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Abstract

Increasingly, grade retention is viewed as an important alternative to social promo-
tion, yet evidence to date is unable to disentangle how the effect of grade retention
varies by abilities and over time. The key challenge is differential selection of students
into retention across grades and by abilities. Because existing quasi-experimental meth-
ods cannot address this question, we develop a new strategy that is a hybrid between
a control function and a generalization of the fixed effects approach. Applying our
method to nationally-representative, longitudinal data, we find evidence of dynamic
selection into retention and that the treatment effect of retention varies considerably
across grades and unobservable abilities of students. Our strategy can be applied more
broadly to many time-varying or multiple treatment settings.
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1 Introduction

Grade retention (or grade repetition) is a common practice in many countries. In the U.S.
about 10 percent of students are retained between kindergarten and eighth grade.1 With
states facing increasing pressure to ensure that students meet minimum proficiency levels
under the No Child Left Behind Act (NCLB) of 2001 and associated national rhetoric em-
phasizing an end to social promotion,2 the practice of grade retention is facing new scrutiny
as a potential policy to help bring students up to proficiency levels.3 This is somewhat sur-
prising given that the empirical literature at best provides mixed evidence of its effectiveness
in improving student outcomes (e.g., Holmes, 1989; Jimerson, 2001).

In this paper we provide evidence on how the effect of grade retention varies by age and
unobserved abilities based on a model for multiple/time-varying treatment effects. The key
challenges we address are that a) grade retention is not a binary treatment problem (i.e., a
child can be retained in one of multiple grades), b) the effect of grade retention is likely to
vary by students’ unobservable behavioral and cognitives abilities and c) the effect is also
likely to vary depending on the time at which a student is retained and the time elapsed
since retention. For the most part, the literature has not addressed these three issues. For
the most part the literature has focused on attempting to address the problem that retained
children are different from non-retained ones (i.e., standard selection). This is an issue we
also address, but with the non-trivial extension to a multiple treatment/time-varying setting
and the complications arising from it.

Heterogeneity in responses to grade retention by abilities and by timing is central to
informing policy. For instance, student accountability policies based on retention may vary in
effectiveness depending on the average ability of the students who are retained (as determined
by the cutoff for passing the exam) and whether the policy applies to students in early or
later grades. This may be particularly important given evidence of increasing retention at
early ages (Hauser, Frederick and Andrew, 2007). Furthermore, one of the primary criticisms
of grade retention is that it will disrupt a student’s social connections and affect their socio-
emotional development. The negative social consequences of being retained in kindergarten
are may be less severe than retaining a child in her teenage years. We provide new evidence
on the importance of these sources of heterogeneity in understanding grade retention. As
such, our findings also shed light on some of the mixed evidence in the literature.

1See National Center for Education Statistic, Condition of Education 2009, Indicator 18,
http://nces.ed.gov/programs/coe/2009/section3/indicator18.asp.

2Hauser, Frederick and Andrew (2007) find an increasing trend in grade retention since 1996, with some
sharp increases at the time of NCLB for some states.

3Eighteen states specify particular assessments to be used for grade promotion. Twelve states specify
promotion gateway grades, a performance threshold for promotion to the next grade (Zinth, 2005).
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We develop a simple framework to address how the timing of grade retention affects stu-
dent outcomes and how the effects vary by students abilities. Our method can be understood
as a hybrid between a control function and a generalization of the fixed effect approach. We
assume that a “low” dimensional set of unobservables affects both selection into treatment
and the outcome of treatment. This strategy effectively places restrictions on the covari-
ances between unobservables in the outcome and selection equations, a generalization of the
semiparametric factor structure of Carneiro, Hansen and Heckman (2003).4 It is a control
function approach because we use information from the selection equation to help control
for selection, so that the same unobserved abilities affect both test scores and the probabil-
ity of being retained. Identification is further enhanced by the use of exclusion restrictions
(retention policy variables), variables that affect a student’s selection into retention that do
not affect their outcomes directly.

Existing methods are not well-equipped to study these dimensions of grade retention. One
branch of the literature controls for selection based only on observables through matching
methods.5 These papers attempt to correct for selection by creating a control group of non-
retained students based on observable characteristics, such as IQ, measures of socio-emotional
adjustment, academic achievement, socio-economic status (SES) and gender. However, grade
retention is a particularly compelling case where even with a rich set of controls, retained
students are likely to have unobservable characteristics that lead to their retention relative
to observationally similar students who were not retained. These unobservables may help
explain why studies based on matching generally find negative effects of grade retention,
i.e., the control group may be “better” in unobservable dimensions. Furthermore, extending
matching on observables to consider time-varying effects of grade retention requires even
stronger assumptions: that conditional on observables, the probability of being retained is
(sequentially) independent over time.6 As both the assumption of selection on observables
and the repeated conditional independence assumptions seem particularly problematic for
our context, we focus on the case of selection on unobservables. More precisely, we are
interested in the case where the gains from retention may vary based on the unobservable
“abilities” of the student and these unobservable gains determine retention (essential hetero-
geneity in the language of Heckman, Urzua and Vytlacil (2006)).

Only a few studies of grade retention attempt to control for selection on unobservables,
4See also Bonhomme and Robin (2010) and Cunha, Heckman and Schennach (2010) for recent develop-

ments.
5See Jimerson (2001) for overview.
6See Gill and Robins (2001), Murphy (2003) and Lechner (2004) for recent developments. See also

Frölich (2004) and Cattaneo (2010) for multivariate static treatment models that invoke similar conditional
independence assumptions.
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and these generally present a more positive picture of the effects of grade retention. Jacob
and Lefgren (2004) and Jacob and Lefgren (2009) use a regression discontinuity approach
that compares students just above to students just below a threshold for passing imposed
by Chicago’s student accountability policy. This provides an important contribution to the
literature and is a useful approach for estimating a local effect of grade retention (the effect
for marginal students in a particular grade relative to a particular policy in place). However,
it cannot inform our question of interest: whether the effect varies for students well below
the threshold, which may be more of a target group of the policy. Furthermore, it cannot
be extended to study variation in effectiveness across grades in our context of heterogeneous
treatment effects.7

Comparing the estimated effect of grade retention across grades using a local approach
could lead to erroneous conclusions about whether it is better to retain a child earlier or
later for at least two reasons. First, different types of students may select into retention at
different ages; for instance, if a student is already retained in kindergarten, that same student
may be much less likely to be retained in first grade, so the pool of potential retainees varies
over time. We term this dynamic selection. Second, the difficulty in meeting the threshold
for passing may vary across grades, so that the marginal student who is retained in one
grade may differ from the marginal retained student in another grade. This means that
comparing the estimated effect of grade retention across grades using regression discontinuity
confounds selection into retention with potentially heterogeneous effects of retention. Similar
problems arise with extending the instrumental variable approach applied by Greene and
Winters (2007), which identifies the effects of grade retention by exploiting the introduction of
Florida’s test-based promotion policy. Furthermore, the existing quasi-experimental findings
using these threshold selection rules may not generalize to the majority of settings where the
selection rule is less clear and different types of students may be retained. For instance, in
some cases students may be retained through parental request, or because of low behavioral
ability rather than underperformance on a cognitive exam.

Given that existing methods are not well-equipped to answer the questions we pose, we
develop a new strategy with several objectives in mind. First, a key feature of our method
is to control for dynamic selection into grade retention, i.e., that the unobservable types of
students who select into retention are likely to vary across grades, as we find that this is an
important phenomenon in the data. Second, our method recognizes that the effect of grade
retention is likely to differ by the unobservable abilities of students. Third, our method
provides a rich representation of the unobservable abilities that may affect selection into

7Cellini, Ferreira and Rothstein (2010) provide a generalization to the regression discontinuity approach
to time-varying treatment effects in the context of homogeneous treatment effects.
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and the outcome of retention, particularly taking account of both cognitive and behavioral
abilities along with time-varying shocks to achievement. Finally, our method is sufficiently
general to extend to the predominant setting where the selection rule is unknown.

We evaluate the effect of retention on achievement using data from the Early Childhood
Longitudinal Study of Kindergartners (ECLS-K). We find that students who are retained in
kindergarten would have performed as much as 27 percent higher in the next year if they had
not been retained. We also find that the initial losses to achievement diminish over time. By
the end of our data, when students are approximately age 11, eliminating grade retention
increases raises achievement by as much as 7 percent for students who were retained in prior
years. This means that these retained students learn 7 percent less by age 11, than they
would have learned if they had not been retained. As we discuss further below, a somewhat
surprising finding is that the treatment effect of kindergarten retention is positive for the
average untreated student in the long run, whereas it is negative for the average treated
student. . In comparison, the simpler fixed effect approach only provides, at best, estimates
of the average treatment effect. Since the average student is higher ability than the typical
student retained, the fixed effect approach would lead to erroneous policy conclusions.

The contribution of our paper extends beyond providing new evidence on the effect of
grade retention. Arguably, our method is useful for a broader array of applications where
timing matters or there are multiple potential treatments and selection on unobservables is
likely to be important. Abbring and Van den Berg (2003) and Ham and LaLonde (1996)
provide other useful approaches to analyzing treatment effects in dynamic models. Whereas
they rely on the proportional hazards assumption, our model supports more general forms
of treatment heterogeneity than in either Ham and LaLonde (1996) (where treatment effects
are homogeneous), or Abbring and Van den Berg (2003) (where treatment heterogeneity can
be allowed at the expense of ruling out the endogenously-selected time-at-treatment to affect
outcomes). Our approach to modeling time-varying treatments is close to that in Heckman
and Navarro (2007). However, our focus is substantively different, i.e., how factor analytic
methods can aid in identification and interpretation of time-varying treatment effects. We
provide a further methodological contribution in generalizing the factor structure results
used in other settings (Carneiro, Hansen and Heckman, 2003; Bonhomme and Robin, 2010).
Our generalization is appealing not only because it is likely to be useful in other settings,
but also because but also because we require a smaller number of measurements (requiring
less data) to recover the factors than in existing factor models.8

8Furthermore, we link the assumptions used in factor structure models to better known fixed effects
and regression discontinuity approaches. In online Appendix C we provide further comparisons with other
commonly employed methods.
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The paper proceeds as follows. In Section 2, we describe the basic framework and define
dynamic treatment effects for the dynamic case. In Section 4, we specialize the framework
to our proposed factor structure. We show that the model is semiparametrically identified.
We describe our estimation strategy in Section 5. Data and results are discussed in Sections
3 and 6.

2 The Framework

As discussed in the introduction, existing methods for estimating static treatment effects
that have been applied to the study of grade retention do not extend readily to the context
where the treatment effect of retention varies across grades and by student abilities. Below
we outline a simple framework for evaluating the effect of grade retention in a general context
where the selection rule is unknown. While our generalizations come at the expense of con-
siderable notation, the framework provides important insight into the challenges associated
with estimating time-varying treatment effects that vary by ability.

Let t = 1, 2, ..., t̄ index calendar time and i = 1, ..., I index the individual. Since we allow
for students to be retained at different times, we define a random variable that indicates the
grade in which a student is retained, Ri = {1, 2, ..., R̄ − 1, R̄,∞}, where R̄ ≤ t̄ allows for
the possibility that students may be retained only up to a certain time period or grade.9

We assume that the student is retained at most once.10 Our data follows a single cohort of
kindergarteners across time, so that Ri = 1 denotes that a student is retained in kindergarten,
etc. We adopt the convention of letting Ri =∞ for the “never” treated state where a student
is not retained.11

The (possibly vector-valued) outcome of interest, math and reading test scores in our
context, at time t for a student i who receives treatment at time r is denoted by Yi (t, r).12 For
notational simplicity, we keep all conditioning on covariates, observable school and student
characteristics, implicit. Finally, we define a random variable Di (r) that takes value 1 if an
individual is retained at time r and 0 otherwise. For individual i the observed outcome in

9Note that we could restrict this further by allowing a lower bound on when students could be retained,
but it does not apply in our data.

10We do this primarily because only 0.3 percent of students are retained twice in our data and this
assumption simplifies notation. However, extending the framework to allow for the possibility of treatment
being taken more than once is straightforward, by letting Ri be a random vector characterizing the times at
which an individual receives treatment.

11Depending on the situation this case may be more accurately described as the “not treated yet” or “not
treated in the sample period.”

12These could be a vector of continuous test scores given a retention status (as in our application), a vector
of discrete random variables (measuring attendance for example), strings of discrete random variables (as in
a duration model, time until graduation for example) or combinations of these.
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period t will be given by

Yi (t) =
R̄∑
r=1

Di (r) [Yi (t, r)− Yi (t,∞)] + Yi (t,∞) . (1)

As opposed to the standard binary treatment case, we now have many potential outcomes.
That is, while the standard case only has the treated and untreated potential states, we have
the untreated, the treated at time 1, the treated at time 2, etc. Because of the sequential
nature of the problem, by letting Yi (t, r) depend on treatment time r, we allow for the
possibility that the effect of treatment depends not only on receipt but on the time at which
treatment is received. That is, there is no single effect of retention, but rather an effect
of retention in kindergarten, in first grade, etc. Furthermore, there is no single effect of
retention in kindergarten (for example), as the effects depend on the time elapsed since
retention.13 We define the set of potential treatment effects below.

Following Abbring and Van den Berg (2003) we also impose that

A-1 Yi (t, r) = Yi (t,∞) = Yi (t) for r ≥ t.

This assumption rules out that potential outcomes differ because in the future treatment
times will be different. This means, for example, that after conditioning on all prior in-
formation, the fact that a student will be retained in second grade does not directly affect
her performance in first grade. While Abbring and Van den Berg refer to this as the no
anticipations assumption, this should not be confused with the assumption that individuals
are not forward looking. Assumption A-1 does not rule out that individuals may predict
that they are more likely to get treated at a particular time r (i.e., have some anticipation
as to treatment time).14

We further write the outcomes as

Yi (t, r) = Φ (t, r) + εi (t, r) , (2)

where, because of A-1, we impose Φ (t, r) = Φ (t) and εi (t, r) = εi (t) if r ≥ t.15 The
13This setting can also be interpreted as depending on the time since treatment (t− r), making it straight-

forward to analyze the outcomes as durations, counts, etc.
14The assumption does rule out that after conditioning on the information available at the pre-r period

of interest t, the actual event of getting treated at time r has an effect on pre-time r outcomes. It is in this
sense that it is closer to a “no perfect foresight” assumption although this is not necessary for A-1 to hold.
We can accommodate cases in which A-1 does not hold, but we keep the assumption for simplicity. See
Abbring and Van den Berg (2003) and Heckman and Navarro (2007) for a discussion.

15While we focus on continuous test scores in our application, we can easily use this framework to work with
discrete and mixed discrete/continuous outcomes by defining them as random variables arising from other
latent variables crossing thresholds. For example, if the outcome were binary, we can define a latent variable
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observed outcome (test score) in period t is then given by

Yi (t) = Φ(t,∞)+εi(t,∞)+

min{t,R̄}∑
r=1

Di (r) (Φ (t, r)−Φ(t,∞))+

min{t,R̄}∑
r=1

Di (r) (εi (t, r)−εi (t,∞)) .

In most cases, the decision to retain a student is not clearly defined, but rather is the
result of a complex process involving many actors, including teachers, principals and parents.
We thus model selection in a reduced form way that still highlights the importance of timing,
such that treatment and treatment time are determined by a single spell duration model that
follows a sequential threshold crossing structure as in Heckman and Navarro (2007). If we
define the treatment time specific index Vi (r) = λ (r) + Ui (r) for r ∈ {1, 2, ..., R̄ − 1, R̄},
then treatment time is selected according to

Di (Ri) = 1
(
Vi (Ri) > 0 | {Vi (r) < 0}Ri−1

r=1

)
= 1

(
Vi (Ri) > 0 | {Di (r) = 0}Ri−1

r=1

)
,

where 1 (a) is an indicator function that takes value 1 if a is true and 0 otherwise, and where
Ri =∞ if {Vi (r) < 0}R̄r=1. The selection process is dynamic in the sense that today’s choice
to retain a student depends on yesterday’s choice: treatment time r can only be selected if
treatment has not been taken before.

This framework can be thought of as a midpoint between the standard static treatment
literature that does not model the selection process explicitly and a fully specified structural
dynamic discrete choice model.16 At the same time, the selection process we propose is
consistent with, for example, the commonly employed test score thresholds for whether a
child should repeat a grade. This threshold could be individual specific if schools use relative
comparisons or take into account extenuating circumstances such as being a special education
student. Notice that our selection process applies whether we observe the scores used for
the decision or not. For example, if the jth test score Yi,j (t) (whether observed by the

Y ∗i (t, r) = Φ (t, r)+εi (t, r) so that the measured outcome Yi (t, r) would be Yi (t, r) = 1 (Y ∗i (t, r) > 0) where
the function 1 (a) takes value 1 if a is true and 0 if it is not. Furthermore, additive separability in outcomes
is not strictly required. It can be relaxed using the analysis in Matzkin (2003).

16Our selection model is consistent with the usual threshold-crossing or reservation-value decision rules
that frequently arise from complex dynamic decision problems. Cunha, Heckman and Navarro (2007) provide
conditions under which structural dynamic discrete choice models can be represented by a reduced form
approximation as above. Furthermore, since extending it to the case in which treatment is not an absorbing
state (i.e., treatment can be received more than once) is straightforward, it can be applied in more complex
situations. In this case, we would generalize the threshold crossing model into a multiple spell model, where
the whole sequence of prior treatments/no treatments potentially affects the decision each period. Ri would
be a vector containing the treatment history up to t, and an individual would choose treatment every time
the index becomes positive (not only the first time).
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econometrician or not) is used to decide who to retain, and the threshold µi is individual
specific, we would have

Vi (t) = λ (t) + Ui (t)

= −Yi,j (t)− µi
= −Φj (t)− εi,j (t)− µi, (3)

where λ (t) = −Φj (t) and Ui (t) = −εi,j (t)− µi. Clearly, thresholds based on combinations
of different test scores would also be consistent with our specification.

2.1 Defining Treatment Effects

As mentioned above, our framework encompasses many potential treatment effects because
both the timing of treatment and the time elapsed since treatment may matter. Thus,
before turning to the identification problem, we first consider the problem of defining what
constitutes “the” effect of treatment at the individual level. A particular parameter of interest
for the individual treatment effect

∆1
i (t, r, r′) = Yi (t, r)− Yi (t, r′)

= Φ (t, r)− Φ (t, r′) + εi (t, r)− εi (t, r′) ,

measures the effect at period t of receiving treatment at time r versus receiving treatment
at time r′. An example would be the difference in test scores at age 11 for a student if he
repeats first grade versus if he repeats third grade. If we let r′ = ∞, this parameter would
measure the effect at t of receiving treatment at time r versus not receiving treatment at all.

