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Abstract 

The selection problem among models for the seasonal behavior in time series is considered. 

The central decision of interest is between models with seasonal unit roots and with 

deterministic cycles. In multivariate models, also the number of stochastic seasonal factors is 

a discrete parameter of interest. To enable restricting attention to data-admissible models, a 

new attempt is made at defining data admissibility. Among data-admissible model classes, 

statistical decision rules are constructed on the basis of weighting priors and decision-bounds 

analysis. The procedure is applied to some exemplary economics series. Many univariate 

series select models without seasonal unit roots but the bivariate experiments enhance the 

importance of seasonal unit roots with restricted influence of seasonal constants. The 

framework of decision-bounds analysis offers a convenient alternative to sequences of classical 

hypothesis tests. 
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1 Introduction

For a long time, seasonal characteristics of economic series were viewed as being resid-

ual and without inherent economic interest. The usual practice was to focus on de-

seasonalized data, at least in the �eld of macroeconomics. Typically, de-seasonalization

was achieved by the application of seasonal adjustment �lters. However, recently the

drawbacks of this practice and the possible economic relevance of seasonality have been

fully recognized. Many economists have realized, �rstly, that the supposedly seasonal

noise part of the series contains important information about the non-seasonal com-

ponent and, secondly, that the seasonal component of one series contains information

about the seasonal and non-seasonal components of other series. In short, any attempt

to decompose the world of economics into two mutually independent worlds, one being

non-seasonal and of economic interest and the other one being seasonal and uninterest-

ing, is misguided. A good survey of the historical developments that led to the modern

econometrics of seasonality can be found in Hylleberg (1992).

The need to view the whole of the economic variable of interest within a full model

that incorporates seasonal features as well as trend and business cycle characteris-

tics has instigated the development of various seasonal time series models. Building

on the traditional low-order autoregressive (AR) model, which is a convenient �rst-

order approximation to the dynamic properties of most time series in the absence of a

theoretical model, three ways have been used repeatedly in order to capture seasonal

characteristics. Firstly, seasonal constants can be added to the deterministic part of the

model. These seasonal-dummy models are characterized by inexible and repetitive cy-

cles and by predictions that are mainly projections of the average in-sample cycle into

the future. Secondly, stable conjugate complex roots in the AR polynomial may reect

non-persistent seasonality. Thirdly, seasonal unit roots have been suggested by Hylle-

berg et al. (1990) and others to allow permanent shifts in the seasonal structure.

These models with non-stationary stochastic seasonality are characterized by exible

and shape-changing cycles and by predictions that mainly project the present shape of

the seasonal cycle into the future, with a low degree of predictive precision due to the

non-stationarity. Amalgams of these models have also been used but we will point to

some of their drawbacks in this paper.

This apparent variety of available models calls for an e�cient model selection strat-

egy. In this paper a framework for a multiple decision strategy with regard to model

selection is developed. The basic choice set of seasonal models is determined by argu-

ments of data admissibility, as we feel that one should be suspicious of models that are

not data-admissible. The concept of data admissibility permits to impose plausibility

restrictions on process trajectories and to discard models that have a high probability
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of generating implausible trajectories. Following the exclusion of non-admissible mod-

els from consideration, the choice among the remaining candidates is often guided by

sequences of hypothesis tests, whereas other researchers use Bayesian methods. This

paper introduces a multiple decision (MD) strategy as a third alternative that builds

on Bayesian ideas but assigns a central position to a loss function that is designed to

penalize certain mismatches between selected and true model harder than others. The

elicitation of weighting priors within each model class is guided by the idea of uni-

form distributions over bounded regions of parameter values. A similar approach was

followed by Franses et al. (1997) for certain seasonal processes in a fully Bayesian

setting. However, the present work di�ers in two main aspects. Firstly, for our bivariate

experiments we use uniform weighting on eigenvalues and not on the coe�cient space.

Secondly, we form decision rules by loss functions.

The remainder of this paper is organized as follows. A step toward a more rigorous

de�nition of data admissibility is taken in Section 2. In Section 3 existing seasonal

models are reviewed under the aspect of data admissibility. Section 4 concentrates on

constructing multiple decision bounds in order to permit an e�cient selection among

competing models. In Section 5, empirical applications to some macroeconomic series

are reported. We robustify the results by also reporting some sensitivity experiments.

Section 6 concludes. An appendix expounds the basics of the multiple decisions tech-

nique used in this paper.

2 The concept of data admissibility

The reference work by Hendry (1995, p.364) gives the following verbal de�nition of

data admissibility:

"A model is data admissible if its predictions automatically satisfy all

known data constraints."

In this de�nition, a correct interpretation of the word `prediction' appears to be crucial.

If it stands for point prediction from the realized sample | or possibly subsamples

thereof | by means of conditional expectation, the de�nition may appear slightly too

liberal for empirical applications. For example, consider three models: (a) white noise

plus a constant a; (b) a random walk started from the value a; (c) some nonlinear

but symmetric generating law that also starts from a but is stationary only in a local

neighborhood of a and is explosive otherwise. All three models result in the same

conditional-expectation point forecast a. However, we feel that for a naturally bounded

economic variable only model (a) is admissible, whereas for an unbounded variable we

may also accept model (b) but not (c).
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On the other hand, if `prediction' means the predictor process in its interpretation as

a random variable, though possibly conditioned on some starting values in the data

sample, the de�nition is very restrictive. We formalize the two extreme interpretations

in two tentative de�nitions. We remark that, as we are concerned with models for time

series, we view `models' as parametric collections of time-series processes.

De�nition 1. A process is called data-admissible in mean prediction if none of its point

forecasts at any step size de�ned by conditional expectations from observed samples

or subsamples thereof violates logical constraints. A model parameterized by a param-

eter � 2 � is called data-admissible in mean prediction if all � 2 � de�ne admissible

processes.

The de�ned property is sample-dependent. It is conceivable that we construct an arti-

�cial sample that is close but not identical to the observed one, apply the model under

investigation with a certain �xed value of �, and violate the logical constraints for a

certain step size. The following alternative de�nition marks the other extreme.

De�nition 2. A process is called strictly data-admissible if it is conceivable as a data-

generating mechanism for the observed n-dimensional economic variable for all t 2 I,

where I is the index time range for the considered class of time-series processes. Typ-

ically, I = N. A parametric model is called strictly data-admissible if all � 2 � de�ne

data-admissible processes.

Verbal elements such as `logical constraints' and `conceivable' are intended to leave

room for expert evaluation by economic theorists. Some logical constraints are certain

or almost sure, such as de�nitional identities, but for others their violation is just

extremely unlikely. Under the latter category come e.g. trajectories for unemployment

rates that remain at a level beyond 90% for several decades, under the former category

come trajectories with unemployment rates outside the range [0,1]. Practical usage

of the de�nition requires the assumption of a set of conditions A which conceivable

trajectories are not allowed to violate. A could exclude impossible values but also other

features, such as disproportionate growth, explosive cycles, or sudden jumps. In the

following, we will use as sets A interval restrictions to avoid impossible values or cone-

type restrictions to avoid excessive expansion from starting values.

We note that, e.g., the model of Brownian motion is not strictly data-admissible for the

unemployment rate as almost every trajectory of its processes crosses the boundaries

of 0 and 1, even if started from real-life values. The same is probably true for many

economic and econometric models used in practice. However, an economist may feel

quite comfortable with such models for a certain time span and may be willing to use

them to explain the local behavior of economic variables that are strictly bounded. One

may consider to replace De�nition 2 by a `local' de�nition requiring the admissibility
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constraints to just hold for a limited part of the time range I. However, then the

plausibility of the analysis depends on the life span of trajectories that may be quite

low. It makes more sense to exploit the LIL (law of the iterated logarithm) property of

the random walk which guarantees that generated trajectories violate certain prescribed

boundaries at most �nitely often. We introduce the following de�nition for weak-sense

data admissibility, which is stronger than De�nition 1 but weaker than De�nition 2 and

may be able to capture the properties that are interesting in practice.

