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Abstract

This paper introduces the reader into the apparatus behind the popular

New Keynesian Phillips (NKPC) curve. It derives several log-linear versions

of this curve and recursive formulations of the Calvo-Yun price staggering

model that is behind this curve. These formulations can be used for higher-

order approximations of the NKPC or for implementations that use other

non-linear solution techniques, as, e.g., projection methods.

∗Chair of Empirical Macroeconomics, University of Augsburg, Universitätsstraße 16, D-86159
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1 Basic Framework

1.1 Production Functions

There is a continuum of firms indexed by j ∈ [0, 1]. The demand function of firm j

is

Yjt =

(
Pjt

Pt

)
−ǫ

Yt, ǫ > 1, (1.1)

where Pjt, Pt, and Yt denote the firm’s price, the aggregate price level, and aggregate

output, respectively. The price index is given by

Pt =

(∫ 1

0

P 1−ǫ
jt dj

) 1
1−ǫ

. (1.2)

The demand function (1.1) derives from minimizing the costs to purchase the bundle

PtYt =
∫ 1

0
PjtYjtdj, where

Yt =

(∫ 1

0

Y
ǫ−1
ǫ

jt dj

) ǫ
ǫ−1

. (1.3)

The production function is either

Yjt = ZtN
1−α
jt α ∈ (0, 1] (1.4)

or

Yjt = ZtN
1−α
jt Kα

jt α ∈ (0, 1). (1.5)

In the first case (considered for instance by Gaĺı et a. (2001)) labor Njt is the

single factor of production. In the second case (considered for instance by Heer

and Maußner (2009) or Christiano et al. (2005)) capital services Kjt are an addi-

tional factor of production. Zt is a productivity shock common to all firms. Cost

minimization at the given real wage wt implies

wt = (1− α)gjtZtN
−α
jt (1.6)

in the case of production function (1.4) and

wt = gjt(1− α)Zt(Kjt/Njt)
α, (1.7a)

rt = gjtαZt(Kjt/Njt)
α−1 (1.7b)

in the case of (1.5).

There is an important difference between the two settings. In the second case the

first-order conditions (1.7) ensure that all firms choose the same capital-labor ratio

kt := Kjt/Njt = Kt/Nt. Hence, all firms have the same marginal costs gt = gjt∀j ∈

[0, 1]. This does not hold in the case of production function (1.4) unless α = 1.
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1.2 Aggregation

Aggregate output in this economy is given by (1.3). However, this will not allow us

to define output in terms of sums of factor inputs. Yun (1996) proposes to use a

second price index P̃t defined by

P̃t =

(∫ 1

0

P−ǫ
jt dj

)−1
ǫ

(1.8)

so that

Ỹt :=

∫ 1

0

Yjtdj
(1.1)
=

(
PjtPt

Y t

)

=

(
Pt

P̃t

)ǫ

Yt. (1.9)

In the case of production function (1.5) this allows us to relate Yt to aggregate

labor input Nt =
∫ 1

0
Njtdj and aggregate capital input Kt =

∫ 1

0
Kjtdj: since kjt =

(Kjt/Njt) = kt for all firms, we get

Ỹt =

∫ 1

0

Yjtdj =

∫ 1

0

ZtNjtk
α
t dj = ZtNtk

α
t = ZtN

1−α
t Kα

t .

In addition, we can rewrite equation (1.7) in terms of aggregate variables:

wt = gt(1− α)ZtN
−α
t Kα

t , (1.10a)

rt = gtαZtN
1−α
t Kα−1

t . (1.10b)

It is not possible to follow the same procedure in the case of production function

(1.4). Since

Ỹt =

∫ 1

0

Yjtdj =

∫ 1

0

ZtN
1−α
jt dj 6= ZtN

1−α
t ,

we define

Ñ1−α
t =

∫ 1

0

N1−α
jt dj (1.11)

so that

Ỹt = ZtÑ
1−α
t . (1.12)

Accordingly, we define aggregate marginal costs g̃ by

wt = g̃t(1− α)ZtÑ
−α
t . (1.13)

This allows us to relate the marginal costs of firm j to our meassure of average

marginal costs g̃t: from (1.6) and (1.13):

gjt
g̃t

(
Njt

Ñt

)
−α

.
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Using (1.1) and the aggregate production function (1.12) to substitute for Njt/Ñt

we can write:

gjt = g̃t

(
Pjt

Pt

)−αǫ
1−α
(
Yt

Ỹt

) α
1−α

. (1.14)

1.3 Price Setting

In each period (1 − ϕ) of the firms are allowed to set their relative price Pjt/Pt

optimally. Henceforth we use the index A to refer to these firms. The remaining

fraction of firms, indexed by N , adjusts their price according to a rule of thumb.

