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Abstract

In this paper, we investigate the relationship between market dynamics, dynamic resource management

and environmental policy. In contrast to static market entry games, this paper draws attention to the ef-

fects of market dynamics on resource dynamics et vice versa, because (1) we show that feedback processes

are necessary for obtaining a better understanding of what drives the dynamics between the evolution of

common-pool resources and the number of harvesters and more importantly, (2) this analysis provides an

environment discussing sustainability in an appropriate inasmuch dynamic way. The paper makes following

major points: (1) Interpreting the monopoly-scenario as a non-cooperative solution and the firm coexis-

tence solution as a cooperative solution, it is shown that the coexistence solution of this model implies a

degenerate saddle-node equilibrium. (2) An increasing number of harvesters does not necessarily imply a

lower stock of the common-pool resource in the long run. (3) The paper introduces a way establishing an

output-sharing solution by implementing an output tax, which turns out to be a pure effort tax in the long

run. (4) Strong resource sustainability is not possible, given cost reducing technological progress is relevant

and policy interventions ceased. With respect to environmental policy, we can conclude that a tax scheme

is not a substitute to a partnership solution dealing with the common-pool problem, but is treated as an

instrument establishing such a solution in the sense of a policy mix approach.

Keywords: Sustainability, resource management, environmental policy, common resources, population dy-

namics

JEL Classification Number: Q28, Q57, C61
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1 Motivation

In the 1990s, with ecological economics, a new discipline of research has been founded

as the consequent answer to serious ecological problems which cannot be tackled by

traditional environmental and resource economics (Costanza et al. (1991)). In con-

trast to this well-introduced mainstream disciplines, ecological economics as a trans-

disciplinary academic discipline combines ecological as well as economic issues in a

more pluralistic and eclectic approach than traditional resource and environmental

economics. Ecological economics can be interpreted as economics for sustainability,

or more precisely it promotes the sustainable development of ecosystems and soci-

eties.

Albeit the watch-wording sustainable development has been the focal point of many

recent works, both in economics and ecology, surprisingly or not, there is a consider-

able hot debate on the conceptual as well as on the operational level of what sustain-

ability actually contains and implies (Baumgärtner and Quaas (2010)). Ecological

economics propagates the concept of strong sustainability, which is, in contrast to

the neoclassical view, proposing that natural capital can be entirely replaced by

man-made capital (Illge and Schwarze (2009)). At the end of the day, sustainabil-

ity remains a more or less obscure item. Being aware of an imprecise definition of

sustainability, in this paper, we refer to a very broad definition of what the goal of

sustainability is: to maintain a (diverse) biological system over time and space. We

can operationalize this goal by pointing out that strong sustainability emphasizes

resource conservation over time (Howarth (2007)).

One point on the ecological as well as on the environmental economics’ research

agenda is the resource and ecosystem management issue. It seems that traditional

resource economics is based on a merely inflexible construct of what can be called

mechanistic resource stock sustainability (Van den Bergh (2007)), whereas ecological

economics relies on a more satisfactory approach which explicitly acknowledges the

interaction between resource dynamics and market development. This implies an
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important step towards finding a satisfactory answer to the problem about the risk

of overexploitation of common-pool resources.

The massive destruction of common-pool resources caused by an excessive extrac-

tion from the resource stock is generally known as the tragedy of the commons

(Hardin (1968)). One general result stemming from Cournot-competition-style har-

vesting games is that myopic agents neither take into account that choosing their

individual harvesting level affects the future biomass evolution (Sandal and Stein-

shamn (2004)), nor these agents take into account that an increase in individual

harvesting efforts leads to a decrease in individual profits (Atzenhoffer (2010)). As

shown by Harms and Sylvia (2001), commercial fishermen often base their harvest-

ing decisions on short time horizons. As a result, the exploitation effort regularly

exceeds Pareto-optimality (Atzenhoffer (2010)) and further the exploitation level of

