, both
of which assumed to be open subsets of the Euclidean space. The following assumptions are

sufficient for the efficiency bound as derived by Hahn (see Hahn (1994), p. 610)

(A1) A(t,a) and A(t,«) are assumed to be continuously differentiable with respect to o on

A.

(A2) E(X'X) < oo and there exist non-negative functions (;(7, X ),7 = 1,2,3 such that

dln \(T,

‘% < (1)
1 OIn A(T
Bl < G
XS ENT Q)| < G(TX)

with E(¢{(T)?) < oo, E(e2V(,(T, X)?) < 00,i = 2,3.

The unobserved covariates are captured by the random effect U. Note that our notation
deviates somewhat from that used by Hahn (1994): the parameter vector is y and the baseline
hazard is X (and the integrated baseline hazard A). We also take the regression function to
be loglinear in X*.

If we define the unconditional integrated baseline hazard at the population values of the

parameters as

(2) S = A(T, ag)e’oX



then it is not difficult to show that

(3) s4

S

with W a standard exponential random variable that is independent of U and 2 means that

the random variables on both sides have the same distribution.
2.2 Semi-parametric identification

Elbers and Ridder (1982) have shown that this MPH model is semi-parametrically identified

if the following assumptions hold.

(B1) A(to,ap) =1 for some ty > 0, A(oo, p) = 0o with A(t, ap) Jo s, ap)d
(B2) U and X are independent and E(eV) < oco.

(B3) There are x1, 2 in the support of X with Byx1 # Byza.

B4) If \(t,ap) = A(t,dp) for all t > 0, then ag = &g, and if Bz = B,a: for all = in the
0 0
support of X, then 3; = Bo-

Because we can multiply the baseline hazard by a positive constant and subtract the log
of that constant from U without changing the model (the mean of U is arbitrary), the first
part of assumption (B1) is a normalization. For the same reason, there is no constant in
' X. Assumption (B4) ensures parametric identification of ay, 3.

We propose an alternative set of assumptions that is sufficient for the semi-parametric

identification of the MPH model.

(C1) A(to,ap) =1 for some tg > 0, A(oo, ) = oo with A(t, ap) JO s,ap)ds. Moreover

0< hmth )\(t,ao) = )\(0,0é()) < 0.
(C2) U and X are independent and Pr(U = —o0) = Pr(U = oo) = 0.
(C3) There are x1,xs in the support of X with Syx1 # [Bhxe.

(C4) If Mt ) = A(t,ép) for all t > 0, then ag = &, and if Sz = ng for all x in the

support of X, then 3, = Bo-



The difference between these two sets of assumptions is that the finite mean assumption on
the random individual effect E(eV) < oo in (B2) is replaced by the assumption that the

baseline hazard in 0 is bounded away from 0 and oo in (C1).

Proposition 1
If the conditional distribution of 7" given X has a distribution with a (conditional) hazard as
in (1) and if assumptions (C1)-(C4) are satisfied, then «g, 3y and the distribution of U are

identified, i.e. there are no observationally equivalent &, Bo-
Proof: See Appendix A.

Although both sets of conditions ensure that the semi-parametric MPH model is identi-
fied, they have different implications for the information bound of this model. In particular,
with the finite mean assumption the information bound can be singular, while with the

assumption that the baseline hazard in 0 is bounded from 0 and oo this cannot be the case.

2.3 The information bound of the MPH model

Hahn (1994), Theorem 1 derives the efficient score of the MPH model. The variance matrix

of the efficient score is the information bound. The efficient score is

(4) [ [ la ] _ [ a11 — apS - EleV|S] ] '

lg as — azS - E[eY|S]
with
ay = Oln AT, @) B [6ln)\(T,a)|S]
Oa Oa
~ 0InA(T,«) OlnA(T, «)
(5) mz = a—a—E[a—a'S

a; = X —E(X|S) =X —E(X).

Without loss of generality we assume that E(X) = 0.

For the Weibull baseline hazard A(t,a) = at® ! we have

(6) ajn = a2 =InT —E(InT|S)



and by (2) In7T = nS=50X 4 that

@Q

/

(7) aj] = ayp = — 2 X.
ap

Substitution in (4) yields

/
0

(8) = (1-SE("]9)) [ %

y

and because the first component of this vector is a linear combination of the other components

with nonrandom coeflicients, the distribution of the efficient score is singular as is its variance

matrix. This is the argument given by Hahn (1994), p. 614.

Note that this argument is not restricted to the Weibull baseline hazard. It applies to

all integrated baseline hazards of the form A(¢,a) = h(t)* with h a known strictly increasing

function of ¢ with ~(0) = 0. However, a small change in the Weibull baseline hazard gives

a nonsingular information bound. In particular, consider the translated Weibull baseline

hazard with integrated baseline hazard A.(t,a) = (t4+¢)* —&® with € > 0 a known constant.

