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Abstract

Several approaches for subset recovery and improved forecasting accuracy have been

proposed and studied. One way is to apply a regularization strategy and solve the

model selection task as a continuous optimization problem. One of the most popular

approaches in this research field is given by Lasso–type methods. An alternative

approach is based on information criteria. In contrast to the Lasso, these methods

also work well in the case of highly correlated predictors. However, this performance

can be impaired by the only asymptotic consistency of the information criteria. The

resulting discrete optimization problems exhibit a high computational complexity.

Therefore, a heuristic optimization approach (Genetic Algorithm) is applied. The

two strategies are compared by means of a Monte–Carlo simulation study together

with an empirical application to leading business cycle indicators in Russia and

Germany.
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1 Introduction

The model selection process is crucial for the further analysis of any multiple regression

model and its forecasting performance. Picking up too many regressors increases the

variance of the constructed model, and taking fewer regressors than needed might result

in biased and even inconsistent estimates. Both of these problems can also have negative

effects on the quality of forecasts based on the models obtained through the application

of these methods.

During the last years, the least absolute shrinkage and selection operator (Lasso)

(Tibshirani, 1996) has become a very popular approach for simultaneous model selection

and parameter estimation. Its main advantage is seen in obtaining both a high prediction

accuracy and a parsimonious model, which is due to the regularization parameter which

results in shrinking the coefficients of insignificant regressors towards zero. Hence, the

resulting models concentrate on the strongest effects which tends to increase the total

accuracy of the model forecast. Furthermore, the Lasso is very computationally efficient

(hardly exceeding the complexity of one linear regression (Efron et al, 2004)).

However, the Lasso has some limitations. In particular, inconsistent estimates are

obtained for highly correlated regressors. Numerous modifications have been suggested

revising and improving the initial Lasso concept (e.g., the elastic net, the adaptive lasso),

which can improve its performance under certain conditions, but do not represent a

universal remedy from the limitation stated.

An alternative to the shrinkage operator is offered by model selection approaches

based on information criteria (IC) which tend to provide a consistent model choice also

for correlated predictors. However, even for a moderate number of predictors, these meth-

ods might result in substantial computational cost when considering a full enumeration of

all alternatives. Fortunately, thanks to advances in heuristic optimization methods mim-

icking some evolution processes (Gilli and Winker, 2009), there are efficient algorithms

able to identify at least a good approximation to the IC’s global optimum even for larger

problem instances. Furthermore, IC’s performance is naturally impaired by small sample

sizes due to their only asymptotic consistency.

To the best of our knowledge, this study is the first1 comparing the Lasso–type and

heuristic methods both for model selection and forecasting, and contributing to the liter-

ature by demonstrating that in certain situations (e.g., if regressors in a given data set are

pairwise highly correlated and for large data sets) heuristic algorithms can outperform

the Lasso–type solutions.

The rest of this paper is structured as follows. Section 2 introduces both the Lasso–

type and the heuristic methods. Section 3 provides results of a Monte–Carlo analysis, and

1An exception, however, only with regard to the comparison of the two strategies for model selection
can be found in Savin (forthcoming).
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Section 4 illustrates an application to leading business cycle indicators. Finally, Section 5

concludes.

2 Model Selection Methods

The least absolute shrinkage and selection operator (Lasso), introduced by Tibshirani

(1996), is a constrained version of the ordinary least squares estimator, but has also been

applied to GMM–estimators. Numerous applications of this technique can be found in

medicine, economics and other scientific fields (Hastie et al, 2009) including also time

series forecasting (see, among others, Bai and Ng (2008)).

Consider the model selection problem for the following regression function:

y = α +Xoptβ + ε, (1)

where α is an n-vector with all elements equal, X is an n × k matrix of k regressors

and their values for n observations, β is a k × 1 vector of their coefficients and ε is an

n × 1 vector of residuals. In (1) Xopt refers either to the ’true’ model in a Monte–Carlo

simulation set–up or to an optimal approximation to the unknown real data generating

process. Standardizing the predictors so that they have mean 0 and standard deviation

equaling 1, and the response having mean 0, one can omit α without loss of generality.