Because of the multiplicity of treatments available, we can define many more mean treat-
ment parameters than in the static binary case, like the average effect of receiving treatment
at r versus receiving treatment at r′

ATE (t, r, r′) = E (Y (t, r)− Y (t, r′)) = Φ (t, r)− Φ (t, r′)

or the effect of treatment at r versus treatment at r′ for people who are actually treated at
time Ri = r′′

TT (t, r, r′, r′′) = E (Y (t, r)− Y (t, r′) |Ri = r′′) ,

etc. For instance, we may want to know the return to retaining students in kindergarten
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who were actually retained in first grade.17

3 Data

We use the ECLS-K, a nationally representative survey of kindergartners in 1998/99, to
study the effect of grade retention. It follows the students as they progress through school,
with follow-up surveys in the 1999/2000, 2001/02 and 2003/04 school years. A benefit of
these data is that we observe the history of a student’s schooling beginning at kindergarten,
and it covers the earlier years when retention is relatively more common. Roughly 10% of
our sample is retained between kindergarten and fourth grade. We restrict the sample to
students who were retained only once, did not skip grades, and were taking kindergarten for
the first time in 1998/99.18 Because of the nature of the survey, we are able to form three
different retention indicators: kindergarten, early (first or second grades) and late (third or
fourth grades).19 That is, our dynamic treatment time indicator takes values Ri = 1, 2, 3,∞,
where Ri =∞ means the child is never retained, Ri = 1 that he is retained in kindergarten,
Ri = 2 that he is retained early and Ri = 3 that he is retained late.

Each year of the ECLS-K includes cognitive tests measuring students’ science, reading
and math skills.20 We focus primarily on the effect of retention at different grades on the
math and reading tests, using the log of the item response theory (IRT) scores. ECLS-
K also includes measures of teacher ratings on students’ behavioral and social skills—the
approaches to learning, self-control and interpersonal skills components of the Social Rating
Scale (SRS). We use these together with the cognitive tests in order to identify the different
components of ability as described below in Section 4.

A logical difficulty in evaluating the effect of grade retention is that it is impossible to
hold both the grade and age fixed when determining the gains in achievement for a retained
student. Depending on the policy question of interest, it may be more appropriate to focus

17Under certain assumptions that limit the heterogeneity of treatment effects some of these parameters
may equal one another by construction. We focus on the more general case, where the treatment effect is
allowed to vary over time and by unobserved individual characteristics. Both of these types of heterogeneity
prove important in our application.

18The number of students who we observe being retained twice in the raw data is about .3% of the sample.
After restricting to the sample with the necessary set of covariates, this number would be even smaller. We
lose about 100 students in the restricted sample, when we drop students who are taking kindergarten for the
second time in the base year or about 1% of our restricted sample. Including them does not significantly
change our estimated effects of retention.

19In principle we could separate early and late into the four grades at which retention takes place. This,
however, can only be done for less than half of the sample, and we already lose a significant amount of data
because of attrition, as shown below.

20In the first two periods students are given a general knowledge test, rather than a science test, which
measures science skills. However, the science and the general knowledge tests are not directly comparable.
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on measuring effects holding grade fixed or holding age fixed. The effect holding grade fixed
addresses, for instance, whether a student learns more by the end of fifth grade than he would
have if he had not repeated fourth grade. This attributes maturation (or age) effects to the
estimated effect of retention. Alternatively, holding age fixed measures whether a student
learns more, say, by age 11 if he repeats fourth grade than he would have if he had been
promoted to the fifth grade and exposed to new material. We focus on the effect of retention
holding age fixed, which the test scores in the ECLS-K are better-suited for measuring. That
is, the tests used by ECLS-K are designed to measure cognitive development as opposed to
grade-specific knowledge.21

The ECLS-K contains a very rich set of covariates. We use characteristics of the children,
the family, the class and the school as controls in our model. Class and teacher characteristics
are taken from teacher surveys.22 School administrator surveys provide information about
the school characteristics, and parent surveys provide information about the family.

Table 1 shows descriptive statistics for the covariates we include in all our equations for
the first year of the survey (1998/99) in columns 2 to 4. We restrict the sample to students
who have any test score measure in the first year and the full set of conditioning covariates.
Thus, the number of observations differs across test scores and covariates. We do this so
that we can include as much of the data as possible in estimating the different outcome
equations. A potentially important concern with a panel study of this type is non-random
sample attrition. Column 6 of Table 1 shows the mean 1998/99 characteristics for students
who are still in the sample in 2003/04 (the last year of the survey that we use for estimation).
The number of observations decreases substantially across these years, from 7832 in the base
year to 2106 in the last year. Comparing summary statistics, we see suggestive evidence of
non-random attrition. Our estimator controls for this, as discussed in Section 4.3.

The ECLS-K also includes information on the schools’ retention policies for the 1998/99,
1999/00 and 2001/02 survey years. These policies include whether the school has a policy
that allows children to be retained in any grade (this policy only applies to grades after
kindergarten), to be retained because of immaturity, to be retained at the parents’ request,
to be retained without parental authorization, to be retained multiple times or multiple times
in a given grade. As shown in Table 2, retention policies vary considerably across schools
and also to a lesser extent across retention statuses. In general, students who are retained
early or late attend schools with more “liberal” retention policies than students who are not

21Roughly speaking it is like being given the same test every year and measuring how many additional
questions the student can answer.

22For the 2003/04 school year, both math/science and reading teachers fill out surveys, resulting in po-
tentially different classroom and teacher characteristics for math/science and reading. We use the relevant
classroom measures for each test in estimating the outcome equations.
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retained or who are retained in kindergarten. For instance, in the 1998/1999 school year
44% of schools in the non-retained sample permit retention without parental permission,
compared to 61% and 58% for students who are retained early or late. Our methodology
in Section 5 incorporates these variables by using them as exclusions, under the assumption
that, conditional on the other covariates including observable school characteristics, they do
not directly determine the child’s test score but they do affect the probability that a child
repeats a grade.

4 Identification

The primary challenge in identifying the treatment effect of grade retention in the static
framework is that individuals differ in unobservable ways that help determine both selection
into retention and the effect of retention. For instance, lower ability students are more likely
to be retained and may also learn at a slower rate than higher ability students leading to
a different effect of grade retention. The problem is similar in our setting, with the added
challenge that selection is dynamic and that treatment effects vary over time as well as by
unobservable characteristics of the student.

We perform some baseline OLS regressions that indicate that dynamic selection and/or
time-varying treatment effects are likely to be important in our data. To test for dynamic
selection, we regress the kindergarten cognitive tests, which took place prior to any retention
decisions, on period-specific indicators of whether the child is retained in the future. We also
control for covariates related to the child, his family, school and class, as described in Table
1 above. Column 2 of Table 3 presents results for reading and math in Panels A and B
respectively. Not surprisingly, children who will be retained have lower kindergarten test
scores than those who will not be retained. Reading scores are 18% lower for kindergarten
retainees, and 20% and 12% lower for early and late retainees. Math scores are even more
striking, 27%, 32% and 22% lower for kindergarten, early and late retainees respectively.
Furthermore, p-values, reported at the bottom of the table, reject the joint test that the
coefficients on being retained at different grades in the future are the same. These results
suggest not only the presence of selection but also dynamic selection on cognitive test scores
in the sense that different types of students are being retained at different grades.

We show evidence that time-varying treatment effects are likely to be present by regress-
ing test scores in the last sample period (2003/04 school year) on retention in different grades.
As shown in column 3 of Table 3, being retained is associated with worse outcomes than
not being retained. The coefficients on the different retention statuses are also significantly
different from each other. This is not direct evidence of time-varying treatment effects, since
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differences in the estimated effects across grades could be a result of time-varying treatment
effects or a result of dynamic selection.

One way to begin to control for a static component of selection is to include various per-
formance measures in kindergarten, prior to any retention decisions taking place. Columns
4 and 5 present results controlling for kindergarten cognitive test scores and then behavioral
scores. Consistent with the existence of selection, the negative effects of retention become
smaller but do not disappear. For instance, the coefficient on kindergarten retention is cut
in half for both reading and math, from -18% without initial test controls to -9% with test
controls. Furthermore, we reject the formal test of equality of the effects for different reten-
tion times, again providing evidence for potentially time-varying treatment effects.23 After
including all initial test controls, retention in kindergarten is estimated to lower achievement
by 9%, early retention by 14% and late by only 4% in both reading and math.

While this provides suggestive evidence of both time-varying treatment effects and dy-
namic selection, it is far from conclusive. The assumption that kindergarten test scores
control for dynamic selection is a very restrictive one, in that it assumes a static ability
that determines whether one is retained in kindergarten, early or late. In addition, tests
scores are noisy measures of true latent abilities; hence using the kindergarten measures as
controls may actually worsen the bias in the estimated treatment effects.24 Furthermore,
this analysis does not capture heterogeneous effects of treatment by student type, which is
a central motivation of our paper.

As we discussed in the introduction, one can also attempt to control for selection on unob-
servable abilities using regression discontinuity and instrumental variables methods. While
these methods are useful for identifying a local treatment effect, they are less well-equipped
to determine how the effect of treatment varies by unobservable abilities of students, which
may be a key aspect of developing effective grade retention policies. Second, these rely on a
particular selection rule, meeting a proficiency threshold on an end of year exam, which does
not apply in most settings. Third, because of the local nature of the estimates, they cannot
be easily extended to study time-varying treatment effects when there are heterogeneous
treatment effects, simply because the student on the margin of being retained varies across
grades.25

As a consequence, in this section we develop a methodology based on a factor-analytic
approach for dealing with dynamic selection and heterogeneous, time-varying treatment
effects. We then describe conditions such that the model is semiparametrically identified.

23The same pattern holds for the other cognitive tests and behavioral measures.
24See Heckman and Navarro (2004).
25In online Appendix C we briefly and more formally discuss some of the advantages and shortcomings of

applying commonly employed approaches in the static treatment literature in our time-varying setting.
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Our approach can be understood as a hybrid between the control function and a generalized
version of the fixed effect approach, as we discuss further below. As with all control function
based methods, identification is more transparent and easier to achieve when variables are
available that affect selection into treatment but not the effect of treatment. We will use
school retention policies as exclusions in our application, but they are not strictly required.
In contrast to the standard fixed effect approach, we can allow for the individual effects to
be multidimensional, time-varying and treatment-specific (e.g., the effect of ability can differ
in the retained relative to the non-retained states).

4.1 Factor Structure

Exploring the important dimensions of timing and heterogeneity in treatment effects comes
at the expense of a somewhat more complicated identification strategy than is currently used
in the literature. We attempt to simplify exposition by illustrating our strategy with a 3
period example, where treatment can be taken in either of the first 2 periods (R = 1, 2), e.g.,
students can be retained in kindergarten or first grade. The policy is evaluated according to
its effect on some outcome measured at period t: Yi (t, r), e.g., third period test scores. For
example, potential outcomes in period 3 can be given by

Yi (3, r) = Φ (3, r) + εi (3, r) for r = 1, 2,∞,

and the observed outcome can be written as

Yi (3) = Φ (3,∞) +Di (1) [Φ (3, 1)− Φ (3,∞)] +Di (2) [Φ (3, 2)− Φ (3,∞)]

+εi (3,∞) +Di (1) [εi (3, 1)− εi (3,∞)] +Di (2) [εi (3, 2)− εi (3,∞)] . (4)

The (observed) outcome equation in period 3 is a regression model with dummy indicators
for the time at which an individual is retained. It is different from a standard binary
treatment model both because there is more than one treatment indicator and because the
effect of treatment is potentially heterogeneous. If the decision of when to receive treatment
is correlated with the unobservable (to the econometrician) gains of choosing each treatment,
we have a situation with essential heterogeneity. That is, essential heterogeneity exists if the
students who are retained are more likely to experience higher (lower) gains from retention.
Formally, in our case Di (r) and/or Di (r

′) are likely to be correlated with εi (3, r)− εi (3, r′)
for r 6= r′.

One way to account for essential heterogeneity is to recover the joint distribution of
all the unobservables (Ui, εi). This way we can describe how the treatment effect varies
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across unobservable individual types. Imposing a factor structure simplifies the problem and
permits us to recover the joint distribution of the unobservables. In particular, we assume:

A-2 (Factor structure) εi (t, r) = θiα (t, r) + εi (t) and Ui (r) = θiρ (r) + υi (r) where θi is
a vector of mutually independent “factors” and we assume that εi (t) ⊥⊥ εi (t

′) for all
t 6= t′, υi (r) ⊥⊥ υi (r

′) for all r 6= r′ and υi (r) ⊥⊥ εi (t) for all r and t where ⊥⊥ denotes
statistical independence.26

We impose A-2 for convenience, even though it is stronger than required.27 The factor
structure assumption is a convenient dimension reduction technique: it reduces the problem
of recovering the entire joint distribution of (Ui, εi) to that of recovering the factor “loadings”
α (t, r) and ρ (r) and the marginal distributions of the elements of θi and of εi (t) , υi (r) ∀t, r.

The factor structure also has an appealing interpretation, since we can now talk about a
low dimensional set of common “causes.”28 The same set of unobservables (the vector θi) that
determines the effect of grade retention also determines whether a student is retained. We
think of θi as a vector of unobserved “abilities” in our setting, where essential heterogeneity
arises because unobserved abilities affect both the gain in test scores across two years and
the probability of being retained. We can then consider questions such as whether less able
students in our model are more likely to be retained earlier or later and test the implications
for the effect of treatment on these students. Notice that, by writing the selection equation
directly as a function of abilities, θ, selection depending on test scores becomes a special case
of our choice process as shown in equation (3).

To understand how the factor structure assumption helps address the identification prob-
lem associated with unobserved heterogeneity, consider our three period example. If A-2
holds, the choice process is determined by

Vi (r) = λ (r) + θiρ (r) + υi (r) .

The observed outcome vectors are

Yi (1) = Φ (1) + εi (1) + θiα (1) ,

Yi (2) = Φ (2,∞)+Di (1) [Φ (2, 1)− Φ (2,∞)]+εi (2)+θiα (2,∞)+Di (1) θi [α (2, 1)− α (2,∞)] ,

26If A-1 holds, α (t, r) = α (t,∞) = α (t) for r ≥ t.
27Following the analysis of measurement error models in Schennach (2004) and Hu and Schennach (2008)

we can relax the strong statistical independence assumptions and replace them with a combination of general
dependence and weaker mean independence assumptions.

28See Jöreskog and Goldberger (1975) for a discussion and Carneiro, Hansen and Heckman (2003) and
Cunha, Heckman and Navarro (2005) for recent developments.
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and

Yi (3) = Φ (3,∞) +Di (1) [Φ (3, 1)− Φ (3,∞)] +Di (2) [Φ (3, 2)− Φ (3,∞)] + εi (3)

+θiα (3,∞) +Di (1) θi [α (3, 1)− α (3,∞)] +Di (2) θi [α (3, 2)− α (3,∞)] .

In this case, essential heterogeneity is present when α (3, r) 6=α (3,∞) or α (2, r) 6=α (2,∞),
since now the unobserved gains in the test score

εi (t, r)− εi (t,∞) = θi [α (t, r)− α (t,∞)]

are correlated with the choice indicator because the same θi determines both.
If we could recover (or condition on) the unobserved θi, then Di(1) and Di(2) would no

longer be endogenous, and we could obtain consistent estimates of the treatment effect. The
factor structure can thus be also understood as an alternative form of matching, where the
idea is to “match” based not only on variables observable to the econometrician but also on
the unobservable factors. This is the key intuition behind the factor model, to condition not
only on observable covariates but also on the unobservable vector θi in order to recover the
conditional independence assumption of quasi-experimental methods.

To understand how the factor model we propose is a generalization of the fixed effect
model, take differences between the period 2 and period 1 jth outcomes to difference out the
individual effect θi, so that

Yi (2)− Yi (1) = Φ (2,∞)− Φ (1) +Di (1) [Φ (2, 1)− Φ (2,∞)] + εi (2)− εi (1)

+θi [α (2,∞)− α (1)] +Di (1) θi [α (2, 1)− α (2,∞)] .

For the differencing strategy to work, we need to impose two restrictions. First, we would
need to rule out essential heterogeneity, i.e., α (2, 1) = α (2,∞) = α (2). Second, we would
have to assume that the marginal effect of θi does not change over time so α (2) = α (1) = α.
First differencing eliminates θi only when these two restrictions hold. As more periods pass,
more assumptions are required for the fixed effect model to work. For instance, to identify
the effect on period 3 outcomes, we would need to impose the additional assumption that
α (3, 2) = α (3, 1) = α (3,∞) = α (3).29Of course, these assumptions that make the differenc-

29Alternatively, by relaxing the fixed effects assumption slightly, we could employ a double differencing
strategy. We continue to rule out essential heterogeneity, but now allow for time trends. In other words,
we substitute the assumption of a time-invariant marginal effect of θi with α (t) = α0 + α1t. Under these
assumptions, subtracting Yi (2)− Yi (1) from Yi (3)− Yi (2) would recover Φ (3, 2)− Φ (3,∞) and Φ (3, 1)−
Φ (3,∞)− 2 (Φ(2, 1)− Φ(2,∞)). Thus, even with these strong assumptions, we cannot separate the effect of
being treated in period 1 on outcomes in periods 2 and 3.
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ing strategy possible, also make the average treatment effect the same as the treatment on
the treated. As argued above, this is not a reasonable assumption in the case of grade reten-
tion, as in many setting. Thus, our factor structure provides an important generalization of
the fixed effect approach by allowing for essential heterogeneity and that the marginal effects
of abilities vary by treatment status. In addition, our factor structure further generalizes
from the fixed effect approach by permitting multidimensional abilities, so that retention
decisions and the outcome of retention can depend both on cognitive and behavioral abilities
of the students, as we discuss further below.

4.2 Single-Dimensional Ability Example

To illustrate how identification works with the factor structure assumption, first consider
the simplest example in which only one factor (e.g., the first element of θi: θi,1) affects the
outcome and selection equations in period 1, i.e., the standard case in which one assumes that
unobserved ability is uni-dimensional. Suppose the outcome in period 1 is free of selection,30

so
Yi (1) = Φ (1) + θi,1α1 (1) + εi (1) .

It is straightforward to show that the joint distribution of εi (1) = θi,1α1 (1) + εi (1) and
Ui (1) = θi,1ρ1 (1) + υi (1) is nonparametrically identified (e.g., Heckman and Smith, 1998).
Further, normalizing ρ1 (1) = 1,31 we can form32

E (ε2i (1)Ui (1))

E (εi (1)U2
i (1))

=
α2

1 (1)E
(
θ3
i,1

)
α1 (1)E

(
θ3
i,1

) = α1 (1) .

With α1 (1) in hand, it follows from a Theorem of Kotlarski (1967)33 that the distribution
of θi,1 (and of εi (1) and υi (1)) is nonparametrically identified. For example, suppose these

30Alternatively if we have access to an exclusion restriction we can control for selection nonparametrically
as in Heckman (1990) and Heckman and Smith (1998) and work with selection corrected outcomes.

31Given that θ1 is latent, this normalization implies no restriction since θi,1ρ1 (1) = θi,1κ
ρ1(1)
κ for any

constant κ.
32Notice that we implicitly assume that the distribution of θ is not symmetric. This is not a necessary

assumption but it simplifies the proofs. In online Appendix E we show how to identify the model when the
distribution is symmetric.

