A Service of

[ ) [ J
(] [ )
J ﬂ Leibniz-Informationszentrum
° Wirtschaft
o Leibniz Information Centre
h for Economics

Make Your Publications Visible.

Stark, Oded

Working Paper
On the evolution of altruism

Reihe Okonomie / Economics Series, No. 46

Provided in Cooperation with:
Institute for Advanced Studies (IHS), Vienna

Suggested Citation: Stark, Oded (1997) : On the evolution of altruism, Reihe Okonomie / Economics
Series, No. 46, Institute for Advanced Studies (IHS), Vienna

This Version is available at:
https://hdl.handle.net/10419/70112

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/70112
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Institut fiir Héhere Studien (IHS), Wien
Institute for Advanced ‘Studies, Vienna

Reihe Okonomie / Economics Series No. 46

On the Evolution of Altruism

Oded Stark







On the Evolution of Altruism

Oded Stark

Reihe Okonomie / Economics Series No. 46

June 1997

Oded Stark

Department of Economics
University of Oslo

P.0. Box 1085 Blindern
N-0317 Oslo, NORWAY
Phone: ++47/22/85 51 12
Fax: ++47/22/85 79 46
and

University of Vienna

Alser Strafte 21/9

A-1080 Vienna, Austra

Institut fiir Hohere Studien (IHS), Wien
Institute for Advanced Studies, Vienna




The Institute for Advanced Studies in Vienna is an independent center of postgraduate training and
research in the social sciences. The Economics Series presents research done at the Economics
Department of the Institute for Advanced Studies. Department members, guests, visitors, and other
researchers are invited to contribute and to submit manuscripts to the editors. All papers are subjected
to an internal refereeing process.

Editorial

Main Editor:

Robert M. Kunst (Econometrics)
Associate Editors:

Walter Fisher (Macroeconomics)
Arno Riedl {(Microeconomics)




Abstract

We demonstrate how altruism can flourish in a population of nonaltruists. We assume that
each individual plays a one-shot prisoner's dilemma game with his or her sibling and that the
probability than an individual survives to reproduce is proportional to his or her payoff in this
game. We model the formation of couples and the rule of imitation of parents and of
nonparents. We then ask what happens to the proportion of altruists in the population. We
specify a case where the unique and stable equilibrium is one in which the entire population
will consist of altruists.
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1. Introduction

An example is provided to illustrate how evolution can select for altruism. It is
shown that evolution can sustain altruistic behavior between relatives even in a single-
shot prisoner’s dilemma model in which altruism benefits one’s opponent at a cost to
oneself, and conditions are derived under which altruism persists and flourishes to the
extent that the entire population will consist of altruists. The case presented is of interest
also because it illustrates how the distribution of a population by a trait is an outcome

solely of the relative payoff to the trait in intrafamilial exchanges.

2. The game and the payoffs

Consider the following two-player, two-strategy game in which a player who
cooperates gets a payoff of R if his opponent cooperates, and S if the opponent defects.
A player who defects gets 7T if his opponent cooperates, and P if the opponent defects. In
a prisoner’s dilemma game, S<P<R<T, so that defection is a dominant strategy for each

player.

We equate altruism with cooperating in a prisoner’s dilemma game. To see this

suppose the column player selects C.

Column Player

| C D
Row Player ¢ RR ST
D TS PP

If the row player selects C rather than D, he gives up T to receive the smaller R, whereas
the column player gains since he receives R, which is larger than S. Suppose,
alternatively, that the column player selects D. Again, if the row player selects C rather
than D, his payoff declines (by P-S), while the column player’s payoff rises (by

T— P). This is what altruism is about: giving up something for the sake of another.




Thus, throughout the rest of this paper we identify altruism with playing cooperate in

the one-shot prisoner’s dilemma game.'

3. The rule of imitation

An individual’s strategy, to play C or D against one’s sibling, is determined by
imitating the behavior of parents or nonparents. Note that strategy here stands for a
programmed pattern of behavior, not an object of choice. Assume that with probability v
a child randomly selects one parent as a role model and adopts that parent’s strategy.
With probability 1-v the child chooses a random nonparent as a role model. Each
individual has a sibling with whom the individual plays a game of prisoner’s dilemma.
The probability that an individual survives to reproduce is proportional to the payoff in
this game. For example, consider a case in which the payoff positively influences the

probability of reaching maturity and of being able to procreate.