We consider two rules. The first rule implies a forward-looking Phillips curve. We

assume,

PNt+1 = πPNt, πt :=
Pt

Pt−1
, (1.15a)

where πt is the inflation factor (1 plus the rate of inflation) and π its value in a

non-stochastic stationary equilibrium. Note that with zero inflation (i.e. π = 1)

these firms do not change their nominal price. The second rule (used in Christiano

et al. (2005) and Walsh (2005)) accounts for the backward-looking element in the

Phillips curve. It posits

PNt+1 = πtPNt. (1.15b)

Since 1 − ϕ firms choose Pjt = PAt and the remaining fraction sets Pjt = PNt, the

formula for the price index (1.2) implies

P 1−ǫ
t = (1− ϕ)P 1−ǫ

At + ϕP 1−ǫ
Nt . (1.16)

In the case of the first rule of thumb this implies

P 1−ǫ
t = (1− ϕ)P 1−ǫ

At + ϕ(πPNt−1)
1−ǫ. (1.17a)

For the second rule we get

P 1−ǫ
t = (1− ϕ)P 1−ǫ

At + ϕ(πt−1PNt−1)
1−ǫ. (1.17b)

Since PNt−1 is itself an index of the prices of those firms that adjusted their price in

t− 2 optimally and those firms that obeyed to a rule of thumb,

P 1−ǫ
Nt−1 = (1− ϕ)P 1−ǫ

At−1 + ϕ(πt−2PNt−2)
1−ǫ, (1.18)
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we can derive a recursive formulation for the price index. I demonstrate this for the

updating scheme (1.15b):

P 1−ǫ
t = ϕP 1−ǫ

At + ϕ(πt−1PNt−1)
1−ǫ,

(1.18)
= ϕP 1−ǫ

At + ϕ(1− ϕ)(πt−1PAt−1)
1−ǫ + ϕ2(πt−1πt−2PNt−2)

1−ǫ,

(1.18)
= ϕP 1−ǫ

At + ϕ(1− ϕ)(πt−1PAt−1)
1−ǫ + ϕ2(1− ϕ)(πt−1πt−2PAt−2)

1−ǫ + . . . .

Therefore,

(πt−1Pt−1)
1−ǫ = ϕ(πt−1PAt−1)

1−ǫ + ϕ2(1− ϕ)(πt−1πt−2PAt−2)
1−ǫ

+ ϕ3(1− ϕ)(πt−1πt−2πt−3PAt−3)
1−ǫ + . . . ,

and, thus,

P 1−ǫ
t = (1− ϕ)P 1−ǫ

At + ϕ(πt−1Pt−1)
1−ǫ. (1.19a)

Similarly, we can derive a recursive formulation of equation (1.17a):

P 1−ǫ
t = (1− ϕ)P 1−ǫ

At + ϕ(πPt−1)
1−ǫ. (1.19b)

In the case of rule (1.15a) this implies the following relation between the relative

price of firms that optimally adjust their price and the inflation factor :

1 = (1− ϕ)(PAt/Pt)
1−ǫ + ϕ(π/πt)

1−ǫ. (1.20a)

In the case of rule (1.15b) this relation is

1 = (1− ϕ)(PAt/Pt)
1−ǫ + ϕ(πt−1/πt)

1−ǫ. (1.20b)

The same line of reasoning applied to

qt :=

(

P̃t

Pt

)
−ǫ

=

∫ 1

0

(
Pjt

Pt

)
−ǫ

dj = (1− ϕ)(PAt/Pt) + ϕ(PNt/Pt)

yields:

qt = (1− ϕ)(PAt/Pt)
−ǫ + ϕ(πt/π)

ǫqt−1, (1.21a)

and

qt = (1− ϕ)(PAt/Pt)
−ǫ + ϕ(πt/πt−1)

ǫqt−1, (1.21b)

respectively.

6



Given qt we can write the aggregate resource constraint as

Yt =
1

qt
ZtN

1−α
t Kα

t (1.22)

if the production function is given by (1.5) or as

Yt =
1

qt
ZtÑ

1−α
t , (1.23)

if the production function is given by (1.4). Note that our measure of aggregate

labor input is related to Nt =
∫ 1

0
Njtdj, NAt and NNt via:

Ñ1−α
t = (1− ϕ)N1−α

At + ϕN1−α
Nt ,

NNt =
Nt − (1− ϕ)NAt

ϕ
. (1.24)

2 The Optimal Price

2.1 Preliminaries

Now consider a firm in period t that is allowed to set its price optimally at PAt.