33The theorem states that, if X1, X2 and X3 are independent real-valued random variables and we define

Z1 = X1 −X2

Z2 = X1 −X3;

then, if the characteristic function of (Z1, Z2) does not vanish, the joint distribution of (Z1, Z2) determines
the distributions of X1, X2 and X3 up to location. For a proof see Kotlarski (1967) or Prakasa Rao (1992)
theorem 2.1.1.
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distributions are such that they can be characterized by their moments (see Billingsley, 1995
for conditions). Then, intuitively, identification of the distribution of θi,1 follows from the
fact that we can recover all its moments from E

(
εki (1)Ui (1)

)
= αk1 (1)E

(
θk+1
i,1

)
for k > 0.

Formally, one wants to characterize a distribution using its characteristic function and not
moments, and this is precisely what the Kotlarski argument does.

Next consider the (selection corrected) second period outcomes

Yi (2, r) = Φ (2, r) + θi,1α1 (2, r) + θi,2α2 (2, r) + εi (2) for r ∈ {1,∞}

and selection equation

Vi (2) = λ (2) + θi,1ρ1 (2) + θi,2ρ2 (2) + υi (2) ,

where we now allow for a new element of θi (θi,2) to enter the model. θi,2 can be interpreted
as a correlated shock, i.e., an unobserved shock that affects outcomes and selection equa-
tions from period 2 onward, with the potential that its effect may change as time elapses.
Alternatively, one can think of it as an ad-hoc way of letting unobserved ability evolve over
time. By taking cross moments over time (i.e., Yi (1) with the selection corrected Yi (2, r)),
we can identify the elements associated with θi,1 in period 2 equations. Then, by taking
cross moments within period 2 equations, we can identify the elements associated with the
correlated shock (θi,2), as well as the nonparametric distributions of the unobservables.

4.3 Multidimensional Abilities

We extend this analysis to the case in which unobserved ability (θi) is multidimensional
beyond the correlated shocks (i.e., gaining a new element of θi each period). Associated
with ability is a set of tests or markers that measure these components of ability imperfectly,
which in our application correspond to the initial tests given to students in kindergarten
before any grade repetition takes place. The existence of selection-free initial test scores is
not crucial (provided we can correct for selection), but we keep it because a) it is common
to many situations and b) it simplifies the exposition of the identification argument.34

We consider a normalization of θi such that true ability at the initial period consists of
three independent components (Ai, Bi, Ci). In particular, assume we have access to Nc ≥ 2

measures (or tests) of cognitive functions ζi,j, and Nb ≥ 2 measures of behavioral functions,
34There is nothing special about ability and tests. In a different setting, we could refer to abilities as

general and specific unobservables, and to test scores as measurements. For ease of exposition, however, we
continue referring to these unobserved factors as abilities and to the measurements associated with them as
test scores.
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βi,j, that are measured free of selection. As before, we keep all conditioning on covariates
implicit to simplify notation. We write the jth demeaned period 1 cognitive test as

ζi,j,1 = Aiαζ,j,1 + Ciπζ,j,1 + εi,ζ,j,1, (5)

and the jth demeaned behavioral test as

βi,j,1 = Aiαβ,j,1 +Biφβ,j,1 + εi,β,j,1. (6)

Under this interpretation, tests are noisy measures of the components of ability. We
take science, math and reading test scores as markers of cognitive ability Ci and general
ability Ai (i.e., ζ) and the SRS ratings on students behavioral and social skills as our noisy
measures of the behavioral ability Bi and general ability Ai (i.e. β). This is not to say that
cognitive ability plays no role in behavioral aspects or vice versa but rather that whatever
is common between these functions is captured by the general ability component Ai. The
cognitive ability component Ci and the behavioral component Bi measure the part of ability
that is used exclusively for the corresponding function. As we show below, this normalization
is only required in the first period and all components of ability can affect all test scores,
regardless of whether they are cognitive markers or behavioral markers, in all other periods.
Other normalizations are possible, but the present normalization may also be applicable to
other settings with multidimensional unobservables.35

Semiparametric identification follows similarly to the one factor model. We prove semi-
parametric identification of the model formally in online Appendix E. Intuitively, we now
take moments across cognitive and behavioral equations to recover the period 1α-parameters
and the nonparametric distribution of A. We then take cross moments within cognitive tests
to recover the period 1 π-parameters and the distributions of Ci and εi,ζ and cross moment
within behavioral tests to recover the period 1 φ-parameters as well as the nonparametric
distributions of Bi and εi,β. In essence Ai represents everything that correlates behavioral
and cognitive scores, Bi and Ci capture the residual correlation in behavioral and cognitive
scores respectively after accounting for Ai. The role of εi is to capture the residual variance
in scores not captured by (Ai, Bi, Ci). Notice that, by taking cross moments up to the iden-
tifiable distribution of υi (1), we now know the distribution of the unobservables determining
who will be retained in period 1.

Once we have recovered the distribution of (Ai, Bi, Ci), we can proceed to the next
period. Now some students will be treated (i.e., will repeat kindergarten), and so the test
scores in period 2 will be contaminated with selection. By using the selection equation,

35See Cunha, Heckman and Schennach (2010) and Bonhomme and Robin (2010) for examples.
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we can correct period 2 test scores using semiparametric selection correction methods like
the control function approach.36 We can then repeat the arguments above and recover the
period 2 loadings and the distribution of the period 2 ε′s from the selection-corrected period
2 outcomes. However, since we now know the distribution of abilities in advance, we can
let all three types of ability enter all equations (whether behavioral or cognitive) without
having to normalize some loadings to zero. That is, the normalization that Bi only enters
β-equations and Ci only enters ζ-equations need only apply to the first period.

Proceeding iteratively with the arguments above, we can recover all of the parameters
and distributions in the outcomes of interest for each period. Furthermore, as in the single-
dimensional ability example above, we can add elements to θ over time to allow for persistent
unobserved (to the econometrician) shocks every period. By adding a new element to θ every
period, we can capture any residual correlation in outcomes not captured by (Ai, Bi, Ci) and
time varying loadings. Intuitively, it allows us to control for unobservable shocks, e.g.,
accidents or health problems, that can be correlated over time.

The factor structure we impose has other advantages. For example, we correct for po-
tential biases due to selective sample attrition (e.g., children moving to a different school if
they know they will be retained in their current school) by adding an equation for missing
data (say a binary model for attrition) that depends on the same common vector θi.

5 Estimation

In order to take our model to the data, we further specify our estimating equations as
linear in parameters as follows. Let ζi,j,1 be our jth cognitive measure for individual i in
period 1 (kindergarten) and similarly for behavioral measures. Our kindergarten measures
are modeled as37

ζi,j,1 = Xi,1γζ,j,1 + Aiαζ,j,1 + Ciπζ,j,1 + εi,ζ,j,1 (7)

and
βi,j,1 = Xi,1γβ,j,1 + Aiαβ,j,1 +Biφβ,j,1 + εi,β,j,1. (8)

36Notice that the correlation between the selection equation in period 1 and outcomes only depends on
(Ai, Bi, Ci) and so, strictly speaking, an exclusion restriction is not required for nonparametric identification
as in Heckman (1990) and Heckman and Smith (1998). See Heckman and Robb (1985) and Navarro (2008)
for use of control functions to control for selection.

37We follow the identification arguments in Section 4.1 and, without loss of generality, impose the following
normalizations. We normalize the general ability loading on the first period general knowledge test to 1, so
A can be interpreted as a trait that is associated positively with higher scores in the general knowledge test.
The loading on cognitive ability is normalized to 1 on the first period math test, so C is associated with
higher math scores. Finally, we normalize the behavioral loading on the self-control marker to 1.
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Our model for test scores in the following years is given by

ζi,j,t = Xi,tγζ,j,t + Aiαζ,j,∞,t +Biφζ,j,∞,t + Ciπζ,j,∞,t +
t∑

τ=2

η
(τ)
i δ

(τ)
ζ,j,t + εi,ζ,j,t

+
t−1∑
r=1

Di (r) [Φt,r + Ai [αζ,j,r,t − αζ,j,∞,t] +Bi [φζ,j,r,t − φζ,j,∞,t] + Ci [πζ,j,r,t − πζ,j,∞,t]] .

(9)

We restrict the observable covariates (except for the constant) to have the same marginal
effect across time for a given subject. The main reason we do this is to save on the number of
parameters we are estimating. Furthermore, preliminary reduced form regressions suggested
that the marginal effects did not vary much across grades. We also restrict the effect of the
permanent shock

(
η

(τ)
i

)
to be the same regardless of retention status. Φt,r then measures

the average effect of being retained at r in period t. Importantly, note that this specification
corresponds to the general case discussed above, in that the treatment varies over time as
does the effect of the unobservable “abilities” (i.e., the difference in the loadings). Hence the
effect of treatment is both heterogeneous and time-varying.

The actual form of the model for retention we use is the following.38 We write the latent
index V as

Vi (r) = λ0,r +Xi,rλx,r +Zi,rλz,r +AiρA,r +BiρB,r +CiρC,r +
r∑

τ=2

η
(τ)
i ψ(τ)

r +υi,r for r = 1, ..., R̄.

Di (Ri) would then be defined as

Di (Ri) = 1
(
Vi (Ri) > 0|{Vi (r) ≤ 0}Ri−1

r=1

)
.

Notice that, consistent with our data, we allow for exclusions in the index, so that some
variables (Z) are included in the retention equations but not in the outcomes. In the data
this corresponds to 7 binary measures of the retention policies summarized in Table 2.39

As discussed in Section 4.1, given that test scores in kindergarten are free of selection, the
38Since we know the latent index is nonparametrically identified, we could instead write it as a polynomial

on the variables instead of a linear function for example. Given that the number of parameters we are
estimating is already 616, and the number of parameters would increase considerable, we maintain the the
linearity assumption.

39We examine whether these are valid exclusions in a simple two stage least squares regression and find
that they satisfy the test of overidentifying restrictions in this setting. We also estimted the model with
and without the exclusion restrictions and performed a loglikelihood test where we cannot reject that the
exclusion restrictions are important.
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additional assumption of valid exclusion restrictions is not necessary, but rather aids in
identification. Similarly, given valid exclusions, the assumption of initial test scores free of
selection is not necessary for identification. Furthermore, to address non-random sample
attrition, we also include a similar selection equation for students who select out of the
sample.

The distributions of the unobservables (A,B,C, {η(τ)}t̄τ=2, ε, υ) in the model are non-
parametrically identified, as shown in Section 4.1. However, for estimation purposes, we
specify all of the distributions and allow them to follow mixtures of normals with either two
or three components. Furthermore, while our identification arguments are presented in a
sequential fashion and lead naturally to a multi-step estimation procedure, we estimate all
of the parameters in the model jointly by maximum likelihood in a single step.

6 Results

Turning to the results, we begin by estimating average treatment effects and treatment on
the treated parameters for retained students in the last year of our data, 2003/04. Next,
we consider how effects vary by the abilities of the students. Then, we turn to the question
of time-varying treatment effects, i.e., how estimated effects vary based on the time elapsed
since treatment. We put our estimates in context by contrasting our estimate of the average
treatment effect at different periods to estimates from OLS and fixed effect models. Finally,
we perform a policy experiment that considers the effects of a marginal change in retention
policy.

To begin, we find that our model fits the means and variances of all the test measures
very well. We cannot reject that the values predicted by the model equal those in the data.
The same is true for the probabilities of retention in the data. Furthermore, we cannot reject
the hypothesis of equality of predicted and actual probabilities.40

Figure 1 presents evidence of selection on the different components of ability. Ignoring
kindergartners for the moment, we find that for all abilities the ordering is such that early
retainees have lower ability than later retainees who have lower ability than students who are
not retained. This is consistent with a dynamic selection model in which you first retain the
lowest ability students and then in the next round the next lowest ability, etc. Kindergarten
retention appears to be an exception in that they are higher ability than early retainees but
lower ability than late retainees. This may follow because the decision to retain children
in kindergarten is different than in other grades and is not as closely related to ability.

40In online Appendix Tables D1 and D2 we present evidence of the fit of the model. Parameter estimates
and standard errors are available in online Appendix D.
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This evidence provides important support for our method, i.e., the need to account for both
dynamic selection and multidimensional abilities.

Table 4 describes one parameter of interest–the treatment on the treated (and the un-
treated) parameters for both reading and math test scores (Panels A and B respectively) in
the last year in our data, the 2003/04 school year.41 The columns correspond to actual treat-
ment statuses, whereas the rows compare potential gains across treatment statuses relative
to not being retained. In other words, the first row describes the treatment effect of being
retained in kindergarten versus not being retained. The last column describes the average
treatment effects.

Considering first the treatment on the treated parameters, students who are actually
retained in kindergarten perform 6% lower in reading and math by 2003/04 than if they
had not been retained. This does not mean that students who are retained lose acquired
knowledge by being retained. It means that by age 11 (i.e., in 2003/04) a pair of identical
students (one of whom was retained) would both have higher test scores than they did at age
6. The retained student’s age 11 score, however, would be 6% lower than his counterpart.
Students who are retained early perform about 11% lower in reading and 10% lower in math
than if they had not been retained. The results for late retention vary across math and
reading, with late retainees experiencing gains of 2% in reading but losses of 5% in math,
although these results are not statistically significantly different from 0.

Overall, the treatment on the treated parameters suggest that the effect of retention is
generally negative. In contrast, the average treatment effects reported in the last column
predict that the effect of retention in kindergarten is small or 0 and positive for early re-
tention. Again, the effect is not statistically significantly different from 0 for late retention.
We can see that these non-negative average treatment effects are driven by the untreated
students, for whom the treatment effect of retention is generally positive. Below we provide
some intuition behind this finding.

6.1 Heterogeneity in Treatment Effects by Abilities

An advantage of our method is that we can provide direct estimates of how treatment effects
vary by the unobservable abilities of the student. This also sheds light on the disparities
between average treatment effects and treatment on the treated described in Table 4. Figure
2 shows how the treatment effect of being retained at different grades varies across the
percentiles of the general, behavioral and cognitive ability distributions for reading and
math for the 2003/04 academic year, when children are approximately age 11. Comparing

41The predicted levels of achievement from which these gains are calculated are included in online Appendix
Table D5.
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across graphs, we see that generally lower ability students experience losses (or are no better
off) due to retention whereas the higher ability students benefit from retention. Thus, what
the main pattern shows is (the perhaps surprising finding) that a high ability student would
actually perform better by 2003/04 if retained relative to not being retained and receiving
an additional grade’s worth of course material. The opposite is true for low ability students.

There could be several reasons for these findings. First, it may not be possible to estimate
the effect for high ability students if we do not observe high ability students being retained
in our data. However, it is important to note that the test scores reported in the ECLS-K
are not actually those used to determine retention decisions. While we recognize a student
as high ability from the factor decomposition of the history of his performance on these tests,
his performance in the classroom could suggest otherwise. Even if we restrict the sample to
students whose measured achievement is below the median, this sample does not capture all
retainees. Furthermore, we test that the results for high-ability students are not just noise;
confidence intervals show that the effects are statistically significantly different from 0 in
general.

A second potential reason is that our model is restricted to be linear in ability. It could
be that in reality the students close to the margin benefit, while high and low ability students
experience losses from retention. We estimate a more flexible version of our model that allows
for a quadratic in ability in the outcome equations, thus permitting this sort of inverted-U-
shaped pattern in ability.42 While we do find evidence of some inverted U’s, this is far from
being a consistent pattern. In some cases, the upward sloping treatment effects in ability
become even more pronounced. Furthermore, model selection tests favor the linear model
over the quadratic ones.

Another reason could be that higher ability students actually benefit more from reten-
tion than low ability students. We find that the factor loadings are larger for the retained
than for the not retained outcomes and positive in cognitive and general ability (see online
Appendix Table D10). Given that ability has mean 0, this means roughly that high ability
students experience achievement gains relative to not being retained, whereas low ability stu-
dents experience losses relative to not being retained. There are several intuitively-appealing
explanations for this that are supported in our data and in the literature.

First, high ability students may have higher ability parents (assuming intergenerational
transmission of human capital). We find evidence of this in our data; higher ability students
who are retained in kindergarten come from higher SES families and are less likely to be

42We do this in two ways. First, we estimate a model that incorporates a quadratic in each ability.
Simulations support that this model is identified, although we cannot show identification analytically. Second,
if we permit only the cognitive test scores to be quadratic in abilities, we can at least show that we have
enough equations for the number of unknowns (i.e., the order condition).
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from single-parent families. Higher SES parents may be better-equipped to ensure that when
their child is retained he gets the best teachers and the attention (and resources) he needs.
Thus, resources may be invested disproportionately more in high ability students who are
retained than in low ability students. We test for this directly using a difference in difference
strategy and find some evidence to support this hypothesis. Higher ability students who are
retained in kindergarten experience larger increases in the quantity of books in the home in
the next year and are more likely to have a TV rule put in place, relative to lower ability
students who are retained.

Furthermore, on average high ability students may attend better schools and/or have
more resources at their disposal than low ability students who are retained, further rein-
forcing our argument. We find some evidence in the data that higher ability students who
are retained in Kindergarten have more resources at their disposal relative to lower ability
students in the form of more books in the home and smaller class sizes.

Additionally, even if teachers and/or parents put more resources into students who are
retained equally, we may still observe this pattern. If high ability students are better-
equipped to take advantage of these additional resources than low ability students, this may
explain the difference across ability types.

High ability students also may benefit from being retained if, by being retained, they are
put in the position of teaching other students or gain confidence as they see that they are
able to perform well next to the new cohort of students. In contrast, low ability students who
are retained may not be in a position to offer help to their new cohort of peers. They may
even lose self-esteem if they find that they continue to perform worse next to their younger
cohort. This finding is supported by Bedard and Dhuey (2006) and others suggesting that
the age relative to other children in the classroom matters for performance.

Importantly, we should emphasize that while we are able to provide support for our
finding that high ability students who are retained benefit relatively more than lower ability
students, we would not conclude from our findings that in general high ability students should
be retained for several reasons. First, we we can only estimate the effect of retention on the
support of students who are actually retained. While there appear to be some relatively
high ability students retained in our data, as argued above, the results may not generalize
to the highest ability students or the average high ability student. Second, the negative
consequences of the year lost by a high ability student from retention in terms of wages and
additional schooling could easily outweigh the achievement benefits we estimate in our data.
Third, the model is not a general equilibrium model and clearly could not accurately predict
the effect of retaining all high ability students.
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6.2 Time-Varying Treatment Effects

The results so far also illustrate considerable heterogeneity in treatment effects across re-
tention times. On the one hand, this heterogeneity would follow if there is something sub-
stantively different about retention at these different grades, such as the repetition of first
grade producing larger benefits on average than the repetition of kindergarten. On the other
hand, it could be that the disparities are driven by the time elapsed since retention and
our choice to focus on 2003/04 outcomes. For instance, for the case of late retention, the
results reported in Table 4 and Figure 2 are short run effects, achievement gains 1 to 2 years
after retention. For kindergarten retention, the effects are longer run, i.e., 4 to 5 years after
treatment.

