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problem for small voting bodies∗
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July 17, 2012

Abstract

Power indices are mappings that quantify the influence of the members of a voting body on
collective decisions a priori. Their nonlinearity and discontinuity makes it difficult to compute
inverse images, i.e., to determine a voting system which induces a power distribution as close
as possible to a desired one. The paper considers approximations to this inverse problem for
the Penrose-Banzhaf index by hill-climbing algorithms and exact solutions which are obtained by
enumeration and integer linear programming techniques. They are compared to the results of three
simple solution heuristics. The heuristics perform well in absolute terms but can be improved upon
very considerably in relative terms. The findings complement known asymptotic results for large
voting bodies and may improve termination criteria for local search algorithms.

Keywords electoral systems; simple games; weighted voting games; square root rule; Penrose
limit theorem; Penrose-Banzhaf index; institutional design

JEL Classification C61; C71; D02

1 Introduction

Collective decision rules and, in particular, heterogeneous voting weights for members of a committee,
council, or shareholder meeting translate into influence on collective decisions in a nonlinear and even
discontinuous fashion. This can be seen, for instance, by considering a decision quota of q = 50% and
players i ∈ N = {1, 2, 3} whose voting weights are given by either the vector (i) w = (w1, w2, w3) =
(33.3̄, 33.3̄, 33.3̄), (ii) w′ = (50 − ε, 48 + ε, 2), or (iii) w′′ = (50 + ε, 48 − ε, 2) for small ε > 0. The
major weight change from w to w′ does not affect possibilities to form a winning coalition at all, where
coalition S ⊆ N is called winning if the cumulative weight of its members exceeds the quota. Namely,
S is winning if and only if |S| ≥ 2. By symmetry, the distribution of influence can a priori be expected
to equal ( 1

3 ,
1
3 ,

1
3 ) for either of the voting systems described by (q;w) and (q;w′). The minor change

from w′ to w′′, in contrast, renders voter 1 a dictator with associated power distribution (1, 0, 0).
Social scientists, philosophers and mathematicians have investigated various voting power indices

which try to quantify the a priori distribution of influence on committee decisions. The Shapley-Shubik
index (Shapley and Shubik 1954) and the Penrose-Banzhaf index (PBI) (Penrose 1946; Banzhaf 1965)
are most prominent, but by far not the only ones.1 They help researchers clarify the non-trivial a priori

∗We thank Nicola Maaser, Friedrich Pukelsheim and two anonymous referees for constructive comments on an earlier
version. Napel acknowledges the generous hospitality of the Max Planck Institute of Economics, Jena, where parts of
this paper were written.

1See Felsenthal and Machover (1998) or Laruelle and Valenciano (2008) for overviews.
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power implications of different voting weight assignments to a wider audience. The combinatorial
nature of weighted voting systems can easily mislead the general public’s intuition and even that of
political practitioners. For instance, it was apparently not noted that the voting weights of the original
six members of the European Economic Community, in use from 1958 to 1973, rendered Luxembourg
a null player whenever the EEC Council applied its qualified majority rule, i.e., the country’s vote
was irrelevant for the collective decision. The public discussion – very heated in, but not restricted
to, Poland and Germany – in the wake of the 2007 EU summit at which new voting rules for the
EU Council were agreed reflected persistent confusion between voting weights and power.

Even to specialists, the discrete nature of voting rules still poses challenges. This is true, in
particular, for the optimal design of a voting system. Certain normative desiderata, such as the equal
representation of bottom-tier voters in a two-tier voting system, often call for a specific distribution of
voting power. It is then a non-trivial exercise to find a deterministic voting rule that comes as close as
possible to inducing the desired a priori power distribution.2 Simple hill-climbing algorithms, such as
the ones considered by Laruelle and Widgrén (1998), Leech (2002a, 2002b, 2003), Aziz et al. (2007), or
Fatima et al. (2008), deliver excellent results for many instances of this so-called inverse power index
problem but have rarely been evaluated in a systematic fashion.3 One can neither rule out that only a
local minimum of the distance between the desired and the induced power vector has been identified.
Nor are bounds known on the possible gap to a globally optimal voting rule. The latter might involve
the intersection of several one-dimensional (q;w)-rules and, therefore, need not even be a feasible result
of the applied search algorithm.

For very big n the distinctions between voting weight and voting power tend to become negligible
under simple majority rule if each voter’s relative weight is small and vanishing in the limit (and
one stays outside a class of somewhat pathological examples).4 Corresponding asymptotic results
for n → ∞ which render the inverse problem trivial have first been suggested in the work of Lionel
S. Penrose (1946, 1952). Rigorous investigations of asymptotic proportionality of voting weight and
power, which is often referred to as the Penrose limit theorem, have only more recently been provided
by Neyman (1982), Lindner and Machover (2004), Chang et al. (2006), and Lindner and Owen (2007).

Motivated by qualified majority voting in the EU, S lomczyński and Życzkowski (2006, 2007) have
identified an elegant way to approximately solve the inverse problem for n still very distant from infinity
if the decision quota q is a free parameter and all individual voting power targets are small compared to√
n times their quadratic mean. Their heuristic suggestion is particularly appealing because it avoids

discrepancies between voting weight and power. Namely, approximate proportionality between the
normalized weight vector w = (w1, . . . , wn) and the induced PBI B(q;w) is achieved even for n ≪ ∞
when the quota is set to q∗ = 1

2 (1 +
√∑

w2
i ). A desired power vector β can hence approximately

be induced simply by choosing w = β and then calculating q∗. Because the rule (q∗;w) is simple
and minimizes unwanted confusion between voting weight and power, it has motivated the prominent
“Jagiellonian Compromise” (also known as double square root voting system) in the discussion of future
voting rules for the EU Council (see, e.g., Kirsch et al. 2007).

Whether the decision quota q is a free parameter, so that S lomczyński and Życzkowski’s optimal
q∗ indeed can be chosen, or not, depends on the application at hand. Even if it can, the lack of
bounds on how well the (q∗;β)-heuristic performs relative to the respective globally optimal solution
to the inverse problem provides motivation for further research. Knowing more about the quality

2Non-deterministic rules such as random dictatorship or also random quota rules (Dubey and Shapley 1979, sec. 5)
can easily solve the problem, but are generally not regarded as satisfactory.

3We thank an anonymous referee for pointing out to us that Laruelle and Widgrén (1998, sec. 6) contains the earliest
published specification of an iterative algorithm for solving the inverse problem. This algorithm has recently been
evaluated and improved by de Nijs and Wilmer (2012). Lucas (1992, p. 44) is one of the first to describe the basic
approach to implementing a target PBI vector by a suitable voting rule; while Nurmi (1982, p. 206f) seems to be the
first to state this institutional design problem and to discuss its relevance.

4The case in which the relative weights of some voters do not vanish as n → ∞ – so that a few large voters or atomic
players stick out in an “ocean” of infinitesimal voters (defining a so-called oceanic game) – reduces to the analysis of
a modified voting body v′ for the PBI. It involves only the atomic voters and a quota q′ which is obtained from q by
subtracting half of the aggregate weight of the infinitesimal voters (see Dubey and Shapley 1979, sec. 9). If the number
of atomic voters is small then the corresponding inverse problem is exactly of the type investigated here.
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of the (q∗;β)-heuristic is especially important for situations in which the heuristic can be expected
to perform rather badly. Specifically, the derivation of q∗ is based on a continuous approximation
of the fundamentally discrete distribution of the cumulative weight of a random coalition. Its use is
problematic when this approximation is inaccurate. This pertains particularly – but not exclusively –
to “small” voting bodies with few members.

For a given number n of players, the set of different binary voting systems or simple games is
finite. This finiteness entails that many desired power distributions cannot be approximated too well.
Nontrivially, this remains true even for large n: recent results by Alon and Edelman (2010) imply the
existence of sequences of desired power distributions {βn}n=1,2,... which stay at least a constant positive
distance away (in the ∥ · ∥1-norm, which adds up deviations from target for all voters i = 1, . . . , n)
from any Penrose-Banzhaf power distribution.

The finiteness of the set of simple games at the same time suggests a trivial algorithm for solving the
inverse problem: enumerate all systems v with n players, compute the respective power distribution –
say, the PBI B(v) – and then pick a game v∗ that induces the smallest achievable difference between
ideal vector β and B(v) according to a suitable measure of distance (e.g., the metric induced by a
particular vector norm).

To this end, a growing literature has investigated methods for the efficient enumeration of voting
systems (see, e.g., Keijzer 2009; Keijzer et al. 2010; Kurz 2012a). But, up to now, even the number
of complete simple games (and also of weighted voting games) is unknown for n > 9. So enumeration
works only for voting bodies with very few members. Exact solutions to the inverse problem can, fortu-
nately, also be obtained for somewhat larger n by integer linear programming (ILP) techniques. Such
an approach was recently presented in Kurz (2012b). It stands in the tradition of earlier applications
of ILP to electoral systems, as discussed in Grilli di Cortona et al. (1999), Pennisi et al. (2007) or
Ricca et al. (2012).

The key idea is to translate the problem of finding a game v whose PBI vector has a distance no
greater than a given value α ≥ 0 from the target vector β into a set of linear inequality constraints
plus the integer requirement that each coalition is either winning or losing, and then to use efficient
ILP solver software in order to check if a solution exists. A bisection process on α, which consecutively
halves the range of tentative optimal values of α that have not yet been ruled out by the computations,
can be stopped after finitely many iterations (namely, once |αt+1−αt| has fallen below the theoretical
minimum distance between any two distinct n-voter PBI vectors).

This paper draws on complete enumeration, the indicated ILP bisection method, and standard hill-
climbing algorithms in order to evaluate the accuracy of three heuristic solutions to the inverse problem
for the PBI. The first heuristic simply combines w = β with q◦ = 50%; the second combines it with
the “optimal quota” q∗ derived by S lomczyński and Życzkowski (2007); the third uses q̄ = 1

2 + 1/
√
πn.

The latter quota is the average of q∗ computed over a set of β-vectors which is of particular interest
for the egalitarian design of two-tier voting systems (S lomczyński and Życzkowski 2011).