As long as the firm will not be able to optimize again, its price in period t + s,

s = 1, 2, . . . is related to PAt according to

Pjt+s = πsPAt, (2.1a)

Pjt+s =

s∏

i=1

πt+i−1PAt, (2.1b)

where the first equation holds for rule (1.15a) and the second equation rests on rule

(1.15b). Note that the aggregate price level can be written as

Pt+s =

s∏

i=1

πt+iPt. (2.2)

and, thus, the relative price is either given by

Pjt+s

Pt+s
=

πs

∏s
i=1 πt+i

PAt

Pt
, (2.3a)

or by

Pjt+s

Pt+s

=
πt

πt+s

PAt

Pt

. (2.3b)
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2.2 First-Order Conditions

The profit per unit of output in terms of the aggregate price level equals

Gjt+s =
Pjt+1

Pt+s
Yjt+s − C(Yjt+s),

=

(
Pjt+1

Pt+1

)1−ǫ

Yt − C

((
Pjt+1

Pt+1

)
−ǫ

Yt

)

, (2.4)

where C(·) is the cost function with derivative c′(·) = gjt+s. Differentiating this

function with respect to PAt/Pt yields:

∂Gjt+s

∂PAt/Pt
=

πs

∏s
i=1 πt+i

Yjt+s − ǫ

(
πs

∏s
i=1 πt+i

PAt

Pt
− gjt+s

)
Yjt+s

PAt/Pt
,

=
1

PAt/Pt

(

(1− ǫ)
πs

∏s
i=1 πt+i

PAt

Pt
+ ǫgjt+s

)

Yjt+s,

=
1− ǫ

PAt/Pt

(
πs

∏s
i=1 πt+i

PAt

Pt
−

ǫ

ǫ− 1
gjt+s

)

Yjt+s, (2.5a)

if Pjt+s/Pt+s is given by (2.3a) and

∂Gjt+s

∂PAt/Pt
=

πt

πt+s
Yjt+s − ǫ

(
πtPAt

πt+sPt
− gjt+s

)
Yjt+s

PAt/Pt
,

=
1

PAt/Pt

(

(1− ǫ)
πtPAt

πt+sPt

+ ǫgjt+s

)

Yjt+s,

=
1− ǫ

PAt/Pt

(
πtPAt

πt+sPt
−

ǫ

ǫ− 1
gjt+s

)

Yjt+s. (2.5b)

if Pjt+s/Pt+s equals (2.3b). The firm chooses PAt/Pt to maximize the discounted

stream of profits:

max
PAt/Pt

Et

∞∑

s=0

ϕsϕt+sGjt+s, (2.6)

where ϕt denotes the discount factor. The first order condition for this problem is:

0 = Et

∞∑

s=0

ϕsϕt+s
∂Gjt+s

∂PAt/Pt
. (2.7)

Since the common non-stochastic term 1−ǫ
PAt/Pt

in (2.5a) and (2.5b) can be canceled

in (2.7) we obtain

0 = Et

∞∑

s=0

ϕsϕt+s

(
πs

∏s
i=1 πt+i

PAt

Pt
−

ǫ

ǫ− 1
gjt+s

)

Yjt+s, (2.8a)

0 = Et

∞∑

s=0

ϕsϕt+s

(
πtPAt

πt+sPt
−

ǫ

ǫ− 1
gjt+s

)

Yjt+s. (2.8b)
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The household’s Euler equation implies

ϕt+s = βsλt+s

λt
. (2.9)

for the stochastic discount factor. This allows us to simplify equations (2.8) further:

0 = Et

∞∑

s=0

(βϕ)sλt+sYjt+s

(
πs

∏s
i=1 πt+i

PAt

Pt
−

ǫ

ǫ− 1
gjt+s

)

, (2.10a)

0 = Et

∞∑

s=0

(βϕ)sλt+sYjt+s

(
πtPAt

πt+sPt
−

ǫ

ǫ− 1
gjt+s

)

, (2.10b)

where we canceled λt (a non-stochastic variable from the point of view of period t).

2.3 Recursive Formulation of the First-Order Conditions

It is convenient to replace the infinite sums in the first-order conditions (2.10a)

and (2.10b) (see Schmitt-Grohe and Uribe (2004)). Consider condition (2.10a). If

marginal costs are equal across firms, it can be rewritten as

PAt

Pt

=
µΓ1t

Γ2t

, µ :=
ǫ

ǫ− 1
,

Γ1t := Et

∞∑

s=0

(βϕ)s
(

πsPAt
∏s

i=1 πt+iPt

)
−ǫ

Yt+1gt+sλt+s,

Γ2t := Et

∞∑

s=0

(βϕ)s
(
PAt

Pt

)
−ǫ(

πs

∏s
i=1 πt+i

)1−ǫ

Yt+sλt+s. (2.11)

Since

Γ1t = Et

{(
PAt

Pt

)
−ǫ

Ytλtgt + (βϕ)

(
πPAt

πt+1Pt

)
−ǫ

Yt+1λt+1gt+1

+ (βϕ)2
(

π2PAt

πt+1πt+2Pt

)
−ǫ

Yt+2λt+2gt+2 + . . .

}

, (2.12)

we get

Γ1t+1 = Et+1

{(
PAt+1

Pt+1

)
−ǫ

Yt+1λt+1gt+1 + (βϕ)

(
πPAt+1

πt+2Pt+1

)
−ǫ

Yt+2λt+2gt+2

+ (βϕ)2
(

π2PAt+1

πt+2πt+3Pt+1

)
−ǫ

Yt+3λt+3gt+3 + . . .