4. The formation of couples

Assume that mating is monogamous. Parent-couples can be one of three possible
types: two-cooperator couples, “mixed couples” with one cooperator and one defector,

and two-defector couples. Let x be the fraction of cooperators in the adult population. If
marriage is purely random, the fraction of marriages with two cooperators is x-x = x’,

the fraction with two defectors is (1-x)(1-x)=(1-x)’, and the fraction with mixed

! Consider the following quite general formulation: U(C,,C,)=(1-a)V,(C)+aV,(C,) where U is
agent 1’s utility, C is consumption of agent i, i=1,2, a >0 is the weight that agent 1 places on the
felicity of agent 2 relative to his own felicity, and ¥ is the direct pleasure of agent / from consumption

(felicity). Suppose the total supply of the consumption good is fixed at C,+C, = C, and that initially all
this quantity is in the hands of agent 1. Take the case ¥,(C,) = In(C,). Agent 1 maximizes his utility.

5U(CI’C2)=1“Z-__“ =0 which implies that EZ-=—£—- Since
ac c C-cC ¢, l-a

! i !

This requires that

AC/C)

= ~ >0, we see that altruism entails agent 1 giving up some consumption for the sake
da (1-a)

o . C o . =
of agent 2 receiving more consumption (as long as & >0, —= >0 which is equivalent.to C, < C), and

!
that a stronger altruism results in a larger transfer. Thus, the nature of altruism is giving up some for the

sake of another receiving more.




couples is 2x(1-x). If marriage is purely (positively) assortative, the fractions of
cooperators and defectors are, respectively, x and 1-x. To allow mating patterns that
are intermediate between the polar cases of purely random mating and purely assortative
mating, we define a parameter m where 0<m <1, such that when mating is purely

random m =0, and when mating is purely assortative m=1. In the population at large, the
proportion of two-cooperator couples is thus x’+mx(1-x); the proportion of two-

defector couples is (1—x)” +mx(1-x); and the remaining proportion of mixed couples

is 2(1-m)x(1-x).2
5. The outcome

Given the assumptions about the rule of imitation and the formation of couples,
what happens to the share of cooperators in the population, x? We specify a case where
the unique and stable equilibrium is one in which the entire population will consist of
cooperators.’ For this monomorphic outcome to occur, two conditions must be satisfied.
First, that a population of defectors would be “invaded” by cooperators. Second, that a

population of cooperators could not be “invaded” by defectors.

The proportion of cooperators in the population will increase or decrease
depending on whether the average payoff to cooperators is higher or lower than that of

defectors. If defectors were as likely as cooperators to have cooperative siblings, then

? The matching process can be characterized in the following way. Interpret m as the fraction of each of
the two types who systematically marry members of their own type, and interpret 1-m as the fraction
of each of the two types who marry randomly (that is, independently of type). We refer to cooperators
as type C and to defectors as type D. Thus, a fraction mx of the population are individuals of type C
who systematically marry individuals of type C, whereas a fraction m(1~x) of the population are
individuals of type D who systematically marry individuals of type D. Of the 1-m who marry randomly,

x* are of type CC and (1-x)* are of type DD. Therefore, the total fraction of marriages that are of type
CC is mx+(1-m)x’ =x"+mx(1-x), and the total fraction of marriages that are of type DD is
m(l=x)+(1-m)(1-x)* =(1-x)' +mx(l-x). Finally, of the fraction 1-m of type C who marry
randomly, x(1-x) are of type CD and of the fraction 1-m of type D who marry randomly, (1-x)x are
of type CD. Therefore, the total fraction of marriages that are of type CD s
A=-mx(l=x)+(1-m(1-x)x =2(1-mx(1-x).

w

By “stable equilibrium” we mean an equilibrium that is dynamically stable. This should not be confused
with the notion of Nash equilibrium in “evolutionary stable strategies” discussed in evolutionary game
theory.




defectors would get higher expected payoffs than cooperators. However, siblings are

more likely to be similar than random pairs of individuals.

Claim 1: As the proportion of one type in the population becomes rare, the probability

Proof:

that an individual of the rare type is married to an individual of the rare type

approaches m.