We compute differences between the respective heuristic and exact solutions for three different
metrics and a comprehensive grid of conceivable target vectors with up to n = 7 voters. We study
rather time-consuming approximations of the exact solutions for a large sample of grid points for
8 ≤ n ≤ 20 as well as selected real-world examples based on the so-called Penrose square root rule
and EU population figures. The results allow the estimation of bounds for the accuracy of a heuristic
solution and can provide informed termination criteria for conventional local search algorithms. This
may be useful in applications where a specific voting power distribution is sought for a moderate number
of council delegates, committee members, or business shareholders. We also analyze the significant
magnitude of relative errors that the mentioned heuristics can produce even for large n in pathological
cases.

In the following Section 2 we first introduce binary voting systems and their basic properties. The
inverse power index problem is then formalized in Section 3, along with a brief discussion of the worst-
case bounds which follow from Alon and Edelman’s (2010) results. In Section 4 we present the design
of our comparative investigation. The corresponding results are the topic of Section 5. We conclude
in Section 6.
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2 Binary voting systems

We consider binary voting systems, i.e., each voter i ∈ N = {1, . . . , n} casts a binary vote (e.g., “yes”
or “no”) and this determines a binary collective decision. Such a situation can mathematically be
described by a Boolean function v : 2N → {0, 1}, where 2N denotes the set of subsets of N . A coalition
S ⊆ N can, e.g., be interpreted as the set of “yes”-voters for a particular (unspecified) proposal.

Definition 1 A simple game is a monotone Boolean function, i.e., a mapping v : 2N → {0, 1} with
v(S) ≤ v(T ) for all S ⊆ T , which additionally satisfies v(∅) = 0, v(N) = 1.

Coalition S ⊆ N is called winning if v(S) = 1, and otherwise losing. S ⊆ N is called a minimal
winning coalition if it is winning and all proper subsets are losing. A simple game is uniquely charac-
terized by its set of minimal winning coalitions. We refer the reader to Taylor and Zwicker (1999) for
a detailed introduction to simple games.

As illustration consider the simple game v which is characterized by the set
{
{1}, {2, 3}

}
of its

minimal winning coalitions. Taking all supersets of the minimal winning coalitions yields
{
{1}, {1, 2},

{1, 3}, {1, 2, 3}, {2, 3}
}

as the set of all winning coalitions.5 The remaining subsets are losing.
The monotonicity imposed in Definition 1 is a very weak requirement. By introducing Isbell’s

desirability relation, i.e., i A j for two voters i, j ∈ N if and only if v({i} ∪ S\{j}) ≥ v(S) is satisfied
for all {j} ⊆ S ⊆ N\{i} (see, e.g., Isbell 1956), one can define a particularly relevant subclass of the
set of all simple games S:

Definition 2 A simple game v is called complete (also called directed) if the binary relation A is a
total preoder, i.e.,

(1) i A i for all i ∈ N ,

(2) i A j or j A i (including “i A j and j A i”) for all i, j ∈ N , and

(3) i A j, j A h implies i A h for all i, j, h ∈ N .

In our small example one can easily check that 1 A 2 A 3. So v ∈ C where C ⊂ S denotes the set
of all complete simple games. Note that also 3 A 2, i.e., voters 2 and 3 are equally desirable.

Many binary voting systems which are used in practice belong to a further refinement of S:

Definition 3 A simple game v is weighted if there exist non-negative weights wi ∈ R≥0 and a positive
quota q ∈ R>0 such that v(S) = 1 if and only if

∑
i∈S wi ≥ q.

A weighted representation of our small illustrative example is given by (q;w) = [2; 2, 1, 1]. We call
weighted simple games weighted voting games and denote their collection by W. Every weighted voting
game is complete while not every complete simple game is weighted, i.e., W ⊂ C ⊂ S.6 The presently
known enumeration results for the three considered classes of binary voting systems are summarized
in Table 1 (up to isomorphisms). See, e.g., Kurz (2012a) for details.

There are several equivalent representations of binary voting structures besides Boolean functions
and lists of minimum winning coalitions. Simple games can, for instance, be described as independent
sets in a graph, and Carreras and Freixas (1996) have introduced a very efficient matrix parameteriza-
tion of C. Our computation algorithms will exploit yet another possibility. Namely, we use that voting
systems can be represented as points of a polyhedron which have integer coordinates only: for each

5All minimal winning and hence all winning coalitions in a proper simple game have non-empty intersection. So
the considered example v is not proper. We do not rule out improper games. They can play a meaningful role even
in majoritarian democratic systems, e.g., if a sufficiently big parliamentary minority can install a special investigation
committee or call for a referendum.

6But each complete simple game and even each simple game can be represented as the intersection of 1 ≤ k < ∞
weighted voting games. The minimal number k of weighted voting games is called the dimension of the simple game in
question (see, e.g., Taylor and Zwicker 1999, Dĕıneko and Woeginger 2006).
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n 1 2 3 4 5 6 7 8 9 10

#S 1 3 8 28 208 16351 >4.7 · 108 >1.3 · 1018 >2.7 · 1036 unknown

#C 1 3 8 25 117 1171 44313 16175188 284432730174 unknown

#W 1 3 8 25 117 1111 29373 2730164 989913344 unknown

Table 1: Number of distinct simple games, complete simple games, and weighted voting games

S ⊆ N define 0 ≤ xS ≤ 1 and add the constraints x∅ = 0, xN = 1, and xS ≤ xT for all ∅ ⊆ S ⊂ T ⊆ N .
Each integer solution (x∅, x{1}, . . . , xN ) ∈ {0, 1}2n of this system of linear inequalities corresponds one-
to-one to a simple game (with v(S) = xS). Complete simple games and weighted voting games are
described by additional constraints and auxiliary variables wi ∈ R≥0 for the weights. For instance, the
inequality

w(S) =
∑
i∈S

wi ≤ q − 1 + M · xS (1)

implies that the sum of weights of a coalition S is at most q − 1 if coalition S is losing, i.e., xS = 0.
For a sufficiently large M , which can be computed explicitly, inequality (1) is automatically satisfied
for xS = 1. Similarly the constraint ∑

i∈S

wi ≥ q + M(1 − xS) (2)

forces winning coalitions to have a weight sum exceeding or meeting the quota. Because each weighted
voting game admits a representation (q;w1, . . . , wn) where w(S) ≤ w(T ) − 1 for all losing coalitions S
and all winning coalitions T , inequalities (1) and (2) capture the weightedness requirement for a simple
game described by (x∅, x{1}, . . . , xN ).

3 The inverse power index problem

Power indices are mappings from a set of feasible voting structures, such as S or W, to non-negative
real vectors which are meant to quantify the influence of the members of a voting body on collective
decisions. The inverse power index problem consists in finding a voting system, e.g., (q;w) ∈ W, which
induces a power distribution as close as possible to a desired one. More formally, for a given number
n of voters, the general inverse power index problem involves a set Γ of feasible voting structures for n
players, a power index ϕ : Γ → Rn

≥0, a desired power distribution β ∈ Rn
≥0, and a metric d : Rn×Rn →

R≥0 which measures the deviation between two power vectors. Of course, d(x, y) = ∥x−y∥ is a suitable
choice for any vector norm ∥ · ∥. Given these ingredients the inverse power index problem amounts to
finding a solution to the minimization problem

min
v∈Γ

d
(
ϕ(v), β

)
. (3)

In this paper, we consider the special instances of this problem where Γ ∈ {S, C,W}. We include
S and C because they are significantly larger domains for n ≥ 5 (see Table 1) and some prominent
real-world electoral systems fail to correspond to weighted voting games. Examples include the current
voting rules (Treaty of Nice) and the future ones (Treaty of Lisbon) for the EU Council, which require
majorities in more than one dimension (e.g., the Nice rules call for 255 out of 345 votes, 14 out of 27
member states, and 62% of EU population). We take the (normalized) Penrose-Banzhaf index B(v)
as the voting power index of interest.

Definition 4 For a given n-player simple game v the absolute Penrose-Banzhaf index B′
i(v) for player

5
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i is defined as

B′
i(v) =

1

2n−1
·

∑
∅⊆S⊆N\{i}

v(S ∪ {i}) − v(S).

The (normalized) Penrose-Banzhaf index (PBI) Bi(v) for player i is defined as

Bi(v) =
B′

i(v)∑n
j=1 B

′
j(v)

.

Our distance computations will be based on the ∥ · ∥1-norm (i.e., the sum of deviations between
Bi(v) and βi for all players i), the ∥ · ∥∞-norm (i.e., the maximum deviation), and a weighted version
of the former. Section 4 will provide more details.

To the best of our knowledge, there exists only one (non-trivial) non-approximative result on how
well the inverse problem can be solved for the PBI in the worst case. For completeness and later
reference we include this rather recent finding by Alon and Edelman (2010) here. It considers a given
game v with n players in which 1 − ε of the total (normalized) PBI is concentrated amongst k < n
“major” players. Alon and Edelman then provide a construction for a game ṽ such that the worth
ṽ(S) of a coalition S depends only on T = S ∩ {1, . . . , k}, i.e., the subset of major players in S fully
determines whether S is winning in game ṽ or not.7 One can easily observe that ṽ is a simple game
and Bi(ṽ) = 0 for all i > k.8 The essential finding of Alon and Edelman then is that the deviation
∥B(v) −B(ṽ)∥1 is bounded from above by a function which depends on ε and the number k of major
players only. Considering the k-player simple game v′, which arises from ṽ by removing the n− k null
players, their result can be stated as follows:

Theorem 1 (Alon-Edelman) Consider the simple game v with players N = {1, . . . , k, . . . , n} and
0 < ε < 1

k+1 . If
∑n

i=k+1 Bi(v) ≤ ε, then there exists a simple game v′ with k voters such that

k∑
i=1

|Bi(v) −Bi(v
′)| +

n∑
i=k+1

Bi(v) ≤ (2k + 1)ε

1 − (k + 1)ε
+ ε.

This result is very useful for obtaining lower bounds on distances in the context of the inverse
problem because one may suitably reduce the problem from n to k players and only make an error
with the indicated bound. Specifically, let β = (β1, . . . , βn) be a desired power distribution and k, ε be
constants satisfying 0 < ε < 1

k+1 . Let us denote the unknown n-player simple game whose PBI has
smallest distance to β by v∗. One can then bound ∥B(v∗) − β∥1 by distinguishing two cases.