The component for 3 in the efficient score (4) is still equal to X. The only change is in the

component for a. To be specific for a = ag

(9) an = L (e*ﬁgXS + 5“0) — iEX {m (e*ﬁ()Xg + gao)}

Qg Qao

X

ePoX 00 1p ¢ ePoX g0 Ip ¢
S X S

5 <e_ﬂ6XS + 60‘0) In <e_56XS + 60‘0)

b'e
(e*ﬂOXS + eao) In (e*ﬂOXS + 60‘0) -

To see that the distribution of the efficient score is nonsingular, consider the special case

U =0 so that E [eU|S} = 1. Then a necessary condition for singularity is that

(11)

1 / 1 /
a1 —a;pS =—1In (e_BOXS -I—eao) — —Ex {ln (e_BOXS-l—eaO)} -
ap g



eBoX x x
+Ex (e*ﬂo S+ 6“0) In (e PoX g 4+ 6“0) +
ap
ePoX g0 In ¢ ePoX 00 1 ¢
S X S

is constant in S for all « in the support of X, and this is true if and only if ¢ = 0. We conclude
that the efficiency bound for the e translated Weibull baseline hazard is nonsingular. Note
that this class of integrated baseline hazard models is not closed under the power transfor-
mation. Also the baseline hazard of this model is \.(t, @) = a(t +¢)* ! with A\.(0,a) = %!

which is bounded away from 0 and oo if € > 0.

3 Necessary and Sufficient Conditions for the Singularity of
the Efficiency Bound

We first rewrite the efficient score in (4) and (5) to reflect the dependence on T, X,S and
the parameters «g, ;. For that purpose we denote Ag(t) = A(t, ap), Ao(t) = (¢, ap), and
Z = 34X so that T = A" (Se™7). Also V = eV,

(12) l = [ la } - [ a11(T, S, ) — ar2(T, S, o) Hy (S) ]
ls X(1 - Hy(S))
with Hy (S) = SE(V]S) = _SLI;H(g) and Ly (s) = E(e—sV) the Laplace transform of V. Note
v

that Hy does not depend on the parameters. Because S and Z are independent we have

71 _
(75,00 = D g, {8{ln>\0(A§a(Se Z))}}

71 _
ar2(T, S, ) = %@S(T) —Ey [a{lnAO(Aga(Se Z))}] .

By (2) the variables are related by

(13) InAo(T)+Z =1nS.



By assumptions (Al) and (A2) the information bound is continuous in . We first
consider the case that « is a scalar. If the information bound has a rank equal to the number
of regressors in X, i.e. one less than full rank, for some value of ag, then it has the same
rank for population parameters in a small neighborhood of that value of ag by continuity
in ap. We keep 3, fixed. Note that T" depends on X only through (3, X. Because of (B4)
or (C4) the linear combination that makes the score singular must contain l,. Because I,
depends on X only through (3, X, loss of rank occurs if and only if I, is proportional to 34X,

i.e. there is a c¢(ap) # 0 such that

(14) clag)an (T, S, ag) — c(ap)ara(T, S, o) Hy (S) = Z(1 — Hy(S))

for all ag in some open interval, S > 0 and Z, T that satisfy (13). From (14) it follows that
(15) aq1(t, s, ag) = aia(t, s, ap)

for if this equality does not hold for some g, it does not hold on some open interval, because
of (A1) and (A2). Moreover, there is a t such that a11(¢, s, ap), a12(t, s, ap) are not constant
in ag on that interval by (B4) or (C4). Only if the equality holds we can find ¢(ap) such
that the left-hand side does not depend on «y.

Substitution in (15) gives that for all o in some open interval and for s > 0 and ¢ that

satisfies (13) for some z in the support of Z

(16)
dln \(t, ap) dln A(Ay ' (se™%), ap) OlnAg(t, o) dln A(Ay! (se=%), ap)
A o - — By

Oa Oa Oa Oa

=0.

Note that both aj; and aqo are identically equal to 0 if Z takes only one value. If Z takes

two (or more) values, then (16) holds if and only if for aq in some open interval and ¢ > 0

OlnA(t,a0)  OInA(t, o)
Oa Oa

(17) = e(ayp).

Integration with respect to ag and ¢ gives (using A(tg, ag) = 1)

t
(18) InA(t, ag) = e/ (@) [ ko) ds

Jto



with fgo e®)ds = —oo and i eF5)ds = co. If we define Inh(t) = [:; e*)ds and d(ag) =

ef(@0) > 0, we find
(19) Ao(t, ag) = h(t))

with h an increasing function with h(0) = 0 and h(co0) = oo.

We have proved the following proposition.