2.1 Lasso–type Strategies

For (1) the Lasso objective function can be presented as follows:

β̂Lasso = argmin
β

[
‖y −Xβ̂ ‖22 +λ ‖ β̂ ‖1

]
. (2)

While the first term in the right part of equation (2) measures the fit of the model by

the residual sum of squares (RSS), the second one with λ > 0 is the shrinkage applied

to the sum of the absolute values of the coefficients. Hence, the Lasso can be referred to

as a special case of the Bridge regression approach (Frank and Friedman, 1993) imposing

an upper bound on the Lq-norm of the parameters (0 < q < ∞) with q = 1:

‖ β̂ ‖q=

[
k∑

j=1

|βj|
q

]1/q

. (3)

There are different approaches to solve (2) including quadratic programming, coordinate–

wise optimization and gradient projection (see, e.g., Gasso et al (2009)). For the sake of

brevity we do not discuss any of those methods, so that the interested reader is advised

to consult the literature. In this study we use a modification of the LARS algorithm

3
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suggested by Efron et al (2004) and popularized among practitioners.2 The algorithm

provides a piecewise–linear solution path in the tuning parameter λ ∈ [0,∞) with all β̂’s

set to zero at λ = ∞ and equal to the OLS estimate at λ = 0. To select a single solution,

λ is chosen by tenfold cross–validation minimizing the prediction error (PE) of the model.

Setting λ > 0 by cross–validation one insures the Lasso solution to have a parsimony

property, i.e. only a subset of resulting predictors in (2) has non–zero coefficients. This

feature of the Lasso might increase the total accuracy of the model forecast and improves

the interpretability of the selected model.

However, the Lasso has substantial limitations. First, it cannot identify all ’true’ pre-

dictors in a data set with pairwise highly correlated regressors (Zou and Hastie, 2005).

The latter can be referred to as the ’irrepresentable condition’ (Zhao and Yu, 2006,

p. 2544). Thus, Lasso is consistent in low correlation settings only, when

max
j>r

‖cov(Xj, X
true)cov(X true)−1 ‖1< 1, (4)

while in presence of high correlations between ’true’ and irrelevant variables, the Lasso

cannot recover the correct sparsity pattern (β̂Lasso 9 βtrue).

However, as Meinshausen and Yu (2008) show, even failing to discover the correct

sparsity pattern (when (4) does not hold), the Lasso can provide good approximations

of the ’true’ model for large sample sizes (‖β − β̂Lasso ‖2→ 0 as n → ∞). In other words,

Lasso selects ’true’ variables with high probability and irrelevant ones have only marginal

coefficients (L2-norm consistency).

Second, Lasso is inconsistent for k ≫ n (underdetermined linear system), where (2)

can identify not more than n− 1 (standardized) predictors (Efron et al, 2004).

Lasso Modifications

Many proposals have been made on how to improve the Lasso concept. Due to space re-

strictions, we concentrate only on two such modifications. For a more complete overview,

the interested reader is referred, e.g., to Hastie et al (2009) and Gasso et al (2009).

We consider two extensions of the Lasso: the elastic net (EN) using a combination of

the Lasso (λ1) and the ridge regression (λ2) penalty (Zou and Hastie, 2005):

β̂EN = argmin
β

[
‖y −Xβ̂ ‖22 +λ1 ‖ β̂ ‖1 +λ2 ‖ β̂ ‖

2
2

]
, (5)

and the adaptive Lasso (aLasso) applying different amounts of shrinkage for each regres-

sion coefficient (Zou, 2006):3

2Related codes are available at http://www.stanford.edu/~hastie/Papers/LARS for R and
http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3897 for Matlab.