To consider how treatment effects vary over time, Figures 3 and 4 compare treatment
effects of kindergarten and early retention at the different periods we observe in the data.
The left hand side figure depicts the evolution over time of the average treatment effect
and the right hand side figure depicts the treatment on the treated for kindergarten and
early retention respectively.43 Figure 3 shows that the initial effect of being retained in
kindergarten is fairly strongly negative, with students performing on average 26% lower in
reading and 12% lower in math than if they had not been retained. However, 2 years later
(in 2001) the average treatment effect is somewhat positive at 4%, and goes down to 3% for
reading and 0 for math in 2003. Thus, while the initial effect of retention is negative and
large, students on average appear to catch up in the long run.

The right hand side panel of Figure 3 shows a similar pattern for the treatment on the
treated, i.e., students who are actually retained in kindergarten. The initial effect of retention
is slightly more negative than the average, -28% in reading and -19% in math. However, 2
years later the students have made significant progress and only perform about 9% lower
in reading and 7% lower in math than if they had not been retained. The treatment on
the treated remains negative in 2003/04 at about -6%. Thus there is some evidence that
students catch up with where their achievement would be if not retained, though the rate of
convergence diminishes over time.

With early retention, we can only compare the short run effect (in 2001) to the effect 2
years later (in 2003). In contrast to kindergarten retention, the initial effect of early retention
for the average student is much smaller, approximately 0 for reading and -5% for math. The
longer run effect is positive, 5% for reading and 7% for math, on average. Furthermore, the
initial effect of early retention for early retainees is worse in reading than in math, -15%
and -7% respectively. Notice that the initial shock for early retention is much smaller than

43Online Appendix Tables D8 and D9 show the gains and standard errors for different time periods and
correspond to the different points in these figures.
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for kindergarten. This could potentially be explained by the fact that early retainees can
be retained in either first or second grade, so their initial effect may be up to 2 years after
retention occurred. As in kindergarten, there is evidence that reading score gains catch up
over time. This does not appear to be the case for math.

The fact that the average treatment effect is, in general, less negative than the treatment
on the treated over time is consistent with our findings in Section 6.1 that the effect on
the treated student is more negative than for the average student.44 Overall evidence from
considering the time elapsed since treatment suggests that students begin to recover from
the initial negative shock from retention 2 years later (with the exception of early retainees
in math). There is also evidence that the gains may level off over time, with the treatment
effects remaining negative for the treated in our sample period. Interestingly, these findings
contrast to evidence in the literature which suggests that any gain in achievement from
retention may actually be short-lived (Jimerson, 2001).

6.3 Comparison with estimated ATE using OLS and FE

To help place our estimates in context, Table 5 compares estimates of average treatment
effects in reading scores (Panel A) and math scores (Panel B) using OLS, fixed effects and
our factor method. The model is estimated jointly in each case, allowing a separate effect
of retention in different years. For OLS, the math scores are used to attempt to control for
selection (or unobservable “ability”) in the reading equation and reading scores attempt to
control for selection in the math equation. While the treatment on the treated may be the
more interesting comparison, the OLS and fixed effects estimators are poorly equipped for
these comparisons.

Considering reading scores in panel A, the initial effect of kindergarten retention on
reading in 1999/00 is negative and takes similar values across estimation methods, ranging
from -24% with OLS, -26% with our method and -28% using individual fixed effects. However,
by 2001/02 (column 3) the results become qualitatively different across the methods. OLS
predicts that achievement is 7% lower for students retained in kindergarten, whereas our
model predicts that it is 4% higher. The fixed effect estimate is approximately 0. Similarly,
OLS predicts a bigger negative initial effect of early retention of -15%, in contrast to smaller
estimated effects of -5% for fixed effects and 0 for our model. One reason these estimates may
diverge over time is because of the changing importance of different components of ability
over time (as evidenced in the variance decomposition in Tables D3 and D4). OLS and fixed
effects only control for unobservable abilities in one dimension, through contemporaneous

44Online Appendix Figures D1 and D2 show that, as before, these patterns follow because higher ability
students generally fare better than low ability students when retained.
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test scores in the other subject for OLS and repeated values of tests in the same subject
for the fixed effects. In contrast, the measure of ability in our model takes into account the
whole history of test scores, as well as controlling for different dimensions of ability. The
fixed effects estimator also assumes that this fixed ability component affects selection in the
same way over time, which we find not to be the case using our method.

By 2003/04, OLS still estimates a negative effect of kindergarten and early retention,
though the negative effect of early retention is smaller in magnitude than the initial effect in
2001/02. In contrast, the fixed effect estimator predicts a positive effect of kindergarten and
early retention. Our model also predicts positive effects, but they are smaller in magnitude
than the fixed effects. At the very least, this comparison suggests our findings of positive
average treatment effects are not unique to our model. Even more importantly, however,
OLS generally predicts the wrong sign of the average treatment effect, particularly in the
long run, which would lead to the erroneous conclusion that the effect of grade retention
for the average student is negative. In contrast, fixed effects overstates the benefit of grade
retention for the average student in the long run, by as much as 15% higher returns than
our model.

6.4 Marginal Policy Change

Because there is considerable heterogeneity in treatment effects by abilities, the effect of a
marginal change in retention policy will depend on the abilities of the students affected by
the change. As a result, its effect could differ considerably from the effects for the average,
the average treated student or the average untreated student discussed above.

We consider the effect of a marginal change in retention policies in Table 6. In particular,
we simulate the effects of changing the retention policy dummies in Table 2 to take value
0, making it harder for all schools to retain students. We present three sets of results. In
column 3, we show the gains in achievement for those students who are no longer retained
as a consequence of the policy change. For comparison, column 4 shows the average coun-
terfactual gain to not being retained for students in the original retention status (i.e., the
negative of the treatment on the treated parameter in Table 5), while column 5 shows the
average counterfactual gain to not being retained for students who are not retained (i.e., the
negative of the treatment on the untreated parameter).

For example, the first row of panels A and B, considers the case where students are
originally retained in kindergarten but are now no longer retained because of the policy
change for reading and math respectively. In column 3, we see that these marginal students
gain 3% in both reading and math from the change in retention status to not being retained.
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In contrast, the average student who is not retained would lose 3% in reading and 1% in
math by not being retained relative to being retained in kindergarten. The average student
already being retained in kindergarten would gain 6% in reading and in math if he were not
retained. Except for the case involving late retention in reading, where the estimate is very
imprecise, the point estimate of the effect for the marginal student affected by the policy lies
in between the average effects for students in the original and new retention statuses.

The return to the marginal student is closer to the treatment on the treated estimate
than it is to the treatment on the untreated one. This is to be expected since there is a
wider range of abilities in the untreated sample. The students affected by the policy have
higher abilities than the average student already retained and lower abilities than those not
retained. Given the general positive relationship between ability and the benefits of retention
described above, the marginal students will not benefit as much from not being retained as
the average student who is already retained (i.e., the marginal students are not hurt as much
by retention).

7 Conclusion

Overall, our results do not support grade retention as an effective policy for raising the
performance of low achieving students. With the exception of late retainees, our estimates
imply that students who are retained experience considerable achievement losses relative to
not being retained, as large as 28% lower achievement than they would have acquired if they
had not been retained. On the more positive side, our results suggest that retained students
may catch up after several years. Yet, even if they do catch up, this would not provide strong
evidence in support of retention, as the retention process is far from costless. At the very
least, it may delay the student’s entry into the job market by one year.

Our analysis of grade retention shows the importance of extending the standard static
framework to estimate time-varying treatment effects. First, we find evidence of dynamic
selection, which is not accounted for in previous studies in the literature. In particular,
students who are retained in first/second grade have lower ability, in several dimensions,
than students who are retained in kindergarten or third/fourth grade.

We also find that the effect of repeating a grade on tests scores varies considerably by
student type, by the time at which the student is retained and by time elapsed since retention.
In general, we find that the effect of retention is large and negative in the short run and
that this effect diminishes (or even becomes positive) as time since retention passes. The
effects tend to be more negative for the students being retained (treated students) than
for the average student, underscoring that estimates for the average student would not be
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particularly policy relevant.
The disparity between the treatment on the treated and treatment effect for the average

student is because of unobserved abilities. A key contribution of our approach is that it
allows us to recover the distribution of the unobservables nonparametrically. Thus, we can
show directly how the treatment effects vary by the abilities of the students. We find that
the losses for retention are larger for low ability students. In fact, high ability students
can even benefit from being retained in some cases, though as we discuss in the findings
it would be a mistake to conclude from this that policy makers should retain high ability
students. However, overall our results do suggest that grade retention does not improve the
performance of the lowest-ability students, who are generally the targets of the policy.

Our findings also help illustrate the potential limitations of applying static methods to
estimate time-varying treatment effects. Regression discontinuity designs can be a useful
approach for estimating the effect of retention at a given grade. A regression discontinuity
design that focuses on students close to a promotion threshold may find a positive effect
of retention if the marginal students have higher ability than the average students being
retained. Hence, even if lower ability students are being hurt by the policy the regression
discontinuity estimate would find a positive effect. Furthermore, if there is dynamic selection,
comparing these policies across grades may not be straightforward, as the students at the
margin of being retained are likely to differ across grades. Interestingly, studies such as Jacob
and Lefgren (2004); Greene and Winters (2007); Jacob and Lefgren (2009) which use local
approaches and thus focus on marginal students present a more positive picture for grade
retention than previous studies which have relied primarily on matching methods (which
estimate the treatment for the average treated student rather than the marginal student).

Our findings also suggest that differences in the estimated effect of retention across studies
(see Holmes, 1989 and Jimerson, 2001) that focus on different grades may not be surprising.
One source of these disparities is simply that different types of students are retained at
different grades. A second reason is that, even after controlling for dynamic selection, we
find that the effect of retention varies across grades. Thus, for instance, the conclusion
that first grade retention is more negative, as discussed in Alexander, Entwisle and Dauber
(2003), may follow simply because early retainees are a lower ability sample and lower ability
students face more negative effects of retention than higher ability students. In fact, we find
that for a student who is retained early, he would not have been significantly better off by
2003/04 if he had instead been retained in kindergarten. Existing analyses are not equipped
for these sorts of counterfactuals.

The method we develop extends beyond the retention application. Many policy evalua-
tion problems involve multiple potential treatments, whether time is involved or not. These
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cases do not fit naturally into the standard binary treatment framework that has become the
workhorse of the literature, and the analyst faces similar challenges as those highlighted in
our application. The method we present can be applied to identify causal treatment effects
in many other settings where heterogeneity in the effect of treatment across time/treatments
and unobservables is likely to be important.

References

Abbring, Jaap H., and Gerard J. Van den Berg. 2003. “The Nonparametric Identifi-
cation of Treatment Effects in Duration Models.” Econometrica, 71(5): 1491–1517.

Alexander, K.L., D.R. Entwisle, and S.L. Dauber. 2003. On the success of failure: a
reassessment of the effects of retention in the primary grades. Cambridge University Press.

Bedard, Kelly, and Elizabeth Dhuey. 2006. “The Persistence of Early Childhood Ma-
turity: International Evidence of Long-Run Age Effects.” The Quarterly Journal of Eco-
nomics, 121(4): 1437–1472.

Billingsley, Patrick. 1995. Probability and measure. A Wiley-Interscience publication. 3
ed., New York:Wiley.

Bonhomme, Stéphane, and Jean-Marc Robin. 2010. “Generalized Non-parametric De-
convolution with an Application to Earnings Dynamics.” Review of Economic Studies,
77(2): 491–533.

Carneiro, Pedro, Karsten Hansen, and James J. Heckman. 2003. “Estimating Dis-
tributions of Treatment Effects with an Application to the Returns to Schooling and
Measurement of the Effects of Uncertainty on College Choice.” International Economic
Review, 44(2): 361–422. 2001 Lawrence R. Klein Lecture.

Cattaneo, Matias D. 2010. “Efficient Semiparametric Estimation of Multi-Valued Treat-
ment Effects Under Ignorability.” Journal of Econometrics, 155(2): 138–154.

Cellini, Stephanie Riegg, Fernando Ferreira, and Jesse Rothstein. 2010. “The Value
of School Facility Investments: Evidence from a Dynamic Regression Discontinuity De-
sign.” Quarterly Journal of Economics, 125(1): 215–261.

Cunha, Flavio, James J. Heckman, and Salvador Navarro. 2005. “Separating Un-
certainty from Heterogeneity in Life Cycle Earnings, The 2004 Hicks Lecture.” Oxford
Economic Papers, 57(2): 191–261.

30



Cunha, Flavio, James J. Heckman, and Salvador Navarro. 2007. “The Identification
and Economic Content of Ordered Choice Models with Stochastic Cutoffs.” International
Economic Review, 48(4): 1273 – 1309.

Cunha, Flavio, James J. Heckman, and Susanne M. Schennach. 2010. “Estimating
the Technology of Cognitive and Noncognitive Skill Formation.” Econometrica, 78(3): 883
– 931.

Frölich, Markus. 2004. “Programme Evaluation with Multiple Treatments.” Journal of
Economic Surveys, 18(2): 181–224.

Gill, Richard D., and James M. Robins. 2001. “Causal Inference for Complex Longi-
tudinal Data: The Continuous Case.” The Annals of Statistics, 29(6): 1785–1811.

Greene, Jay P., and Marcus A. Winters. 2007. “Revisiting Grade Retention: An Evalu-
ation of Florida’s Test-Based Promotion Policy.” Education Finance and Policy, 2(4): 319–
340.

Ham, John C., and Robert J. LaLonde. 1996. “The Effect of Sample Selection and
Initial Conditions in Duration Models: Evidence from Experimental Data on Training.”
Econometrica, 64(1): 175–205.

Hauser, Robert M., Carl B. Frederick, and Megan Andrew. 2007. “Grade Retention
in the Age of Standards-Based Reform.” In Standards-Based Reform and the Poverty Gap.
, ed. Adam Gamoran, 120–153. Washington, DC:Brookings Institution Press.

Heckman, James J. 1990. “Varieties of Selection Bias.” American Economic Review,
80(2): 313–318.

Heckman, James J., and Jeffrey A. Smith. 1998. “Evaluating the Welfare State.”
In Econometrics and Economic Theory in the Twentieth Century: The Ragnar Frisch
Centennial Symposium. , ed. S. Strom, 241–318. New York:Cambridge University Press.

Heckman, James J., and Richard Robb. 1985. “Alternative Methods for Evaluating the
Impact of Interventions.” In Longitudinal Analysis of Labor Market Data. Vol. 10, , ed.
J.J. Heckman and B. Singer, 156–245. New York:Cambridge University Press.

Heckman, James J., and Salvador Navarro. 2004. “Using Matching, Instrumental Vari-
ables, and Control Functions to Estimate Economic Choice Models.” Review of Economics
and Statistics, 86(1): 30–57.

31



Heckman, James J., and Salvador Navarro. 2007. “Dynamic Discrete Choice and Dy-
namic Treatment Effects.” Journal of Econometrics, 136(2): 341–396.

Heckman, James J., Sergio Urzua, and Edward J. Vytlacil. 2006. “Understanding
Instrumental Variables in Models with Essential Heterogeneity.” Review of Economics and
Statistics, 88(3): 389–432.

Holmes, C. T. 1989. “Grade-level retention effects: A meta-analysis of research studies.” In
Flunking grades: Research and policies on retention. , ed. L.A. Shepard and M.L. Smith,
16–33. London:The Falmer Press.

Hu, Yingyao, and Susanne M. Schennach. 2008. “Instrumental Variable Treatment of
Nonclassical Measurement Error Models.” Econometrica, 76(1): 195–216.

Jacob, Brian A., and Lars Lefgren. 2004. “Remedial Education and Student Achieve-
ment: A Regression-Discontinuity Analysis.” Review of Economics and Statistics,
86(1): 226–244.

Jacob, Brian A., and Lars Lefgren. 2009. “The Effect of Grade Retention on High School
Completion.” American Economic Journal: Applied Economics, 1(3): 33–58.

Jimerson, Shane R. 2001. “Meta-analysis of grade retention research: Implications for
practice in the 21st century.” School Psychology Review, 30(3): 420–437.

Jöreskog, Karl G., and Arthur S. Goldberger. 1975. “Estimation of a Model with Mul-
tiple Indicators and Multiple Causes of a Single Latent Variable.” Journal of the American
Statistical Association, 70(351): 631–639.

Kotlarski, Ignacy I. 1967. “On Characterizing the Gamma and Normal Distribution.”
Pacific Journal of Mathematics, 20: 69–76.

Lechner, Michael. 2004. “Sequential Matching Estimation of Dynamic Causal Models.”
IZA Discussion Paper 2004.

Matzkin, Rosa L. 2003. “Nonparametric Estimation of Nonadditive Random Functions.”
Econometrica, 71(5): 1339–1375.

Murphy, Susan A. 2003. “Optimal Dynamic Treatment Regimes.” Journal of the Royal
Statistical Society, Series B, 65(2): 331–366.

32



Navarro, Salvador. 2008. “Control Function.” In The New Palgrave Dictionary of Eco-
nomics.. . second ed., , ed. Steven N. Durlauf and Lawrence E. Blume. London:Palgrave
Macmillan Press.

Prakasa Rao, B.L.S. 1992. Identifiability in Stochastic Models: Characterization of Prob-
ability Distributions. Probability and mathematical statistics, Boston:Academic Press.

Schennach, Susanne M. 2004. “Estimation of Nonlinear Models with Measurement Error.”
Econometrica, 72(1): 33–75.

Zinth, Kyle. 2005. “Student Promotion/Retention Policies.” Education Commission of the
States State Notes 6551.

33



Variables Observation Mean Standard 
Deviation Observation Mean Standard 

Deviation

General Test Score 7549 3.09 0.35 2078 3.14 0.33
Reading Test Score 7608 3.36 0.28 2078 3.39 0.27
Math Test Score 7794 3.10 0.36 2101 3.14 0.35
Approach to Learning 7829 0.05 0.98 2104 0.13 0.95
Self-Control 7808 0.03 0.97 2097 0.11 0.94
Interpersonal Skills 7782 0.02 0.98 2095 0.09 0.96

Male 7832 0.50 0.50 2106 0.49 0.50
White 7832 0.65 0.48 2106 0.77 0.42
Black 7832 0.12 0.32 2106 0.07 0.26
Hispanic 7832 0.14 0.34 2106 0.09 0.28
Body Mass Index 7832 16.25 2.13 2106 16.21 2.10
Age 7832 5.62 0.34 2106 5.63 0.34
Number of Siblings 7832 1.42 1.11 2106 1.41 1.07
Socioeconomic Status Index 7832 0.10 0.78 2106 0.20 0.74
Attended Full Time Kindergarten 7832 0.58 0.49 2106 0.52 0.50
TV Rule at Home 7832 0.89 0.32 2106 0.89 0.31
Mother in Household 7832 0.01 0.11 2106 0.01 0.11
Father in Household 7832 0.17 0.37 2106 0.12 0.32
Number of Books at home 7832 80.54 60.75 2106 88.76 60.23

Minority Students in School between (1%,5%) 7832 0.20 0.40 2106 0.20 0.40
Minority Students in School between (5%,10%) 7832 0.15 0.36 2106 0.12 0.33
Minority Students in School between (10%,25%) 7832 0.10 0.30 2106 0.05 0.22
Minority Students in School >25% 7832 0.16 0.36 2106 0.09 0.29
Public School 7832 0.78 0.42 2106 0.73 0.44
TT1 Funds Received by School 7832 0.62 0.49 2106 0.63 0.48
Crime a Problem 7832 0.46 0.58 2106 0.36 0.52
Students Bring Weapons 7832 0.16 0.37 2106 0.13 0.34
Children or Teachers Physically Attacked 7832 0.36 0.48 2106 0.35 0.48
Security Measures in School 7832 0.55 0.50 2106 0.58 0.49
Parents Involved in School Activities 7832 2.97 0.90 2106 3.10 0.83

Teacher has a Master's Degree 7832 0.35 0.48 2106 0.34 0.48
Teacher Experience 7832 14.31 9.03 2106 14.39 8.97
Student's Class Size 7832 20.40 5.00 2106 19.89 4.80
Teacher's Rating of Class Behavior 7832 1.56 0.78 2106 1.52 0.77
Minority Students in Class between (1%,5%) 7832 0.08 0.26 2106 0.09 0.29
Minority Students in Class between (5%,10%) 7832 0.13 0.33 2106 0.16 0.36
Minority Students in Class between (10%,25%) 7832 0.18 0.39 2106 0.18 0.38
Minority Students in Class >25% 7832 0.42 0.49 2106 0.28 0.45

Source: ECLS-K Longitudinal Kindergarten-Fifth Grade Public-Use Data File

Table 1: Summary Statistics

Note: For our counter-factual analyses, we only use data on students whose covariates and retention history are observable (i.e. not missing) for all time periods.  Thus, we end up with fewer observations at the 
2003-04 school year. 