the common-pool resource increases steadily with the number of harvesters (San-

dal and Steinshamn (2004), Atzenhoffer (2010)). However, the empirical evidence

concerning this issue is mixed. In a survey dealing with the over-exploitation of the

prunus africana in Cameroon, Stewart (2003) reports that an increasing number

of harvesters eroded the traditional resource protection ethic by the kwifon, as the

former harvesting monopolist lost his right for exclusively harvesting the bark of the

prunus africana. Ito et al. (1995) and Lopez (1998) however show that even if the

number of harvesters is limited, the exploitation level of the common-pool resource

often exceeds the Nash equilibrium. The latter insight is also fleshed out by labora-

tory experiments (Walker et al. (1990) and Walker and Gardner (1992)). All these

studies have in common that the discussion of the effects of market entry on the

incentive of harvesting the common-pool resource is in the front. However, in this

paper we draw attention to the effects of market dynamics on resource dynamics

et vice versa, because (1) we believe that feedback processes are necessary for ob-

taining a better understanding of what drives the dynamics between the evolution

of common-pool resources and the number of harvesters and more importantly, (2)

this analysis provides an environment discussing sustainability in an appropriate

inasmuch dynamic way.
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Despite of the awareness that there is obviously no escape from the tragedy, state-

imposed regulations or decommissioning schemes often fail establishing a sustainable

exposure with the common-pool resources, as shown empirically by Ostrom (1990),

Ostrom et al. (1994) and Berkes et al. (2000). However, the empirical evidence

to this issue is mixed. As mentioned by Jensen (2002), lump-sum taxation on

fishermen´s capital could be an appropriate way reducing this tendency. Evaluating

the theoretical literature, Ruseski (1998), Copeland (1994) and Bulte and Damania

(2005) discuss the effectiveness of effort subsidies and effort taxes for renewable

resource management by using strategic trade models. Assuming myopic agents,

Bulte and Damania (2005) show that an imposed effort tax on harvesting output,

which is not sufficiently high, results into a suboptimal harvesting level. Of course,

environmental policy actions relying on taxes require an accurate knowledge about

the common-pool resource, and further, the effectiveness seriously depends on the

acceptance of the resource users.

Alternatively, harvesting-sharing is suggested as a promising environmental policy

instrument substitute for taxes or quotas (e.g. Yamamoto (1995), Schott et al.

(2007)). Albeit harvesting-sharing seems to be attractive to cope with the common-

property problem even without communication between the harvesters (Schott et al.

(2007)), the implementation, as well as the perpetuation of such a partnership is dif-

ficult, e.g. because of harvester´s heterogeneity. We have to assert that the relevant

literature to this topic is rather silent (Heintzelman et al. (2008)). Insofar, a dynamic

resource management approach is required establishing a long-lasting sustainability

concept.

Another point which justifies the implementation of a dynamic resource manage-

ment system is that, even if we had found a perfect environmental policy strat-

egy in the short run, the design of policy instruments often neglects the fact that

environmental-related technological progress affects common-pool resource degrada-

tion and does not necessarily lead to a more efficient use of the resource as it is gen-
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erally argued for the case of non-common-pool resources (Bretschger and Smulders

(2007)). Regev et al. (1998) investigate, whether technological progress endangers

resource sustainability. In contrast to the prevailing economic wisdom, they find that

in a competitive economy, the appearance of technological progress is detrimental

to resource preservation. Empirically, this is particularly true for the worldwide

fisheries which are suffering from technological improvements which often results in

increasing harvesting efforts (Hilborn et al. (1995)).

From the discussion above, it seems to be necessary to amalgamate market dynamics,

resource dynamics, environmental technology progress and environmental policy in

a comprehensive co-evolutionary model. One novelty of this paper is that this co-

evolutionary model can be further used to discuss environmental policy strategies in

the context of a dynamic resource management frame. This framework perfectly fits

to the discipline of ecological economics, and its importance and amenities compared

to neoclassical approaches has been clearly emphasized by Kenneth E. Boulding

(Boulding (1978), Boulding (1981)).