First, suppose that
∑n

i=k+1 Bi(v
∗) ≥ ε. In this case, we can only apply Theorem 1 if the inequality

happens to be tight. However, we know that the deviations between Bi(v
∗) and βi for players k +

1, . . . , n are at least as big as ∣∣ n∑
i=k+1

Bi(v
∗) −

n∑
i=k+1

βi

∣∣.
This can range from 1−

∑n
i=k+1 βi when

∑n
i=k+1 Bi(v

∗) = 1 to |ε−
∑n

i=k+1 βi| when
∑n

i=k+1 Bi(v
∗) = ε

in the considered case. Analogous reasoning applies to the additional deviations for players 1, . . . , k,
and we thus have the bound

∥B(v∗) − β∥1 ≥ min
1≥x≥ε

∣∣1 − x−
k∑

i=1

βi

∣∣ +
∣∣x−

n∑
i=k+1

βi

∣∣ =: l1.

7Specifically, one sets ṽ(S) = 1 if and only if
∑

U⊆{k+1,...,n} v(T ∪U) ≥ 2n−k

2
. So the coalition T of major players –

and hence all supersets S′ = T ∪U that are obtained by adding different coalitions U of “minor” players – is winning in
ṽ if and only if a majority of the latter coalitions S′ are winning in v.

8Moreover, we have ṽ ∈ C if v ∈ C and ṽ ∈ W if v ∈ W, i.e., the construction respects completeness or weightedness
of the simple game in question.
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In the second case, i.e., when
∑n

i=k+1 Bi(v
∗) < ε, Theorem 1 applies. It tells us that there exists

some k-player simple game v′ with

k∑
i=1

|Bi(v
∗) −Bi(v

′)| +

n∑
i=k+1

|Bi(v
∗) − 0| ≤ (2k + 1)ε

1 − (k + 1)ε
+ ε.

If we use ṽ to denote the n-player game that extends v′ by adding k + 1, . . . , n as null players (so that
B(ṽ) = (B1(v′), . . . , Bk(v′), 0, . . . , 0)), this can also be written as

∥B(v∗) −B(ṽ)∥1 ≤ (2k + 1)ε

1 − (k + 1)ε
+ ε. (4)

Now if we solve the k-player inverse problem for the (typically non-normalized) k-vector β′ = (β1, . . . , βk)
which coincides with the first k components of β, then the resulting minimal distance ε′ is a lower
bound for the distance between B(ṽ) and β, i.e.,

∥B(ṽ) − β∥1 ≥ ε′. (5)

We can then appeal to the triangle inequality for metric d1(x, y) = ∥x− y∥1 and conclude

∥B(v∗) − β∥1 ≥ ∥B(ṽ) − β∥1 − ∥B(ṽ) −B(v∗)∥1 ≥ ε′ − (2k + 1)ε

1 − (k + 1)ε
+ ε := l2

from (4) and (5). Thus, in either of the two cases we have ∥B(v∗) − β∥1 ≥ min(l1, l2).

Let us illustrate this by an example and suppose that one seeks to find a voting game with a
power distribution as close as possible to βn = (0.75, 0.25, 0, . . . , 0) ∈ Rn

≥0 for n ≥ 2. We will show

∥B(v) − βn∥1 ≥ 1
9 for all n-player simple games v.9 To this end we choose k = 2 and ε = 1

18 . If∑n
i=3 Bi(v

∗) ≥ ε for the unknown distance-minimizing game v∗ then we have

min
1≥x≥ε

∣∣1 − x−
k∑

i=1

βi

∣∣ +
∣∣x−

n∑
i=k+1

βi

∣∣ = min
1≥x≥ε

2x = 2ε =
1

9
.

So in this case we have ∥B(v∗) − βn∥1 ≥ 1
9 . In the other case of

∑n
i=3 Bi(v

∗) < ε, we solve the
inverse power index problem for k = 2 players and β′ = β2 = (0.75, 0.25). Since the only possible 2-
player PBI vectors are given by

{
(1, 0), ( 1

2 ,
1
2 ), (0, 1)

}
we have a minimal deviation of ε′ = 1

2 . Because
(2k+1)ε
1−(k+1)ε + ε = 7

18 we have l2 = 1
9 and again conclude ∥B(v∗) − βn∥1 ≥ 1

9 . Hence, βn cannot be

approximated by the PBI of a simple game with an ∥ · ∥1-error less than 1
9 . The latter is the sharpest

possible bound obtainable from Theorem 1. It can be improved computationally to slightly more than
14
37 for n ≤ 11 on S and for n ≤ 16 on C and W (see Kurz 2012b).

4 Design of the computational investigation

When the inverse problem arises in political applications of constitutional design, PBI vectors β which
are proportional to the square root of a population size vector p play an elevated role. The reason is
that – under the probabilistic assumptions which underlie the PBI – a binary voting system v with
B(v) = β and

βi =

√
pi∑n

j=1

√
pj

(6)

9Such artificially constructed target vectors βn, for which Alon and Edelman’s results have bite, may not be of much
practical relevance. But they indicate the problems of requiring any fixed level of accuracy in the stopping rule of a
local search algorithm. Moreover, one can conceive of real-world enterprises in which the majority and minority partners
indeed seek to split voting power 3 : 1 and want to render all n− 2 other stakeholders null players.
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would equalize the voting power of citizens in a two-tier system in which n delegates adopt the bottom-
tier majority opinion of their respective constituency i ∈ {1, . . . , n} and then cast a wi-weighted vote
in a top-tier assembly (e.g., the EU Council). See Penrose (1946), Felsenthal and Machover (1998),
Kaniovski (2008) or Kurz et al. (2012) for details. In our computations we will consider this Penrose
square root rule for varying n and some historical population figures in order to select target vector
examples which have a specific political motivation.

In principle, however, any vector in Rn
≥0 whose entries sum up to 1 might be a desired power distri-

bution β. For instance, partners of a non-profit R&D joint venture might have made relative financial
contributions of

(
1
3 ,

1
3 ,

1
9 ,

1
9 ,

1
9

)
and possibly want to align a priori voting power in the directorate to this

vector as well as possible. Ideally, for a given number n of voters, one would like to compare the exact
and heuristic solutions to the inverse problem for all possible normalized target vectors β ∈ ∆(n− 1),
where ∆(n − 1) denotes the n − 1-dimensional unit simplex. This is computationally infeasible. We,
however, complement our analysis of politically motivated square root vectors by vectors β from a
discrete subset of ∆(n − 1), namely a finite grid on ∆(n − 1) with step size 0.01. We also resort to
approximations of the exact solution when n is too large.

We will compare the (approximated) exact solution of the inverse problem on domain S, C, or W
for a given desired PBI β with three different heuristics. These stay in the class W of weighted voting
games and have in common that voting weights are set equal to the desired voting power, i.e., w = β.
They pick a distinct quota, and hence typically a different voting system v ∈ W.

The first heuristic – referred to as the 50%-heuristic – just chooses q◦ = 1
2 . Simple majority is

arguably the most common majority rule in practice. The 50%-heuristic simply picks it and ignores
the potentially large discrepancies between voting weight and voting power that can arise. This can
be motivated by the Penrose limit theorem when n is at least moderately big (see fn. 4 however).

The second, more sophisticated heuristic has been suggested by S lomczyński and Życzkowski (2006,
2007). Their motivation was to implement PBI vectors proportional to the square root of population
sizes in the European Union, but the heuristic applies to arbitrary target vectors. Namely, the q∗-
heuristic selects the quota

q∗ =
1

2
·
(

1 +

√∑
i

w2
i

)
for an arbitrary w = β ∈ ∆(n−1). S lomczyński and Życzkowski (2007) derive this quota by considering
the random weight W which is accumulated if all coalitions S ⊆ N are equiprobable, as the PBI’s
probabilistic justifications suppose. Equiprobability at the level of coalitions is equivalent to assuming
that each voter i ∈ {1, . . . , n} joins the formed coalition independently of the others with probability
1
2 . The mean of W hence is µ =

∑n
i=1

1
2wi = 1

2 and its variance is σ2 = 1
4

∑n
i=1 w

2
i . Being the sum of

independent bounded random variables, W is approximately normally distributed if n is sufficiently
large and each of the weights is sufficiently small.10 Assuming that this is the case and, therefore,
that the discrete random variable W can be replaced by the continuous one W̃ , the inflection point
of the corresponding normal density of W̃ is located at q∗ = µ + σ. Since the second derivative of
W̃ ’s density vanishes at q∗, one can approximate the density by a linear function with reasonably high
accuracy. This linear approximation then allows to establish approximate proportionality of B(q∗;w)
and w. We refer to S lomczyński and Życzkowski (2007) for details.

Our final heuristic, which we will refer to as the q̄-heuristic, replaces q∗ by

q̄ =
1

2
+

1√
πn

.

This quota approximates the expected value of q∗ when β is proportional to the component-wise square
root of a population size vector p = (p1, . . . , pn) which is drawn from a flat Dirichlet distribution (see
S lomczyński and Życzkowski 2011). The motivation for computing such an average is the following:

10A key technical requirement is that wj ≪
√∑

w2
i for all j ∈ N , i.e., wj

√
n is sufficiently smaller than the quadratic

mean of the weights
√

1
n

∑
w2

i .

8

Jena Economic Research Papers 2012 - 045



even though the q∗-heuristic can approximate the Penrose square root rule (6) very transparently for
a given population distribution p, frequent changes in the population would call not only for frequent
changes of the prescribed voting weights w but also of the quota q∗. That current voting weights in the
EU already recur to population figures, which are updated on an annual basis, suggests that weight
changes may be regarded as unproblematic. A varying decision threshold – perhaps q = 65% in one
year, q′ = 61% in the next, then q′′ = 67%, etc. – however seems politically less palatable. It may
then make sense to average q∗ over a wide range of values for w = β ∝ √

p, and the q̄-heuristic simply
assumes that all population distributions p ∈ ∆(n− 1) are equally likely.11 Because q̄ → 1

2 as n → ∞,
the 50%-heuristic is the limit of the q̄-heuristic and can be viewed as an approximation of it for not
too small n.

Let us remark that investigations by Kurth (2008) have called attention to numerical problems
when heuristics which involve irrational voting weights and quotas, as the q∗ or q̄-heuristics commonly
do, are implemented. Rounding after, e.g., 4 decimal places can result in voting systems which differ
significantly from what was intended. Because it is impractical to deal with weights of a hundred
decimal places or more, it is attractive to work with the underlying Boolean functions or integer points
of a suitable polyhedron as long as possible, and to determine minimal integer weights w and a quota q
which efficiently represent a given v ∈ W when needed.12 We use this approach here whenever possible,
and refer the interested reader to Freixas and Molinero (2009, 2010), Freixas and Kurz (2011), or Kurz
(2012a).