2003-04 School Year
Value of Variables in 1998-99 School Year for Observations Included in:

1998-99 School Year

A-1

A Tables



Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

General Test Score 3.12 0.33 2.85 0.37 2.72 0.33 2.78 0.32
Reading Test Score 3.39 0.27 3.13 0.21 3.08 0.18 3.15 0.17
Math Test Score 3.14 0.35 2.77 0.32 2.67 0.26 2.74 0.25
Approach to Learning 0.12 0.94 -0.72 0.99 -0.91 0.95 -0.40 0.98
Self-Control 0.06 0.96 -0.31 1.02 -0.41 1.03 -0.09 0.93
Interpersonal Skills 0.06 0.96 -0.36 0.95 -0.53 1.00 -0.21 1.01

Male 0.49 0.50 0.66 0.48 0.63 0.48 0.54 0.50
Black 0.11 0.31 0.14 0.35 0.29 0.46 0.28 0.45
Hispanic 0.13 0.34 0.12 0.32 0.19 0.39 0.18 0.39
Age 5.64 0.34 5.39 0.28 5.50 0.32 5.52 0.33
Attended Full Time Kindergarten 0.57 0.49 0.62 0.49 0.61 0.49 0.72 0.45
Number of Siblings 1.39 1.08 1.65 1.27 1.80 1.41 1.52 1.25
Socioeconomic Status Index 0.13 0.77 -0.12 0.80 -0.33 0.69 -0.54 0.60
TV Rule at Home 0.89 0.31 0.90 0.30 0.83 0.37 0.90 0.31
Father in Household 0.16 0.37 0.19 0.39 0.28 0.45 0.38 0.49
Number of Books at home 82.52 60.84 71.20 60.34 50.19 49.66 45.00 42.67

Minority Students in School >25% 0.15 0.36 0.16 0.37 0.27 0.44 0.38 0.49
Public School 0.77 0.42 0.73 0.44 0.91 0.28 0.93 0.25
TT1 Funds Received by School 0.62 0.49 0.61 0.49 0.76 0.43 0.79 0.41

Teacher has a Master's Degree 0.35 0.48 0.32 0.47 0.40 0.49 0.33 0.47
Teacher Experience 14.37 9.02 14.19 9.29 13.74 8.90 12.51 9.14
Student's Class Size 20.46 4.96 19.48 5.49 20.76 4.70 20.63 4.47
Minority Students in Class >25% 0.40 0.49 0.42 0.50 0.63 0.48 0.66 0.48

Policy: Can be Retained for Immaturity 0.76 0.43 0.78 0.41 0.72 0.45 0.68 0.47

Policy: Can be Retained at Parents Request 0.75 0.43 0.76 0.43 0.79 0.41 0.76 0.43

Policy: Can be Retained due to Academic 
Deficiencies 0.88 0.33 0.83 0.38 0.91 0.29 0.88 0.32

Policy: Can be Retained Any Grade More 
than Once 0.10 0.30 0.13 0.33 0.14 0.35 0.15 0.36

Policy: Can be Retained More than Once in 
Elementary School 0.35 0.48 0.30 0.46 0.43 0.50 0.50 0.50

Policy: Can be Retained Without Parents 
Permission 0.44 0.50 0.45 0.50 0.61 0.49 0.58 0.50

Observations 7038 255 288 87

Source: ECLS-K Longitudinal Kindergarten-Fifth Grade Public-Use Data File

Table 2: Summary Statistics for Selected Variables by Retention Status (1998/1999 School Year)

Note: For our counter-factual analyses, we only use data on students whose covariates and retention history are observable (i.e. not missing) for all time periods. Thus, we end up with fewer 
observations at the 2003-04 school year. The last line lists the total number of usable observations (i.e. observations that contain at least one test/rating). Hence, the number of usable observations 
for any particular test/rating does not necessarilly correspond to the number of observations in the last line. Notice that the last line does not sum to the total number of observations in table 1 
(7832). This is because we don't know every childrens' retention status. Regardless, these observations can still be used in period 1, when no selection has taken place.

Not Retained Retained LateRetained in Kindergarten Retained Early
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Panel A: Reading Score

Dependent Variable
Kindergarten 

Reading Score#

Retained in Kindergarten -0.1775* -0.1791* -0.0948* -0.0926*
Retained Early (1st or 2nd grade) -0.2014* -0.2306* -0.1450* -0.1374*
Retained Late (3rd or 4th grade) -0.1222* -0.1192* -0.0498 -0.0358
Student's Characteristics Yes Yes Yes Yes
Family Characteristics Yes Yes Yes Yes
School Characteristics Yes Yes Yes Yes
Age and Age Squared Yes Yes Yes Yes
Kindergarten Cognitive Tests -- No Yes Yes
Kindergarten Behavioral Ratings -- No No Yes
No. of Observations 5319 2040 2014 1998

P-value for KI = EA = LA+ 0.003 0.019 0.026 0.012
P-value for KI = EA 0.189 0.099 0.079 0.113
P-value for EA = LA 0.001 0.006 0.009 0.003
P-value for KI = LA 0.028 0.148 0.192 0.092
R squared 0.312 0.385 0.530 0.530

Panel B: Math Score

Dependent Variable
Kindergarten 

Reading Score#

Retained in Kindergarten -0.2735* -0.1804* -0.0727* -0.0889*
Retained Early (1st or 2nd grade) -0.3172* -0.2450* -0.1463* -0.1396*
Retained Late (3rd or 4th grade) -0.2240* -0.1697* -0.0875* -0.0387
Student's Characteristics Yes Yes Yes Yes
Family Characteristics Yes Yes Yes Yes
School Characteristics Yes Yes Yes Yes
Age and Age Squared Yes Yes Yes Yes
Kindergarten Cognitive Tests -- No Yes Yes
Kindergarten Behavioral Ratings -- No No Yes
No. of Observations 5462 2043 2017 1998

P-value for KI = EA = LA+ 0.006 0.094 0.086 0.012
P-value for KI = EA 0.097 0.071 0.038 0.076
P-value for EA = LA 0.002 0.079 0.097 0.004
P-value for KI = LA 0.136 0.813 0.684 0.141
R squared 0.408 0.357 0.531 0.522
* Statistically significant at 5% level
# 1998-99 School Year

Note: P values less than 0.05 are shaded, and indicates rejection of the hypothesis of equality at the 5% confidence level.  Yes/No 
indicates if each group of variables is included as controls.

Table 3: Evidence for Dynamic Selection and Treatment Effect

Reading Score for 2003-04 School Year

Reading Score for 2003-04 School Year

+ KI, EA, and LA stand for the coefficient of the dummy variable for "retained in kindergarten", "retained early", and "retained late", 
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Panel A: Reading Score

ATE

Not Retained Retained in 
Kindergarten Retained Early Retained Late

(unconditional)

0.034 -0.057 -0.086 -0.023 0.025
(0.014) (0.013) (0.018) (0.027) (0.012)

0.058 -0.092 -0.111 -0.046 0.046
(0.019) (0.019) (0.023) (0.046) (0.017)

0.058 0.026 0.016 0.022 0.056
(0.112) (0.058) (0.080) (0.084) (0.101)

Panel B: Math Score

ATE

Not Retained Retained in 
Kindergarten Retained Early Retained Late (unconditional)

0.011 -0.057 -0.084 -0.071 0.004
(0.024) (0.019) (0.021) (0.031) (0.022)

0.079 -0.058 -0.095 -0.016 0.066
(0.021) (0.015) (0.017) (0.036) (0.019)

0.098 -0.075 -0.112 -0.052 0.083
(0.337) (0.142) (0.162) (0.258) (0.309)

Table 4: Average Test Score Gain by Retention Status: 2003-04 School Year

Average Gain

Average Gain

A student who is actually

(i.e. conditional on the retention status being:)
    A student who is actually                                                                     

Note: Let R = 1,2, 3, or ∞ represent the actual retention status of a student: retained in kindergarten, retained early (at grade 1 or 2), or retained late (at grade 3 or 4), never 
retained, respectively. Let  ζ(i) be the potential test score if the student were retained at time i=1,2,3,∞. The row i, column j element of this table calculates E[ζ(i) - ζ(∞) | R=j].  For 
example, the math test score of a student who was actually not retained would increase by 0.079 if he were retained at 1 or 2 grade instead. Bootstrap standard errors are in 
parentheses.

(i.e. conditional on the retention status being:)

  Retained in Kindergarten                              
vs                                           

Not Retained

 Retained Early                                   
vs                                                 

Not Retained

 Retained Late                                          
vs                                              

Not Retained

  Retained in Kindergarten                              
vs                                           

Not Retained

 Retained Early                                   
vs                                                 

Not Retained

 Retained Late                                          
vs                                              

Not Retained
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Panel A: Reading Score

Panel B: Math Score

Panel A: Reading Score

Panel B: Math Score

Table 5: Estimated Coefficients for Retention Variables in Outcome Equation

Table 6: Policy Simulation Treatment Parameters: 2003-04 School Year

Retention Status

Retention Status

New Policy

Not retained

Not retained

Not retained

Old Policy

Kindergarten

Early

Late

Old Policy

Kindergarten

Original Retention 

Status

Average Test Score if Not Retained minus Test Score if 

Retained Conditional on:

Not Retained

‐0.011

‐0.079

‐0.098

Changing to Not 

Retained

0.029

0.070

‐0.033 0.052

0.095

0.057

‐0.058

‐0.058‐0.022

0.111

0.0570.032

0.066

‐0.096

Not retained

Not retained

Not retained

New Policy

Average Test Score if Not Retained minus Test Score if 

Retained Conditional on:

Changing to Not 

Retained

Original Retention 

Status
Not Retained

‐0.034

Fixed Effect

Model

OLS

Fixed Effect

Model

Fixed Effect

Model

OLS

Fixed Effect

Model

OLS

Retained in 

Kindergarten

Retained Early

Retained Late

OLS

Fixed Effect

Model

OLS

Fixed Effect

Model

OLS

Early

Late

Note: We fix all retention policy variables in Table 2 to 0 for all individuals. That is we make it harder for children to be retained. Let R0 denote the retention status 

under the old policy and let R1 be the retention status under the new policy. Let 0 denote the test score under original policy and 1 denote the test score under the 

new policy. Column 3 reports E(1-0 | R1≠R0, R1=∞), column 4 reports E(1-0 | R0) and column 5 reports E(1-0 | R1=∞). Notice that while some people switch to 

other states besides R1=∞ as a consequence of the policy, there are very few and the results are harder to interpret so we focus only on the R1=∞ subgroup.

Note: For the OLS and fixed effect regressions to better correspond to the estimated model, they are run on the pooled data set.  The coefficients for the covariates are not 
allowed to change over time.  Year dummies and interactions of year dummies and retention indicators are included.  In addition, OLS regressions control for math scores 
(Panel A) and reading scores (Panel B).

‐‐

‐‐

‐‐

‐‐

‐‐

‐‐

‐0.053

0.039

‐0.040‐‐

‐‐

‐‐

‐0.060

0.116

0.066

‐0.091

0.075

0.083

‐0.099

‐0.117 0.039

0.071

‐0.050 ‐0.049

0.151

0.004

‐‐

‐‐

Outcome Equation in 1999-2000 
School Year

Outcome Equation in 2001-02 
School Year

Outcome Equation in 2003-04 
School Year

‐0.025

0.014

0.056

0.074

‐‐

‐‐

‐‐

‐‐

‐‐

‐‐

‐‐

‐0.146

‐0.049

0.004

‐0.065

0.051

0.025

‐0.080

0.062

0.046

Outcome Equation in 1999-2000 
School Year

Outcome Equation in 2001-02 
School Year

Outcome Equation in 2003-04 
School Year

‐0.241

‐0.283

‐0.263

‐0.068

‐0.008

0.041

Retained in 

Kindergarten

Retained Early

Retained Late
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Figure 1: Densities of Abilities by Retention Status

Not Retained Retained in K
Retained Early Retained Late

Note: Let f(X) denote the probability density function of ability X={A,B,C}. We allow f(X) to follow a mixtureof normals distribution. Let R={1,2,3,∞ } denote retention status:  
retained in kindergarten, retained early (1 or 2 grade), retained late (3 or 4) and not retained. The graph shows f(X|R=r) for each retention status.
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Figure 2: Achievement Gains in 2003/04 by Ability Quantiles

Note: Let ζ(t,r) and ζ(t,∞) be the potential test scores at period t if the student is retained at r and if the student is not retained at all, respectively.  Let X denote 
one kind of ability (i.e., etiher A,B or C). The graphs show E[ζ(t,r)-ζ(t,∞)|X=q] where q is the qth quantile of the X-type of ability distribution.

Retained in K vs. not retained Retained early vs. not retained Retained late vs. not retained
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Figure 3: Achievement Gains for Kindergarten Retention over Time
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Figure 4: Achievement Gains for Early Retention over Time
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Note: Let ζ(t,1) and ζ(t,∞) be the potential test scores at time t if the student is retained in kindergarten and if the kid is not retained at all, respectively. Let R={1,2,3} 
indicate the period a student is retained at. The Average Treatment E�ect graph shows E[ζ(t,1)-ζ(t,∞)] for t=1,2, and 3 for each test score. The Treatment on the Treated 
graph shows E[ζ(t,1)-ζ(t,∞)|R=t].

Note: Let ζ(t,1) and ζ(t,∞) be the potential test scores at time t if the student is retained in kindergarten and if the kid is not retained at all, respectively. Let R={1,2,3} 
indicate the period a student is retained at. The Average Treatment E�ect graph shows E[ζ(t,1)-ζ(t,∞)] for t=2, and 3 for each test score. The Treatment on the Treated 
graph shows E[ζ(t,1)-ζ(t,∞)|R=t].

Reading Math Reading Math
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C Other Methods (Online Appendix, Not For Publica-

tion)

C.1 Experimental Data

Consider designing an experiment to recover some of the different population average pa-
rameters described above.45 Consider first the case in which we are interested in estimates
of ATE-type parameters. In this case, we can simply randomize people at the beginning of
the first period into receiving treatment at each different possible treatment time (or not at
all). While straightforward to recover, for the case of grade retention and arguably in many
other applications as well, ATE-type parameters may not be particularly interesting from
a policy perspective. For instance, in practice students who are retained may have a higher
potential benefit than the average student. Focusing on the average treatment effect would
then bias us away from finding a positive effect of retention, even though it may be beneficial
for lower-type students.

Treatment parameters that condition on the selection process (treatment on the treated
and treatment on the untreated type parameters) are less straightforward to recover through
random assignment to treatment and control groups. To illustrate consider the simple three
period example of Section 4. Let Si = ∞ if an individual is randomized into not receiving
treatment and Si = t if the individual is randomized into receiving treatment at time t.
Table C1 summarizes the experimental design for this case.

In period 1 individuals are selected into treatment or go on to the next period with-
out treatment according to whatever selection process operates regularly (i.e., according to
whether Vi (1) > 0 or Vi (1) < 0). Then, we take the individuals who would under normal
circumstances receive treatment Ri = 1 (i.e., Vi (1) > 0) and randomize them into receiving
treatment at t = 1, at t = 2 or not receiving treatment. In terms of our example, we observe
children who would be retained in kindergarten and children who would not according to
some decision rule. Then, we take the students who would have been retained in kinder-
garten and randomly assign them to being retained in kindergarten, retained in first grade,
or not being retained. From this randomization we are able to form all of the counterfactual
outcomes conditional on Ri = 1 (Vi (1) > 0).

We then go on to next period and we let those individuals who were not selected into
treatment at 1 (Vi (1) < 0) be selected into either Ri = 2 (Vi (2) > 0) or into no treatment
(Vi (2) < 0). We then randomize them into either receiving treatment or not. We cannot

45While we focus on the binary treatment case, all of the points we make apply mutatis mutandis for the
case in which, at any point in time, multiple treatments are possible.
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randomize people into getting treatment Ri = 1 (elements in bold in Table C1) since that
can only be done in period 1, but at period 1 we did not know whether they would be selected
into Ri = 2 or Ri =∞. In other words, for a student who is selected to be retained in first
grade, we cannot go back in time and randomly assign her to being retained in kindergarten
and similarly for a student who is not selected into being retained in first grade. These
mean outcomes are information that cannot be recovered because of the sequential nature
(i.e., the dynamics) of the selection process. This means that we cannot address whether a
student who is retained in first grade would have performed better if retained in kindergarten
instead.

What this simple example shows is that, even in the scenario in which we can design an
experiment to estimate mean treatment parameters, potentially policy-relevant information
is lost. Some counterfactuals are lost because of the sequential nature of the selection process.
Depending on the goal of the analysis, these may not be a problem. Other experiments can
be designed that recover versions of these parameters that are of relevant for policy design.
For example, one could randomize conditional on the estimated probability of being retained
in period 2 conditional on the information available at period 1. In this case a parameter
measuring the effect of retaining in period 1 children who are highly likely to be retained in
period 2 can be recovered.

The second lesson that this simple example delivers, one particularly important from a
practical perspective, is that the data requirements of experiments are much larger in the
dynamic case than in the static case. This is due to sample size requirements (i.e., the many
randomizations across subgroups over time), and they get worse as the number of periods
and/or the number of treatments is increased. Both experiments and methods based on
conditional independence (e.g., matching-type methods) are data hungry, more so for the
dynamic case.