Further, the paper makes the following major points: (1) Interpreting the monopoly-

scenario as a non-cooperative solution and the firm coexistence solution as a coop-

erative solution, we show that the coexistence solution of this model implies a de-

generate saddle-node equilibrium. (2) An increasing number of harvesters does not

necessarily imply a lower stock of the common-pool resource in the long run. (3) The

paper introduces a way establishing an output-sharing solution by implementing an

output tax, which turns out to be a pure effort tax in the long run. (4) Strong

resource sustainability in the sense of resource conservation is not possible, given

cost-reducing technological progress is relevant and policy interventions ceased.

The outline of the paper is as follows: In the next section the co-evolutionary model

is introduced. Section 2.1 highlights the main elements of the model. Section 2.2

discusses the dynamic behaviour of the model and provides a stability analysis of

the obtained steady-states. This is followed by section 2.3 which highlights the link

between dynamic resource management and environmental policy. In section 2.4 a
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numerical exercise is conducted. Section 3 summarizes the main results and presents

the conclusion.

2 Model

2.1 Basic setup

In this section, we present the basic elements of the model, which consists of three

basic elements: Firstly, a dynamic rule which describes the dynamic behaviour of

the natural resource N1, secondly, the market share evolution sh ∈ [0, 1] of the h-th

firm and thirdly, the dynamic cost structure of the h-th firm, Ch.

2.1.1 Evolution of the natural resource N

We assume that production exclusively depends on a scarce and regenerative but

exhaustible natural resource N which is growing with an exogenously given rate ξ2.

To keep the model tractably simple, we refer on the so called Schaefer equation,

which is gathered from the Gordon-Schaefer model (Gordon (1954)). This equation

reads as

Ṅ = ξN

[
1− N

M

]
− E(N). (1)

E(N) represents the aggregate harvesting function depending on the aggregate stock

of N . We assume that aggregate harvesting is indirectly linked to N which can be

expressed as:

E(N) =
∑
h

shfh(N), (2)

with fh(N) = ehN as a simple production function with constant returns to scale

in the firm-specific harvesting effort eh and N .

1We skip the variable-specific time-indices in the following paragraphs.
2See, for instance, Dasgupta and Heal (1979).
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2.1.2 Evolution of the market share sh

To keep the model simple without loss of generality, we restrict ourselves on the

h = {i, j} firm case. The firms are assumed to be totally symmetric with the

exception of their individually given harvesting cost level Ch, and, as shown later,

with their harvesting effort eh. It is further supposed that the cost level Ch is

directly linked to the market share evolution sh. Borrowed from evolutionary game

theory, we employ a so-called replicator dynamics approach to model the market

share evolution of the h-th firm. To guarantee an analytical solution of the model,

we have decided to refer to a simple selection mechanism based on the firm-specific

profits per unit πh ≡ Πh
N+1

3: If πh is below the average market profit per unit, π̄, this

leads to a market share decrease of firm h, whereas a positive value of πh − π̄ leads

to a market share gain of the h-th firm. If πh − π̄ = 0, the market share evolution

sh remains unchanged. Accordingly, we can model the market share evolution ṡi for

firm i as4:

ṡi = si(πi − π̄), (3)

with ci ≡ Ci
1+N , πi = ei

N
1+N [p−ci], π̄ =

∑
h shπh with c̄ =

∑
h chsh and

∑
h sh = 1. p

stands for the market price and is treated as a global parameter. For firm i, equation

(3) can be expanded and rewritten as

ṡi = si(1− si)(πi − πj) (4)

= si(1− si)
[
p

N

N + 1
(ei − ej)−

N

N + 1
(eici − ejcj)

]
= si(1− si)Θ, i 6= j,

with Θ ≡
[
p N
N+1 (ei − ej)− N

N+1 (eici − ejcj)
]
, ∂ṡi
∂ci

< 0 and ∂ṡi
∂cj

> 0.