We calculate the globally optimal solution to the inverse problem for a given target PBI β by
complete enumeration of the elements in the respective class of binary voting systems for n ≤ 7
(see Table 1). For larger n, we mostly focus on approximations of the exact solution. These are
obtained either by a hill-climbing algorithm or, preferably, by ILP techniques. How the latter are
used is explained in the Appendix in detail. The implemented ILP-based bisection algorithm would
yield globally optimal solutions when given enough running time and memory. We interrupted it
for efficiency reasons whenever a desired precision had been reached. The key idea of the ILP-based
approach is to consider the integer polyhedron which contains all simple games whose PBI is less than
a given factor α > 0 away from the desired vector β. It can be checked by using readily available ILP
solver software if this polyhedron is empty. Then, no such game exists and α needs to be raised. If not,
α can be lowered. The minimal level of α (or an approximation with desired precision) together with
the corresponding voting systems, can thus be found by the bisection method: namely, by iteratively
halving the interval defined by the best lower and upper bounds that have been computed so far.
Pseudo-code of the algorithm is provided in Appendix A.

In evaluating the quality of the mentioned heuristics, we consider distances to the desired power
vector, β, and to the globally optimal one, B(v∗), in three different metrics. The first one is the metric
d1(x, y) = ∥x−y∥1 =

∑n
i=1 |xi−yi| induced by the ∥ · ∥1-norm, which is also considered in Theorem 1.

The second is the metric induced by the ∥·∥∞-norm, i.e., d∞(x, y) = ∥x−y∥∞ = maxi∈{1,...,n} |xi−yi|.
We refrain from also considering the Euclidean metric induced by the ∥ · ∥2-norm, which has been
considered, e.g., by S lomczyński and Życzkowski (2007). The reason is that this would turn the ILP
formulation of the inverse power index problem into a binary non-linear programming one. This would
be considerably harder to solve and add relatively little information because ∥x∥∞ ≤ ∥x∥2 ≤

√
n∥x∥∞

for all x ∈ Rn.
More interesting, in our view, is a variation of d1 which takes the Bernoulli model that underlies

the PBI and Penrose’s square root rule seriously. This model assumes that all bottom-tier voters in
constituency i ∈ {1, . . . , n} cast a “yes” or “no” vote equiprobably and independently of all others.
The probability for one of pi individual voters in constituency i to be pivotal for the constituency’s
aggregate decision – i.e., to induce the i-delegate at the top-tier council to cast voting weight wi in

11The expected value of the p-specific optimal quotas q∗(p) for a particular (e.g., Dirichlet) distribution of p, of course,
need not coincide with the quota that is optimal when p is treated as a random variable. Stochastic optimization
techniques are likely to yield a somewhat better q-heuristic than the one suggested by S lomczyński and Życzkowski
(2011).

12A minimal integer representation of a weighted voting game has the advantage that the PBI and other power indices
can be computed particularly quickly.
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favor of “yes” by individually voting “yes”, and “no” by voting “no” – is approximately
√

2/(πpi).
The joint probability of a given voter being pivotal in his or her constituency i and of this constituency
being pivotal at the top tier is hence Bi(v) ·

√
2/(πpi). This is why the square root PBI vector in

equation (6) equalizes the indirect influence of citizens on collective decisions across constituencies. If
one now weights any deviation between (i) the probability for a given voter in constituency i to be
doubly pivotal and (ii) the egalitarian ideal of βi ·

√
2/(πpi) with βi =

√
pi/

∑n
j=1

√
pj equally, then

the total misrepresentation associated with the top-tier voting system v amounts to

n∑
i=1

pi ·
∣∣βi −Bi(v)

∣∣ ·√2/(πpi) = c ·
n∑

i=1

√
pi ·

∣∣βi −Bi(v)
∣∣

for c > 0. Whenever the desired vector β is derived from Penrose’s square root rule and a vector p
which represents EU population data, we will, therefore, also consider the variation of metric d1 which
weights absolute deviations by the square root of relative population, i.e., study the metric13

d′1(x, y) =
n∑

i=1

√
pi∑n
j=1 pj

· |xi − yi|.

5 Computational results

In this section we present our numerical results. Subsection 5.1 considers the EU Council of Ministers
as a prototype of a real-world weighted voting system. We then look at the entire discretized space
of possible power distributions for n ≤ 7 and random samples thereof in Subsection 5.2. In order to
study analytically how deviations between simple heuristics and actual optimization depend on n, we
investigate a particular parametric example in Subsection 5.3.

Exact solutions to the inverse power index problem that are reported in Tables 2–4 have been
obtained using our ILP-based bisection algorithm, as described above and in Appendix A. For Table 5
we have used exhaustive enumeration of all possible Banzhaf vectors for n ≤ 7, and resorted to
approximations obtained by hill-climbing algorithms for 8 ≤ n ≤ 20. The bisection part of the ILP
approach was implemented in C++ while we used the ILOG CPLEX Interactive Optimizer 12.4.0.0 in
order to solve individual integer linear programming problems. The hill-climbing algorithms used in
Subsection 5.2 were implemented in C++. We employed a Quad-Core AMD Opteron processor with
2700 Mhz, 132 GB RAM, and a cache size of 512 KB on a 64-bit Linux system as our hardware.

5.1 Examples of real-world weighted voting systems

We first consider the (EEC or EC or) EU Council of Ministers in the years 1958, 1973, 1981, 1986,
1995, 2006, and 2011 with respectively n ∈ {6, 9, 10, 12, 15, 25, 27} members as examples. The historical
population data for n ∈ {6, . . . , 15} are taken from Felsenthal and Machover (1998, sec. 5.3), the data
for n ∈ {25, 27} are official Eurostat figures downloaded on 19.01.2012. The target power distributions
β are the respective “fair” ones computed by Penrose’s square root rule (see equation (6)).

In Tables 2–4 we compare the three considered heuristics under different metrics with the (approx-
imated) optimal solution of the inverse power index problem. We distinguish between S, C, and W as
the sets of admissible voting structures. Besides the absolute deviations (measured in the respective
metric) we also report an indicator of relative quality: if the distance between β and the PBI B(v∗)
of the optimal solution v∗ ∈ S is α, then this is the unavoidable absolute “error” associated with the
given instance of the inverse problem. Now if a certain heuristic delivers a distance of δ then (δ − α)/α
can be regarded as the avoidable error relative to global optimization in S. It is labeled S-error in the
tables. A value of 1 (or 100%) means that the heuristic’s approximation error is twice the unavoidable
one.

13Consideration of a similar variation of d∞ broadly confirms the comparisons based on d1, d′1, and d∞.

10

Jena Economic Research Papers 2012 - 045



The “†”-symbol indicates that the stated value in Tables 2–4 has not been computationally proven
to be optimal: for simple games and n = 9, for instance, we stopped the ILP solution process after
memory usage of 31 GB and 18461700 branch-and-bound nodes; for n = 10, we interrupted after
301 GB and 16735508 nodes. The “††”-symbol indicates that a lower bound for the minimal distance
in S or C was inferred from W. The “††”-marked numbers need not be optimal a fortiori. The “∞”
entries indicate avoidable errors greater than factor 500. Finally, 0.000000† or 0.000000†† represent
positive numbers < 0.5 · 10−6.

The computation times for obtaining the numbers in the C-column in Table 2, using the hardware
and software described above, ranged from less than a second for n = 6 to 5 days for n = 12. The
exact solution for n = 10 in W took 2 days; the approximate one for n = 27 was obtained in 3 hours.14

v∗ ∈ S v∗∗ ∈ C v∗∗∗ ∈ W 50%-heuristic q∗-heuristic q̄-heuristic
n d1 d1 d1 d1 S-error d1 S-error d1 S-error
6 0.051857 0.051857 0.051857 0.300398 4.79 0.091100 0.76 0.091100 0.76
9 0.005294† 0.008641 0.010359 0.065528 11.38 0.060195 10.37 0.069792 12.18

10 0.002639† 0.004840 0.007219 0.038751 13.68 0.033229 11.59 0.026466 9.03
12 0.001033† 0.001033† 0.005170† 0.028700 26.78 0.019827 18.19 0.019827 18.19
15 0.000476†† 0.000476†† 0.000476† 0.026742 55.18 0.006820 13.33 0.006361 12.36
25 0.000000†† 0.000000†† 0.000000† 0.019422 “∞” 0.000744 “∞” 0.003096 “∞”
27 0.000000†† 0.000000†† 0.000000† 0.018003 “∞” 0.000633 “∞” 0.002457 “∞”

Table 2: Performance for Penrose square root targets in the d1-metric (1958–2011 EU data)

The reported numbers give rise to several observations that are independent of the chosen metric:15

(i) The approximation errors of the heuristics and the optimal solutions in W (and a fortiori in C and
S) tend to zero as n increases. (ii) Except for n = 9, the q∗- and the q̄-heuristics perform noticeably
better than the 50%-heuristic. (iii) The q∗ and q̄-heuristics produce comparable absolute deviations
from the ideal for n ≤ 15 but differ by a factor of 2 or more for n > 15. We conjecture that this has to
do with the normal density approximation, which is underlying S lomczyński and Życzkowski’s (2007)
derivation of q∗, becoming noticeably more accurate for the population distribution in the enlarged
EU. This allows q∗’s performance to improve by almost an order of magnitude between n = 15 and 25,
while performance of the q̄-heuristic (which ignores the specific population distribution at hand and
picks the optimal quota averaged over many possible distributions) improves only by about the same
factor as the 50%-heuristic and thus in line with the asymptotic proportionality results captured by
the Penrose limit theorem.

We also find that (iv) the respective optimal weighted games v∗∗∗ ∈ W yield deviations that are only
moderately higher than those of v∗ ∈ S in absolute terms. This might be interpreted as indicating that
relatively little is lost by restricting attention to weighted voting games in conventional hill-climbing
algorithms. It should be noted, however, that we could not prove optimality in S for n ≥ 9, and for
n ≥ 15 we only have upper bounds obtained from W. So the observation might not be very robust.
And, in relative terms, the errors in S or C are several times smaller than those in W for n = 10 or 12.