C.2 Observational Data

The randomized control trial provides a helpful starting point for considering how methods
applied to account for selection in observational data in the static setting can be extended to
a dynamic setting. In order to help fix ideas, we continue with the simple 3 period example
of Section (4) and now ask whether methods designed to deal with the confounding effects
of selection in observational data, namely control function and instrumental variables, will
work in the dynamic heterogeneous case.
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C.2.1 Instrumental Variables

Consider first whether instrumental variables techniques can be applied to recover parame-
ters of interest. First, recall that standard instrumental variable methods are invalid under
essential heterogeneity even if we can find a Z that is statistically independent of the unob-
servables. Take, for example, the second unobservable term in equation (4). In this case we
have

E (Di (1) [εi (3, 1)− εi (3,∞)] |Zi) = E (εi (3, 1)− εi (3,∞) |Zi, Di (1) = 1) Pr (Di (1) = 1|Zi)

in the unobservables. Even though we assume E (εi (3, T ) |Z) = 0 for all T , E(εi (3, 1) −
εi (3,∞) |Di (1) = 1, Zi) will usually not equal zero since now we are also conditioning on
Di (1) = 1 and the decision to get treatment is correlated with the unobservable gains
associated with the treatment.

Instead of estimating ATE or TT like parameters one can address the problem of essen-
tial heterogeneity within the instrumental variables framework by using local methods like
the Local Average Treatment Effect (LATE ) of Imbens and Angrist (1994) and regression
discontinuity designs (Hahn, Todd and Van der Klaauw, 2001). These methods deal with the
problem of essential heterogeneity by recovering a “local” treatment parameter defined by
some exogenous variation (e.g., an instrument that takes two values or a law that determines
an exogenous cutoff ) such that people affected by this variation are assigned into treatment
independently of their potential outcomes. For example, in some states a child has to repeat
a school grade if his test scores are below some cutoff. This kind of variation has been used in
a regression discontinuity design (see Jacob and Lefgren (2004) and Nagaoka and Roderick
(2005)) in which children just above and just below the cutoff are compared to estimate the
effect of grade retention for children around the cutoff, the local treatment effect for this
subgroup of students.

By definition, these methods will work in the presence of dynamic treatment effects, but
one has to be careful both with the interpretation of the parameter they recover and with
their implementation. The fact that we cannot recover the missing counterfactuals will have
implications for what these local methods can actually recover. Consider our simple 3 period
case and take the local average treatment effect as an example. Assume first that treatment
is static by imposing that it can only be received at time Ri = 1 but not at Ri = 2. Assume
also that we have an instrument Z that affects the choice of whether to receive treatment
at time Ri = 1 but does not affect the outcomes. Furthermore, assume that Z can take
two values, z2 > z1 such that E (Di (1) |Zi = z2) > E (Di (1) |Zi = z1) for all i (i.e., the
monotonicity condition of Imbens and Angrist). That is, individuals can only be induced
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into (but not out of) treatment when the instrument moves from z1 to z2 . Let Di (1, z2) be
the indicator of whether an individual gets treatment at period 1 when Zi = z2 and define
Di (1, z1) accordingly. In this binary treatment case the LATE parameter is given by

LATE (z1, z2) =
E (Yi (3) |Zi = z2)− E (Yi (3) |Zi = z1)

E (Di (1) |Zi = z2)− E (Di (1) |Zi = z1)

=
E (Yi (3) |Di (1, z2) = 1)− E (Yi (3) |Di (1, z1) = 0)

E (Di (1) |Zi = z2)− E (Di (1) |Zi = z1)

so it measures the effect of treatment for those individuals induced into treatment by the
change in the instrument.

Now suppose that individuals who are not affected by the instrument today can receive
treatment in the next period, i.e., at time t = 2. The eventDi (1, z1) = 0 will now include two
types of individuals not induced into treatment at time 1: those who do not receive treatment
at 2 still and those who receive treatment at time 2. Furthermore, while in the static case
non-compliers, i.e., inframarginal individuals for whom Di (1, z2) = Di (1, z1) = 0, drop from
the LATE calculation, in the dynamic case it may be the case that Di (2, z2) 6= Di (2, z1).
LATE will now be a weighted (by the probabilities of each of these events) average of these
different kinds of individuals and harder to interpret.46

By imposing strong restrictions on the selection process (mainly that Ui (r) = Ui for all
r), an alternative is the local instrumental variables approach to ordered choice models of
Heckman and Vytlacil (2007b) that recovers pairwise Marginal Treatment Effects (MTE ).
Using the MTE some of the missing TT -type parameters can be recovered. Alternatively
if one has access to very special kind of data one can be relatively agnostic about the
selection process. Nekipelov (2008), for example, uses a multivalued instrument that satisfies
a different kind of monotonicity: as the value of the instrument increases people either do not
change treatment at all or they change treatment monotonically. This avoids the problem
with the standard LATE approach described above at the cost of requiring a very particular
type of instrument and decision process.

C.2.2 Control Function

An alternative to instrumental variables methods is to use the control function approach
which models the selection process explicitly,47 extending it to account for dynamics. Let

46See Angrist and Imbens (1995) for a similar result in a model with multiple treatments.
47See Heckman and Robb (1985) and Navarro (2008).
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Pi,1 denote the probability of getting treated at Ri = 1. The event Ri = 1 can be written as

Ui (1) > −λ (1) ⇐⇒ FU(1)(Ui (1)) > FU(1) (−λ (1))

⇐⇒ FU(1)(Ui (1)) > 1− Pi,1,

i.e., as a function of Pi,1. Next, form the observed conditional mean of outcome 1 when
Ri = 1 and rewrite

E (Yi (3, 1) |Ri = 1) = Φ (3, 1) + E (εi (3, 1) |Ri = 1)

= Φ (3, 1) + E (εi (3, 1) |Ui (1) > −λ (1))

= Φ (3, 1) +K1 (Pi,1) .

The term K1 (Pi,1) is known as a control function and it can be identified nonparametri-
cally under various conditions. The simplest condition is when one has exclusion restrictions,
i.e., instrumental variables that affect the probability of getting treatment but not the out-
come of interest directly. As shown in Heckman and Navarro (2007) other semiparametric
restrictions are possible. Once K1 (Pi,1) is recovered one can apply the law of iterated ex-
pectations to get

E (εi (3, 1)) = K1 (Pi,1)Pi,1 + E (εi (3, 1) |Ri 6= 1) (1− Pi,1) = 0.

The only unknown term in this expression is E (εi (3, 1) |Ri 6= 1) so we can solve for it. How-
ever, as with the case of experimental data neitherE (εi (3, 1) |Ri =∞) nor E (εi (3, 1) |Ri = 2)

can be recovered. Because Ri = 2 is the terminal treatment in this example, all the remaining
counterfactuals that can be recovered with experimental data can also be recovered with the
control function by using a similar reasoning (i.e., by forming control functions for Ri =∞
and Ri = 2 which will be functions of Pi,1 and Pi,2 and proceeding sequentially using the law
of iterated expectations).

Using a control function approach one can take advantage of the availability of instru-
ments, allow for essential heterogeneity, and recover the same treatment parameters of inter-
est as in a randomized trial. Notice that modeling the selection process does not overcome
the problem of the missing counterfactuals. In order to recover these additional counterfac-
tuals further assumptions on the joint distribution of the unobserved components, like the
factor structure we propose in this paper, are needed.

A common difficulty of control function methods will become more relevant in the dy-
namic setting. In particular, notice that in order to recover the control function a large
support restriction (i.e., identification at infinity) is necessary in order to separate the con-
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stant in K1 from the one in Φ (3, 1). As more periods and potential treatment are introduced
more and more of these large support restrictions will need to be satisfied.
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Predicted Predicted Actual Actual
Mean Standard Deviation Mean Standard Deviation

3.355 0.281 3.364 0.281
(0.011) (0.002)

3.096 0.361 3.103 0.362
(0.005) (0.002)

0.005 0.976 0.047 0.976
(0.013) (0.009)

-0.001 0.969 0.029 0.971
(0.015) (0.008)

-0.017 0.973 0.018 0.976
(0.015) (0.008)

Math Test Score

Approach to Learning Rating

Self-Control Rating

Interpersonal Skills Rating

Table  D1: Predicted and Data Means and Standard Deviations of Kindergarten             
(1998-99 School Year) Test Scores/Ratings

Test Scores / Ratings

Reading Test Score

Note:  Behavioral measures are standardized to have mean zero and variance equal to one.  These predicted values are calculated from 50000 simulations based on 
the estimated model. Bootstrap standard errors are in parentheses.

Predicted Standard Error

Retained in Kindergarten 3.364% 3.579% 0.325

  Retained Early         
(1st or 2nd grade) 4.012% 4.245% 0.466

Retained Late           
(3rd or 4th grade) 1.325% 1.354% 4.802

Note: The table caclulates the probability of retention at t, conditional on not having been 
retained before t. Standard Errors obtained via 1000 bootstrap replications.

Table D2: Predicted and Data Retention Probabilities         
(Conditional on Survival)

Data
Model

D-1
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1 2 3 4 1 2 3 4
General Ability 0.186 0.233 0.440 0.453 General Ability 0.306 0.378 0.438 0.439

)160.0()410.0()310.0()900.0()440.0()510.0()310.0()800.0(
Behavioral Ability -- 0.001 0.003 0.003 Behavioral Ability -- 0.000 0.001 0.002

)410.0()100.0()000.0()610.0()200.0()100.0(
Cognitive Ability 0.497 0.343 0.158 0.112 Cognitive Ability 0.457 0.217 0.152 0.106

)711.0()110.0()110.0()900.0()630.0()510.0()510.0()110.0(
Persistent Factor 1 -- 0.068 0.130 0.166 Persistent Factor 1 -- 0.088 0.202 0.219

)630.0()210.0()800.0(810.0)010.0()800.0(
Persistent Factor 2 -- -- 0.043 0.039 Persistent Factor 2 -- -- 0.033 0.043

)900.0()500.0()600.0()600.0(
Persistent Factor 3 -- -- -- 0.001 Persistent Factor 3 -- -- -- 0.000

)000.0()100.0(

Table D3: Fraction of the Unobservable Variance Explained by Each Factor for Cognitive Scores 
by Time Period

Note:  Let Vc=var(Cαc) and let Vu=var(Cαc+Aαa+Bαb+ε) for the parameters of a given equation. Then the fraction of the variance explained by the cognitive factor, for example, is 
given by Vc/Vu. These values are calculated from 50000 simulations based on the estimated model. Bootstrap standard errors are in parentheses.

Reading Test Score Math Test Score doireP emiTdoireP emiT

General Ability 0.199 0.055 0.088
(0.009) (0.004) (0.005)

Behavioral Ability 0.412 0.674 0.672
(0.010) (0.009) (0.009)

Table D4:  Fraction of the Unobservable Variance Explained by Each Factor for 
Behavioral Measures by Time Period (1998/99 School Year)

Note:  Let Vc=var(Cαc) and let Vu=var(Cαc+Aαa+Bαb+ε) for the parameters of a given equation. Then the fraction of 
the variance explained by the cognitive factor, for example, is given by Vc/Vu. These values are calculated from 50000 
simulations based on the estimated model. Bootstrap standard errors are in parentheses.

Rating for Approach 
to Learning 

Rating for Self-
Control

Rating for 
Interpersonal Skills
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Panel A: Reading Score

Actual Retention 
Status

Potential Retention 
Status Not Retained Retained in 

Kindergarten Retained Early Retained Late

4.969 4.818 4.737 4.768 4.953
(0.011) (0.017) (0.020) (0.048) (0.011)

5.003 4.761 4.651 4.745 4.980
(0.018) (0.023) (0.029) (0.063) (0.016)

5.028 4.726 4.626 4.721 4.999
(0.022) (0.028) (0.032) (0.080) (0.020)

5.028 4.844 4.753 4.790 5.009
(0.112) (0.061) (0.082) (0.104) (0.101)

Panel B: Math Score

Actual Retention 
Status

Potential Retention 
Status Not Retained Retained in 

Kindergarten Retained Early Retained Late

4.760 4.593 4.494 4.535 4.742
(0.006) (0.016) (0.020) (0.055) (0.005)

4.771 4.536 4.410 4.463 4.747
(0.024) (0.028) (0.032) (0.076) (0.022)

4.839 4.535 4.399 4.518 4.809
(0.022) (0.026) (0.031) (0.082) (0.019)

4.858 4.518 4.382 4.483 4.825
(0.338) (0.144) (0.164) (0.269) (0.309)

Table D5: Average Test Scores by Potential and Actual Retention Status: 2003-04 School Year 

A student who is actually (i.e. conditional on retention status being:)
Unconditional

Retained Late

would obtain if the 
student was

Retained Early

Retained in 
Kindergarten

Not Retained      

Unconditional
A student who is actually (i.e. conditional on retention status being:)

Retained in 
Kindergarten

Note: Let R = 1, 2, 3, or ∞ represent the actual retention status of a student: retained in kindergarten, retained early (at grade 1 or 2), retained late (at grade 3 or 4), or never retained, respectively. Let ζ(i) be 
the potential test score at 2003-04 school year if the student were retained at time i=1,2,3,∞. The row i, column j element of this table calculates E[ζ(i) | R=j].  For example, a student who was actually not 
retained would get 4.839 in math score on average if the student were retained at 1 or 2 grade instead. Values in parentheses are bootstrap standard errors.

would obtain if the 
student was

Retained Early

Retained Late

Not Retained      
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Panel A: Reading Score

Actual Retention 
Status

Potential Retention 
Status Not Retained Retained in 

Kindergarten Retained Early

4.803 4.594 4.502 4.785
(0.011) (0.020) (0.023) (0.011)

4.858 4.504 4.384 4.829
(0.028) (0.030) (0.039) (0.026)

4.819 4.462 4.348 4.790
(0.018) (0.033) (0.040) (0.016)

Panel B: Math Score

Actual Retention 
Status

Potential Retention 
Status Not Retained Retained in 

Kindergarten Retained Early

4.551 4.305 4.196 4.530
(0.006) (0.019) (0.025) (0.005)

4.601 4.235 4.103 4.571
(0.027) (0.033) (0.043) (0.025)

4.499 4.250 4.130 4.478
(0.032) (0.024) (0.030) (0.030)

Not Retained      

Retained in 
Kindergarten

Retained Early

Not Retained      

Table D6: Average Test Scores by Potential and Actual Retention Status: 2001-02 School Year 

Note: Let R = 1,2,∞ or  represent the actual retention status of a student: retained in kindergarten, retained early (at grade 1 or 2), or never retained, respectively. Let ζ(i) be the 
potential test score at 2001-02 school year if the student were retained at time i=1,2,∞. The row i, column j element of this table calculates E[ζ(i) | R=j].  For example, a student 
who was actually not retained would get 4.499 in math score on average if the student were retained at 1 or 2 grade instead. Bootstrap standard errors are in parentheses.

A student who is actually                                                                   
(i.e. conditional on retention status being:)

A student who is actually                                                                   
(i.e. conditional on retention status being:) Unconditional

Unconditional

would obtain if the 
student was

would obtain if the 
student was

Retained in 
Kindergarten

Retained Early

D-4



Panel A: Reading Score

Actual Retention 
Status

Potential Retention 
Status Not Retained Retained in 

Kindergarten

4.270 3.958 4.263
(0.011) (0.057) (0.011)

4.008 3.680 4.000
(0.032) (0.065) (0.032)

Panel B: Math Score

Actual Retention 
Status

Potential Retention 
Status Not Retained Retained in 

Kindergarten

4.055 3.713 4.047
(0.005) (0.060) (0.004)

3.941 3.520 3.930
(0.027) (0.079) (0.027)

Note: Let R = 1 or ∞ represent the actual retention status of a student: retained in kindergarten or never retained. Let ζ(i) be the potential test score at 
1999-2000 school year if the student were retained at time i=1,∞. The row i, column j element of this table calculates E[ζ(i) | R=j].  For example, a student 
who was actually not retained would get 3.941 in math score on average if the student were retained in kindergarten instead. Bootstrap standard errors 
are in parentheses.

Unconditional

Unconditional

A student who is actually                   
(i.e. conditional on retention status being:)

would obtain if the 
student was

Not Retained      

Retained in 
Kindergarten

 Table D7: Average Test Scores by Potential and Actual Retention Status: 1999-2000 School Year 

would obtain if the 
student was

Not Retained      

Retained in 
Kindergarten

A student who is actually                   
(i.e. conditional on retention status being:)

D-5



Panel A: Reading Score

ATE

Not Retained Retained in 
Kindergarten Retained Early

(unconditional)

0.055 -0.090 -0.119 0.041
(0.027) (0.020) (0.027) (0.025)

0.016 -0.132 -0.154 0.004
(0.015) (0.023) (0.028) (0.012)

Panel B: Math Score

ATE

Not Retained Retained in 
Kindergarten Retained Early

(unconditional)

0.050 -0.070 -0.093 0.039
(0.027) (0.022) (0.029) (0.024)

-0.052 -0.055 -0.066 -0.053
(0.032) (0.017) (0.017) (0.030)

Note: Let R = 1, 2, or  represent the actual retention status of a student: retained in kindergarten, retained early (at grade 1 or 2), or never retained, respectively. 
Let (i) be the potential test score if the student were retained at time i=1,2, . The row i, column j element of this table calculates E[ (i) - ( ) | R=j].  For example, 
the test math score of a student who was actually not retained would decrease by 0.052 if he were retained at 1 or 2 grade instead. Bootstrap standard errors are 
in parentheses.

   Retained in Kindergarten                                       
vs                                         

Not Retained

 Retained Early                                              
vs                                        

Not Retained

Table D8: Average Test Score Gain by Retention Status: 2001-02 School Year

(i.e. conditional on the retention status being:)

(i.e. conditional on the retention status being:)

   Retained in Kindergarten                                           
vs                                         

Not Retained

 Retained Early                                              
vs                                        

Not Retained

Average Gain

A student who is actually

Average Gain

A student who is actually

Panel A: Reading Score

ATE

Not Retained Retained in Kindergarten
(unconditional)

-0.263 -0.279 -0.263
(0.031) (0.029) (0.030)

Panel B: Math Score

ATE

Not Retained Retained in Kindergarten
(unconditional)

-0.114 -0.193 -0.117
(0.027) (0.028) (0.027)

Note: Let R = 1 or  represent the actual retention status of a student: retained in kindergarten or never retained. Let (i) be the potential 
test score if the student were retained at time i=1, . The column j element of this table calculates E[ (i) - ( ) | R=j].  For example, the test 
score of a student who was actually not retained would decrease by 0.114 if he were retained in kindergarten. Bootstrap standard errors are 
in parentheses.