De�nition 3. A process is called (weak-sense) data-admissible if its trajectories violate

bounds constructed from plausibility arguments at most �nitely often. A model is called

(weak-sense) data-admissible if all � 2 � de�ne data-admissible processes.

Clearly, a strictly data-admissible model is data-admissible. A data-admissible model

is admissible in mean prediction unless the observed sample has been created from

the �nite number of constraint violations. The characteristic properties of De�nition

3 are seen as follows. Suppose the admissibility bounds are de�ned by some function

g(t) such that A = fXt 2 [X0 + at � g(t);X0 + at + g(t)]g. We assume that (a)

g(0) > 0, (b) g(t) increases monotonously in t, (c) limt!1 g(t)= log t =1 and hence also

limt!1 g(t) =1, (d) limt!1 g(t)=t = 0. In short, g(t) is sublinear but grows faster than

log t. We note that, assuming a > 0 and X0 > 0, this admissibility condition is stricter

than A0 = fXt > 0g, i.e. positivity of trajectories. The `trend-stationary' model Xt =

X0+at+"t with Gaussian white noise "t is certainly data-admissible in mean prediction.

However, it is also weak-sense admissible due to the extremal properties of the Gaussian

distribution, though it can never attain strict admissibility due to the unboundedness

of the support of the Gaussian law. Due to the LIL, the drifting random walk started

from X0 and with drift constant a is also a weak-sense data-admissible model. If the

drift is unknown, widening A to e.g. A = fXt 2 [X0 + a1t � g(t); X0 + a2t + g(t)]g

with 0 < a1 < a2 will result in data-admissible drifting random walks over a useful

range of drift parameters, such that we can hope that the sample estimate falls into the

prescribed range [a1; a2]. In contrast, all models with disproportionate growth, such as

Xt = Xt�1 + a+ bt+ "t, are clearly inadmissible.

3 Seasonal time series models

In the following, we will use the conventional time-series abbreviations, such as B for

the lag operator, i.e. Xt�1 = BXt, � for �rst di�erences 1 � B, and �4 = 1 � B
4 for

seasonal di�erences. Without undue lack of generality, we will concentrate on the case

of quarterly data throughout. We will use "t to denote a white-noise series. Wherever

we need stronger properties, we will tacitly also assume that "t is Gaussian white noise.
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For exposition, we �rst consider the seasonal time series model

�4Xt =
4X

i=1

�iDit + "t (1)

Dit are seasonal constants that 1 in the i{th quarter and 0 in the other quarters. The

deterministic part of the right-hand side admits some alternative equivalent represen-

tations:

4X
i=1

�iDit = �+
3X

i=1

�
�
iDit = �+ a cos(�t) + b cos(

�t

2
) + c cos(

�(t� 1)

2
)

There is an obvious one-one mapping between the three representations in the param-

eters (�1; : : : ; �4), (�; �
�
1 ; �

�
2 ; �

�
3), and (�; a; b; c).

The model (1) is an amalgam of two popular time series models, the seasonal random

walk with drift

�4Xt = a+ "t ; (2)

and the random walk with seasonally varying drift

�Xt =
4X

i=1

�iDit + "t : (3)

These models have been repeatedly used in the econometric literature to describe the

behavior of seasonal data. To capture the serial correlation in the errors, they are

usually `augmented' with autoregressive lags of the left-hand-side variable, such asPp�4
i=1 'i�4Xt�i for cases (1) and (2). Our point is that the two simpler models (2) and

(3) are data-admissible with respect to a plausible set A but that the amalgam model

(1) is not data-admissible. In particular we de�ne the admissibility set A by

A = fmax
i�4

jXt �Xt�ij < g(t)g (4)

with the function g(t) obeying the restrictions limt!1 g(t)= log t = 1

and limt!1 g(t)=t = 0 as motivated in the last section. If md denotes the maximum

di�erence j�i � �jj, additional conditions such as g(0) > md and g(t) di�erentiable

with g
0(t) > 0 exclude uninteresting cases. Note that A is designed to contain secular

expansion (i = 4) as well as intra-annual seasonal expansion (i < 4).

The process (1) is composed of four interspersed random walks with di�erent drift

constants. The di�erence of two of these four random walks with drift di�erence md

is again a random walk Zt with drift proportional to md. Because of the law of the

iterated logarithm (LIL)

lim
t!1

sup
Zt �mdt

�(2t log log t)1=2
= 1 a.s. (5)
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(see, e.g., Davidson, 1994, p.408), the set A is violated by the process with probability

one. Note that even the deterministic skeleton of the model violatesA for t large enough.

The average life span strictly decreases with md and can be quite low for empirically

relevant parameter combinations.

In contrast, for (2) the di�erence Xt�Xt�i is a random walk with zero drift. It follows

from the LIL that A will only be violated for �nitely many t as g(t) was assumed

to grow faster than the denominator in (5). Hence, the model (2) is weak-sense data-

admissible. For (3), the di�erences Zt = Xt � Xt�i are bounded in probability. The

maximum of the Zt is essentially governed by c log t and the Gumbel distribution (cf.

Johnson and Kotz, 1970, p.276). It follows that (3) is not strictly admissible due to

the unbounded support of the increments but that the model is weak-sense admissible

if g(t) grows faster than log t. The problem evolves how then to reconcile the two ideas

of deterministic and stochastic seasonality in (2) and (3) in one comprehensive model

and retain the property of weak-sense data admissibility. The answer is that this is not

possible for univariate X. If one really wants to include deterministic seasonality within

the framework of seasonal unit roots, this can only be done by allowing for a seasonal

starting pattern or by considering di�erent, more complicated, structures. However, for

multivariate X, such a reconciliation is possible.

A class of multivariate seasonal models with univariate marginal models of the admis-

sible type (2) was suggested recently by Franses and Kunst (1996) who consider

special restrictions on seasonally cointegrated models. We use the following additional

notational conventions. �2 denotes the second-order di�erencing operator 1�B
2, S(B)

is the seasonal moving average 1 +B +B
2 +B

3, A(B) is the moving average with al-

ternating signs 1 � B + B
2 � B

3. Note that these three operators are factors of the

seasonal di�erencing operator �4. In this notation, the n-dimensional seasonal model

considered by Franses and Kunst reads

�4Xt = �1�
0
1S(B)Xt�1 + �2(�

0
2A(B)Xt�1 + a

� cos �(t� 1))

+�3f�
0
3�2Xt�2 + (b�; c�)(cos

�

2
(t� 1); cos

�

2
(t� 2))0g

+�+

p�4X
i=1

�i�4Xt�i + "t (6)

The dimensionalities are n�ri for �i and �i, i = 1; 2; 3, r2�1 for a
�, r3�1 for b

� and c�,

and n�n for the �i matrices. The model allows for a non-zero general drift � and also

for deterministic seasonal inuences �2a
� and �3(b

�
; c
�) at the frequencies � and �=2.

These are proportional to the loading vectors of the seasonal error-correcting structures.

Hence, the coe�cients a; b; c of the regressors cos(t � 1)�; cos(t � 1)�=2; cos(t � 2)�=2
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are restricted by a = �2a
�
; b = �3b

�
; c = �3c

�. These parameter restrictions cannot be

expressed conveniently in the representation with coe�cients �i; i = 1; : : : ; 4 and the

regressors Dti or in the parameterization (�; ��1 ; �
�
2 ; �

�
3).