3For more details the reader is referred to the literature. See also Savin (forthcoming).
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β̂aLasso = argmin
β

[
‖y −Xβ̂ ‖22 +λ

k∑

j=1

ω̂j|βj|

]
. (6)

Thus, the selected extensions are particularly designed to deal with the limitations

stated and operate in a continuous space remaining computationally efficient. Further-

more, in line with Candès and Tao (2007) we also perform unregularized restricted esti-

mation (i.e. OLS estimation on the selected set of regressors) for all Lasso–type methods

tested to alleviate a potential bias that results from the regularized estimation (λ > 0).

2.2 Heuristic Optimization Methods

Alternatively, information criteria (IC) can be used to identify Xopt in (1). IC rank

different models according to their fitness, while penalizing model complexity. Hence,

they can be interpreted as a L0-constraint, penalizing not the coefficients’ values, but

only their number:

β̂IC = argmin
β

[
‖y −Xβ̂ ‖22 +λ ‖ β̂ ‖0

]
. (7)

IC have become a standard instrument in model selection ranging from lag order

selection in multivariate linear and nonlinear autoregression models to selection between

rival nonnested models (Winker, 1995). In this study, the Bayesian IC (BIC) and the

Hannan-Quinn IC (HQIC) are employed. For infinitely large sample sizes these IC are

consistent model selection instruments and, as noted by (Zhao and Yu, 2006, p. 2553),

the solution of (7) remains consistent even for data sets with correlated regressors.

Given that the search space of candidate models in (7) is discrete, standard gradient

methods cannot be applied. Also the full enumeration of all possible solutions is only

feasible for a moderate k. Consequently, in the last decade many studies have been

devoted to the problem in (1): sequential bottom–up (top–down) inclusion (deletion)

of individual regressors (Perez-Amaral et al, 2003; Hendry and Krolzig, 2005); usage of

certain prior probabilities shrinking the parameter search space and resulting in model

averaging (Kapetanios et al, 2008). However, these methods investigate only a specific

fraction of all submodels, whereas there is no guarantee to find the ’true’ model in this

way.

In order to tackle the highly complex integer optimization problem, one can take ad-

vantage of optimization heuristics that mimic natural evolution processes. These meth-

ods are called ’heuristic’ or ‘meta-heuristics’ because of their stochastic nature that helps

them to converge to a model which at least represents a good approximation to the IC

optimum. For an overview of these optimization techniques see Gilli and Winker (2009).

In Savin and Winker (forthcoming) a similar subset selection problem was handled by

5
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two algorithms: Threshold Accepting and Genetic Algorithms (GA). Since GA provided

slightly better results in terms of both CPU time and solution quality, only GA are

considered in the following.

GA are population–based heuristics that investigate the search space in many direc-

tions simultaneously, performing jumps in the search space by means of crossover and

mutation mechanisms. Thereby, the probability of getting stuck in a local optimum is

reduced. The members in the population are represented as bit strings of ones and ze-

ros corresponding to the predictor variables included and not included in the candidate

model. In each generation GA replace parts of a population with new solutions aimed

to be better for a given problem. The GA algorithm implemented is very similar to the

one in Savin and Winker (forthcoming).4 The only difference is that 1000 generations

are found to be sufficient in this study for GA to converge.

3 Monte–Carlo Study

The goal of this section is to determine in what set–ups which of the two strategies,

Lasso–type methods (Lasso, EN, aLasso) or GA tined by IC, provide superior results (in

terms of correctly recovered subsets, forecasting and estimation accuracy) and what is

the corresponding CPU-time required.