Finally, (v) the relative errors of the heuristics compared to either v∗ ∈ S or v∗∗∗ ∈ W are sizeable
even for small n ≤ 15; and they become huge for n > 25. For small n like n = 6 or 9, the unavoidable
error, i.e., the distance between B(v∗) and the target vector β, is still big because comparatively
few distinct PBI values exist. At the same time, such numbers n are far too small for the normal
approximation which underlies the q∗ and q̄-heuristics or for the asymptotics which motivate the 50%-
heuristic to have leverage. So the heuristics do not perform well in absolute terms, but they are not that

14The additional constraints (1) and (2) which ensure v’s weightedness in our ILP formulation considerably slow down
the computations (because the so-called integrality gap increases). In contrast, the analogous constraints which ensure
completeness impose useful structure on the problem compared to unrestrained optimization in S. This explains, e.g.,
why an exact solution can be reported for n = 10 in Table 4 in the C-column but not in the S and W-columns.

15Note that the three metrics behave differently when, e.g., distance between (1, 0, . . . , 0) and ( 1
n
, . . . , 1

n
) ∈ ∆(n− 1)

is considered for increasing n. Deviations should, therefore, be compared only within and not across tables.
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v∗ ∈ S v∗∗ ∈ C v∗∗∗ ∈ W 50%-heuristic q∗-heuristic q̄-heuristic
n d′1 d′1 d′1 d′1 S-error d′1 S-error d′1 S-error
6 0.018967 0.021487 0.021487 0.110284 4.81 0.027465 0.45 0.027465 0.45
9 0.001902† 0.002752 0.003513 0.019015 9.00 0.018935 8.96 0.017643 8.28

10 0.000803† 0.001442 0.001909† 0.008893 10.07 0.007325 8.12 0.005489 5.84
12 0.000309† 0.000447† 0.000810† 0.007840 24.37 0.004005 11.96 0.004005 11.96
15 0.000152†† 0.000152†† 0.000152† 0.007790 50.26 0.001230 7.09 0.001554 9.23
25 0.000000†† 0.000000†† 0.000000† 0.004874 “∞” 0.000213 “∞” 0.000751 “∞”
27 0.000000†† 0.000000†† 0.000000† 0.004411 “∞” 0.000176 “∞” 0.000578 “∞”

Table 3: Performance for Penrose square root targets in the d′1-metric (1958–2011 EU data)

v∗ ∈ S v∗∗ ∈ C v∗∗∗ ∈ W 50%-heuristic q∗-heuristic q̄-heuristic
n d∞ d∞ d∞ d∞ S-error d∞ S-error d∞ S-error
6 0.014948 0.014948 0.014948 0.082758 4.54 0.032728 1.19 0.032728 1.19
9 0.001498† 0.001840 0.002240 0.019238 11.84 0.015909 9.62 0.023179 14.47

10 0.000575† 0.001211 0.001960† 0.011574 19.13 0.006316 9.98 0.009721 15.91
12 0.000229† 0.000138† 0.000865† 0.007940 33.67 0.005756 24.13 0.005756 24.13
15 0.000066†† 0.000066†† 0.000066† 0.005923 88.74 0.001798 26.24 0.001202 17.21
25 0.000000†† 0.000000†† 0.000000† 0.003834 “∞” 0.000173 “∞” 0.000384 “∞”
27 0.000000†† 0.000000†† 0.000000† 0.003434 “∞” 0.000156 “∞” 0.000277 “∞”

Table 4: Performance for Penrose square root targets in the d∞-metric (1958–2011 EU data)

bad in relative terms because of high unavoidable errors. Now as n increases, the heuristics perform
significantly better in absolute terms. However, the unavoidable error vanishes even more quickly as
the number of distinct simple voting games and, hence, of feasible PBI vectors increases very fast in n
(see Table 1).

Observation (v) is probably the most interesting: whenever one seeks an optimal solution of the
inverse power index problem, all three heuristics are unsatisfactory from a pure operations research
perspective. The heuristic solutions can be improved by very large factors, and this becomes more
rather than less pronounced as n grows. Of course, from an applied point of view the absolute
approximation errors get so small for large n that they may be regarded as negligible. They might still
be relevant, however. To get a sense for what a deviation at the 5th decimal place means consider,
e.g., the ideal Penrose square root power distribution β27 for the EU Council from 2011 and compute
the analogous vector β27′ which would result if 50000 people moved from Germany to France or were
mis-counted in the statistics. Then ∥β27 − β27′∥1 ≈ 0.0000634.

5.2 Finite grid of objective vectors

Every vector in Rn
≥0 whose entries sum to 1, i.e., each element of ∆(n − 1), can in principle be a

desired power distribution in a specific context. We approximate this infinite space by a finite set
Gn. We impose β1 ≥ β2 ≥ . . . ≥ βn and let the desired power of the first n − 1 voters be an integral
multiple of s = 0.01; the desired power of the n-th voter follows from the sum condition. We refer to
Gn as our grid of target vectors and to each β ∈ Gn as a grid point.16 Table 5 reports key statistics

16Step size s has to be chosen with care: the number of grid points can be intractably great already for small n if s
is too small. But a larger s induces a coarser grid of feasible target vectors. This becomes more and more problematic
as n increases because of the corresponding natural decrease of an individual voter’s relative power (on average equal
to 1/n). Choosing s = 0.25, for instance, would result in the four grid points (0.5, 0.25, 0.25), (0.5, 0.5, 0), (0.75, 0.25, 0),
and (1, 0, 0) for n = 3. And Gn would contain merely five grid points for any n ≥ 4: (0.25, 0.25, 0.25, 0.25, 0, . . . , 0),
(0.5, 0.25, 0.25, 0, . . . , 0), (0.5, 0.5, 0, . . . , 0), (0.75, 0.25, 0, . . . , 0), and (1, 0, . . . , 0).
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for the distribution of unavoidable deviations from the ideal vectors in the d1 and d∞-metrics: its
median, average, 10%, 5%, and 1%-percentile. The deviation figures are based on the enumerated
exact solutions in W for n ≤ 7 and approximations thereof for larger n. For instance, the number
0.01077 for n = 5 in the right-most column indicates that for 1% of the considered 46262 different
target vectors β one can obtain a distance d∞(β,B(v∗∗∗)) ≤ 0.011, and the remaining 99% target
vectors can only be approximated less well within W. A number of grid points in parentheses indicates
the size of the considered random sample whenever only a subset of all grid points could be dealt with.
The deviation statistics in the corresponding rows (in light color) involve a sample error in addition to
the small error of using a conventional local hill-climbing algorithm instead of global optimization in
W. For example, the number 0.0011 for n = 15 in the third column indicates that half of the 10000
target vectors β which were sampled at random (with replacement) could, by some weighted voting
game, be achieved with a d1-distance of 0.0011 or less; the remaining draws resulted in target vectors
for which our search algorithm terminated with a best achievable B(v∗∗∗) further away.

#grid d1-metric d∞-metric
n points med. av. 10% 5% 1% med. av. 10% 5% 1%
2 51 0.2400 0.2451 0.0400 0.0200 0.0000 0.12000 0.12255 0.02000 0.01000 0.00000
3 884 0.2400 0.2278 0.1000 0.0667 0.0200 0.12000 0.11391 0.05000 0.03333 0.01000
4 8037 0.1600 0.1622 0.0800 0.0600 0.0400 0.07000 0.07131 0.03667 0.03000 0.01500
5 46262 0.1010 0.1135 0.0600 0.0509 0.0324 0.04000 0.04292 0.02273 0.02000 0.01077
6 189509 0.0667 0.0790 0.0400 0.0356 0.0200 0.02222 0.02630 0.01333 0.01069 0.00815
7 596763 0.0422 0.0543 0.0257 0.0213 0.0165 0.01255 0.01629 0.00762 0.00667 0.00495
8 (10000) 0.0226 0.0248 0.0154 0.0137 0.0108 0.00601 0.00661 0.00404 0.00358 0.00281
9 (10000) 0.0148 0.0161 0.0100 0.0089 0.0070 0.00357 0.00393 0.00241 0.00216 0.00169

10 (10000) 0.0097 0.0107 0.0065 0.0059 0.0046 0.00216 0.00239 0.00145 0.00129 0.00103
11 (10000) 0.0064 0.0070 0.0043 0.0038 0.0031 0.00131 0.00146 0.00088 0.00079 0.00064
12 (10000) 0.0041 0.0045 0.0028 0.0024 0.0019 0.00079 0.00088 0.00052 0.00047 0.00037
13 (10000) 0.0026 0.0029 0.0017 0.0016 0.0013 0.00047 0.00053 0.00032 0.00028 0.00023
14 (10000) 0.0016 0.0018 0.0011 0.0010 0.0008 0.00028 0.00032 0.00019 0.00017 0.00014
15 (10000) 0.0011 0.0012 0.0008 0.0007 0.0006 0.00017 0.00019 0.00012 0.00011 0.00009
16 (10000) 0.0007 0.0008 0.0005 0.0005 0.0004 0.00011 0.00012 0.00009 0.00008 0.00007
17 (10000) 0.0006 0.0006 0.0004 0.0004 0.0003 0.00009 0.00009 0.00007 0.00007 0.00006
18 (10000) 0.0005 0.0005 0.0004 0.0004 0.0003 0.00008 0.00008 0.00006 0.00006 0.00005
19 (10000) 0.0005 0.0005 0.0004 0.0004 0.0003 0.00008 0.00008 0.00006 0.00006 0.00005
20 (10000) 0.0005 0.0005 0.0004 0.0004 0.0003 0.00007 0.00007 0.00006 0.00005 0.00004

Table 5: Distribution of unavoidable absolute deviations d1(β,B(v∗∗∗)) and d∞(β,B(v∗∗∗))

Tables 6–8 report analogous statistics for the distribution of absolute distances for the three heuris-
tics (considering each grid point for up to n = 20).17 A comparison of the respective deviation statistics
with those in Table 5 broadly confirm the observations that were made for the very specific target vec-
tors derived from Penrose’s square root rule in Section 5.1: the average and each reported percentile
of the avoidable deviations decrease in n. They can be regarded as small in absolute terms, but they
are sizeable in relative terms. Again the 50%-heuristic is clearly outperformed (in the sense of first
order stochastic dominance) by the q∗ and q̄-heuristics for n ≥ 3.