The multivariate model (6) is a variant of the seasonal cointegration model introduced

by Hylleberg et al. (1990) and Lee (1992). These articles should be consulted

for all details. We just recall for convenience that the �rst three expressions on the

right hand side correspond to cointegration at the long-run frequency ! = 0 and at

the two seasonal frequencies ! = � and ! = �=2, i.e., the semi-annual and the annual

frequency. The respective ranks ri; i = 1; 2; 3, are the cointegrating ranks or the number

of cointegrating relationships at the three frequencies and are usually identi�ed by

sequences of hypothesis tests guided by tables of signi�cance points as presented by

Lee (1992) and, for the modi�ed version (6), by Franses and Kunst (1996). Note

that (6) allows for a deterministic seasonal inuence only in the presence of seasonal

cointegration. If r2 = r3 = 0, there cannot be any seasonal deterministics. Franses

and Kunst (1996) show that, in (6), the expansion of seasonal cycles is contained for

all individual variates. Hence, the model is weak-sense data-admissible with A de�ned

as in (5). The seasonal constants only enter in the error-correcting seasonal equilibrium

structures, which are stationary except for the added cycles, and therefore the model

(6) also incorporates the other admissible model type (3).

4 Decision bounds

Most decisions in present econometrics are based on the framework of hypothesis test-

ing. In hypothesis testing, one out of two decisions is formally identi�ed with a lower-

dimensional manifold �0 in a parameter space � and then is given the name of null

hypothesis. The other decision is identi�ed with the generic remainder � n �0 and is

called alternative hypothesis. Typically, the hypothesis test is conducted in the follow-

ing steps. A test statistic is calculated from the observations. A signi�cance level � is

�xed. The distribution of the test statistic under �0 is evaluated. The alternative is

preferred if the value of the test statistic is in the � tail region of the null distribution

and the null is preferred otherwise.

The problems of this approach are well known. Firstly, the labels of `null' and `alter-

native' are arbitrary and occasionally they can be interchanged by adopting a di�erent

parameterization. Secondly, the decision presupposes an asymmetric loss function with

respect to incorrect decisions. In small samples, the null hypothesis appears to be pre-

ferred whereas in large samples the alternative is always preferred if it is correct whereas

the null is still rejected with probability �. Thirdly, the distribution under the null is
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typically not constant over �0 but depends on the position of � 2 �0 on the man-

ifold, which is usually called `nuisance'. Fourthly, it seems di�cult to generalize the

approach to decision problems that are not binary. Usually, this di�culty is resolved by

a sequence of (binary) hypothesis tests, which brings in a variety of further problems,

such as the order of sequential decisions, the distinction of nested and non-nested sit-

uations, and the meaning of signi�cance levels. Adopting an alternative framework in

the spirit of a Bayesian version of discriminant analysis, also called multiple decisions

(MD) approach, Kunst (1996) presents a di�erent solution for the problem of opti-

mal selection of parameter subspaces. Each parameter subset is given a discrete prior

distribution of 1=k with k the number of `hypotheses' or model classes. Within each

of the k subsets, some continuous heuristic prior is de�ned. A loss function is de�ned

on the set of classes �, and the expectation of this loss function is then minimized.

The loss-function approach assigns symmetric loss to incorrect decisions and imposes a

more severe penalty on decisions that are more incorrect than others. The calculation

of optimum decision bounds even for a restricted set of decision rules imposes a heavy

computational burden. However, once such bounds have been established, the decision

rules are readily applicable to the real world, the same way that signi�cance tables are

applicable in hypothesis testing. One advantage of the MD approach is that it neces-

sarily yields asymptotically correct selection of hypotheses, given that such a decision

is possible in the considered problem. For further details, see the Appendix.

4.1 The univariate model

With respect to seasonal time series,Kunst (1996) considers as Example 4 the following

decision problem. A univariate time series is generated from a fourth-order autoregres-

sion. The autoregressive polynomial �(:) is allowed to have at most one unit root at

any of the frequencies 0, �, and �=2. All non-unit roots are assumed to be stable. The

occurrence of all unit roots is coded as (1,1,1), of just one unit root at ! = 0 as (1,0,0)

etc., and decisions among all 23 = 8 cases are considered. Assuming a uniform prior on

� = f(i1; i2; i3); ij 2 f0; 1g; j = 1; 2; 3g and some reasonable prior within the classes, a

double-squared loss function is minimized and decision bounds are tabulated for given

sample sizes. In the following we will denote the discrete parameter space by � and a

typical discrete parameter by �. Hence, �̂ denotes an estimate of a discrete parameter

or equivalently a selection of a certain model class based on observed data.

Here, we consider another problem of seasonal model selection, as we want to discrim-

inate between stochastic and deterministic conceptions of seasonality, as expressed in

(2) and (3). To simplify the basic decision problem, we assume that there is a unit root

at ! = 0. Furthermore we exclude cases that are not data-admissible such as (1). This
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latter assumption prevents the application of any hypothesis tests that are designed

for nested situations, as we deliberately exclude the `closure' model from consideration.

We are left with the following possibilities:

1. Model (2) holds. There are unit roots at ! = � and ! = �=2 but there is no

deterministic seasonal pattern. We code this event as (1,0).

2. Model (3) holds. There are no seasonal unit roots but there is a deterministic

seasonal pattern. We code this event as (0,1).

3. There is no seasonality in the process, neither deterministic nor stochastic. Any

visible indications of seasonality may be rooted in stationary (non-persistent)

cycles at frequencies close to the seasonal frequencies ! = � or �=2. We code this

event as (0,0).

In order to keep the decision design reasonably simple, we do not separate between the

roots at ! = � and ! = �=2 although we are aware of the fact that partial occurrence

of one of these roots has been reported in empirical studies.

In analogy to similar problems considered by Kunst (1996) we use a double-squared

loss function

dk((i1; i2); (j1; j2)) = f(j1 � i1)
2 + (j2 � i2)

2
g
2 (7)

which imposes a large penalty of 4 on misspecifying a deterministic seasonal model as

a stochastic seasonal model and vice versa and a lesser penalty of 1 on misclassifying

any of these two models as non-seasonal and vice versa.

The non-seasonal model has to be equipped with a weighting prior distribution. It reads

�Xt = �+
X

1�i�3

~'i�Xt�i + "t (8)

and we assume a continuous uniform distribution on the area S3 � R
3 that is deter-

mined by the stability of the roots of ~�(z) = 1 � ~'1z � ~'2z
2 � ~'3z

3. These processes

were simulated via a mixture of some outer bounds of a simple geometrical shape that

contains S3 and brute-force rejection of unstable roots. For � we assume a standard

normal weighting prior, whereas E("2t ) = �
2
" is �xed at 1 as we do not expect the results

to depend critically on �".

The stochastic seasonal model reads

�4Xt = �+ "t (9)

and we assume a standard normal prior on � and a degenerate on the value of 1.0 for

�".
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The deterministic seasonal model reads

�Xt =
4X

i=1

�iDti + "t (10)

and we assume a four-variate normal prior with mean (0; : : : ; 0)0 and variance � = I4

for the seasonal constants (�1; : : : ; �4). �" is again �xed at 1.0.