3We define the profits per unit analogously to the per unit cost function as suggested by Bradley

(2001).
4Because of the fact that firms are assumed to be symmetric with the exception of their cost and

harvesting effort, the same arguments as stated in the text above can be used to model the market

share evolution of firm j.
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2.1.3 Evolution of the harvesting costs Ch

Firms are treated to be heterogeneous with respect to their harvesting cost and

harvesting effort structure. The total cost structure Ch of firm h consists of a fix

block Cfix, which is unaffected by cost reducing technological progress. In contrast

to Cfix,h, the variable cost block Ch − Cfix,h can be reduced by the rate of techno-

logical progress θ ∈ (0, 1). From this point of view, we can specify the cost function

for firm h as

Ċh = θ(Cfix,h − Ch). (5)

The solution to this differential equation is straightforwardly given by:

Ch = (C(0)h − Cfix,h)exp[−θt] + Cfix,h, (6)

with C(0)h > Cfix,h as a necessary condition for a falling cost structure over time.

Using equation (6), it can be shown that for t 7→ ∞ the limit of Ch is Cfix,h. If

θ = 0, Ch = C(0)h which implies a constant cost structure over time.

2.1.4 Harvesting effort vs. harvesting costs

As mentioned in the introduction, an increased harvesting effort transforms into an

increased harvesting cost level. Following (Noailly et al. (2003)), it is assumed that

without loss of generality,

eiCi > ejCj (7)

holds for all t. Together with Cfix,i ≥ Cfix,j , we have introduced a trade-off sce-

nario: firm i is, on the one hand, harvesting more than firm j, but is on the other

hand confronted with higher extraction costs Ci. Hence, in this way, we introduce

heterogeneity in our model.
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2.2 Dynamic analysis of the co-evolutionary system

2.2.1 The co-evolutionary system

The model consists of five differential equations, namely, two expressions of equation

(1) for firm i and j, equation (4) and two expressions of equation (5) for firm i and

j. Avoiding the loss of analytical tractability, we can reduce the dimension of the

system from five to three equations5.

This is due because we know that
∑

h sh = 1 and further we can solve equation

(5) for firm j. So, at the end of the day, we arrive at a system of three differential

equations which is necessary to describe the dynamic of firm i in the way of market

share and profit evolution6. The system reads as


Ṅ = ξN

[
1− N

K

]
− [
∑

h shfh(N)]

ṡi = si(1− si)(πi − πj)

Ċi = θ(Cfix,i − Ci).

(8)

2.2.2 Identification of the steady states

In this section we identify the steady states of system (8).

Definition: Steady state vector Γ. A (n × 1) steady state vector Γ of an n-

dimensional system is defined as the collectivity of intersections of the n nullclides of

system (8). For system (8) we can identify n = 3 nullclides. Thus, Γ = [Ṅ , ṡi, Ċi]
′ =

0. We find for Ṅ = 0

si ≡ g(N) =
ξ
(
1− N

M

)
− ej

ei − ej
(9)

and the trivial condition N = 0. Next, we obtain ṡi = 0 for si = 0, si = 1 and

N ≡ h(Ci) =

(
eiCi − ejCj
p(ei − ej)

)
− 1. (10)

5Of course, we can reduce the dimension from five to two equations if we solve the differential

equation (5) for firm i. We are going to exploit this fact later on when discussing the global stability

of the obtained steady states of the co-evolutionary system.
6Analogously, we can use the same harvesting strategy to discuss the dynamic of firm j.
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Finally, Ċi = 0 results for Ci = Cfix,i
7.

Solving system (8), we can identify ten steady state conditions which are summarized

in table (1) in the appendix.