Proposition 2

If the assumptions (A1), (A2) and (C1)-(C4) hold except for the assumption that the baseline
hazard is bounded from 0 and oo in 0, then the information bound is singular if and only
if the integrated baseline hazard is of the form (19) for some strictly increasing continuous

function h with h(0) = 0, h(co) = oo and d(ag) > 0.

Proposition 2 is for the case that the baseline hazard depends on one parameter ayg. If
ap is a vector, (17) becomes

(20 claoy A0 gy TEL0D) _ oo

for some vector ¢(ag). Consider the case that ag has two parameters. Then from (20)

OlnA(t,a0)  OlnA(t,a0)  e(an)  ca(ao) <8ln)\(t,a0) B 81nA(t,a0)> .

21 =
(21) Oa Oa ci(ag)  c(ap) Oaa oL

Integration with respect to a1 and and ¢t yields the representation

(22) Ao(t, ap) = ht, ag) )

. e(ag) d . 1 _co(eg) (OInX(s,xg) _ OlnA(s,ag)
with d(ag) = el 5@ and In h(t,ap) = Jti) o) Cl(ao)( Bag Doy )ds

so that Proposition 2 still holds with an obvious modification.

The baseline hazard that corresponds to (19) is
(23) A(t, ag) = d(ang)h(t) ") R (1),

Note that the proposition only restricts d(ayp) to be positive. In particular, it can be either

smaller or larger than 1. If d(ag) < 1, then by (23) A(0,ap) = oco. If d(ap) > 1, then



A(0,a0) = 0. Only if d(ag) = 1, in which case the baseline hazard is known, the baseline

hazard in 0 can be bounded from 0 and co. Hence we have

Theorem
If the assumptions for Proposition 2 hold, then 0 < A(0, ap) < oo implies that the efficiency

bound of the semi-parametric MPH model in (1) is nonsingular.

4 Conclusion

By Proposition 1 the condition that the baseline hazard in 0 is bounded away from 0 and
oo is sufficient for semi-parametric identification. This condition is also sufficient for a non-
singular efficiency bound. Hence, there may be (regular) estimators in the semi-parametric

MPH model with parametric baseline hazard and regression function that are /N consistent.
Appendix A: Proof of Proposition 1

By (2) and (3) we have for all £ >0

(24) Pr(T < #|X) = Fy (A(t7a0)eﬁox)

where V = EEU is distributed as a mixture of exponential distributions and hence has a
strictly increasing cdf Fy. Without loss of generality we can assume that A(t, ag) is strictly

increasing in 5. If ép, BO, U are observationally equivalent, then for all ¢ > 0

(25) F (A(t, a0)e™ ) = By (A(t,do)e™)

We denote A(t,ap) = A(t), A(t, ) = A(t), e~Por1 — ?15 e~Por2 — b, e=Por1 — b1, e~ Por2 —
o with 1,25 as in (B3) and without loss of generality 1 = ¢ > ¢y, 1 = ¢y > hy.

Because M is strictly increasing its inverse M~ exists and from (25) for all ¢ > 0

10



(26) Ao (A (A700) 3-) = Rt = 7 (A (R0

If we denote K = A (]\’1(75)) with K is strictly increasing and K(0) = 0, then (26) implies

that

(27) K(tdy) = ¢ K(t)

and by iteration for all n > 1

(28) K(tdy) = $5K (1)

If we take the derivative of (27) we obtain

(20) P2 K (1) = K (o)
7

and by iteration for all n > 1

(30) (j—i) K'(t) = K (1)

-1
Taking the ratio of (30) and (28) we obtain because K'(t) = %2—18% with A\(¢) = A(t, o),
(1) = A(t, o)

(31) K/(t) _ 1 K,(¢1t) _ l S‘(A_l _ 1
K(t) tnooo K@t t K@) ¢
brt brt

by assumption (Bl). Because K(0) = 0 this implies that K(t) = ¢ and hence A(¢,ap) =
A(t, &) for t > 0 so that ag = &g) by (B4). By (27) Bhxa = Bg, o for all zo in the support
of X and hence §, = (3, by (B4).

11
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Notes

IThe singularity holds if we have single-spell duration data. Hahn shows that the efficiency
bound is nonsingular, if we have two or more spells for the same individual provided that
the individual random effect is the same for both spells.

2That is by a regular estimator sequence (for a definition see Van der Vaart (1998), p.
115).

3See also Jewell (1982) and Heckman and Singer(1984) who consider an alternative identi-
fying assumption that allows for an infinite mean, but assumes that the power transformation
is fixed

4The class of loglinear regression functions is closed under the power transformation. The
semi-parametric MPH model can be identified by choosing a class of parametric regression
functions that is not closed under the power transformation. However, this is identification by
arbitrary functional form assumptions. The loglinear specification imposes no (identifying)
restrictions.

STf not then there are intervals that have zero probability. These intervals can be omitted
and by redefining 7" accordingly we have that (¢, ) > 0 for ¢ > 0.
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