  Retained in Kindergarten                                         
vs                                         

Not Retained

  Retained in Kindergarten                                         
vs                                         

Not Retained

Table D9: Average Test Score Gain by Retention Status: 1999-2000 School Year

(i.e. conditional on the retention status being:)

(i.e. conditional on the retention status being:)
Average Gain

A student who is actually

Average Gain

A student who is actually
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Reading Test Score General Ability Behavioral 
Ability Cognitive Ability Persistent 

Factor 1 *
Persistent 
Factor 2 *

Persistent 
Factor 3 *

0.429 -0.002 0.149 0.098 0.047 0.007
(0.013) (0.001) (0.010) (0.004) (0.003) (0.004)

0.558 0.058 0.465 0.098 0.047 0.007
(0.046) (0.016) (0.076) (0.004) (0.003) (0.004)

0.555 -0.031 0.805 0.098 0.047 0.007
(0.043) (0.010) (0.051) (0.004) (0.003) (0.004)

0.543 -0.029 0.184 0.098 0.047 0.007
(0.356) (0.084) (0.500) (0.004) (0.003) (0.004)

Math Test Score General Ability Behavioral 
Ability Cognitive Ability Persistent 

Factor 1 *
Persistent 
Factor 2 *

Persistent 
Factor 3 *

0.455 -0.007 0.243 0.133 -0.059 0.005
(0.014) (0.002) (0.013) (0.004) (0.004) (0.002)

0.800 -0.007 0.144 0.133 -0.059 0.005
(0.060) (0.009) (0.065) (0.004) (0.004) (0.002)

0.681 0.046 0.677 0.133 -0.059 0.005
(0.046) (0.011) (0.061) (0.004) (0.004) (0.002)

0.846 -0.030 0.670 0.133 -0.059 0.005
(0.479) (0.105) (1.299) (0.004) (0.004) (0.002)

Science Test Score General Ability Behavioral 
Ability Cognitive Ability Persistent 

Factor 1 *
Persistent 
Factor 2 *

Persistent 
Factor 3 *

0.791 -0.028 0.055 0.103 0.035 0.005
(0.018) (0.004) (0.013) (0.005) (0.005) (0.003)

1.070 0.058 -0.301 0.103 0.035 0.005
(0.089) (0.023) (0.135) (0.005) (0.005) (0.003)

0.800 0.011 0.130 0.103 0.035 0.005
(0.035) (0.012) (0.075) (0.005) (0.005) (0.003)

0.846 -0.078 -0.145 0.103 0.035 0.005
(0.355) (0.187) (1.003) (0.005) (0.005) (0.003)

Retained in Kindergarten

Retained Early

Retained Late

Not Retained      

Retained in Kindergarten

Retained Early

Retained Late

Not Retained      

Retained Late

* Loading of persistent factors are assumed to stay constant over time. Bootstrap standard errors are in parentheses.

Table D10: Estimated Factor Loadings in Cognitive Score Equations for 2003-04 School Year by Retention Status

Not Retained      

Retained in Kindergarten

Retained Early
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Reading Test Score General Ability Behavioral 
Ability Cognitive Ability Persistent 

Factor 1 *
Persistent 
Factor 2 *

0.542 -0.003 0.271 0.110 0.063
(0.014) (0.001) (0.012) (0.004) (0.004)

0.663 0.071 0.867 0.110 0.063
(0.070) (0.025) (0.114) (0.004) (0.004)

0.687 0.009 0.878 0.110 0.063
(0.077) (0.011) (0.111) (0.004) (0.004)

Math Test Score General Ability Behavioral 
Ability Cognitive Ability Persistent 

Factor 1 *
Persistent 
Factor 2 *

0.589 -0.002 0.379 0.149 -0.061
(0.015) (0.001) (0.014) (0.004) (0.004)

0.849 -0.029 0.702 0.149 -0.061
(0.093) (0.020) (0.126) (0.004) (0.004)

0.640 0.023 0.328 0.149 -0.061
(0.079) (0.013) (0.074) (0.004) (0.004)

Science Test Score General Ability Behavioral 
Ability Cognitive Ability Persistent 

Factor 1 *
Persistent 
Factor 2 *

1.032 -0.029 0.122 0.091 0.046
(0.022) (0.005) (0.017) (0.006) (0.006)

1.052 0.000 0.041 0.091 0.046
(0.114) (0.002) (0.092) (0.006) (0.006)

0.887 0.019 0.173 0.091 0.046
0.088 0.023 0.129 0.006 0.006

Choice Equation General Ability Behavioral 
Ability Cognitive Ability Persistent 

Factor 1 *
Persistent 
Factor 2 *

-2.231 0.074 -1.787 -0.409 0.075
(1.072) (0.250) (1.526) (0.444) (0.272)

Missing Equation General Ability Behavioral 
Ability Cognitive Ability Persistent 

Factor 1 *
Persistent 
Factor 2 *

-0.186 -0.041 0.043 -0.055 0.054
(0.057) (0.014) (0.025) (0.028) (0.043)

Retained in Kindergarten

Not Retained      

Table D11: Estimated Factor Loadings for 2001-02 School Year

Not Retained      

Retained in Kindergarten

Retained Early

* Loading of persistent factors are assumed to stay constant over time. Bootstrap standard errors are in 
parentheses.

Retained Early

Not Retained      

Retained in Kindergarten

Retained Early
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General Test Score General Ability Behavioral 
Ability

Cognitive 
Ability

Persistent 
Factor 1 *

0.685 -0.012 0.065 0.022
(0.013) (0.002) (0.010) (0.004)

0.832 0.005 -0.175 0.022
(0.040) (0.011) (0.096) (0.004)

Reading Test Score General Ability Behavioral 
Ability

Cognitive 
Ability

Persistent 
Factor 1 *

0.524 0.010 0.716 0.102
(0.016) (0.003) (0.021) (0.006)

0.701 0.042 0.553 0.102
(0.107) (0.026) (0.164) (0.006)

Math Test Score General Ability Behavioral 
Ability

Cognitive 
Ability

Persistent 
Factor 1 *

0.664 0.001 0.568 0.117
(0.016) (0.001) (0.018) (0.006)

1.009 0.007 0.653 0.117
(0.066) (0.018) (0.137) (0.006)

Choice Equation General Ability Behavioral 
Ability

Cognitive 
Ability

Persistent 
Factor 1 *

-2.680 -0.282 -3.070 -0.290
(0.325) (0.087) (0.602) (0.126)

Missing Equation General Ability Behavioral 
Ability

Cognitive 
Ability

Persistent 
Factor 1 *

-0.186 -0.041 0.043 -0.055
(0.057) (0.014) (0.025) (0.028)

Retained in Kindergarten

* Loading of persistent factors are assumed to stay constant over time. Bootstrap standard 
errors are in parentheses.

Table D12: Estimated Factor Loadings for 1999-2000 School Year

Not Retained      

Retained in Kindergarten

Not Retained      

Retained in Kindergarten

Not Retained      
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General Ability Behavioral 
Ability Cognitive Ability

1.000+ 0.203
-- (0.015)

0.459 0.823
(0.013) (0.014)

0.745 1.000+

(0.016) --

1.662 0.772
(0.045) (0.014)

0.888 1.000+

(0.036) --

1.128 1.002
(0.038) (0.015)

-1.580 -0.057 -1.997
(0.199) (0.049) (0.337)

-0.186 -0.041 0.043
(0.057) (0.014) (0.025)

+ Normalized to one.
  Bootstrap standard errors are in parentheses.

--

Rating for Self-Control --

Rating for Interpersonal 
Skills --

Math Test Score --

Choice Equation

Missing Equation

Rating for Approach to 
Learning 

Table D13: Estimated Factor Loadings for 1998-99 School Year 

General Test Score --

Reading Test Score --
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Panel A: Reading Test Score
Outcome Equation in 1999-

2000 School Year
Outcome Equation in 2001-

02 School Year
Outcome Equation in 2003-

04 School Year

-0.263 0.041 0.025
(0.030) (0.025) (0.012)

0.004 0.046
(0.012) (0.017)

0.056
(0.101)

Panel B: Math Test Score
Outcome Equation in 1999-

2000 School Year
Outcome Equation in 2001-

02 School Year
Outcome Equation in 2003-

04 School Year

-0.117 0.039 0.004
(0.027) (0.024) (0.022)

-0.053 0.066
(0.030) (0.019)

0.083
(0.309)

Panel C: General Test Score
Outcome Equation in 1999-

2000 School Year
Outcome Equation in 2001-

02 School Year
Outcome Equation in 2003-

04 School Year

-0.019 -- --
(0.017)

-- --

--

Panel D: Science Test Score
Outcome Equation in 1999-

2000 School Year
Outcome Equation in 2001-

02 School Year
Outcome Equation in 2003-

04 School Year

-- 0.024 0.014
(0.014) (0.027)

-0.043 0.001
(0.038) (0.003)

0.006
(0.030)

Note: Bootstrap standard errors are in parentheses.

Retained in Kindergarten

Retained Early

Retained Late

Retained Late

Retained in Kindergarten

Retained Early

Retained Late

Retained in Kindergarten

Retained Early

Table D14: Estimated Coefficients for Dummy Variables in Outcome Equations 

Retained in Kindergarten

Retained Early

Retained Late
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Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error

Constant (1998-1999) -0.120 0.009 2.352 0.027 1.043 0.035 -- --
Constant (1999-2000) 0.049 0.007 3.075 0.031 1.658 0.039 -- --
Constant (2001-2002) -- -- 3.407 0.036 1.828 0.042 1.260 0.115
Constant (2003-2004) -- -- 3.465 0.039 1.893 0.044 1.331 0.120

Male 0.012 0.001 -0.043 0.002 0.012 0.001 0.040 0.003
White 0.057 0.004 0.000 0.001 0.009 0.001 0.014 0.002
Black -0.061 0.006 -0.063 0.004 -0.103 0.005 -0.145 0.009
Hispanic -0.036 0.005 -0.038 0.004 -0.054 0.004 -0.074 0.007
Body Mass Index 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Age 0.829 0.006 0.239 0.006 0.467 0.009 0.418 0.022
Age_squared -0.050 0.001 -0.009 0.000 -0.019 0.001 -0.016 0.001
Number of Siblings -0.016 0.001 -0.015 0.001 -0.003 0.001 -0.018 0.002
Socioeconomic Status Index 0.058 0.003 0.051 0.001 0.062 0.002 0.075 0.003
TV Rule at Home 0.022 0.004 0.011 0.003 -0.010 0.001 0.007 0.001
Mother in Household -0.023 0.013 0.002 0.011 -0.010 0.007 -0.055 0.017
Father in Household -0.014 0.003 -0.014 0.003 -0.007 0.002 -0.015 0.003
Number of Books at home 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Number of Books at home 
(squared) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Attended Full Time 
Kindergarten -0.006 0.004 0.002 0.008 0.005 0.002 0.014 0.002

Minority Students in School 
between (1%,5%) 0.006 0.003 0.012 0.003 0.008 0.007 0.009 0.002

Minority Students in School 
between (5%,10%) -0.001 0.004 0.008 0.003 0.010 0.014 0.003 0.004

Minority Students in School 
between (10%,25%) -0.019 0.006 -0.010 0.001 -0.019 0.005 0.007 0.009

Minority Students in School 
>25% -0.039 0.007 -0.017 0.005 -0.009 0.002 -0.049 0.013

Public School -0.031 0.003 -0.032 0.002 -0.031 0.002 -0.038 0.005

TT1 Funds Received by School -0.010 0.004 -0.018 0.001 -0.018 0.001 -0.007 0.004

Crime a Problem 0.005 0.002 -0.003 0.000 0.000 0.003 -0.022 0.003
Students Bring Weapons -0.006 0.003 -0.012 0.003 -0.008 0.003 -0.012 0.003
Children or Teachers Physically 
Attacked -0.005 0.004 -0.007 0.001 -0.002 0.000 0.012 0.003

Security Measures in School -0.009 0.001 0.001 0.001 -0.007 0.001 0.006 0.005
Parents Involved in School 
Activities 0.009 0.001 0.002 0.003 0.002 0.000 0.006 0.001

Teacher has a Master's Degree 0.002 0.000 -0.001 0.002 0.001 0.000 0.001 0.007

Teacher Experience 0.001 0.000 0.002 0.000 0.001 0.000 0.001 0.000
Teacher Experience squared 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Student's Class Size 0.002 0.000 0.002 0.000 0.008 0.000 0.003 0.000

Student's Class Size (squared) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Teacher's Rating of Class 
Behavior -0.001 0.001 -0.006 0.001 -0.005 0.001 -0.004 0.001

Minority Students in Class 
between (1%,5%) 0.001 0.005 0.004 0.001 -0.001 0.006 0.000 0.005

Minority Students in Class 
between (5%,10%) 0.009 0.007 0.003 0.003 0.010 0.003 0.015 0.003

Minority Students in Class 
between (10%,25%) 0.013 0.007 0.003 0.002 0.012 0.002 0.001 0.009

Minority Students in Class 
>25% -0.026 0.005 0.012 0.003 -0.010 0.002 -0.020 0.010

Note: All the coefficients except for the constant term are assumed to be invariant over time.

Table D15: Parameter Estimates for Outcome Equations

General Test Score Reading Test Score Math Test Score Science Test Score
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Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error

Constant -6.745 1.093 -2.460 0.573 -5.025 0.77

Male -0.362 0.017 -0.262 0.016 -0.279 0.02
White -0.047 0.023 -0.061 0.022 0.088 0.02
Black -0.150 0.037 -0.142 0.028 -0.021 0.01
Hispanic -0.125 0.043 -0.025 0.016 0.040 0.03
Body Mass Index -0.007 0.002 -0.009 0.003 -0.008 0.00
Age 2.106 0.382 0.844 0.196 1.664 0.27
Age_squared -0.148 0.033 -0.066 0.017 -0.135 0.02
Number of Siblings -0.015 0.006 0.025 0.007 -0.014 0.01
Socioeconomic Status 
Index 0.112 0.012 0.036 0.010 0.063 0.01

TV Rule at Home -0.035 0.018 -0.049 0.018 -0.005 0.01
Mother in Household -0.248 0.070 -0.102 0.071 -0.049 0.06
Father in Household -0.082 0.024 -0.072 0.022 -0.062 0.02
Minority Students in School 
between (1%,5%) -0.028 0.022 -0.035 0.020 -0.028 0.02

Minority Students in School 
between (5%,10%) 0.048 0.025 -0.006 0.011 0.018 0.02

Minority Students in School 
between (10%,25%) 0.136 0.034 -0.012 0.021 0.078 0.03

Minority Students in School 
>25% 0.073 0.031 -0.135 0.027 -0.032 0.03

Public School 0.106 0.022 0.100 0.021 0.108 0.02
TT1 Funds Received by 
School 0.082 0.018 0.039 0.015 0.045 0.02

Crime a Problem 0.010 0.010 0.014 0.011 -0.011 0.01
Students Bring Weapons 0.015 0.017 -0.003 0.006 -0.013 0.02
Children or Teachers 
Physically Attacked -0.060 0.017 -0.037 0.016 -0.094 0.02

Security Measures in 
School 0.013 0.011 0.019 0.012 -0.011 0.01

Parents Involved in School 
Activities 0.021 0.008 0.012 0.006 0.000 0.00

Attended Full Time 
Kindergarten -0.058 0.016 -0.042 0.015 0.003 0.00

Number of Books at home 0.001 0.000 0.000 0.000 0.002 0.00
Number of Books at home 
(squared) -0.001 0.000 0.000 0.000 -0.001 0.00

Teacher has a Master's 
Degree 0.012 0.011 0.049 0.016 0.051 0.02

Teacher Experience -0.001 0.001 0.005 0.002 -0.005 0.00
Teacher Experience 0.000 0.000 0.000 0.000 0.000 0.00
Number of Kids in Class -0.002 0.001 0.018 0.004 0.017 0.00
Number of Kids in Class 
(squared) 0.000 0.000 0.000 0.000 0.000 0.00

Teacher's Rating of Class 
Behavior -0.091 0.010 -0.116 0.010 -0.096 0.01

Minority Students in Class 
between (1%,5%) -0.018 0.026 -0.031 0.027 0.028 0.03

Minority Students in Class 
between (5%,10%) -0.020 0.021 -0.004 0.009 0.037 0.02

Minority Students in Class 
between (10%,25%) -0.032 0.022 -0.005 0.010 0.007 0.01

Minority Students in Class 
>25% -0.006 0.008 0.020 0.016 0.114 0.02

Table D16: Parameter Estimates for Behavioral Rating Equations of the 1998/99 School Year

Approach to Learning Rating Self-Control Rating Interpersonal Skills Rating
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Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error

Constant (1998-1999) 6.531 1.011 -0.863 0.052
Constant (1999-2000) -7.380 4.013 -0.879 0.064
Constant (2001-2002) 17.787 11.034 -1.230 0.090

Male 0.384 0.097 0.266 0.125 0.427 0.552 0.020 0.014
White 0.020 0.027 -0.044 0.091 0.947 0.903 -0.070 0.030
Black -0.023 0.051 0.649 0.216 0.637 0.923 -0.021 0.028
Hispanic -0.198 0.148 0.147 0.165 0.253 1.372 0.052 0.038
Body Mass Index -0.034 0.016 -0.010 0.012 -0.009 0.020 0.002 0.001
Age -1.331 0.180 2.137 1.142 -3.433 2.341 0.011 0.006
Age_squared -0.007 0.007 -0.211 0.084 0.115 0.134 0.002 0.001
Number of Siblings 0.083 0.035 0.145 0.047 0.060 0.204 0.010 0.006
Socioeconomic Status Index -0.189 0.070 -0.227 0.110 -0.459 0.441 0.019 0.009
TV Rule at Home 0.114 0.101 -0.300 0.186 -0.111 0.423 0.018 0.013
Mother in Household 0.125 0.291 0.243 0.407 0.148 1.202 0.018 0.062
Father in Household 0.050 0.096 -0.015 0.043 0.282 0.506 0.115 0.030
Number of Books at home -0.002 0.002 -0.001 0.001 0.000 0.001 0.000 0.000
Number of Books at home 
(squared) 0.001 0.001 0.000 0.000 -0.001 0.002 0.000 0.000

Attended Full Time 
Kindergarten 0.234 0.097 -0.030 0.069 0.282 0.422 0.081 0.022

Minority Students in School 
between (1%,5%) -0.314 0.154 -0.246 0.203 -0.303 1.123 0.115 0.033

Minority Students in School 
between (5%,10%) -0.444 0.188 -0.454 0.260 0.004 0.484 0.150 0.042

Minority Students in School 
between (10%,25%) -0.275 0.172 -0.363 0.346 0.025 0.902 0.302 0.054

Minority Students in School 
>25% -0.453 0.194 -0.898 0.389 0.268 0.936 0.188 0.056

Public School -0.312 0.118 0.250 0.210 0.256 0.719 0.033 0.018
TT1 Funds Received by 
School -0.229 0.101 -0.280 0.160 -0.212 0.555 -0.022 0.005

Crime a Problem 0.122 0.080 0.175 0.133 -0.286 0.555 0.071 0.021
Students Bring Weapons -0.207 0.129 0.118 0.155 0.872 0.586 0.204 0.033
Children or Teachers 
Physically Attacked 0.104 0.094 -0.064 0.110 0.314 0.581 0.007 0.007

Security Measures in School 0.153 0.095 -0.110 0.117 -0.075 0.387 0.005 0.005
Parents Involved in School 
Activities -0.005 0.009 -0.066 0.061 -0.063 0.188 0.006 0.004

Teacher has a Master's 
Degree -0.113 0.094 -0.048 0.099 -0.493 0.603 -0.001 0.002

Teacher Experience 0.002 0.002 0.000 0.003 -0.019 0.061 0.005 0.002
Teacher Experience squared 0.000 0.000 0.000 0.000 0.001 0.002 0.000 0.000
Student's Class Size -0.068 0.024 -0.008 0.015 -0.017 0.045 0.001 0.000

Student's Class Size (squared) 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Teacher's Rating of Class 
Behavior 0.060 0.043 0.116 0.063 -0.011 0.081 -0.020 0.009

Minority Students in Class 
between (1%,5%) 0.416 0.181 -0.055 0.174 -0.963 1.236 0.097 0.036

Minority Students in Class 
between (5%,10%) 0.258 0.158 0.300 0.252 -0.160 0.860 0.077 0.035

Minority Students in Class 
between (10%,25%) 0.402 0.165 0.424 0.369 -0.520 0.891 0.173 0.042

Minority Students in Class 0.382 0.197 0.419 0.421 -0.085 0.701 0.193 0.049
Policy: Can be Retained for 
Immaturity 0.205 0.119 -0.320 0.165 0.437 0.701 -- --

Policy: Can be Retained at 
Parents Request 0.202 0.120 0.228 0.146 0.192 0.503 -- --

Policy: Can be Retained due 
to Academic Deficiencies -0.490 0.145 0.363 0.304 -0.398 1.107 -- --

Policy: Can be Retained Any 
Grade More than Once 0.260 0.157 -0.122 0.164 0.022 0.360 -- --

Policy: Can be Retained More 
than Once in Elementary -0.178 0.119 0.211 0.150 0.313 0.526 -- --

Policy: Can be Retained 
Without Parents Permission 0.115 0.094 0.066 0.098 -0.002 0.165 -- --

Policy: Can be Retained at any 
Grade -- -- 0.306 0.192 0.748 1.041 -- --

Note: All the coefficients except for the constant term are assumed to be invariant over time in the missing equation.