2.2.3 Existence conditions

1. A necessary condition for the existence of equilibrium A1, A2, A3 and A4 is

that N > 0, which implies that ξ > ei. To avoid resource eradication, we

impose the restriction that ξ > ei > ej . Further, Ci > Ci.

2. A necessary condition for the existence of equilibrium B1 and B2 is that N >

0, which implies that long-run resource existence requires ξ > ej . Further,

Ci < Ci.

3. Necessary conditions for the existence of equilibrium D1 and D2 are:

(a) N > 0, which is ensured by the condition

Ci >
1

ei
[p(ei − ej) + ejCj ] ≡ Ψ. (11)

(b) Ci must be situated between the cost range defined as

(Ci;Ci), (12)

with

Ci ≡
1

ei

{
[p(ei − ej)]

[(
1− ei

ξ

)
M + 1

]
+ ejCj

}
(13)

and

Ci ≡
1

ei

{
[p(ei − ej)]

[(
1− ej

ξ

)
M + 1

]
+ ejCj

}
. (14)

Ci < Ci is ensured by the assumption that ei > ej .

4. Given N = 0, equilibria H1 and H2 are always realized. Because of sustain-

ability, which requires N > 0, we can exclude this two types of equilibria from

our analysis because they are not of further interest.

7Of course, if θ = 0, we meet the condition Ċi = 0.
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2.2.4 Stability analysis

Proposition I: Equilibrium A1, A2, A3 and A4 are globally asymptotically

stable. Equilibrium A1, A2, A3 and A4 are globally stable given, ξ > ei and Ci <

Ci. �

Proof: Refer to appendix 4.4.2

Firstly, let us focus on equilibrium A1 and A2. These equilibria are met if ξ > ei

and Ci < Ci. Note that for ξ > ei it necessarily follows that N < N < N , which

leads to the conclusion that equilibrium B1 and B2 cannot be reached. Further,

if Ci < Ci, consequently Ci /∈ (Ci;Ci) and this implies that equilibria D1 and D2

can be ruled out. Additionally, Cfix,i > Cfix,j 6= 0 which eliminates equilibrium A3

and A4 for θ ∈ [0, 1). Therefore, the remaining and stable equilibria A1 and A2 can

be met, which depends on the fact, whether technological progress is zero (which

implies that equilibrium A1 is realized) or if θ ∈ (0, 1), which means that the flow of

system (8) converges to equilibrium A2. Secondly, let us discuss the global stability

of equilibrium A3 and A4. In this case, either the entire cost structure tends to

zero (equilibrium A3) or both firms are confronted with the same fix cost block for

t 7→ ∞, given technology progress is not equal to zero. Accordingly, firm i rules out

firm j because of the fact that ei > ej for all t. Therefore, equilibria B1 and B2

cannot be reached, just like the coexistence equilibria D1 and D2. For this case, the

dynamic of the system (8) converges to equilbrium A3 or A4.

Proposition II: Equilibrium B1 and B2 are globally asymptotically stable.

Equilibrium B1 and B2 are globally asymptotically stable, given ξ > ei > ej and

Ci > Ci. �

Proof: Refer to appendix 4.2.3

For this constellation, the dynamic of system (8) drives firm i out of the market.

In the case of Ci > Ci, together with N > N > N , it follows that the remaining

fixed points A1, A2, A3 and A4 cannot be met. Asymptotically, equilibrium B1 will

be realized if technological progress is excluded and C(0)i > C(0)j 6= 0. If θ ∈ (0, 1)

and further Cfix,i > Cfix,j 6= 0 equilibrium B2 will be realized in the long run.