Data Generating Process

To this end, different artificial data sets are generated varying the sample size (n) from

100 (frequent in macroeconomics) to 1000 (which is mostly available only in finance and

natural sciences) and fixing the number of potential regressors to 50. First, we generate

4 predictors with a joint Gaussian distribution and covariance matrix Σ. We choose

either Σi,j = 0.5|i−j| or 0.75|i−j| with 1 ≤ i, j ≤ k, corresponding to a ’low’ and ’high’

correlation setting, respectively. Second, the data matrix consisting of lags 1 to 10 of

these predictors is formed (Xmc). Third, we select a small number of elements ktrue = 5

of the coefficient vector βmc, which are set to non–zero values.5 These non–zero coefficient

values are randomly distributed between -1 and 1, and divided by the respectively chosen

lag order so that lags of higher order are (on average) assigned with smaller coefficients.6

Fourth, the initial value of the response variable (ymc
0 ) is set to zero, and based on βmc

j ,

one recursively generates ymc
t and adds an i.i.d. normal random error term:7

4Thus, a population of 500 solutions, the uniform crossover mechanism and a mutation operator
applied to 5 randomly chosen genes with 50% probability are employed.

5One ensures that one lag of each variable (including the dependent one) is included.
6This appears reasonable since in empirical studies lags of lower order are found to be more important.
7Finally, the first 11 observations in ymc and Xmc are discarded.

6
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ymc
t =

10∑

i=1

βmc
0,i y

mc
t−i +

4∑

j=1

10∑

i=1

βmc
j,i x

mc
j,t−i + εt, ε ∼ N(0, σ2

ε). (8)

In (8) one chooses σε such that the corresponding noise–to–signal ratio (NSR, for details

see (Frank and Friedman, 1993, p. 125)) equals either 1/5 (’low noise’) or 2 (’high noise’).

Obviously, (8) represents an Autoregressive Distributed Lag model with 10 lags for both,

one dependent and four explanatory variables, where no current values of the explanatory

variables are involved. Thus, for a general ADL(p1, p2, p3) we consider ADL(10,4,10).

Simulation Results

The quality of the results in terms of model identification is assessed by the True Positive

Rate (TPR) and the False Negative Rate (FNR)8, whereas mean–squared error (MSE =

E[(β̂ − βmc)′Σ(β̂ − βmc)]) is used as a measure of the estimation accuracy.9 For this

purpose, 90% of the observations are used as a training set. The CPU time corresponding

to a single restart using Matlab 7.11 on a Pentium IV 3.3 GHz is reported.10

Furthermore, the remaining 10% of observations are left for an out–of–sample forecast,

where root mean–squared forecast error, and its standard deviation computed over 50

replications (in parentheses),

RMSFE =

√√√√ 1

T2 − T1 + 1

T2∑

t=T1

(ymc
t − ŷt)2, (9)

is used to assess the forecast quality. Thereby, T1 and T2 indicating the first and the last

period of the forecasting period.

Simulation results obtained for different set–ups are reported in Table 1.11 For

medium–sized samples (n = 500) heuristics clearly outperform Lasso–type methods in

subset recovery and estimation accuracy,12 which eventually results in a better forecasting

performance. However, the difference in RMSFEs is not that large. Among the Lasso

methods considered, aLasso provides in general superior results, and this dominance holds

for different correlation and noise settings. For ’high correlation’ some marginal improve-

ments as compared to classical Lasso are obtained via EN, which is due to the more

robust ridge penalties.

8TPR is the percentage of ’true’ regressors from all variables selected and FNR is the portion of
rejected ’true’ regressors among correctly selected and correctly rejected ones.

9Standard deviations computed over 50 replications are given in parenthes in Table 1. Unregularized
restricted estimations for Lasso–type methods are reported as MSE2.

10For each method, averages over 50 replications of the procedure are reported.
11Due to space constraints, here we report only results for the BIC, but qualitatively similar findings

based on HQIC are available on request.
12Even accounting for MSE2 an improvement for all scenarios is depicted in Table 1.
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It can be observed that heuristics improve in performance relative to the Lasso meth-

ods in low noise settings and for larger sample sizes. The former is due to a more re-

strictive selection performed by the shrinkage strategies, which for ’low noise’ translates

in substantially more type II errors, i.e., ignoring too many relevant predictors, whereas

the latter results from the asymptotic consistency of IC allowing to identify the correct

sparsity pattern. In contrast, for n = 100 the difference between shrinkage and heuristic

methods becomes less evident. Furthermore, for ’high noise’ and small n Lasso–type

strategies indisputably beat heuristics both in estimation and forecasting.