17The computation times behind the unavoidable errors in Table 5 ranged from less than 1 s or 40 m for the n = 5
and n = 7 rows, respectively, to 14 h for the n = 8 row and 31 h for n = 20. Quite some time is spent on ap-
proximating the exact solution of the inverse problem. Times for the heuristic in, e.g., Table 7 were only 1 s, 15 s,
50 m, and 3 h, respectively. A sample of 10000 grid points represents a reasonable compromise between precision and
computational effort. Raising the sample size to 100000 would, e.g, have produced the median, average and quantile
entries (0.0041, 0.0045, 0.0027, 0.0025, 0.0020) for the d1-metric and n = 12; lowering it to 1000 would have resulted in
(0.0042, 0.0047, 0.0028, 0.0026, 0.0018).

13

Jena Economic Research Papers 2012 - 045



#grid d1-metric d∞-metric
n points med. av. 10% 5% 1% med. av. 10% 5% 1%
2 51 0.480 0.480 0.080 0.020 0.000 0.240 0.240 0.040 0.010 0.000
3 884 0.560 0.555 0.200 0.133 0.047 0.280 0.278 0.100 0.067 0.023
4 8037 0.440 0.509 0.200 0.153 0.080 0.210 0.249 0.083 0.063 0.033
5 46262 0.347 0.448 0.160 0.127 0.075 0.153 0.209 0.061 0.049 0.029
6 189509 0.297 0.389 0.129 0.103 0.066 0.120 0.177 0.045 0.035 0.023
7 596763 0.247 0.338 0.101 0.080 0.052 0.097 0.151 0.033 0.025 0.016
8 1527675 0.206 0.297 0.080 0.063 0.041 0.080 0.132 0.025 0.019 0.012
9 3314203 0.176 0.265 0.064 0.051 0.034 0.068 0.118 0.020 0.015 0.009

10 6292069 0.153 0.240 0.053 0.043 0.029 0.059 0.107 0.016 0.012 0.007
11 10718685 0.136 0.220 0.046 0.037 0.025 0.052 0.099 0.014 0.010 0.006
12 16713148 0.123 0.205 0.041 0.033 0.023 0.047 0.092 0.012 0.009 0.005
13 24234058 0.112 0.193 0.038 0.030 0.021 0.044 0.087 0.011 0.008 0.005
14 33097743 0.104 0.183 0.035 0.028 0.020 0.041 0.083 0.010 0.008 0.004
15 43018955 0.097 0.175 0.033 0.027 0.019 0.038 0.079 0.010 0.007 0.004
16 53662038 0.092 0.169 0.032 0.026 0.018 0.037 0.076 0.009 0.007 0.004
17 64684584 0.087 0.164 0.031 0.025 0.017 0.035 0.074 0.009 0.006 0.004
18 75772412 0.084 0.159 0.030 0.024 0.017 0.034 0.072 0.009 0.006 0.003
19 86658411 0.081 0.156 0.029 0.024 0.016 0.033 0.071 0.008 0.006 0.003
20 97132873 0.078 0.153 0.028 0.023 0.016 0.032 0.070 0.008 0.006 0.003

Table 6: Distribution of absolute deviations for the 50%-heuristic

5.3 Analytical example

A statement which would be analogous to observation (v) in Section 5.1 cannot be deduced on the
basis of statistical information as provided by Tables 6–8. We, therefore, close our computational
investigation by studying a particularly simple analytical example. It shows transparently that –
as indicated by observation (v) – relative deviations between the considered heuristics and globally
optimal solutions need not disappear for n → ∞.

Consider the desired power distribution

βn =
1

2n− 1
(2, . . . , 2︸ ︷︷ ︸
n−1 twos

, 1)

for n ≥ 2 and choose wn = βn as all three heuristics do.18 For any quota q ∈ Ij1 = 1
2n−1 · (2j − 1, 2j],

where 1 ≤ j ≤ n−1 and j ∈ N, the PBI of the smallest constituency is exactly zero and, by symmetry,
the (normalized) PBI of each of the other constituencies equals 1

n−1 . For the remaining possibilities

q ∈ Ij2 = 1
2n−1 · (2j, 2j + 1] where 0 ≤ j ≤ n − 1, all constituencies have a PBI of 1

n . Denoting the
corresponding weighted games by vn1,j and vn2,j one obtains

d1
(
vn1,j , β

n
)

=
2

2n− 1
,

d1
(
vn2,j , β

n
)

=
2

2n− 1
· n− 1

n
,

d∞
(
vn1,j , β

n
)

=
1

2n− 1
, and

d∞
(
vn2,j , β

n
)

=
1

2n− 1
· n− 1

n
.

18The construction is inspired by a sequence of weighted voting games to which the Penrose limit theorem does not
apply even though every voter’s relative weight vanishes as n → ∞. Namely, the sequence {( 1

2
;wn)}n∈N belongs to the

class of somewhat pathological examples alluded to on p. 2 (cf. Lindner and Owen 2007).
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#grid d1-metric d∞-metric
n points med. av. 10% 5% 1% med. av. 10% 5% 1%
2 51 0.480 0.480 0.080 0.020 0.000 0.240 0.240 0.040 0.010 0.000
3 884 0.400 0.434 0.160 0.107 0.040 0.200 0.217 0.080 0.053 0.020
4 8037 0.340 0.370 0.160 0.120 0.060 0.147 0.172 0.065 0.050 0.025
5 46262 0.280 0.312 0.133 0.107 0.062 0.113 0.138 0.052 0.040 0.023
6 189509 0.227 0.263 0.109 0.088 0.058 0.088 0.112 0.038 0.030 0.020
7 596763 0.189 0.224 0.087 0.070 0.047 0.071 0.093 0.027 0.021 0.014
8 1527675 0.158 0.192 0.066 0.053 0.035 0.056 0.079 0.020 0.015 0.010
9 3314203 0.133 0.168 0.051 0.040 0.026 0.047 0.068 0.014 0.011 0.007

10 6292069 0.114 0.148 0.039 0.030 0.019 0.039 0.060 0.011 0.008 0.005
11 10718685 0.098 0.132 0.030 0.023 0.014 0.033 0.054 0.008 0.006 0.003
12 16713148 0.086 0.120 0.024 0.017 0.010 0.029 0.049 0.006 0.004 0.002
13 24234058 0.075 0.110 0.019 0.013 0.007 0.026 0.045 0.005 0.003 0.002
14 33097743 0.068 0.102 0.016 0.011 0.005 0.023 0.042 0.004 0.003 0.001
15 43018955 0.061 0.096 0.013 0.008 0.004 0.021 0.040 0.003 0.002 0.001
16 53662038 0.056 0.091 0.011 0.007 0.003 0.019 0.038 0.003 0.002 0.001
17 64684584 0.052 0.087 0.009 0.006 0.003 0.018 0.036 0.002 0.001 0.001
18 75772412 0.049 0.083 0.008 0.005 0.002 0.017 0.035 0.002 0.001 0.000
19 86658411 0.046 0.081 0.007 0.004 0.002 0.016 0.034 0.002 0.001 0.000
20 97132873 0.044 0.078 0.006 0.004 0.002 0.015 0.033 0.002 0.001 0.000

Table 7: Distribution of absolute deviations for the q⋆-heuristic

So, independently of the quota, the ∥·∥1-error is 2
2n−1 +O

(
n−2

)
and the ∥·∥∞-error is 1

2n−1 +O
(
n−2

)
.

The q̄ and q∗-heuristics prescribe quotas of

q̄ =
1

2
+

1√
πn

, and

q∗ =
1

2
+

√
4n− 3

4n− 2
,

respectively. They and q◦ = 50% fall into Ij1 and Ij2 for infinitely many n. Thus, all three rules
render the smallest constituency a null player infinitely many times as n → ∞, just as it happened to
Luxembourg in the EEC Council between 1958 and 1973, and yield the indicated distances.

In contrast, there always exists a simple game v∗ ∈ S whose PBI attains βn exactly for 6 ≤ n ≤ 18.19

And we conjecture that this remains true for n ≥ 19. So the corresponding distance between β and
B(v∗) equals 0 independently of the considered metric. Approximation results for complete simple
games and distances for the heuristic choice of w = βn with an “optimal” quota q that leads to
vn2,j (abbreviated as q-heuristic) are summarized in Tables 9 and 10.20 Since the unavoidable error
in the class of simple games S (and hence of finite intersections of weighted games v ∈ W) is zero
for 6 ≤ n ≤ 18 and presumably beyond, we consider the C-error in order to evaluate the relative
performance of the q-heuristic.

Tables 9 and 10 suggest that (i) the C-error converges to a positive constant in case of the d1-metric
and (ii) this error even seems to grow without bound when the d∞-metric is used. The key finding
that relative errors fail to disappear as n grows large can be made more rigorous. To this end, consider

19An example for n = 6 is given by the following set of minimal winning coalitions: {2, 4, 5, 6}, {2, 3, 4, 5}, {1, 3, 5, 6},
{1, 3, 4, 5}, {1, 2, 4, 6}, and {1, 2, 3, 5}, which attains the PBI vector 1

44
(8, 8, 8, 8, 8, 4) = 1

11
(2, 2, 2, 2, 2, 1).