Given these weighting prior distributions, we then simulate 30,000 trajectories with

the empirically relevant lengths N = 100; 150; 200 of the general model, which results

in approximately 10,000 trajectories for each of the cases (8), (9), and (10). For each

trajectory, we evaluate two summary statistics that are useful for a discrimination

among the cases. Then, the expected risk as de�ned by the loss function (7) is minimized

by a grid search over potential decision bounds for the two summary statistics. We

now refer to the results of this search as they are summarized in Table 1. Under the

labels b1 and b2, the table shows the identi�ed optimum bounds. b1 is the bound for

stochastic seasonality and b2 is the bound for deterministic seasonality. These bounds

are calculated from an auxiliary encompassing regression

�4Xt = �+ �
�
1 cos(�t) + �

�
2 cos(

�t

2
) + �

�
3 cos(

�(t� 1)

2
)

+�1A(B)Xt�1 + �2�2Xt�1 + �3�2Xt�2 + "t (11)

This equation is estimated by least squares. If the norm of the estimated 3-dimensional

coe�cient vector c1 = k(�1; �2; �3)
0k exceeds b1 and at the same time the norm of the

estimated 3-dimensional coe�cient vector c2 = k(��1 ; �
�
2 ; �

�
3)
0k does not exceed b2, we

opt for (0,0), i.e., no seasonal unit roots and no deterministic seasonality. If c1 < b1, we

decide for (1,0), i.e., seasonal unit roots. In this case we ignore the decision that would

be suggested by c2, as the two types of seasonal features are not allowed to co-exist.

If c1 > b1 and c2 > b2, we decide for (0,1), i.e., deterministic seasonality. It was also

attempted to reverse the decision sequence, that is to give priority to the criterion c2

but this resulted in higher minimum risk.
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TABLE 1. Optimal multiple decision rules for the univariate seasonal problem and simulated

frequencies of classi�cation. 30,000 replications.

N b1 b2 dmin

100 0:2733 0:4548 0:04140

150 0:2549 0:4034 0:02380

200 0:1899 0:3502 0:01460

generated identi�ed model

model N = 100 N = 150 N = 200

(0; 0) (1; 0) (0; 1) (0; 0) (1; 0) (0; 1) (0; 0) (1; 0) (0; 1)

(0; 0) 9745 60 194 9849 44 106 9889 27 83

(1; 0) 9 9937 60 0 10003 3 1 10000 5

(0; 1) 483 64 9448 352 50 9593 239 17 9739

Under the heading dmin, Table 1 shows the attained minimum value of the expected

loss function dk. For a fully consistent test (decision) procedure, this value must reach

0 for N ! 1. In three separate tables we show the frequency of correct classi�cation

and of misclassi�cation in the simulation. In a simple binary test it su�ces to report

the frequency of type I and type II errors. Here, there are three hypotheses, the cases

of classi�cation errors are more involved and these should be reported properly. For

example, for N = 200 we generated 10006 processes with seasonal unit roots (1,0).

Only 6 of them were classi�ed incorrectly. In contrast, approximately 2.5% of all (0,1)

processes with deterministic cycles were misclassi�ed, most of them as (0,0) processes.

In a sloppy classical interpretation, one may conclude that the `power' of the deci-

sion procedure against deterministic cycles is almost 0.975 or 97.5%. On average, the

frequency of misclassi�cations decreases monotonously if N increases but due to the

di�erent rates of convergence in the coe�cients this is not always so clear and it pays

to see the decision procedure as a whole.

4.2 The bivariate model

Building on the n{variate data-admissible seasonal model (6) with n = 2, we also

consider a bivariate decision problem. For the moment we exclude the possibility of

frequency-zero cointegration and also impose p = 4, hence we obtain the simpli�ed

model

�4Xt = �+ �2(�
0
2A(B)Xt�1 + a

� cos �(t� 1))

+�3f�
0
3�2Xt�2 + (b�; c�)(cos

�

2
(t� 1); cos

�

2
(t� 2))0g+ "t (12)
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Then, we have two discrete seasonal decision parameters. In the ordered pairs (i1; i2),

i1 varies in the set f0,1,2g and denotes the number of seasonal cointegrating vectors.

i2 is 0 or 1 and reects the absence or presence of deterministic seasonality. We do not

impose the condition that the seasonal cointegrating vectors at ! = � and ! = �=2

have to be the same but we focus on equal cointegrating ranks at these two frequencies.

A separation of the ranks would complicate the analysis by introducing a third decision

parameter that would hardly reect the main features of interest.

In this context, the loss function (7) is unsatisfactory as the range over which the two

decision coordinates vary is not the same. It appears preferable to penalize the largest

loss with respect to i2 as much as the largest loss with respect to i1. Hence we use

d((i1; i2); (j1; j2)) = (j1 � i1)
2 + 4(j2 � i2)

2 (13)

This function may be viewed as an amalgam of the multiple binary decision problem

we faced in the univariate case and of the estimation of an integer number. In the �rst

case, a double-squared loss function is needed to su�ciently penalize errors in many

binary entries, as single-squared loss would be equivalent to the sum of absolute errors.

In the second case, a single-squared loss function is adequate.

Within the model classes, realizations of (12) must be generated according to a weight-

ing prior for the continuous parameters. Just as in the univariate experiment, we used in-

dependent standard Gaussian random draws for the unbounded parameters �; a�; b�; c�.

For a seasonal cointegration rank of 1, matrices �i = �i�
0
i, i = 2; 3, were constructed

from the Jordan representation �i = TDT
�1. Because �i is singular, the diagonal

matrix D contains one element of 0. The other element of D was drawn from a uniform

distribution on (0,2). The o�-diagonal elements of the rotation matrix T were drawn

independently from a standard normal distribution and the diagonal elements were

scaled at 1. If �j = 0; j 6= i, the resulting process (12) is non-explosive. Otherwise,

this is not guaranteed, and stability has to be checked by the eigenvalues of the state

space transition matrix. For explosive solutions, all random numbers were re-drawn. A

similar strategy was also used for the cointegration rank of 2, with D containing two

uniform random diagonal elements, where the cases of re-drawing because of explosive

con�gurations increased considerably.

Minimization of the loss function (13) has to be conducted on the basis of test statistics.

Due to the known optimality properties of likelihood-ratio statistics for binary decision

problems, we again adopt LR{type statistics for our problem. Hence, decisions on i2

rely on the ratio

c3 =
~�
(1)
U ~�

(2)
U

~�
(1)
R ~�

(2)
R

(14)
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of the residual variance estimates from the unrestricted bivariate autoregression (with

seasonal constants) and the restricted bivariate autoregression (without dummies) as

estimated by least squares. We used the residual variance estimate rather than the errors

variance estimate in order to keep c3 in the interval (0,1), which we found convenient

as it permits a joint evaluation with the other correlation-type decision statistics. In

our Monte Carlo design, we did not allow for correlation among the two error processes

and we imposed this restriction tacitly in (14). In practice, one may want to replace c3

by a ratio of determinants.

For the seasonal cointegration problem, it is well known that LR statistics can be con-

structed from squared canonical correlations (for details, see Lee, 1992, and Franses

and Kunst, 1996). There are two canonical correlations at each frequency, appropri-

ately conditioned on deterministic inuences at other frequencies, between �4Xt and

(A(B)Xt�1; cos(t�)) or (�2Xt�2; cos(t�=2); cos((t�1)�=2)). If the larger root is smaller

than a certain boundary value, this is commonly taken as an indication that there is no

cointegration. If the larger root exceeds a signi�cance bound but the smaller root is in-

signi�cant, one may opt for a cointegrated model. If both roots are signi�cant, one may

opt for a model without seasonal unit roots at the respective frequency. A similar MD

solution for the cointegration problem was outlined in Kunst (1996). Unfortunately,

this is not the LR test for a joint test for cointegration at two separate frequencies. The

joint LR test happens to be quite complicated and we therefore simply use geometric

averages of the smaller and larger non-zero roots at the two frequencies as our decision

criteria c1 and c2. If c2 < b2 for some decision bound b2 that is determined by simula-

tion, we conclude that the ranks at both seasonal frequencies r2 and r3 are 0. If c2 > b2

we rest the decision on whether the matrices �2 and �3 have full rank 2 or reduced

rank 1 on a comparison of the �rst decision criterion c1 and a numerically determined

decision bound b1.