4 Application to Leading Business Cycle Indicators

in Germany and Russia

Being particularly interested in the usefulness of the strategies from the forecasting point

of view, we also show their application to real economic data.

Leading indicators (LI) are nowadays a standard tool for the analysis and forecasting

of business cycles due to the publication delay of data on real production. While for

Germany (as for other industrial countries) there is a large body of empirical evidence

that models forecasting industrial production (IP), which include LI, outperform forecasts

of univariate time series models (Vogt, 2007; Ozyldrim et al, 2010), there is less such

evidence for developing countries.

For the empirical application we use two LI (business expectations and business cli-

mate) and IP for Germany and Russia for the period 02/1999–09/2009. More information

on the properties of the data can be found in Savin and Winker (2012). Important is that

the German LI are seasonally adjusted, while for Russia they are not. Furthermore, a

potential structural break in Russian data must be accounted. Hence, we consider the IP

indices for both countries also as unadjusted and introduce seasonal and shift dummies,

and their interaction terms (for details see Savin and Winker (2012)) to account for these

data features.

Similar to Section 3, ADL models (augmented with seasonal and shift dummies) are

our modelling framework to identify predictors and construct forecasts, while an AR(2)

process serves as benchmark. The latter is found to be a hard competitor in business

cycle forecasting for small data sets (Savin and Winker, 2012).

We only employ 1–step–ahead forecasts of IP growth rates (log differences) for periods

of one and two years length between 11/2006 and 09/2009 (this also allows one to consider

the forecasting performance both prior and during the crisis) and increasing estimation

windows (IEW). Furthermore, in contrast to Savin and Winker (2012), we allow for lags

from both LI and both countries to be included in (9) for each IP, so that a selection out

of 65 predictors (5 variables and 13 lags) has to be made. As a result, two data sets with

8
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Table 1: Monte–Carlo simulation results

Lasso EN aLasso BIC Lasso EN aLasso BIC

Low correlation High correlation

R
es

u
lt
s

fo
r
n
=

1
0
0

L
o
w

n
o
is

e

TPR 72.7% 71.2% 70.9% 56.0% 73.9% 73.5% 60.7% 53.8%
FNR 2.6% 2.5% 2.3% 1.0% 3.0% 2.9% 3.0% 1.6%
MSE .0212 .0209 .0102 .0035 .0235 .0233 .0104 .0076

(.0413) (.0408) (.0160) (.0033) (.0431) (.0422) (.0140) (.0166)
CPU .4s 1.0s 1.0s 32s .3s .7s 1.0s 31s
MSE2 .0166 .0165 .0076 .0189 .0188 .0083

(.0374) (.0373) (.0135) (.0374) (.0372) (.0143)
RMSFE .0114 .0113 .0112 .0113 .0119 .0117 .0126 .0122

(.0053) (.0051) (.0048) (.0039) (.0049) (.0049) (.0052) (.0053)

H
ig

h
n
o
is

e

TPR 79.3% 79.3% 62.7% 36.6% 71.2% 70.2% 50.0% 31.9%
FNR 7.1% 7.1% 7.1% 6.1% 7.2% 7.3% 7.0% 6.6%
MSE .0339 .0336 .0247 .0529 .0363 .0359 .0286 .0521

(.0718) (.0719) (.0447) (.0542) (.0856) (.0857) (.0527) (.0518)
CPU .3s .7s 1.1s 28s .3s .7s .7s 29s
MSE2 .0234 .0234 .0224 .0338 .0338 .0234