}

.
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From the point of view of period t + 1 all variables dated t + 1 and earlier are

non-stochastic and can be post-multiplied the expectations operator Et+1. Thus,

βϕ

(
π(PAt/Pt)

πt+1(PAt+1/Pt+1)

)
−ǫ

Γ1t+1 = Et+1

{

(βϕ)

(
πPAt

πt+1Pt

)
−ǫ

Yt+1λt+1gt+1

+ (βϕ)2
(

π2PAt

πt+1πt+2Pt

)
−ǫ

Yt+2λt+2gt+2 + . . .

}

By the law of iterated expectations, EtEt+1{·} = Et{·} so that the right-hand side

of (2.12) equals:

Γ1t =

(
PAt

Pt

)
−ǫ

Ytλtgt + βϕEt

(
π(PAt/Pt)

πt+1(PAt+1/Pt+1)

)
−ǫ

Γ1t+1. (2.13)

In the same way, we can derive a recursive definition of Γ2t:

Γ2t =

(
PAt

Pt

)
−ǫ

Ytλt + βϕEt

(
PAt/Pt

PAt+1/Pt+1

)
−ǫ(

π

πt+1

)1−ǫ

Γ2t+1. (2.14)

Similarly, we can derive a recursive formulation of the first-order condition (2.10b):

PAt

Pt
=

µΓ1t

Γ2t
, µ :=

ǫ

ǫ− 1
,

Γ1t :=

(
PAt

Pt

)
−ǫ

Ytλtgt + (βϕ)Et

(
πt(PAt/Pt)

πt+1(PAt+1/Pt+1)

)
−ǫ

Γ1t+1,

Γ2t :=

(
PAt

Pt

)
−ǫ

Ytλt + βϕEt

(
PAt/Pt

PAt+1/Pt+1

)
−ǫ(

πt

πt+1

)1−ǫ

Γ2t+1. (2.15)

In the case of the production function (1.4) we substitute for gjt+s from equation

(1.14) and obtain from (2.10a):

PAt

Pt
=

µΓ1t

Γ2t
, µ :=

ǫ

ǫ− 1
,

Γ1t :=

(
PAt

Pt

) −ǫ
1−α

Y
1

1−α

t Ỹ
−α
1−α

t λtg̃t + (βϕ)Et

(
π(PAt/Pt)

πt+1(PAt+1/Pt+1)

) −ǫ
1−α

Γ1t+1,

Γ2t :=

(
PAt

Pt

)
−ǫ

Ytλt + βϕEt

(
PAt/Pt

PAt+1/Pt+1

)
−ǫ(

π

πt+1

)1−ǫ

Γ2t+1. (2.16)

and from (2.10b):

PAt

Pt

=
µΓ1t

Γ2t

, µ :=
ǫ

ǫ− 1
,

Γ1t :=

(
PAt

Pt

) −ǫ
1−α

Y
1

1−α

t Ỹ
−α
1−α

t λtg̃t + (βϕ)Et

(
πt(PAt/Pt)

πt+1(PAt+1/Pt+1)

) −ǫ
1−α

Γ1t+1,

Γ2t :=

(
PAt

Pt

)
−ǫ

Ytλt + βϕEt

(
PAt/Pt

PAt+1/Pt+1

)
−ǫ(

πt

πt+1

)1−ǫ

Γ2t+1. (2.17)
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3 Log-Linear Equations

3.1 The Stationary Solution

Consider the non-stochastic equilibrium with constant inflation factor π. Equations

(1.20a) and (1.20b) imply PAt/Pt = 1. In addition, PNt/Pt = 1 (see (1.15a) and

(1.15b)). Thus all firms produce the same amount Yjt = Y at the same marginal

costs gjt = g. In this case, both equation (2.10a) and (2.10b) imply

g =
ǫ− 1

ǫ
. (3.1)

To embed any of our models of sticky prices into a linearized model we can

linearize PAt/Pt = µΓ1t/Γ2t together with the respective recursive formulations. It

has, however, become common practice to linearize (2.10a) or (2.10b) directly to get

a Phillips curve equation that relates the current rate of inflation to expected future

inflation, past inflation, and a measure of cost pressure.

3.2 First Steps

When we linearize equation (2.10a) and (2.10b) at the stationary solution we can

disregard the terms involving λ̂t+s and Ŷjt+s since these terms are multiplied by the

term in square brackets that vanishes at the stationary solution. Let p̂t := P̂At/Pt.