20We remark that we have imposed suitable equivalence classes of voters in the optimizations for n ≥ 15 in order to
reduce the computational burden. Voters i and j are in the same equivalence class if v(U) = v(U ∪ {j}\{i}) for all
coalitions U with i ∈ U and j /∈ U . This is more restrictive than requiring identical PBI values of i and j only.
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#grid d1-metric d∞-metric
n points med. av. 10% 5% 1% med. av. 10% 5% 1%
2 51 0.280 0.327 0.040 0.020 0.000 0.140 0.164 0.020 0.010 0.000
3 884 0.320 0.332 0.140 0.100 0.040 0.160 0.166 0.070 0.050 0.020
4 8037 0.300 0.304 0.147 0.110 0.050 0.130 0.138 0.063 0.045 0.020
5 46262 0.250 0.263 0.132 0.100 0.060 0.101 0.111 0.050 0.040 0.023
6 189509 0.204 0.224 0.104 0.085 0.056 0.077 0.088 0.036 0.029 0.019
7 596763 0.159 0.187 0.079 0.064 0.043 0.057 0.069 0.024 0.020 0.013
8 1527675 0.120 0.155 0.058 0.047 0.033 0.041 0.055 0.017 0.013 0.009
9 3314203 0.098 0.133 0.044 0.036 0.024 0.033 0.046 0.012 0.010 0.006

10 6292069 0.079 0.115 0.033 0.026 0.018 0.026 0.039 0.009 0.007 0.004
11 10718685 0.071 0.103 0.027 0.021 0.014 0.023 0.035 0.007 0.005 0.003
12 16713148 0.058 0.092 0.021 0.016 0.010 0.018 0.030 0.005 0.004 0.002
13 24234058 0.050 0.084 0.016 0.012 0.007 0.015 0.027 0.004 0.003 0.002
14 33097743 0.045 0.078 0.014 0.010 0.006 0.014 0.025 0.003 0.002 0.001
15 43018955 0.042 0.074 0.012 0.009 0.005 0.012 0.024 0.003 0.002 0.001
16 53662038 0.039 0.070 0.011 0.007 0.004 0.011 0.022 0.002 0.002 0.001
17 64684584 0.040 0.070 0.011 0.008 0.004 0.012 0.023 0.002 0.002 0.001
18 75772412 0.037 0.067 0.009 0.007 0.003 0.011 0.022 0.002 0.001 0.001
19 86658411 0.041 0.069 0.011 0.008 0.004 0.013 0.024 0.002 0.002 0.001
20 97132873 0.038 0.067 0.010 0.007 0.003 0.012 0.023 0.002 0.001 0.001

Table 8: Distribution of absolute deviations for the q̄-heuristic

the sequence of weighted voting games {(qn;wn)}n∈N with

(qn;wn) = (2n− a− 4; 3, . . . , 3︸ ︷︷ ︸
a threes

, 2, . . . , 2︸ ︷︷ ︸
n−a−1 twos

, 1)

for a suitable parameter a. If a is chosen equal to about 6n
7 (the exact number is provided in Lemma 2)

then the d1-distance between βn and B(qn;wn) asymptotically tends to 1
2n .21 The distance achieved

by these specific weighted voting games provides an upper bound for the distance achieved by the
respective optimal weighted game v∗∗∗ ∈ W . The W-error of the heuristic under the d1-metric is,
therefore, asymptotically bounded from below by

lim
n→∞

∣∣∣ 2
2n−1 · n−1

n − 1
2n

∣∣∣
1
2n

= 1.

So the W-error and a fortiori also the C-error stay at around 100% even as n → ∞ when discrepancies
between βn and B(v∗∗) (or B(v∗∗∗)) are evaluated by the d1-metric.

Analogously, one can choose a equal to about 2n
3 and then check that the d∞-distance between the

game’s PBI and βn asymptotically tends to 1
n2 as n → ∞. This again translates into an asymptotic

lower bound for the W-error, and a fortiori the C-error; these relative errors go to infinity at an
approximately linear speed.

6 Conclusion

The computations which we have reported in Section 5.1 confirm that if one wants to implement
the Penrose square root rule for population data from today’s European Union, the q∗-heuristic of

21Details on the simple but tedious computations are provided in Appendix B.
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v∗ ∈ S v∗∗ ∈ C v∗∗∗ ∈ W q-heuristic
n d1 d1 d1 d1 C-error
2 0.333333 0.333333 0.333333 0.333333 0.000000
3 0.266667 0.266667 0.266667 0.266667 0.000000
4 0.214286 0.214286 0.214286 0.214286 0.000000
5 0.038647 0.158730 0.158730 0.177778 0.120000
6 0.000000 0.113636 0.113636 0.151515 0.333333
7 0.000000 0.085470 0.085470 0.131868 0.542857
8 0.000000 0.066667 0.066667 0.116667 0.750000
9 0.000000 0.064171 0.064171 0.104575 0.629630

10 0.000000 0.061042 0.061042 0.094737 0.552000
11 0.000000 0.052158 0.052158 0.086580 0.659944
12 0.000000 0.047254 0.047254 0.079710 0.686856
13 0.000000 0.042353 0.042353 0.073846 0.743590
14 0.000000 0.037037 0.037037 0.068783 0.857143
15 0.000000 0.034483†† 0.034483† 0.064368 0.866667
16 0.000000 0.033845†† 0.033845† 0.060484 0.780576
17 0.000000 0.032221†† 0.032221† 0.057041 0.770270
18 0.000000 0.030866†† 0.030866† 0.053968 0.748490
19 0.028108†† 0.028108† 0.051209 0.821862
20 0.025641†† 0.025641† 0.048718 0.900000

Table 9: Deviations from βn in the d1-metric (analytical example)

S lomczyński and Życzkowski and, to a lesser extent, the even simpler q̄-heuristic perform very well in
absolute terms. That is, the distance between a (normalized) square root target distribution β and
the PBI B(q∗, β) is close to zero. However, the considered heuristics can still be very far from the
globally optimal solution to the inverse problem in relative terms. This finding applies even when only
weighted voting games are allowed as feasible solutions. And it is not restricted to small voting bodies,
but holds for the current number of EU members n = 27.

The extensive computations reported in Section 5.2 confirm this observation. They provide the
first systematic evaluation of the unavoidable deviations between arbitrary target PBI power vectors
and those that are actually implementable for voting bodies with up to n = 20 members. Numbers
such as the ones reported in Table 5 can potentially be useful in order to improve termination criteria
for local search algorithms (e.g., Leech 2002a, 2003), which have been used in applied studies. If, say,
a locally optimal candidate solution for an inverse problem with n = 11 voters has a d1-deviation from
the desired vector β greater than 0.0064, then Table 5 indicates that the odds of further improvements
in the class of weighted voting games are 50:50 and search presumably should continue in a different
part of the game space. If, however, the deviation is smaller than 0.0031, then the odds are rather
1:99; termination might then make sense.

That desired PBI distributions which concentrate a major share of relative power amongst a few
voters pose problems for the considered heuristics is not surprising. After all, the derivation of q∗

by S lomczyński and Życzkowski (2007) involves a technical condition (see fn. 10) from which one can
conclude that the target PBI of a single voter should approach zero at least as fast as 1/

√
n. It is

much less obvious, however, that, first, it is not sufficient to have a target vector β without “outliers”
in order to obtain a heuristic solution that is good relative to the exact one and, second, the relative
errors may get larger rather than smaller as n increases. This emerged from the extensive numerical
computations reported in Sections 5.1–5.2 and has been formally demonstrated for a specific analytical
example in Section 5.3. One might, therefore, summarize our findings as justifying and potentially even
calling for case-specific optimization rather than the application of a generally rather good heuristic –
not only for small but even for large voting bodies.
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v∗ ∈ S v∗∗ ∈ C v∗∗∗ ∈ W q-heuristic
n d∞ d∞ d∞ d∞ C-error
2 0.166667 0.166667 0.166667 0.166667 0.000000
3 0.133333 0.133333 0.133333 0.133333 0.000000
4 0.107143 0.107143 0.107143 0.107143 0.000000
5 0.019324 0.050505 0.050505 0.088889 0.760000
6 0.000000 0.034759 0.034759 0.075758 1.179487
7 0.000000 0.022624 0.022624 0.065934 1.914286
8 0.000000 0.015686 0.015686 0.058333 2.718750
9 0.000000 0.014199 0.014199 0.052288 2.682540

10 0.000000 0.008772 0.008772 0.047368 4.400000
11 0.000000 0.008282 0.008282 0.043290 4.227273
12 0.000000 0.007688 0.007688 0.039855 4.183908
13 0.000000 0.005373 0.005373 0.036923 5.871795
14 0.000000 0.005109 0.005109 0.034392 5.732143
15 0.000000 0.004628† 0.004815† 0.032184 5.954839
16 0.000000 0.003619†† 0.003619† 0.030242 7.357143
17 0.000000 0.003463†† 0.003463† 0.028520 7.235294
18 0.000000 0.003297†† 0.003297† 0.026984 7.185185
19 0.002600†† 0.002600† 0.025605 8.848225
20 0.002502†† 0.002502† 0.024359 8.737500

Table 10: Deviations from βn in the d∞-metric (analytical example)

Appendix A: ILP formulation for the inverse Penrose-Banzhaf
index problem

Even though stating the inverse power index problem as an optimization problem is trivial (see (3)),
coming up with an implementable formulation for finding an exact solution is not. Voting systems are
discrete objects, and so some kind of discrete optimization is needed. Exhaustive enumeration (see
Keijzer et al. 2010) is limited at best to n ≤ 9 (see Table 1). A much more tractable alternative is to
describe the set of feasible binary voting systems by integer variables and to use some of the available
optimization software packages. These allow significantly larger numbers of variables when dealing
with linear rather than non-linear (mixed) integer optimization problems. So it is unfortunate that
problem (3) cannot directly be translated into a linear problem for the Penrose-Banzhaf index.22 The
“work-around”, which has first been suggested by Kurz (2012b) and is adopted here, is to use ILP
techniques in order to merely find out whether some binary voting system v exists whose PBI vector
B(v) is at most a specified distance α apart from the target β. This feasibility problem can be solved
much more easily than the underlying minimization problem. Still, one can iteratively determine the
exact solution of (3) by varying α.

We will mostly confine our description to the case of measuring distance by the d1-metric. Adapta-
tions to the d′1 or d∞-metric are straightforward. They involve heterogeneous coefficients in inequality
(19) below for d′1, and neither i-subscripts in (16)–(18) nor a summation in (19) for d∞.