Consider, for example, the case of rare cooperators. If an individual is a
married cooperator, what is the probability that he will be married to a
cooperator, when cooperators are rare in a population consisting of, say, N
couples? This conditional probability is the total number of cooperators
married to cooperators, divided by the total number of cooperators who are
married at all, that is:
2[x*+mx(1-x)|N
2[x*+mx(1-x)]N+2(1-m)x(1-x) N

= X+ m—mx,

which, when x — 0, is equal to m. O

Thus, when cooperators are rare, the probability of a cooperator-cooperator match is m.

When the proportion of one type in the population approaches zero, what is the

probability that an individual of the rare type has a sibling of the rare type?

Claim 2: The probability that an individual of the rare type has a sibling of the rare

Proof:

type approaches (1+m)v’/2.

When cooperators are rare, a child can be a cooperator only if the child
imitates a parent, provided the parent is a cooperator. (Clearly, if the child
imitates a nonparent, the child most surely will be a defector.) In order for
both a child and his sibling to be cooperators, both children need to imitate
either parent when both parents are cooperators, and the cooperating parent

when one parent is a cooperator and one is a defector. The probability of the

first of these events is mv’; the probability of the second event is




(1-m)v’/2.* The probability then that a cooperating child will have a

cooperating sibling is mv’+(1-m)v’/2=(1+m)v’/2.0°

Claim 3: When cooperators are rare, the difference between the expected payoff of a
rare cooperator and that of a normal defector (that is, a defector child born to

a two-defector couple) is

B=1+m)(*/2)(R-S)—(P-S).

Proof  When cooperators are rare, the expected payoff to a cooperator from the game

played with a sibling is determined by the probability that the cooperator has
a cooperator sibling, which is (1+m) v’/2, by the probability that the
cooperator has a defector sibling, which is [1 —(1+m)v’/ 2], and by the
respective payoffs. The expected payoff is therefore
(1+m)(v'/2) R+ [1 —(L+m)v’/ 2]S . When cooperators are rare, the expected
payoff to a normal defector from the game the defector plays with a sibling is
P.° The difference between the expected payoff of a rare cooperator and that
of a normal defector is
A+m)(*/ 2) R+[1-(1+m)v’/ 2]S— P=(1+m)(¥'/ 2)(R-S)~(P-S)=p. O

A similar procedure shows that when defectors are rare, the difference between the

expected payoff of a cooperator and the expected payoff of a defector is

a=(1+m)(’'/2)(T-P)-(T-R).

. % The probability that “both children are cooperators” is equal to the probability that “both children

imitate a parent M the parent is a cooperator.” This probability is equal to v?-1 when both parents are

cooperators - which in turn occurs with probability m, and to v? /2 when one parent is a cooperator and
the other parent is a defector - which in turn occurs with probability 1-m.

S Equations (1) through (9) in the appendix provide an alternative proof of Claim 2.

S We ignore the possible case in which a defector child interacts with a cooperator sibling because when
cooperators are rare, that is, x — 0, the conditional probability that a sibling of a child of type D is of
type C, which is (1-k)x where k= (1+m)v*/ 2, approaches zero. Conversely, when cooperators are
rare, the conditional probability that a sibling of a child of type D is of type D, which is
k +(1-k)(1-x) , approaches 1. (These conditional probabilities are derived in the appendix.)




Claim 4: When S and « are both positive, the population will consist entirely of

cooperators.’

We cannot, of course, say that f and « must be positive. But we can find
prisoner’s dilemma games with payoff parameters S,P,R,T such that both £>0 and

a>028

6. Explaining the outcome

The likelihood that cooperative behavior will prevail depends on (1+m) VviI2 If

children are likely to imitate their parents rather than a random role model, v is high;

and parents are likely to be cooperators when m is high. The higher is (1+m) V12, the
greater the set of payoff parameters for which both £ and « are positive, in which case
the population will consist of cooperators only. That is, the greater is (1+m)v’/2, the
more likely it is that cooperative behavior will prevail. In particular, in the extreme case
m=v=1,we get S=a= R~ P>0 and the population will consist of only cooperators

for any set of payoff parameters.