In summary, we opt for i1 = 0 if c2 < b2. In this case i2 = 0 as (0,1) is not data-

admissible, hence �̂ = (0; 0). If c2 > b2 and c1 < b1 then we decide i1 = 1 and rest

the decision on the second discrete parameter i2 on comparing c3 and b3. Finally, if

c2 > b2 and c1 > b1 we decide i1 = 2. c3 < b3 results in �̂ = (2; 0) and c3 > b3 results

in �̂ = (2; 1). The e�ects of the possible alternative decision strategy of giving priority

to the decision on i2 at the cost of possibly ignoring indication of i1 = 0 are considered

in Section 5.3.

An evaluation of the loss-minimizing decision bounds bi; i = 1; 2; 3 based on a Monte

Carlo experiment with 50,000 replications, i.e., approximately 10,000 replications for

each case, is presented in Table 2. From Table 2, we note the non-synchronous devel-

opment of the bounds. In particular, b1 does not change much as N increases from 150

to 200. Such behavior is rooted in the di�erent rates of convergence, i.e., N for b1; b2
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and N
1=2 for b3, and shows that the MD approach would be poorly substituted by any

classical testing procedure with monotonously decreasing signi�cance levels.

TABLE 2. Optimal multiple decision rules for the bivariate seasonal problem. 50,000

replications.

N b1 b2 b3 dmin

100 0:110 0:167 0:772 0:1870

150 0:082 0:125 0:838 0:1292

200 0:080 0:096 0:859 0:1026

Table 3 shows what models have been identi�ed at the decision bounds of minimum

loss. Two types of processes are most vulnerable to misclassi�cations. Firstly, processes

with neither unit-root nor deterministic seasonality (2,0) are misclassi�ed as season-

ally cointegrated processes with one stochastic seasonal component (1,0). The error

frequency of this event drops from approximately 15% at N = 100 to about 10% for

the two larger sample sizes considered. Secondly, (1,1) processes with one stochastic

and one deterministic seasonal component are misclassi�ed either as (1,0) processes

| the deterministic seasonal cycle is not found | or as (2,1) processes | i.e., the

stochastic seasonal cycle is ignored. The frequency of the occurrence of any of these

two mistakes remains fairly constant at about 20% for N = 100 and N = 150 but drops

to 16% for N = 200. In the �rst case, some of the roots are close to but not on the

unit circle and hence this is equivalent to a classical `power' problem. In the second

case, the procedure con�rms erroneous restrictions and hence the `optimum size' of two

partial hypothesis tests is �xed at levels of approximately 10%. Apart from these three

`outlets', the discrete parameter estimation is quite reliable and the frequency of some

of the other possible misclassi�cations attains virtually zero for N = 200.

TABLE 3. Matching of generated and identi�ed models at the optimum represented in Table

2. 50,000 replications, hence approximately 10,000 replications for each model class.

(a) N = 100

generated identi�ed model

model (0; 0) (1; 0) (2; 0) (1; 1) (2; 1)

(0; 0) 9931 16 0 49 0

(1; 0) 285 9471 12 212 11

(2; 0) 23 1502 8467 4 9

(1; 1) 89 919 16 7938 1048

(2; 1) 4 28 57 590 9319
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(b) N = 150

generated identi�ed model

model (0; 0) (1; 0) (2; 0) (1; 1) (2; 1)

(0; 0) 9978 5 0 13 0

(1; 0) 189 9613 8 175 6

(2; 0) 6 994 8994 2 9

(1; 1) 35 591 13 7978 1393

(2; 1) 1 7 18 285 9687

(c) N = 200

generated identi�ed model

model (0; 0) (1; 0) (2; 0) (1; 1) (2; 1)

(0; 0) 9985 6 0 5 0

(1; 0) 89 9866 0 34 2

(2; 0) 2 1056 8947 0 0

(1; 1) 12 570 1 8409 1018

(2; 1) 0 6 17 338 9637

5 Empirical evidence

5.1 Univariate evidence

The univariate discrete estimation procedure introduced in Section 4 was applied to 18

macroeconomic time series. We used quarterly data on gross domestic product (GDP),

private consumption, gross �xed investment, goods exports, wages, and a longer-term

interest rate. All series are in real terms, including the interest rate which was deated

using an appropriate price index. With the exception of the interest rate, all data

series are used in logarithms. Parallel data have been used for three countries: Austria

(1964{1994), the Federal Republic of Germany (before uni�cation, 1960{1988), and

the United Kingdom (1957{1994). This data set coincides with the one used by Kunst

and Franses (1996) who also provide graphical representations of the time series that

show the strong seasonal e�ects that are present in most series. To make the procedure

operable, we had to choose among two options. Firstly, the basic regression (shown

above as (11))

�4Xt = �+ �
�
1 cos(�t) + �

�
2 cos(

�t

2
) + �

�
3 cos(

�(t� 1)

2
)

+�1A(B)Xt�1 + �2�2Xt�1 + �3�2Xt�2 + "t (15)

can be used directly, which represents a very stubborn adherence to the decision design

that was also used to generate the decision bounds. Secondly, additional conditioning
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may be conducted on some lags of �4Xt in order to accommodate the (typically high)

autocorrelation in the error process. We report results from both variants. In the latter

case we used four lags for all series and summarize evidence on serial correlation in the

errors by the portmanteau statistic Q due to Ljung and Box. This standardization eases

the comparison across series though it may not correspond to parsimonious time-series

models for most series.

Table 4 shows the main results. We give the �rst decision statistic c1 which is inde-

pendent of error scales, the second decision statistic c2 which had to be re-scaled by

division through the estimated standard deviation of the errors �̂, the discrete parame-

ter estimate following from the decision statistics and from Table 1, using N = 100 for

Germany, N = 150 for the United Kingdom, and interpolating between the two val-

ues for Austria. In borderline cases, two possible estimates for the discrete parameter

� = (i1; i2) are given. In the �nal column we display the marginal signi�cance of Q, as

stated above.

Notice that the main results di�er from those of previous research based on classical

methods. Most series show deterministic seasonality (0,1). In the Austrian data we �nd

seasonal unit roots (1,0) only in consumption and interest, in both cases only in the

augmented test version. In the German data we �nd seasonal unit roots also in the GDP

and wages variables, also in the augmented version only. None of the British series is

classi�ed as having seasonal unit roots. British wages and interest are classi�ed as (0,0).

The most conspicuous results are the deterministic nature of seasonality in investment,

which may be explained by the large share of the construction sector which is hit by

the climatic seasonal cycle, and the contradiction in the Austrian data between total

GDP and one of its main components, private consumption. The sum of a (1,0) and

a (0,1) variable is certainly (1,0) but the deterministic component in the added (0,1)

variable may be so strong that it disables statistical recognition of the unit roots in the

aggregate series.
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TABLE 4. Estimates for discrete seasonal parameters

(a) Austrian data

c1 c2 �̂ p(Q)
GDP 0:64171 3:68384 (0; 1) 0:00001

0:40382 2:96462 (0; 1) 0:54605
consumption 0:26371 1:51499 (1; 0)� (0; 1) 0:00698