The PBI vector (1, 0, . . . , 0) of a dictator has at most a d1-distance of 2 from any normalized power
distribution (summing to 1). This is in fact the worst case, and the minimal achievable deviation α∗

must lie inside the interval [l1, u1], where l1 = 0 and u1 = 2. In each iteration t = 1, . . . , T of the
algorithm we will check whether α = (ut − lt)/2 is a feasible distance between target β and the PBI
values generated by the considered class of voting systems. If so, we set ut+1 = α and leave lt+1 = lt

22Interestingly, one can easily linearize the analogous inverse problem for the Shapley-Shubik power index (SSI). So
even though the PBI is easier to compute than the SSI, the corresponding inverse problem is more difficult.
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unchanged; otherwise we update lt+1 = α and leave ut+1 = ut unchanged. In each iteration the length
of the interval [lt, ut] shrinks by a factor of 2. Since the total number of swings in an n-player voting
game lies between n and m

(
n
m

)
< n2n where m =

⌊
n
2

⌋
+ 1 (see, e.g., Felsenthal and Machover 1998,

sec. 3.3), two distinct PBI vectors differ, both in the d1 and the d∞-metric, by at least
(

1
n2n

)2
. A

finite number T of iterations are, therefore, sufficient for obtaining a solution. More specifically, O(n)

bisections on α are needed before ut − lt ≤
(

1
n2n

)2
and further improvements become theoretically

impossible.
A pseudo-code description of this bisection approach reads as follows:23

Input: desired power index vector β, class of binary voting systems Γ, metric d(·)
Output: minimum d-distance α∗ between β and PBI vectors induced by Γ

l1 = 0
u1 = 2
α∗ = 2
ε =

(
1

n2n

)2
t = 1
while ut − lt > ε
α = ut−lt

2
t = t + 1
solve feasibility problem ⟨β,Γ, d(·), α⟩
if v ∈ Γ such that d(B(v) − β) ≤ α exists
then
ut = d(B(v) − β), α∗ = ut

else
lt = α

end if
end while
return α∗

The feasibility problem ⟨β,Γ, d(·), α⟩ consists of verifying whether there exists a voting system v ∈ Γ
such that d(B(v), β) ≤ α. The following ILP formulation describes it for Γ = S and the d1-metric.
Adaptations to C or W and d′1(·) or d∞(·) involve further variables and (modified) constraints, but are
otherwise very similar:

23The description focuses on finding the minimal distance α∗. A game v∗ ∈ Γ with B(v∗) = α∗ can straightforwardly
be obtained from the solution to the feasibility problem ⟨β,Γ, d(·), α∗⟩.
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xS ∈ {0, 1} ∀S ⊆ N, (7)

xS ≤ xT ∀S ⊆ T ⊆ N, (8)

x∅ = 0 (9)

xN = 1 (10)

yi,S ∈ {0, 1} ∀1 ≤ i ≤ n, S ⊆ N\{i}, (11)

yi,S = xS∪{i} − xS ∀1 ≤ i ≤ n, S ⊆ N\{i}, (12)

si ≥ 0 ∀1 ≤ i ≤ n, (13)

si =
∑

S⊆N\{i}
yi,S ∀1 ≤ i ≤ n, (14)

s =
∑n

i=1
si, (15)

δi ≥ 0 ∀1 ≤ i ≤ n, (16)

δi ≥ si − βi · s ∀1 ≤ i ≤ n, (17)

δi ≥ −si + βi · s ∀1 ≤ i ≤ n, (18)∑n

i=1
δi ≤ α · s. (19)

The binary variables xS define a Boolean function v via v(S) = xS ; inequalities (7)–(10) ensure that
they represent a simple game. The binary auxiliary variables yi,S = xS∪{i} − xS which are introduced
in (11)–(12) for all i ∈ N and ∅ ⊆ S ⊆ N\{i} satisfy yi,S = 1 if and only if coalition S is a swing
for voter i, i.e., contributes 1/2n−1 to B′

i(v). They are used in order to determine the number of
swings si = 2n−1 ·B′

i(v) for each player i in equation (14). The total number of swings s =
∑n

i=1 si is
defined in equation (15). Based on this total number, the individual deviation δi = |si − βi · s| from
the target number of swings is captured by inequalities (17) and (18). The feasibility of a d1-distance
α is then finally checked by introducing constraint (19). Namely, a simple game v ∈ S whose PBI has
d1-distance of α or less exists if and only if the feasible set defined by (7)–(19) is non-empty.

The answer to whether this is the case – and, as a by-product, some v ∈ S with distance at most
α – can be obtained by feeding (7)–(19) into a standard ILP software package in the required format.
We have used IBM ILOG CPLEX 12.4 and the hardware described in Section 5.

Appendix B: Analytical PBI calculations

This appendix presents some technical details on the PBI computations for the sequence of weighted
voting games {vn}n∈N with

vn = (qn;wn) = (2n− a− 4; 3, . . . , 3︸ ︷︷ ︸
a threes

, 2, . . . , 2︸ ︷︷ ︸
n−a−1 twos

, 1),

which is considered in the final paragraphs of Section 5.3. Our first lemma determines the number of
swings in vn for each voter i = 1, . . . , n, that is, the cardinality of set {S ⊆ N\{i} : vn(S∪{i})−vn(S) =
1}, as a function of a and n.

Lemma 1 The numbers of swings in vn are 2n − a − 2, 2n− a− 4, and a for all voters with weight
3, 2, and 1, respectively.

Proof It is convenient to exploit the fact that for any v ∈ S the number of voter i’s swings in v and
in the dual game v′ ∈ S which is obtained by setting v′(S) = 1 − v(S) for all S ⊆ N must coincide.
So instead of vn consider the game vn′ which involves identical weights but quota q′ = 4 instead of
2n− a− 4. Referring to winning and losing coalitions in vn′ we have:
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(i) A voter i with wi = 3 renders a losing coalition S ⊆ N \ {i} winning by joining if either |S| = 1
or S = {j, k} with wj = 2 and wk = 1. There are n − 1 coalitions of the former and n − a − 1
coalitions of the latter type, amounting to 2n− a− 2 swings altogether.

(ii) A voter i with wi = 2 ⊆ N \{i} renders a losing coalition S winning by joining if either S = {wj}
with wj = 3 or 2, or S = {j, k} with wj = 2 and wk = 1. There are a + (n− a− 2) coalitions of
the former and n− a− 2 coalitions of the latter type, amounting to 2n− a− 4 swings altogether.

(iii) Voter n with wn = 1 renders a losing coalition S ⊆ N \ {i} winning by joining if S = {j} with
wj = 3. There are a such coalitions.

�

Writing ⌊x⌋ to denote the largest integer not greater than x, and x mod y to denote the integer
remainder when x is divided by y, we have the following finding for distances in the d1-metric:

Lemma 2 Choose

a(n) =

{⌊
6n
7

⌋
if n mod 7 ∈ {1, 2, 3},⌊

6n
7

⌋
− 1 if n mod 7 ∈ {0, 4, 5, 6},

and consider
vn = (2n− a− 4; 3, . . . , 3︸ ︷︷ ︸

a(n) threes

, 2, . . . , 2︸ ︷︷ ︸
n−a(n)−1 twos

, 1).

Then

lim
n→∞

n · (d1(B(vn), βn)) =
1

2
.

Proof Suppose that n mod 7 = 0, i.e., n = 7k + 0 for some k ∈ N. Then a = 6k − 1 and Lemma 1
yields swing numbers of 2 · 7k− (6k− 1)− 2, 2 · 7k− (6k− 1)− 4, and 6k− 1 for the three voter types,
respectively. This implies a total number of

(6k − 1)(8k − 1) + (n− 6k)(8k − 3) + (6k − 1) = 56k2 − 11k

swings, and hence a PBI vector of

B(v7k) =
1

56k2 − 11k

8k − 1, . . . , 8k − 1︸ ︷︷ ︸
6k−1 times

, 8k − 3, . . . , 8k − 3︸ ︷︷ ︸
k times

, 6k − 1

 .

This yields

Bi(v
7k) − β7k

i =


− 1

(14k−1)k(56k−11) if wi = 3,
28k−3

(14k−1)k(56k−11) if wi = 2,

− 28k2−9k+1
(14k−1)k(56k−11) if wi = 1,

and summing the absolute values of these figures up for the 6k − 1 voters with weight 3, the k voters
with weight 2, and the final voter n one obtains

∥Bi(v
n) − βn∥1 =

2(28k − 3)

(14k − 1)k(56k − 11)

in case of n = 7k. This number and results of the similarly tedious computations when n mod 7 =
1, . . . , 6 are summarized in Table 11. For each of the seven cases one easily sees that the deviations
tend to 1

14k , which is equivalent to 1
2n . �
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n = Bi(v
n) − βi for ∥B(vn) − β∥17k+ wi = 3 wi = 2 wi = 1

0 − 1
(14k−1)k(56k−11)

28k−3
(14k−1)k(56k−11) − 28k2−9k+1

(14k−1)k(56k−11)
2(28k−3)

(14k−1)k(56k−11)

1 0 1
2k(14k+1) − 1

2(14k+1)
1

14k+1

2 1
(14k+3)(56k2+19k+2)

7(4k+1)
(14k+3)(56k2+19k+2) − 28k2+13k+1

(14k+3)(56k2+19k+2)
2(28k2+13k+1)

(14k+3)(56k2+19k+2)

3 1
(14k+5)(28k2+17k+3)

2(7k+3)
(14k+5)(28k2+17k+3) − 2(7k2+6k+1)

(14k+5)(28k2+17k+3)
4(7k2+6k+1)

(14k+5)(28k2+17k+3)

4 − 1
7(2k+1)(14k2+14k+3)

14k+5
14(2k+1)(14k2+14k+3) − 14k2+7k+1

14(2k+1)(14k2+14k+3)
14k2+19k+5

7(2k+1)(14k2+14k+3)

5 − 3
(14k+9)(56k2+71k+21)

28k+15
(14k+9)(56k2+71k+21) − 28k2+25k+6

(14k+9)(56k2+71k+21)
2(28k2+43k+15)

(14k+9)(56k2+71k+21)

6 − 1
(14k+11)(28k2+43k+16)

2(7k+5)
(14k+11)(28k2+43k+16) − 2(7k2+9k+3)

(14k+11)(28k2+43k+16)
4(7k2+12k+5)

(14k+11)(28k2+43k+16)

Table 11: d1-distances between βn and PBI of game vn ∈ W in Lemma 2 (with k ∈ N)

In case of the d∞-metric, choose

a(n) = ⌊(n + 1)/3⌋ + ⌊n/3⌋ − 1.

In each corresponding game vn (see Lemma 2) roughly two thirds of the players have weight 3 each,
roughly one third have weight 2, and a single player has weight 1. The games vn result in very good
solutions of the inverse problem for n < 8 and the best ones we could find for n ≥ 8. Using this in
order to obtain an upper bound one can verify the following result in perfect analogy to Lemma 2:

Lemma 3 The weighted voting game v∗∗∗ ∈ W whose PBI minimizes d∞-distance to βn satisfies

d∞(v∗∗∗, βn) ≤ b(n) =


8n−9

n(4n−7)(2n−1) if n mod 3 = 0,
8n−23

(4n2−5n−8)(2n−1) if n mod 3 = 1,
4

4n2−1 if n mod 3 = 2
for n ≥ 8.

Note that the indicated bound tends to 1
n2 , i.e., limn→∞ b(n)

/
1
n2 = 1.
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