Then the log-linear version of (2.10a) can be written as

0 = Et

∞∑

s=0

(βϕ)sλY






p̂t −

s∑

i=1

π̂t+i −
ǫ

ǫ− 1
g

︸ ︷︷ ︸

=1

ĝjt+s






,

λY

∞∑

s=0

(βϕ)s

︸ ︷︷ ︸

=1/(1−βϕ)

p̂t = Et

∞∑

s=0

(βϕ)sλY

[
s∑

i=1

π̂t+i + ĝjt+s

]

,

p̂t = (1− βϕ)Et

∞∑

s=0

(βϕ)s

[
s∑

i=1

π̂t+i + ĝjt+s

]

. (3.2a)
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Similarly, we obtain the log-linear version of (2.10b):

0 = Et

∞∑

s=0

(βϕ)sλY






p̂t + π̂t − π̂t+s −

ǫ

ǫ− 1
g

︸ ︷︷ ︸

=1

ĝjt+s






,

λY
∞∑

s=0

(βϕ)s

︸ ︷︷ ︸

=1/(1−βϕ)

[p̂t + π̂t] = λY Et

∞∑

s=0

(βϕ)s [π̂t+s + ĝjt+s] ,

p̂t + π̂t = (1− βϕ)Et

∞∑

s=0

(βϕ)s [π̂t+s + ĝjt+s] . (3.2b)

Log-linearizing equation (1.20a) at PAt/Pt = 1 yields

p̂t =
ϕ

1− ϕ
π̂t. (3.3a)

Furthermore

̂(PNt/Pt) = −π̂t, (3.3b)

since PNt/Pt = π/πt in the case of (1.15a). If non-optimizers change their price

according to the rule of thumb in equation (1.15b) the relation between p̂t and the

rate of inflation is given by

p̂t =
ϕ

1− ϕ
(π̂t − π̂t−1) , (3.3c)

and for PNt/Pt we obtain

̂(PNt/Pt) = π̂t−1 − π̂t. (3.3d)

Given these relations the log-linear version of both (1.21a) and (1.21b) reduce to

q̂t = ϕq̂t−1. (3.4)

Since we are free to choose the initial condition, it will be convenient to set q̂t−1 = 0

so that we can disregard this variable and can work with the log-linearized aggre-

gate production function (1.5) and the respective market clearing conditions (1.10).

This is also possible in the case of the production function (1.4), since log-linearizing

(1.24) implies ˆ̃Nt = N̂t. This demonstrates that the common practice not to distin-

guish between Yt and Nt on the one hand side and Ỹt and Ñt on the other is valid in a

linearized model. However, it is not justified to do so if higher order approximations

of the model’s equilibrium conditions are used. In this case one has to resort to the

recursive formulations presented in the previous sections.
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3.3 Forward Looking Phillips Curves

First, we consider the case where the marginal costs do not differ between optimizing

and non-optimizing firms so that ĝjt+s = ĝt+s∀j ∈ [0, 1]. From the point of view of

period t + 1 equation (3.2a) can be written as

p̂t+1 = (1− βϕ)Et+1

∞∑

s=0

(βϕ)s

[
s∑

i=1

π̂t+i+1 + ĝt+s+1

]

.

Taking expectations as of period t on both sides and noting that (by the law of

iterated expectations) Et(·) = EtEt+1(·) provides

Etp̂t+1 = (1− βϕ)Et

∞∑

s=0

(βϕ)s

[
s∑

i=1

π̂t+i+1 + ĝt+s+1

]

.

Therefore,

p̂t − βϕEtp̂t+1 = Et

{

(1− βϕ)
[

ĝt + (βϕ)ĝt+1 + (βϕ)2ĝt+2 + . . .
]

− (1− βϕ)
[

(βϕ)ĝt+1 + (βϕ)2ĝt+2 + . . .
]

+ (1− βϕ)
[

βϕπ̂t+1 + (βϕ)2
(

π̂t+1 + π̂t+2

)

+ (βϕ)3
(

π̂t+1 + π̂t+2 + π̂t+3

)

+ . . .
]

− (1− βϕ)
[

(βϕ)2π̂t+2 + (βϕ)3
(

π̂t+2 + π̂t+3

)

+ . . .
]}

= Et

{

(1− βϕ)ĝt +
[

(1− βϕ)βϕπ̂t+1

(

1 + βϕ+ (βϕ)2 + . . .
)]}

= Et

{

(1− βϕ)ĝt + βϕπ̂t+1

}

(3.5)

Using equation (3.3a) to substitute for p̂t and Etp̂t+1 in equation (3.5) we obtain

ϕ

1− ϕ
π̂t = (1− βϕ)ĝt + βϕ

(
ϕ

1− ϕ
+ 1

)

Etπ̂t+1

or

π̂t = βEtπ̂t+1 +
(1− ϕ)(1− βϕ)

ϕ
ĝt. (3.6)

This is the New Keynesian Phillips curve that appears in a substantial number of

papers.

In case of gAt 6= gNt we use equations (1.14) and (2.3a) to eliminate ĝjt+s from

(3.2a). Since (for ease of writing, I use ˆ̃gt ≡ ĝt in the following paragraphs)

ĝjt+s = ĝt+s −
αǫ

1− α
︸ ︷︷ ︸

=:A

(

p̂t −

s∑

i=1

π̂t+i

)

,
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we get

p̂t − βϕEtp̂t+1 = (1− βϕ)Et

{

ĝt −Ap̂t + βϕ
(

ĝt+1 −A(p̂t − π̂t+1)

+ (βϕ)2
(

ĝt+2 −A(p̂t − π̂t+1 − π̂t+2)
)

+ . . .