0:17916 0:93987 (1; 0) 0:30315
investment 0:69244 4:92727 (0; 1) 0:80509

0:54073 4:17534 (0; 1) 0:95806
exports 0:80326 0:75947 (0; 1) 0:98827

0:78375 0:78911 (0; 1) 0:99871
wages 0:77809 7:44742 (0; 1) 0:00004

0:50134 5:85293 (0; 1) 0:50428
interest 0:28200 0:57415 (0; 1) 0:00007

0:21916 0:53456 (1; 0) 0:30913

(b) German data

c1 c2 �̂ p(Q)
GDP 0:50964 0:66334 (0; 1) 0:00273

0:24993 0:53925 (1; 0) 0:99217
consumption 0:64582 2:61653 (0; 1) 0:00000

0:22901 1:36622 (1; 0) 0:78246
investment 0:58391 2:47899 (0; 1) 0:00742

0:33720 1:43830 (0; 1) 0:99698
exports 0:76982 1:15883 (0; 1) 0:07252

0:69788 1:01670 (0; 1) 0:38479
wages 0:57569 2:22417 (0; 1) 0:00000

0:15816 0:96554 (1; 0) 0:79787
interest 0:19854 1:47223 (1; 0) 0:00381

0:19931 1:13530 (1; 0) 0:01730

(c) UK data

c1 c2 �̂ p(Q)
GDP 0:55363 0:84969 (0; 1) 0:00006

0:31064 0:49970 (0; 1) 0:20413
consumption 0:65677 0:98788 (0; 1) 0:00000

0:33142 0:54039 (0; 1) 0:09775
investment 0:70979 1:46300 (0; 1) 0:03056

0:35532 0:91398 (0; 1) 0:98534
exports 0:60081 0:71460 (0; 1) 0:31281

0:59381 0:74832 (0; 1) 0:35700
wages 0:82293 0:47569 (0; 0) 0:00408

0:51865 0:35802 (0; 0) 0:49176
interest 0:77228 0:29415 (0; 0) 0:68022

0:84159 0:32683 (0; 0) 0:84557
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5.2 Bivariate evidence

For the bivariate examples, pairs of real wages and real private consumption series

for the three countries, i.e., Austria, Germany, and the United Kingdom were used.

Seasonal patterns in wages may generate similar seasonal patterns in spending, hence

seasonal cointegration seems to be the most interesting in these pairs. As in the last

subsection, we report two sets of values for each case, one with enough conditioning

lags to eliminate residual autocorrelation and one without conditioning. Noting that

univariate analysis has found no evidence for seasonal unit roots in Austrian wages and

both British series, the results in Table 5 appear surprising. In the United Kingdom,

all seasonality is attributed to deterministic cycles and seasonal constants if no lag

augmentation is used. After accommodating for serial correlation, a (1,1) model with

seasonal cointegration is selected. Note that the (1,1) model has a seasonal unit root that

is not found by the univariate selection procedure. In Austria, the results also support

seasonal cointegration in the stochastic part whereas the evidence on the importance of

seasonal dummies is not very pronounced. Depending on the interpolation between the

b3 bounds for N = 100 and N = 150, the c3 value of 0.779 is ambiguous. In Germany,

there is no seasonal cointegration but freely developing unit-root seasonality if lags are

accounted for. The statistic c3 would point to the presence of deterministic seasonality

but this decision is overruled by the requirement of data admissibility.

TABLE 5. Estimates for discrete seasonal parameters in bivariate systems consisting of real

wages and real private consumption.

Country no. of lags c1 c2 c3 �̂

Austria 1 0.057 0.180 0.779 (1,0)-(1,1)

0 0.076 0.289 0.573 (1,1)

Germany 2 0.032 0.060 0.636 (0,0)

0 0.066 0.252 0.196 (1,1)

United Kingdom 2 0.058 0.133 0.766 (1,1)

0 0.158 0.257 0.442 (2,1)

In summary, the evidence is in conict with the univariate analysis. In univariate series,

a completely deterministic time series description is preferred in many variables. In

the bivariate series, the importance of seasonal unit roots in Austria and Germany

is underscored. This puzzle could be solved by the observation that the univariate

marginal processes are unit-root processes without seasonal constants indeed but can

be described satisfactorily over longer time intervals by simple seasonal constants plus a

su�ciently rich stationary cyclical structure. In other words, the changes in the seasonal

structure are too slow to justify the use of seasonal unit roots models for univariate

series, particularly as these unit roots cannot be used simultaneously with seasonal



I H S | Kunst / Decision Bounds for Data-Admissible Seasonal Models 19

dummies. A model that captures 90% of the seasonal variation, say, is preferred even

if it is the `wrong' model. In contrast, bivariate models suggest the joint exploitation

of the explanatory powers of seasonal dummies and of seasonal unit roots by restricted

seasonal cointegration.

5.3 Sensitivity of the results

The empirical results presented up to here depend on the design of the MD analysis.

Slight changes in that design may have strong e�ects on the outcome. A decision maker

may feel more comfortable if the main parameter estimates prove robust toward those

changes. In classical hypothesis testing, this sensitivity is checked routinely by embed-

ding the general model as de�ned on the primary parameter space � in an even more

general model by extending it to a larger primary parameter space �� � � and by

considering the decision problem of whether the data still select �. For example, VAR

models with Gaussian random errors are embedded in VAR models with non-Gaussian

errors or in VAR models with �rst-order autocorrelated Gaussian errors. In MD anal-

ysis, this kind of sensitivity check is just one type of possible procedures and maybe

not even the most amenable to its spirit. One may e.g. consider the following types of

sensitivity checks:

1. Sensitivity with regard to adding or deleting a hypothesis

2. Sensitivity with regard to splitting or merging speci�ed classes

3. Sensitivity with regard to the distributional window

4. Sensitivity with regard to opening or closing the structural part of the model

window

5. Sensitivity with regard to the loss function

6. Sensitivity with regard to within-class priors or coordinate changes

7. Extending the class of decision rules with the aim of further gains in risk

For the metaphorical usage of the word `window' for the basic parametric most gen-

eral model considered, cf. Poirier(1995). We adopt this metaphor in order to express

our conviction that the validity of the most general model is not testable but rather

represents a way of viewing the world of data, i.e. a `window'.

From this menu, only very few experiments can be conducted routinely although any

item may be of particular interest. Here, we conduct three sensitivity experiments.
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Firstly, we consider the e�ects of cointegration at ! = 0 which was excluded from the

basic simulation design and is often observed in macroeconomic time series. We note,

however, that frequency-zero cointegration is not found by standard statistical tools in

our bivariate examples.

The cointegration experiment is of type 4 according to the above list. In all classes of

bivariate models, 50% of the generated processes are allowed to be cointegrated. A tech-

nical problem is that, in the presence of cointegration at the frequency 0, hard rejection

must be abandoned as a principle to generate multivariate uniform distributions. The

chance to hit upon a non-explosive process of the form

�4Xt = (1; �12)
0diag(�11; 0)(1; �12)S(B)Xt�1

+�2A(B)Xt�1 +�3�2Xt�2 + "t (16)

is almost negligible for non-singular seasonal cointegration matrices �2 and �3, i.e., in

the case of no seasonal unit roots, if all matrices are still built upon their eigenvalues

in the admissible ranges, i.e., (-2,0) for the frequency 0 and (0,2) for the seasonal

frequencies. There are two conceivable solutions to this problem of additional cross-

restrictions among the three frequencies. Firstly, one may rely on a uniform prior on the

parameter �11 only and generate�2 and�3 by some prior distribution on the coe�cient

space. Secondly, one may enforce the loading vectors and cointegrating vectors to be

the same across frequencies and restrict all �ve roots by a stability condition. In fact,

this stability condition turned out to be simply

��11 + �21 + �22 + �31 + �32 � 2

and a uniform distribution on this 5{variate area can be generated easily, so the latter

solution was adopted. Here, �21 and �22 denote the eigenvalues of �2 and �31 and

�32 denote the eigenvalues of �3. This has the advantage that the very same design

can be used for the seasonally cointegrated classes. However, whereas the classes (2,0)

and (2,1) are unrestricted, a restriction is imposed on (1,0) and (1,1), as the seasonal

cointegration vectors have to be the same. This circumstance may be responsible for

the observed increase in expected risk.