(.0451) (.0451) (.0413) (.0844) (.0844) (.0421)
RMSFE .1078 .1078 .1107 .1191 .1088 .1089 .1123 .1234

(.0402) (.0402) (.0424) (.0496) (.0415) (.0413) (.0449) (.0547)

R
es

u
lt
s

fo
r
n
=

5
0
0

L
o
w

n
o
is

e

TPR 68.5% 71.5% 68.3% 84.5% 66.1% 67.0% 74.6% 87.1%
FNR 2.1% 2.1% 1.6% .7% 2.3% 2.1% 1.6% .7%
MSE .0187 .0187 .0069 3.0×10−4 .0209 .0208 .0063 2.3×10−4

(.0299) (.0299) (.0158) (4.7×10−4) (.0376) (.0376) (.0196) (3.1×10−4)
CPU .3s .8s .8s 88s .3s 1.0s .9s 93s
MSE2 .0120 .0120 .0023 .0154 .0151 .0042

(.0235) (.0235) (.0052) (.0328) (.0329) (.0182)
RMSFE .0102 .0102 .0102 .0098 .0107 .0107 .0107 .0103

(.0041) (.0041) (.0042) (.0041) (.0043) (.0043) (.0046) (.0041)

H
ig

h
n
o
is

e

TPR 95.6% 95.6% 75.4% 81.8% 91.7% 91.7% 78.4% 79.7%
FNR 6.3% 6.3% 5.0% 3.5% 6.4% 6.4% 5.7% 4.1%
MSE .0269 .0266 .0214 .0054 .0270 .0266 .0225 .0060

(.0420) (.0413) (.0488) (.0056) (.0426) (.0415) (.0432) (.0063)
CPU .3s .8s .8s 78s .3s .8s .8s 81s
MSE2 .0166 .0166 .0087 .0167 .0167 .0108

(.0276) (.0276) (.0105) (.0277) (.0277) (.0191)
RMSFE .0985 .0985 .0962 .0957 .1007 .1006 .0992 .0981

(.0407) (.0407) (.0392) (.0397) (.0421) (.0421) (.0407) (.0413)

R
es

u
lt
s

fo
r
n
=

1
0
0
0

L
o
w

n
o
is

e

TPR 54.2% 54.3% 80.8% 90.8% 60.1% 60.1% 72.2% 88.7%
FNR 1.4% 1.4% .9% .4% 1.7% 1.7% .9% .3%
MSE .0107 .0107 .0041 6.9×10−5 .0122 .0122 .0030 1.3×10−4

(.0181) (.0181) (.0077) (1.1×10−4) (.0171) (.0172) (.0048) (2.6×10−4)
CPU .4s 1.0s 1.7s 157s .5s 1.5s 1.8s 156s
MSE2 .0044 .0044 6.7×10−4 .0080 .0080 .0010

(.0097) (.0097) (.0019) (.0132) (.0132) (.0033)
RMSFE .0103 .0103 .0102 .0101 .0095 .0095 .0098 .0092

(.0038) (.0038) (.0037) (.0037) (.0040) (.0040) (.0067) (.0039)

H
ig

h
n
o
is

e

TPR 93.7% 93.9% 75.7% 85.9% 92.9% 93.0% 76.3% 83.2%
FNR 5.2% 5.2% 3.6% 2.3% 5.3% 5.4% 4.4% 2.7%
MSE .0199 .0199 .0089 .0029 .0199 .0198 .0153 .0030

(.0247) (.0247) (.0115) (.0042) (.0245) (.0245) (.0248) (.0043)
CPU .5s 1.5s 1.4s 147s .5s 1.4s 1.3s 153s
MSE2 .0132 .0133 .0063 .0133 .0132 .0086

(.0178) (.0178) (.0109) (.0178) (.0178) (.0145)
RMSFE .0925 .0927 .0912 .0902 .0951 .0949 .0944 .0926

(.0378) (.0386) (.0375) (.0372) (.0403) (.0397) (.0403) (.0395)
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highly correlated potential predictors are generated (see Figure 1).13