− (βϕ)
(

ĝt+1 − Ap̂t+1

)

− (βϕ)2
(

ĝt+2 −A(p̂t+1 − π̂t+2)
)

− (βϕ)3
(

ĝt+3 − A(p̂t+1 − π̂t+2 − π̂t+3)
)

− . . .
}

+ βϕEtπ̂t+1,

= (1− βϕ)Et

{

ĝt −A (1 + βϕ+ (βϕ) +2 + . . .
)

︸ ︷︷ ︸

=1/(1−βϕ)

p̂t

+ Aβϕ (1 + βϕ+ (βϕ) +2 + . . . )
︸ ︷︷ ︸

1/(1−βϕ)

p̂t+1

+ Aβϕ (1 + βϕ+ (βϕ) +2 + . . . )
︸ ︷︷ ︸

1/(1−βϕ)

π̂t+1

}

+ βϕEtπ̂t+1.

Rearranging terms yields

p̂t(1 + A) = (1− βϕ)ĝt + βϕ(1 + A)Etp̂t+1 + βϕ(1 + A)Etπ̂t+1. (3.7)

Using equation (3.3a) to substitute for p̂t finally delivers

π̂t =
(1− ϕ)(1− βϕ)(1− α)

ϕ[1 + α(ǫ− 1)])
ĝt + βEtπ̂t+1. (3.8)

This is the forward looking Phillips curve that appears in Gaĺı et al. (2001) and

Sbordone (2002).

3.4 Forward and Backward Looking Phillips Curves

Assume ĝjt+s = ĝt+s∀j ∈ [0, 1]. Proceeding as in the previous section, equation

(3.2b) implies

Et [p̂t+1 + π̂t+1] = (1− βϕ)Et

∞∑

s=0

(βϕ)s [π̂t+s+1 + ĝt+s+1] .

Thus,

p̂t + π̂t − βϕEt [p̂t+1 + π̂t+1] =

ĝt + π̂t + βϕ [ĝt+1 + π̂t+1] + (βϕ)2 [ĝt+2 + π̂t+2] + (βϕ)3 [ĝt+3 + π̂t+3] . . .

− βϕ [ĝt + π̂t]− (βϕ)2 [ĝt+1 + π̂t+1]− (βϕ)3 [ĝt+2 + π̂t+2]− . . .

− βϕ [ĝt+1 + π̂t+1]− (βϕ)2 [ĝt+2 + π̂t+2]− (βϕ)3 [ĝt+3 + π̂t+3]− . . .

+ (βϕ)2 [ĝt+1 + π̂t+1] + (βϕ)3 [ĝt+2 + π̂t+2] + (βϕ)4 [ĝt+3 + π̂t+3] + . . .

= (1− βϕ) [ĝt + π̂t] . (3.9)
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Rearranging yields:

p̂t − βϕEtp̂t+1 = (1− βϕ)ĝt + βϕEt [π̂t+1 − π̂t] . (3.10)

Substituting from equation (3.3c) for p̂t and Etp̂t+1 delivers

ϕ

1− ϕ
[π̂t − π̂t−1]−

βϕ2

1− ϕ
Et [π̂t+1 − π̂t] = (1− βϕ)ĝt + βϕEt [π̂t+1 − π̂t] .

Collecting terms yields the forward and backward looking Phillips curve that appears

in Christiano et al. (2005) and in Walsh (2005):

π̂t =
1

1 + β
π̂t−1 +

β

1 + β
Etπ̂t+1 +

(1− ϕ)(1− βϕ)

(1 + β)ϕ
ĝt. (3.11)

Note that there is an alternative way to write equation (3.2b). Since its rhs

equals:

(1− βϕ)Et

∞∑

s=0

(βϕ)s [π̂t+s + ĝt+s] =

π̂t + ĝt + Et

{

(βϕ) [π̂t+1 + ĝt+1] + (βϕ)2 [π̂t+2 + ĝt+2] + . . .

− (βϕ) [π̂t + ĝt]− (βϕ)2 [π̂t+1 + ĝt+1]− (βϕ)3 [π̂t+2 + ĝt+2]− . . .

}

= π̂t + ĝt + Et

∞∑

s=1

(βϕ)s [π̂t+s − π̂t+s−1 + ĝt+s − ĝt+s−1]

we can also write

p̂t = ĝt + Et

∞∑

s=1

(βϕ)s [π̂t+s − π̂t+s−1 + ĝt+s − ĝt+s−1] . (3.12)

In the case where marginal costs differ between optimizing and non-optimizing

firms we obtain (see also (3.9))

p̂t + π̂t − βϕEt (p̂t+1 + π̂t+1) = (1− βϕ)

× Et

{

ĝt −Ap̂t + βϕ
(

ĝt+1 −A(p̂t − π̂t+1) + (βϕ)2
(

ĝt+2 − A(p̂t − π̂t+1 − π̂t+2)
)

+ . . .