Table D17: Parameter Estimates for Choice Equations and Missing Equations

  Choice Equation        
(1998-1999)

 Choice Equation       
(1999-2000)

 Choice Equation       
(2001-2002) Missing Equation
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0.0348 0.0118 -- --

(0.0008) (0.0003)

0.0223 0.0283 0.0081 0.0048
(0.0004) (0.0007) (0.0003) (0.0002)

0.0266 0.0247 0.0086 0.0060
(0.0006) (0.0006) (0.0004) (0.0003)

-- -- 0.0190 0.0120
(0.0007) (0.0004)

0.3389 -- -- --

(0.0066)

0.2463 -- -- --

(0.0060)

0.2190 -- -- --

(0.0053)

Note: Bootstrap standard errors are in parentheses.

Rating for Interpersonal 
Skills

General Test Score

Reading Test Score

Math Test Score

Science Test Score

Rating for Approach to 
Learning 

Rating for Self-Control

Table D18: Parameter Estimates of Variances of Uniqueness in Cognitive and 
Behavioral Outcome Equations

Time Period
1998-99 School 

Year
1999-2000 

School Year
2001-02 School 

Year
2003-04 School 

Year

Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error

Mean of the 1st Mixture 
Component 0.132 0.003 0.862 0.016 -0.009 0.001

Mean of the 2nd Mixture 
Component -0.216 0.003 -0.797 0.017 -0.061 0.003

Mean of the 3rd Mixture 
Component 0.074 0.003 -0.006 0.017 0.069 0.003

Variance of the 1st Mixture 
Component 0.014 0.001 0.069 0.007 0.044 0.002

Variance of the 2nd 
Mixture Component 0.085 0.003 0.272 0.012 0.022 0.001

Variance of the 3rd Mixture 
Component 0.023 0.001 0.062 0.007 0.083 0.003

Weight of the 1st Mixture 
Component 0.340 0.001 0.331 0.006 0.332 0.015

Weight of the 2nd Mixture 
Component 0.323 0.002 0.355 0.010 0.331 0.009

Weight of the 3rd Mixture 
Component 0.337 0.001 0.314 0.007 0.337 0.006

Note: Standard errors are obtained via 1000 bootstrap replications.

Table D19: Parameter Estimates for Distribution of Abilities

General Behavioral Cognitive
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Figure D-1: Achievement Gains in 2001/02 by Ability Quantiles

Note: Let ζ(t,r) and ζ(t,∞) be the potential test scores at period t if the student is retained at r and if the student is not retained at all, respectively.  Let X denote 
one kind of ability (i.e. etiher A,B or C). The graphs show E[ζ(t,r)-ζ(t,∞)|X=q] where q is the qth quantile of the X-type of ability distribution.
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Figure D-2: Achievement Gains in 1998/99 by Ability Quantiles

Note: Let ζ(t,r) and ζ(t,∞) be the potential test scores at period t if the student is retained at r and if the student is not retained at all, respectively. Let X denote
one kind of ability (i.e. etiher A,B or C). The graphs show E[ζ(t,r)-ζ(t,∞)|X=q] where q is the qth quantile of the X-type of ability distribution.
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E Identification Proofs (Online Appendix, Not For Pub-

lication)

Consider a version of the model of equations (5) and (6) in a multiperiod setting. In period
1 the model is given by:

ζi,j,1 = Aiαζ,j,1 + Ciπζ,j,1 + εi,ζ,j,1, j = 1, ..., Nζ ;

βi,j,1 = Aiαβ,j,1 +Biφβ,j,1 + εi,β,j,1, j = 1, ..., Nβ;

where these equations are assumed to be free of selection. Without loss of generality, we
impose the following normalizations αζ,1,1 = 1, πζ,1,1 = 1 and φβ,1,1 = 1.48

Moving forward in time we have that the demeaned selection corrected period t cognitive
tests for retention status r are written as

ζi,j,r,t = Aiαζ,j,r,t +Biφζ,j,r,t + Ciπζ,j,r,t +
t∑

τ=2

η
(τ)
i δ

(τ)
ζ,j,r,t + εi,ζ,j,t. (10)

First, notice that we now allow for behavioral ability to determine cognitive tests after period
1. Second, we also add a new unobservable η(τ)

i every period. Since this new unobservable
is individual specific and affects all outcomes (and retention decisions) from period τ on, it
can be interpreted as a permanent shock that first affects outcomes in period τ (hence the
superscript). While the shock itself is permanent, we allow for its effects to change both over
time and across retention statuses for all equations in the model.

E.1 Asymmetric Factor Distributions

First consider the case in which the distributions of all factors are asymmetric. In this case,
we can identify the model with access to less equations than what is assumed in standard
factor analysis. In particular suppose that Nζ ≥ 2 so we have access to at least 2 cognitive
measures and Nβ ≥ 2 so we have access to at least 2 behavioral measures.

We first take cross moments between the jth cognitive and the kth behavioral measure
48Given that A,B, and C are all latent, these normalizations imply no restriction since Aαζ,j = Aκ

αζ,j
κ

for any constant κ.
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for the period 1 selection free outcomes

E
(
(ζj,1)2 βk,1

)
= α2

ζ,j,1αβ,k,1E (A3)

E
(
ζj,1 (βk,1)2) = αζ,j,1α

2
β,k,1E (A3)

. (11)

Since E (A3) 6= 0, we can form

E
(
ζj,1 (βk,1)2)

E
(
ζ1,1 (βk,1)2) =

αζ,j,1α
2
β,k,1E (A3)

α2
β,k,1E (A3)

= αζ,j,1

to recover all of the period 1 general ability loadings on cognitive tests, αζ,j,1, for j =

2, . . . , Nζ . We can then, for example, form

E
(
ζ1,1 (βk,1)2)

E
(
(ζ1,1)2 βk,1

) =
α2
β,k,1E (A3)

αβ,k,1E (A3)
= αβ,k,1

and recover the general ability loadings on period 1 behavioral tests.
To show that the distribution of A is identified, without loss of generality, take any two

tests, for example a cognitive and a behavioral one, and form

ζi,j,1
αζ,j,1

=

[
Ci
πζ,j,1
αζ,j,1

+
εi,ζ,j,1
αζ,j,1

]
+ Ai,

βi,k,1
αβ,k,1

=

[
Bi
φβ,k,1
αβ,k,1

+
εi,β,k,1
αβ,k,1

]
+ Ai.

Then, using Kotlarski (1967), the distribution ofA (and of
[
C
πζ,j,1
αζ,j,1

+
εζ,j,1
αζ,j,1

]
and

[
B
φβ,k,1
αβ,k,1

+
εβ,k,1
αβ,k,1

]
)

is nonparametrically identified.
With all of the period 1 parameters associated with general ability A as well as its

distribution identified, we can then take the period 1 system of cognitive tests and form

E
(
ζj,1 (ζk,1)2)− αζ,j,1α2

ζ,k,1E
(
A3
)

= πζ,j,1π
2
ζ,k,1E

(
C3
)
,

for any j 6= k with j, k = 1, ..., Nζ . By forming

E
(
ζ1,1 (ζk,1)2)− αζ,1,1α2

ζ,k,1E (A3)

E
(
(ζ1,1)2 ζk,1

)
− α2

ζ,1,1αζ,k,1E (A3)
=
π2
ζ,k,1E (C3)

πζ,k,1E (C3)
= πζ,k,1,

we can recover πζ,k,1 for k = 2, ..., Nζ . By iteratively applying the Kotlarski argument, we
can nonparametrically recover the distributions of C and εζ,j,1 for j = 1, ..., Nζ . Finally, by
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applying the same argument to the system of behavioral tests, we can recover φβ,j,1 and the
nonparametric distributions of B and εβ,j,1 for j = 1, ..., Nβ.

Once we have recovered the distribution of (Ai, Bi, Ci), we can proceed to the next period.
In particular, because we now know the distributions of (Ai, Bi, Ci) ahead of time, we can
simply estimate the selection equation by itself and from it recover the pattern of selection
for period 2 outcomes. Hence, we can use it to correct the test scores in period 2 for selection.

Now consider identification of equation (10) in period 2 for an arbitrary retention status
r. We can form cross second moments between period 2 and period 1 cognitive tests:

E (ζj,r,2, ζj,1) = αζ,j,r,2
[
αζ,j,1E

(
A2
)]

+ πζ,j,r,2
[
πζ,j,1E

(
C2
)]

E (ζj,r,2, ζk,1) = αζ,j,r,2
[
αζ,k,1E

(
A2
)]

+ πζ,j,r,2
[
πζ,k,1E

(
C2
)]
.

The terms in square brackets are all known from our period 1 analysis. Provided a standard
rank condition holds, this system can be solved for both αζ,j,r,2 and πζ,j,r,2 for j = 1, ..., Nζ .
Then, by taking cross second moments with period 1 behavioral tests we can form:

E (ζj,r,2, βk,1)− αζ,j,r,2 [αβ,k,1E (A2)]

φβ,k,1E (B2)
= φζ,j,r,2

and recover the behavioral ability loadings φζ,j,r,2 for j = 1, ..., Nβ.
In order to identify the terms related to the new unobservable (i.e., the period 2 perma-

nent shock η(2) and its loadings δ(2)
ζ,j,r,2), a normalization on the scale of the unobservable is

required. We impose that δ(2)
ζ,1,∞,2 = 1. We form cross moments between period 2 equations

for the r =∞ retention status and get[
E (ζj,∞,2, ζk,∞,2)− αζ,j,∞,2αζ,k,∞,2E (A2)

−φζ,j,∞,2φζ,k,∞,2E (B2)− πζ,j,∞,2πζ,k,∞,2E (C2)

]
[

E (ζ1,∞,2, ζk,∞,2)− αζ,1,∞,2αζ,k,∞,2E (A2)

−φζ,1,∞,2φζ,k,∞,2E (B2)− πζ,1,∞,2πζ,k,∞,2E (C2)

] = δ
(2)
ζ,j,∞,2

to identify the loadings on the permanent shock for all cognitive scores j = 1, ..., Nζ and
retention status r = ∞.49 We can then apply Kotlarski to any pair of equations j, k for
r = ∞ and identify the nonparametric distributions of η(2) and εζ,j,2, εζ,k,2. To identify the

49Notice that we cannot form cross moments for equations with different retention indices r, since we can
only observe a student in the retention status he actually receives.
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loadings for retention statuses r 6=∞, we can form[
E
(
ζj,r,2, ζ

2
k,r,2

)
− αζ,j,r,2α2

ζ,k,r,2E (A3)

−φζ,j,r,2φ2
ζ,k,r,2E (B3)− πζ,j,r,2π2

ζ,k,r,2E (C3)

]
[

E (ζj,r,2, ζk,r,2)− αζ,j,r,2αζ,k,r,2E (A2)

−φζ,j,r,2φζ,k,r,2E (B2)− πζ,j,r,2πζ,k,r,2E (C2)

]E
((
η(2)
)2
)

E
(

(η(2))
3
) = δ

(2)
ζ,k,r,2.

Applying the same arguments recursively, it is clear that we can add a new permanent
shock every period and still identify all of the loadings and nonparametric distributions of
the unobservables.

E.2 Some Symmetric Factor Distributions

Assume that the distribution of general ability, A, is symmetric. Further assume that either
the distribution of behavioral ability, B, or the distribution of cognitive ability, C, is not
symmetric.50 In this case, the above strategy (using equation (11)) does not work. Without
loss of generality, take the case in which C is assumed to be non-symmetric and assume, as
in standard factor analysis, that Nβ ≥ 3 and Nζ ≥ 3.

Now, take any two period 1 selection-free cognitive scores and form:

E
(
(ζj,1)2 ζk,1

)
= α2

ζ,j,1αζ,k,1E
(
A3
)

+ π2
ζ,j,1πζ,k,1E

(
C3
)

= π2
ζ,j,1πζ,k,1E

(
C3
)
.

where the second line follows from the assumed symmetry of A. Then, by taking ratios:

E
(
ζ1,1 (ζk,1)2)

E
(
(ζ1,1)2 ζk,1

) =
π2
ζ,k,1E (C3)

πζ,k,1E (C3)
= πζ,k,1.

we recover the period 1 cognitive ability loadings πζ,k,1 for k = 2, ..., Nζ .
In order to recover the period 1 general ability loadings on cognitive tests, αζ,j,1, for

j = 2, ..., Nζ we can also form

E (ζj,1βk,1) = αζ,j,1αβ,k,1E
(
A2
)

(12)

and use
E (ζj,1βk,1)

E (ζ1,1βk,1)
=
αζ,j,1αβ,k,1E (A2)

αβ,k,1E (A2)
= αζ,j,1

50That is, if B (alternatively C) is asymmetric, C (alternatively B) can (but is not required to) be
symmetric too.
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to identify them. Then, for any pair of period 1 cognitive scores j and k (j 6= k), we can
calculate cross moments to obtain

E (ζj,1ζ1,1) = αζ,j,1E
(
A2
)

+ πζ,j,1E
(
C2
)

E (ζk,1ζ1,1) = αζ,k,1E
(
A2
)

+ πζ,k,1E
(
C2
)
.

Assuming πζ,j,1αζ,k,1 − αζ,j,1πζ,k,1 6= 0, this system of equations gives E (A2) and E (C2) .

Then, we can use (12) to recover αβ,k,1 for k = 1, ..., Nβ.
Since we now know all of the period 1 loadings on general ability, we can use the Kotlarski

argument to recover the distribution of A (and of
[
C
πζ,j,1
αζ,j,1

+
εζ,j,1
αζ,j,1

]
and

[
B
φβ,k,1
αβ,k,1

+
εβ,k,1
αβ,k,1

]
)

nonparametrically. Next, for any pair of period 1 behavioral scores j and k (j 6= k, j 6= 1,

and k 6= 1), we calculate cross moments to obtain the following system of equations:

E (β1,1βj,1) = αβ,1,1αβ,j,1E
(
A2
)

+ φβ,j,1E
(
B2
)

E (β1,1βk,1) = αβ,1,1αβ,k,1E
(
A2
)

+ φβ,k,1E
(
B2
)

E (βj,1βk,1) = αβ,j,1αβ,k,1E
(
A2
)

+ φβ,j,1φβ,k,1E
(
B2
)
.

This gives

φβ,j,1 =
E (βj,1βk,1)− αβ,j,1αβ,k,1E (A2)

E (β1,1βk,1)− αβ,1,1αβ,k,1E (A2)

φβ,k,1 =
E (βj,1βk,1)− αβ,j,1αβ,k,1E (A2)

E (β1,1βj,1)− αβ,1,1αβ,j,1E (A2)

provided that both denominators are non-zero. Thus, we have obtained φβ,j,1 for j =

2, ..., Nβ. By iteratively applying the Kotlarski argument, we can nonparametrically recover
the distributions of B and εβ,j,1 for j = 1, ..., Nβ. Identification of other parts of the model
follows in the same way as before.

Note that we have exploited the assumption E (C3) 6= 0. If E (C3) = 0 and E (B3) 6= 0,

then we can still use the same strategy to identify the model. That is, as long as one of the
distributions of ability is skewed, our measurements provide enough information to identify
all the distributions of factors. For application purposes, we can test if E (A3) = E (C3) = 0

by checking if E
(
ζ2
j,1ζk,1

)
= 0 or not. Similarly, we can test if E (A3) = E (B3) = 0.
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E.3 All Symmetric Distributions

The problem arises when E (A3) = E (B3) = E (C3) = 0. In this case, we need to rely on
higher moments and one additional assumption stated below. Consider ζ1,1 and β1,1. Using

E
(
ζ2

1,1

)
= E

(
A2
)

+ E
(
C2
)

+ E
(
ε2
ζ,1,1

)
E
(
β2

1,1

)
= αβ,1,1E

(
A2
)

+ E
(
B2
)

+ E
(
ε2
β,1,1

)
,

fourth order cross moments can be written as

E
(
ζ3

1,1β1,1

)
= αβ,1,1E

(
A4
)

+ 3αβ,1,1E
(
A2
) (
E
(
ζ2

1,1

)
− E

(
A2
))

E
(
ζ1,1β

3
1,1

)
= α3

β,1,1E
(
A4
)

+ 3αβ,1,1E
(
A2
) (
E
(
β2

1,1

)
− α2

β,1,1E
(
A2
))
.

With additional information E (ζ1,1β1,1) = αβ,1,1E (A2) , it is straightforward to show that

E
(
ζ3

1,1β1,1

)
−3E (ζ1,1β1,1)E

(
ζ2

1,1

)
= αβ,1,1

(
E
(
A4
)
− 3E

(
A2
)2
)

E
(
ζ1,1β

3
1,1

)
−3E (ζ1,1β1,1)E

(
β2

1,1

)
= α3

β,1,1

(
E
(
A4
)
− 3E

(
A2
)2
)
.

Remember that E (A4) = 3E (A2)
2 for the centered normal distribution. Therefore, if A is

not normally distributed (or more generally, the second and fourth moments do not have the
same relationship as that of the normal distribution), then we have

α2
β,1,1 =

E
(
ζ1,1β

3
1,1

)
− 3E (ζ1,1β1,1)E

(
β2

1,1

)
E
(
ζ3

1,1β1,1

)
− 3E (ζ1,1β1,1)E

(
ζ2

1,1

) .
The sign of αβ,1,1 is given by the sign of E (ζ1,1β1,1) . Once we recover αβ,1,1, identification of
the remaining parts of the model follows in the same way as before (assuming Nζ ≥ 3 and
Nβ ≥ 3). Intuitively, as long as the second and fourth moments provide sufficiently different
information, the model is identified even if all the factors have symmetric distributions.
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