7 The assumption that a small group of cooperators will continue to grow when it has already gotten
bigger and will, in the end, take over the entire population requires examination of intermediate cases,
that is, of cases other than the ones in which cooperators are rare (x> 0) or defectors are rare
(x — 1) . However, when the structure of the model is linear in such a way that we can infer about the
intermediate cases from the extreme cases, a study of the intermediate cases is not necessary. A proof
that this applies in the case of the current model is provided in the appendix. (An alternative proof is
provided in Stark (1995), chapter 6.) In the appendix we show that the model has a simple linear
structure: the difference between the expected payoff to a cooperator child from interacting with a

sibling and the expected payoff to a defector child from interacting with a sibling is ax + (1 - x). This,
expression is positive for any x (that is, not only for x — 0 or x - 1) if and only if @ and g are both
positive.

8 Note that (1+m)v"/2 lies in the closed interval [0,1]. It is an increasing function of both m and v. We
have (1+m)v"/2 =0 ifand only if v=0, and (1+m)v/2 =1 if and only if m=v=1. We have that
A>0 if and only if (A+mpv/2 >(P-S)/(R-S)=k, and that «>0 if and only if
(1+m)v2/ 2 >(T-R)/(T-P)=k,. The numbers k, and £, lie strictly between zero and 1 since
S<P<R<T.
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Appendix

Denote the fractions of marriages that are of the three types, that is, two
cooperators, cooperator-defector, and two defectors, by, respectively, ..., 7., and y,, .
Then,

1) Yoo =X +mx(l-x),

@) Yy =20-mx(1-x),

3) Vop =(1=x)" +mx(1-x).

The probabilities that a child in a marriage of each type is of type C are
4 Sec=(1-V)x+v,

(6)  S=1-Mx+=,
2

©)  Spp=(-V)x.

Assuming that the number of children on average is the same in all types of marriages,
the total fraction of children who are of type C'is

(D A=V + YO+ oo Oop =%

Given that a child is of type C , denote by &.., &, and &,, the conditional

probabilities that the marriage into which the child was born is of a particular type.

Thus,

Yo Oc
(8) Epp = CcA cc

Similar equations can be written for £, and ¢,,,.
For a given pair of siblings, G and H, the conditional probability that H is of type C
given that G is of type C is

° Exploiting the similarity between the s, this result can be obtained as follows: y .. + 7., +7,,
= x4+ 2mx(1-x) +2(1-m) x(1-x) + (1= x)" = x*+ 2x(1-x) +(1-x)" =1, and

Vee +-%}’CD =x"+x(1-x) = x. Thus,
A=7ccacc+}/m)5c‘o '*'71)051:1) =7cc((1_V)x+v)+7cb((l'v)x+—;']+7nn(1_v)x

1
=(7/CC +Yep +Von )(l—v)x+(;/a. '*‘57&)) v=(1-v)x+xv=x.




® A(x,m,v) = E0cOpc +EcpOcp + EppOpp =O(1 +myv? /2

or, for any arbitrary value of x,

10)  A@,mv)=x+(1-x)k=k+(1-k)x

where k= (1+m)v’ /2.

Therefore, the conditional probability that a sibling of a child of type C is of type D is
(1) 1-[k+(1-kx]=0-bH1d-x).

The conditional probability that a sibling of a child of type D is of type D is given
simply by substituting 1-x for x in (10). We thus get,

(12) k+(-k)(1-x)

and similarly, the conditional probability that a sibling of a child of type D is of type C
is given by substituting x for 1-x in (11). We thus get,

(13) (A-h)x.

(We can also derive this last probability from (12) by writing
1-[k+(1-k)(1-x)]=(1-k)x.) Hence, when x — 0, the conditional probabilities (12)

and (13) approach, respectively, 1 and zero.

For the general case (any arbitrary value of x), by using (10) and (11) we
calculate first the expected payoff of a child of type C from interacting with a sibling.
This payoffis [k + (1-k)x]R + (1= k)(1-x)S . Next, by using (12) and (13) we calculate
the expected payoff of a child of type D from interacting with a sibling. This payoff is
[k +(1-k)(1-x)]P+(1-k)xT . Therefore, the difference between these two numbers is
(14)  x{R-[kP+(1-E)TP} +A-0){kR+A-k)S]- P} =xa+(1-x)B
where a and B are defined in section 5 of the paper. The expression ax + 8(1-x) is

positive for any x if and only if @ and S are both positive. In Claim 3 we take x — 0,

in which case (14) reduces to kR +(1-k)S = P = (1+m)(»*/2)R +[1- (1+m)v*/2]S - P.
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