Table 6 summarizes the results of this cointegration sensitivity check for N = 100. It

is obvious that the smaller non-zero seasonal root in the non-seasonal classes (2,0) and

(2,1) is less likely to be found in cointegrated processes. The MD procedure lowers the

corresponding decision bound in order to avoid larger losses for these misclassi�cations

but pays with a strong increase of misclassi�cations of the (1,1) processes with seasonal

cointegration and deterministic dummy cycles. However, the main results of the last
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subsection turn out to be insensitive to the bounds changes. Apart from the experi-

ment reported in Table 6, some more unreported variants were simulated but the main

outcome was similar.

TABLE 6. The e�ects of cointegration at the zero frequency. N = 100, 50,000 replications.

Matrix of errors and optimum decision bounds. Standard bounds from Table 2 are given in

brackets.

generated identi�ed model

model (0; 0) (1; 0) (2; 0) (1; 1) (2; 1)

(0; 0) 9851 40 1 107 4

(1; 0) 251 9033 447 151 121

(2; 0) 110 3107 6726 12 41

(1; 1) 88 701 81 6022 3108

(2; 1) 18 48 119 734 9079

b1 = 0:078 [0.110] b2 = 0:153 [0.167] b3 = 0:778 [0.772] dmin = 0:2928 [0.1870]

A second sensitivity experiment is of type 7 according to the above rudimentary clas-

si�cation. Instead of giving priority to decisions on the basis of the decision bounds

b1 and b2 and to allot the area where deterministic seasonality is found according to

the bound b3 but no seasonal cointegration to the class (0,0) with no cointegration

at seasonal frequencies and no deterministic seasonality, one may consider to assign

priority to the bound b3 and to allot the doubtful area to (1,1). This strategy led to

a marked deterioration in the minimum risk. This deterioration was also observed in

a parallel experiment where the di�erent decision rule was adopted in the presence of

cointegration at ! = 0. These results are summarized in Table 7. Although necessarily

some misclassi�cation events were reduced, it is obvious that the alternative decision

rule which gives priority to the �nding of deterministic seasonality is worse than the one

used for generating Tables 2 and 3. Such outcomes may help to solve disputes within

classical hypothesis testing about whether e.g. `speci�c-to-general' testing is to be pre-

ferred to `general-to-speci�c' testing. The testing sequences can simply be evaluated by

MD analysis and the achieved minimum expected risks are then compared. By a similar

experiment in the spirit of class 7, it can e.g. be established easily that any interchange

of decisions on the bounds b1 versus b2 does not incur any important shifts in expected

risk. We have mentioned above that a similar unreported sensitivity experiment was

also conducted for the univariate problem and resulted in a similar deterioration.
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TABLE 7. The e�ects of giving priority to decisions on the inclusion of seasonal constants.

50,000 replications. Bounds and risks from Tables 2 or 6 are shown in parentheses.

N b1 b2 b3 dmin

100 0:110 (0:110) 0:154 (0:167) 0:739 (0:772) 0:2510 (0:1870)

150 0:082 (0:082) 0:116 (0:125) 0:803 (0:838) 0:1734 (0:1292)

200 0:080 (0:080) 0:087 (0:096) 0:844 (0:859) 0:1302 (0:1026)

with cointegration at ! = 0

100 0:078 (0:078) 0:144 (0:153) 0:743 (0:778) 0:3653 (0:2928)

A third sensitivity experiment was conducted to investigate the inuence of potential

outliers on the identi�ed decision bounds and the decision risk. We used the arguably

extreme assumption of replacing the Gaussian white-noise innovations of the basic

model by independent draws from a standard Cauchy distribution. This is a sensitivity

experiment of type 3 according to our tentative classi�cation.

For Cauchy errors, none of the three discriminating statistics approximates a likelihood-

ratio statistic and, additionally due to to the now missing moments, one cannot expect

to keep the risk at the low level of the other experiments. Nevertheless, the results

summarized in Table 8 are disconcerting. The expected MD risk exceeds 1, which means

that `on average' the optimum decision made by the procedure is incorrect. The table of

actual decisions reveals that this high risk is caused by the inability of the procedure to

correctly identify deterministic cycles against the highly volatile background of Cauchy

errors. In contrast, the cointegrating rank i1 is still identi�ed with a reliable precision.

TABLE 8. The e�ects of Cauchy innovations. N = 100 and 50,000 replications.

Misclassi�cations and decision bounds.

generated identi�ed model

model (0; 0) (1; 0) (2; 0) (1; 1) (2; 1)

(0; 0) 9546 20 0 386 44

(1; 0) 426 5412 13 3593 547

(2; 0) 64 959 8193 95 694

(1; 1) 393 3994 2 5006 615

(2; 1) 42 674 5513 352 3417

b1 = 0:088 [0.110] b2 = 0:208 [0.167] b3 = 0:888 [0.772] dmin = 1:380 [0.1870]

Just for the sake of an experiment, let us assume that the Austrian, German, and British

economies are driven by Cauchy innovations and let us apply the corresponding decision

bounds. Without lag augmentation, the Austrian and German wage-consumption sys-

tems are then classi�ed as (1,1) and the British system as (2,1), i.e. there is no change
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relative to the main results. With lag augmentation, however, they are classi�ed as

(0,0), with two independent stochastic seasonal components but without deterministic

seasonality. Although the overall MD risk is high, we note that the model class (0,0) can

be identi�ed with comparative precision in the presence of Cauchy errors. Hence, the

importance of seasonal unit roots is enhanced even under the implausible assumption

of an extreme outliers distribution.

6 Discussion

In summary, the results of the MD analysis indicate that seasonal unit roots are a

convenient way to model time-changing seasonality in macroeconomic data sets whereas

the routine insertion of seasonal dummy constants into seasonal time-series models is

not supported. While the univariate evidence supports purely deterministic seasonality

in many cases, the bivariate structures point to the importance of seasonal unit roots.

In the case of German wages and consumption, it even seems that all seasonal cycles

may be caused by unit roots without deterministic inuence. These stochastic cycles

resemble deterministic patterns in the univariate marginals, as seasonal covariation

between the variates is not taken into account and starting patterns for the seasonal

cycles are very volatile. This very pronounced seasonal variation is unstable in the

long run, however, and entirely di�erent patterns will emerge eventually in the distant

future.

In univariate models, it may be su�cient to use deterministic dummies, particularly as

one cannot use them in conjunction with unit roots in order to sustain data admissi-

bility. In multivariate models, the joint occurrence of strong starting patterns, which

would suggest seasonal dummies, and of time-changing seasonality, which would sug-

gest seasonal unit roots, can be accommodated by seasonal cointegration and restricted

seasonal dummies.

It is tempting to identify deterministic and stochastic seasonal cycles with basic sources

of seasonality, such as climate or culture. Such an economic interpretation should be

conducted with care only. New technologies may alter the response to the temperature

cycle over the year, and consumer preferences due to cultural traditions may experience

long-run changes. Presumably, all seasonal e�ects in the economy, except for primary

measurements of meteorological data, are changing slowly but permanently over time.

A rewarding direction for future research, which is beyond the scope of this paper, would

be to include the periodic seasonal model suggested by Franses (1996) and Ghysels

et al. (1996) in the set of model classes. Periodic seasonal models have properties that

bridge unit-roots and deterministic-cycles models. The number of considered classes is
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certainly the most severe restriction for the MD analysis but the technique as such can

be extended in a straightforward way.

The MD approach used to decide on the nature of seasonality is new and therefore may

demand for some justi�cation with respect to the details of its structure. In particu-

lar, the MD technique is Bayesian in spirit and thus its priors have to be motivated.

We use two kinds of priors, those on the decision set � and those on the classes �j.