− (βϕ)
(

ĝt+1 − Ap̂t+1

)

− (βϕ)2
(

ĝt+2 −A(p̂t+1 − π̂t+2)
)

− . . .

+ π̂t + βϕπ̂t+1 + (βϕ)2π̂t+2 + · · · − βϕπ̂t+1 − (βϕ)2π̂t+2 − . . .
}

= (1− βϕ)(ĝt + π̂t)− Ap̂t + βϕAEt

(

p̂t+1 + π̂t+1

)

.
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Replacing p̂t and p̂t+1 yields after a modest amount of algebra the final solution:

π̂t =
(1− ϕ)(1− βϕ)

ϕB
ĝt +

1 + A

B
π̂t−1 +

β(1 + A)

B
π̂t+1,

where: A :=
ǫα

1− α
, B := (1 + A)(1 + βϕ) + β(1− ϕ). (3.13)

Gaĺı et al. (2001) use a different assumption about backward looking behavior.

They also assume that a fraction 1 − ϕ of firms adjusts their price according to

(1.15a). Yet, among those firms that receive the signal to choose their price optimally

only the fraction 1−ω does so. These firms set their relative price according to the

first-order condition (2.10a). We use P f
At to refer to their optimal nominal price.

The remaining ω(1− ϕ) backward looking firms update their price according to

P b
At = πt−1PAt−1, (3.14)

where

PAt :=
[

(1− ω)(P f
At)

1−ǫ + ω(P b
At)

1−ǫ
]1/(1−ǫ)

. (3.15)

is the average of the prices of those firm that truly optimize and the prices of those

firms that adopt a backward looking update formula. The overall price level is still

given by equation (1.17a).

The index formula (3.15) implies

̂(PAt/Pt) = (1− ω)p̂t + ω ̂(P b
At/Pt), (3.16)

where we continue to use the symbol p̂t for the percentage deviation of the optimal

relative price of optimizing firms from its non-stochastic stationary value of unity.

From (3.14) we obtain

P b
At

Pt
=

πt−1PAt−1

Pt
=

πt−1PAt−1

πtPt−1

implying

̂(P b
At/Pt) = π̂t−1 − π̂t + ̂(PAt−1/Pt−1).

Since (note that now ̂(PAt/Pt) plays the role of p̂t in (3.3a))

̂(PAt/Pt) =
ϕ

1− ϕ
π̂t (3.17)

this yields

̂(P b
At/Pt) =

1

1− ϕ
π̂t−1 − π̂t. (3.18)
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Substituting (3.17) and (3.18) into (3.16) we obtain a new relation between p̂t and

the current and lagged rate of inflation:

p̂t =
ϕ+ ω(1− ϕ)

(1− ϕ)(1− ω)
π̂t −

ω

(1− ϕ)(1− ω)
π̂t−1. (3.19)

Since equation (3.7) still gives log-linear approximation to the first-order condition

(2.10a) we find the final solution after substitution for p̂t from (3.19). This yields

π̂t =
(1− ω)(1− ϕ)(1− βϕ)(1− α)

ξ[1 + α(ǫ− 1)])
ĝt +

ω

ξ
π̂t−1 +

βϕ

ξ
Etπ̂t+1,

ξ := ϕ+ ω(1− ϕ(1− β)). (3.20)

This is the hybrid Phillips curve equation from Gaĺı et al. (2001). It nests several

models: ω = 0 implies the purely forward looking Phillips curve (3.8), ω=0 and

α = 0 imply the standard solution in (3.6).

4 Example

In order to see how the apparatus presented in the previous sections can be integrated

into a model, I consider a simple New Keynesian macro model taken from Walsh

(2003), Section 5.4.

4.1 The Model

Households. The representative household consumes a basket of goods

Ct =

(∫ 1

0

C
ǫ−1
ǫ

jt dj

) ǫ
ǫ−1

, ǫ ≥ 1 (4.1)

with prices Pjt. Minimizing the costs PtCt =
∫ 1

0
PjtCjtdj of obtaining a given quan-

tity Ct of this basket provides his demand for good j:

Cjt =

(
Pjt

Pt

)
−ǫ

Ct, (4.2)

where Pt is the price index defined in (1.2).

In this economy there are two stores of value: nominal money balances Mt and

nominal bonds Bt, both issued by the government. Bonds pay a nominal interest

qt − 1 which is determined at the end of period t − 1 and, thus, a state variable.