Figure 1: Pairwise correlations in the empirical data sets

Results for the two model selection strategies are exhibited in Table 2. As one can see,

for the final forecasting period the shrinkage strategies mostly dominate the benchmark

for both 12– and 24–month period forecasts, while heuristics fail do so. The main reason

for this performance is seen to be the small estimation sample available: there are merely

128 observations for estimation and forecasting in total, which is most comparable with

the upper panel in Table 1. Furthermore, since the IP growth rates can be to a large

extent (R2 ≈ 70− 80%) explained by the set of lags selected (together with the seasonal

and shift dummies), which corresponds to the low noise setting, EN and Lasso outperform

aLasso. Finally, since particularly for small noise and high correlation among predictors

in small samples Lasso–type methods provide some better forecasts than heuristics, the

advantage of the shrinkage methods could be expected from the Monte–Carlo results.

Table 2: Forecasting performance of the ADL models

Model specification
Germany Russia Germany Russia

10/2007–09/2009 10/2008–09/2009

Lasso 0.9064 0.8296 0.7479 0.7800

RMSFE EN 0.9469 0.8296 0.7479 0.7748

aLasso 0.9849 0.9744 1.1355 0.8422

in relation to AR(2)
Genetic Algorithms

BIC 1.1763 0.9629 1.1832 0.9322

HQIC 1.1558 1.1191 1.2473 1.1169

We also consider the performance of the two strategies over a set of forecasting periods

13The main diagonal in the correlation matrix is removed.
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shifting by one month (rolling windows). The results are provided in Figure 2 (upper

panel for 12– and lower for 24–month forecasts).

11/06−10/07 07/07−06/08 02/08−01/09 10/08−09/09

0.7

1

1.5

German IP

 

 

11/06−10/07 07/07−06/08 02/08−01/09 10/08−09/09

0.7

1

1.5

Russian IP

11/06−10/08 02/07−01/09 06/07−05/09 10/07−09/09

0.8

1

1.2

1.4

11/06−10/08 02/07−01/09 06/07−05/09 10/07−09/09

0.8

1

1.2

1.4

Lasso EN aLasso GA(BIC) GA (HQIC) AR(2)

Figure 2: Forecast accuracy in relation to AR(2) with IEW (RMSFE in relation to AR(2))

5 Conclusions

Since the correct dynamic specification of time series models is often unknown, the use

of model selection strategies is required. We consider two classes of model selection

approaches, one based on shrinkage estimators such as Lasso and the other one – a subset

selection method making use of optimization heuristics, to solve the corresponding highly

complex discrete optimization problem.

A Monte–Carlo simulation is used to assess the merits of the different methods in

the context of univariate autoregressive distributed lag models. The simulation setting

is chosen to mimic realistic situations found in the framework of forecasting business

cycles. In particular, the number of available observations is often small compared to the

number of potentially relevant predictors. Due to the high persistence in many economic

variables, different lags of these predictors might be highly correlated rendering the model

selection problem more challenging. The results from the Monte–Carlo simulation suggest

that the use of information criteria in the subset selection approach is impaired by the

small number of observations, while the shrinkage estimators still perform remarkably

well despite of the high correlation of potential predictors.

Furthermore, we consider to what extent a proper model selection might help to

improve forecasts of business cycle indicators for Russia and Germany. While the im-
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provements compared to a simple autoregressive process are small in all settings, we find

again slight advantages of the shrinkage estimators.

Based on these findings, several questions emerge naturally which we will consider in

future research. In particular, we will test whether larger sample sizes improve the relative

performance of information criteria based selection as these criteria are asymptotically

consistent. Furthermore, we will study a situation with a larger number of relevant

regressors in the model. Finally, further real applications will be studied to learn about

performance gains to be expected when moving away from simplistic univariate time

series models.
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