Since � is �nite, a uniform discrete prior is natural and also widely used due to the

principle of insu�cient reason. However, it is not universally accepted and the well-

known partitioning paradox indicates that care must be taken in formulating the basic

classi�cation problem, i.e., in constructing � and the partitioning of � into the classes

�j. Within these classes, we chose to de�ne uniform priors on natural parameteriza-

tions, in stark contrast to the emphasis on `reference priors' in the current Bayesian

literature (see, e.g., Kass and Wasserman, 1996). Our choice was motivated by two

observations. Firstly, the widespread skepticism against uniform priors is mainly rooted

in the argument of the arbitrariness of parameterization, whereas in our examples a

preference for a certain parameterization is rooted �rmly in the literature. For example,

it would be extremely `unnatural' to parameterize autoregressive models by anything

else than either coe�cients or characteristic roots. We made the choice between roots

and coe�cients spaces as guided by convenience or by the need to construct a bounded

parameter space. Secondly, whereas an updating of posteriors can be conducted on the

basis of improper priors, the random numbers needed for the MD technique cannot

be generated from such priors and hence priors are required to be probability distri-

butions, thus excluding many reference priors encountered in the literature. We note

that the MD priors are not the foundation of a Bayesian updating of posteriors but are

weighting priors used to de�ne an overall loss expectation.

The Bayesian approach is certainly not new. What is new, however, is the central

position of the loss function in the MD problem. The loss function can be modi�ed in

such a way that certain decision errors are minutely avoided at the cost of an increase

in other decision errors and hence it can be easily adjusted to the taste of the decision

maker. Its shape is more important in small samples than in larger ones where most

decisions made tend to be correct. For natural restrictions on the shape of the loss

function, see the Appendix.

The author wishes to thank Wolfgang Polasek and the participants of a seminar in

St.Oswald, Upper Austria, for helpful comments. The usual proviso applies. All com-

puter exercises have been conducted on the basis of FORTRAN codes written by the

author and some subroutines of the NAGLIB library. All computer programs are avail-

able from the author upon request.
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Appendix: Consistency of the decision procedures

The multiple decision procedures used in this paper are used to discriminate among cer-

tain types of hypotheses that correspond to subsets of the parameter space �, which in

turn is a subset of the p{dimensional Euclidean space Rp. In general, the minimization

of a loss function does not guarantee that asymptotically, i.e., for N !1, the proba-

bility of a correct decision converges to 1. This important property, the consistency of

the decision procedure, depends on the topological properties of the subsets �i, on the

form of the speci�ed loss function, on the speci�ed prior weighting distributions, and,

of course, on the consistency in the estimation procedure of the parameter � 2 �. With

regard to the latter three points, however, it is natural to assume the following:

(a1) The loss function attains a value of 0 if and only if the decision is correct.

(a2) The loss function is bounded.

(b1) The weighting prior allots 1=k to each of the k subsets of �, among which the

decision is searched.

(b2) For every " > 0 there exists a compact subset of �i that contains a mass of 1� "

of the conditional weighting prior on �i.

(c) For every " > 0 and every � 2 � there exists an integer N("; �) such that an

"{neighborhood of � contains a mass of 1 � " of the distribution of �̂(N) for all

N > N("; �), where �̂(N) denotes the estimate from a sample of size N .

Now suppose we have a binary decision among �1 and �2 with �1 [�2 = �. If �1 is

closed and �2 is open in �, let us consider the following decision rule:

(a) opt for � 2 �1 if min�2�1

����̂ � �

��� < �

(b) opt for � 2 �2 otherwise

If, for N ! 1, � # 0, then the procedure is consistent for every � 2 �2. �2 contains

an "{neighborhood and this neighborhood contains a share of the probability mass

that is arbitrarily close to 1. This just describes the `test consistency' of classical tests.

However, for � 2 �1 one has to be more careful. The probability of incorrect decisions

for �1 attains a maximum on the closure of the �-neighborhood of �1. This is the `size'

or `risk level' of the decision procedure. If �1 is bounded, then it is also compact and

for su�ciently large N , its �{neighborhood contains an arbitrarily high proportion of
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probability mass. It is then possible to decrease � with N ! 1 so slowly that this

proportion converges to 1 and the procedure is consistent.

If �1 is unbounded, it is not compact and this construction may not be possible.

Note, however, that in all problems treated in this paper �1 can be represented as

�1 = �1:1��1:2 with the bounded set �1:1 representing the main parameters of interest

and the unbounded set �1:2 representing the `nuisance' parameters. It is then necessary

to restrict the inuence of the nuisance in such a way that it does not prevent the sort

of uniform convergence we just considered. Fortunately, this requirement is ful�lled in

the examples given in the main text. Next we consider the behavior of the expected

risk. The expected risk is a global concept and it may well be that the procedure is

locally consistent but that it does not achieve an expected risk of 0 asymptotically.

Consider

ER =

Z
�1

R(�)f1(�)d� +

Z
�2

R(�)f2(�)d� = J1 + J2

where f1 and f2 denote the two weighting priors on the decision subsets and R(�) is

the expected loss if � is the true parameter and the above decision rule is used. J1 can

be made arbitrarily small if (a2) holds and if either �1 is compact or other conditions

guarantee the existence of the test described above. J2 can be decomposed into two

parts, the integral J2:1 over the compactum C and the integral J2:2 over the remainder

�2 n C. J2:2 can be made arbitrarily small using (b2) and (a2). J2:1 is calculated over

the compact set C and we can make the expected risk over any compact set arbitrarily

small by choosing N large enough. Let us denote the maximum of the loss function

by M and �x an arbitrarily small " > 0. Then we can choose a compact subset C(")

containing a mass of 1� "(3M)�1, then we �x the `signi�cance level' at "(3M)�1 and

choose N1, then we choose N2 in order to make the expected risk on the compact subset

of �2 smaller than "=3. We �nally take N as the maximum of N1 and N2 and ER < "

as required.

Note that (b2) can also be exploited to guarantee an asymptotic risk of 0 in those cases

where �1 is unbounded and a test for a given signi�cance level cannot be constructed.

Then ER ! 0 but the decision procedure as such will not be consistent. Such exten-

sions are possible for many problems that do not �t into our topological assumptions

where locally inconsistent decision rules with an asymptotic zero risk can be found.

Note that entire areas of inconsistent behavior within � can be avoided arbitrarily by

appropriate weighting priors, hence some e�ort has to be made in order not to `cheat'

in the elicitation step. In this paper we restrict attention to priors with their support

equal to � and uniform on a widely accepted parameterization of each �j.

We have seen that by assuming compactness or uniform convergence we can construct

a decision procedure that is consistent and takes expected risk to 0. Conversely, if we



I H S | Kunst / Decision Bounds for Data-Admissible Seasonal Models 27

minimize expected risk for �nite N we minimize ER also in the limit. Since ER > 0,

we obtain a procedure with an asymptotic risk of 0, which is also optimal in a sense

as it minimizes the risk for �nite samples. There is no guarantee, however, that it is

optimal among all decision procedures in the sense of minimizing �nite-sample risk

as a di�erent parameterization may achieve a similar procedure with lower risk. The

problem of optimal parameterization is a di�cult one to solve. In the binary problems, it

is tantamount to the conception of a most powerful test and has led to the development

of likelihood-ratio tests. Without pretending to having achieved this lowest-risk bound,

it appears useful to concentrate on parameterizations that are roughly equivalent to

likelihood-ratio statistics, which is what is done in the examples of the main text.

The examples of the main text, however, are not binary but multiple decision problems.

The problems have very special structures that allow us to use simple extensions of the

above ideas to demonstrate that consistent decision procedures also exist. It is easy to

see that this is possible, for example, if all binary subproblems fall into the open/closed

framework outlined above and if compactness or uniform convergence holds. In contrast

to the binary problem, however, an analytic evaluation of risk minimization is usually

impossible and therefore we took refuge to numerical optimization.
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