The household receives nominal wages Wt and real profits Πt from firms and real
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transfers Tt from the government. His period-to-period budget constraint in units

of the final good Yt is:

Mt+1 + Bt+1

Pt
=

Mt

Pt
+ qt

Bt

Pt
+

Wt

Pt
Nt + Zt +Πt. (4.3)

The household maximizes

Et

∞∑

s=0

βs

[

C1−η
t+s

1− η
+

γ1
1− χ

(
Mt+s+1

Pt+s

)1−χ

+
γ2

1 + θ
N1+θ

t+s

]

, β ∈ (0, 1), γ1, γ2, ηθ ≥ 0

subject to (4.3) and given initial levels of Mt and Bt.

The first-order conditions of this problem are:

λt = C−η
t , (4.4a)

N θ
t =

1

γ2
λtwt, (4.4b)

λt = βqt+1Et
λt+1

πt+1
, (4.4c)

λt

Pt
= γ1

(
Mt+1

Pt

)
−χ

1

Pt
+ βEt

λt+1

Pt+1
, (4.4d)

where wt := Wt/Pt denotes the real wage rate.

Government. The government’s budget constraint is

Tt +
Mt+1 −Mt +Bt+1 − Bt

Pt
= (qt − 1)

Bt

Pt
, (4.5)

and we assume that each sequence of transfers, interest rates and money balances

satisfies the no Ponzi game condition:

Mt +Bt = −

∞∑

s=0

Pt+sTt+s − (qt+s − 1)Mt+s
∏s

i=0 qt+i
.

In this example we consider a simple Taylor rule for the nominal interest rate. Let

q > 1 denote the desired rate, then

qt+1

q
=
(πt

π

)δ

evt , δ > 1, (4.6a)

vt = ρvvt−1 + νt, νt ∼ N(0, σ2
ν), ρv ∈ (0, 1). (4.6b)

Firms. Each of the j ∈ [0, 1] goods is produced by one firm according to the

production function (1.4). The fraction ϕ of firms that is no allowed to set their

optimal price use the rule (1.15a) to update their nominal price.
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4.2 Dynamics

In a temporary equilibrium of this economy the goods, the labor market, and the

money market clear. For given (xt := st−1, Γ1t, Γ2t, and λt) the 12 equations

C−η
t = λt, (4.7a)

Ct = Yt, (4.7b)

N θ
t =

1

γ 2

λtwt, (4.7c)

wt = (1− α)g̃tZtÑ
−α
t , (4.7d)

Ỹt = ZtÑ
1−α
t , (4.7e)

Ỹt = stYt, (4.7f)

1 = (1− ϕ) (PAtPt)
1−ǫ − ϕ

(
π

πt

)1−ǫ

, (4.7g)

(
PAt

Pt

)

=
µΓ1t

Γ2t

, µ :=
ǫt

ǫt − 1
, (4.7h)

qt+1

q
=
(πt

π

)δ

evt (4.7i)

Ñt = (1− ϕ)N1−α
At + ϕ

(
Nt

ϕ
−

1− ϕ

ϕ
N

1
1−α

At

)1−α

, (4.7j)

N1−α
At =

(
PAt

Pt

)
−ǫ

Yt

Zt
, (4.7k)

st = (1− ϕ)

(
PAt

Pt

)
−ǫ

+ ϕ
(πt

π

)ǫ

t
st−1, (4.7l)

determine the 12 variables Yt, Ct, Nt, Ỹt, Ñt, pt := PAt/Pt, wt, g̃t, πt, qt+1, st, and

NAt. The model’s dynamics govern the next four equations:

xt+1 = st, (4.8a)

λt+1 = βqt+1Et
λt+1

πt+1
, (4.8b)

Γ1t :=

(
PAt

Pt

) −ǫ
1−α

Y
1

1−α

t Ỹ
−α
1−α

t λtg̃t + (βϕ)Et

(
π(PAt/Pt)

πt+1(PAt+1/Pt+1)

) −ǫ
1−α

Γ1t+1, (4.8c)

Γ2t :=

(
PAt

Pt

)
−ǫ

Ytλt + βϕEt

(
PAt/Pt

PAt+1/Pt+1

)
−ǫ(

π

πt+1

)1−ǫ

Γ2t+1. (4.8d)

In order to solve this model via linear or quadratic feed back rules we must

compute the stationary equilibrium of the deterministic counterpart of the model.

This is obtained from (4.7) and (4.8) by ignoring the expectations operator, setting

Zt ≡ 1 and vt = 0 for all t, and dropping the time indices. This delivers PA/P = 1,
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s = 1, g̃ = ǫ/(ǫ− 1), Y = Ỹ , N = Ñ ,

N =

(
1− α

γ2

ǫ− 1

ǫ

) 1
α+η(1−α)+θ

,

Y = Nα = C, and λ = C−η.

Figure 4.1: Impulse Responses to an Interest Rate Schock

Figure 4.1 displays the response of the model to a one time shock of size σν in

the interest rate equation computed with the program NKPC_1.g. The parameters

are α = 0.27, β = beta = 0.994, δ = 1.01, ǫ = 6, η = 2, ϕ = 0.75, θ = 0.5, ρν = 0.50,

and q = π/β with π = 1.0167.
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