Proposition III: Equilibrium D1 and D2 are globally asymptotically saddle-
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node stable. Equilibrium D1 and D2 are globally asymptotically saddle-node stable

given, if and only if, Ci ∈ (Ci;Ci) and Ci >
1
ei

[p(ei − ej) + ejCj ] holds. �

Proof: Refer to appendix 4.2.4

Proposition III indicates that if Ci ∈ (Ci;Ci) and Ci >
1
ei

[p(ei − ej) + ejCj ] holds,

only equilibrium D1 or D2 can be met which depends on the fact whether technology

progress is excluded from the model (equilibrium D1) or not (equilibrium D2). Only

for these two types of equilibria, a coexistence solution is possible which implies that

N < N < N and si ∈ (0, 1) holds in equilibrium. Consequently, the profit-streams

of both firms h tend to be asymptotically equal in the long run, which indicates that

the equality[
(N + 1)−

(
eiΩi − ejΩj

p(ei − ej)

)]
=

[
(eiCfix,i − ejCfix,j)

p(ei − ej)

]
(15)

with Ωh ≡ (Ch(0) − Cfix,h)exp[−θt] for {i, j} ∈ h holds8. If θ = 0, it follows

from expression (15) that N + 1 =
eiCi(0)−ejCj(0)

p(ei−ej) . Further, if t 7→ ∞, N + 1 7→
(eiCfix,i−ejCfix,j)

p(ei−ej) .

The latter two derived conditions can be traced back to equation (10) which coincides

with ṡi = 0. The implication is that for meeting the steady state D1, the fix cost

structure is irrelevant but the initial cost structure is, whereas for the steady state

D2 this is quite the opposite9. Figure 1 provides a graphical representation of

equilibrium D1 and D2 as the intersection of the three nullclides Ṅ = ṡi = Ċi = 0.

2.3 Dynamic resource management and environmental policy

Our analysis conducted in section 2.2.2 and section 2.2.3 has identified three scenar-

ios to which the dynamics to system converges in the long run: (1) firm i, linked with

the high harvesting effort remains in the market. (2) Firm j, connected with the

low harvesting effort survives, and (3) both firms coexist in the market, which leads

8The right hand’s side of expression (15) is strictly positive, given (eiCfix,i > ejCfix,j) which is

ensured by the assumption stated in equation (7) and ei > ej . The left hand side of equation (15)

is strictly non- negative, given (N + 1) ≥
(

eiΩi−ejΩj

p(ei−ej)

)
.

9In fact, the irrelevance of fix costs qualitatively does not change the results, unless the initial

cost structure is zero which is not imposed for the steady state D2.
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Figure 1: Graphical representation of equilibrium D1 and D2 of system (8)

to a sharing of the common-pool resource. In section 2.2.3, we have pointed to the

fact that the cost structure heavily determines the long run outcome of the model.

From a policy maker’s point of view, this leads to the question whether there exists

an environmental instrument affecting the outcome of the model regarding resource

and market share evolution. For instance, output-sharing often fosters the commons

problem by increased free-riding and therefore leads to insufficient effort levels, in-

duced by unstable Nash equilibria. Heintzelman et al. (2008), however, show within

a two-stage game that free-riding in partnerships could be beneficial because the

partner solution naturally offsets the tendency of over-extraction by the tendency

of free-riding (Schott et al. (2007)).

Albeit the partnership solution offers advantages compared to other resource man-

agement issues, such as the imposition of tax instruments or quotas, a practical

problem coming along with this solution is the duration and stability of the incured

partnership (Schott et al. (2007)). Because of the fact that the partner solution is

indeed a one-shot, non-repeated game there is no guarantee that this solution holds
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forever. Hence, it should be clear that we have to ask for a dynamic resource man-

agement system. In section 2.2.3 together with section 2.2.4 (proposition III), we

have shown that the coexistence-solution is, technically spoken, a saddle-node bir-

fucation point which is in fact a degenerate equilibrium because small changes of the

bifurcation parameter Θ lead to a sudden qualitative change of the entire dynamic

system. Translated into economic terms, the coexistence solution is only realized

given Ci ∈ (Ci;Ci). Therefore, the policy maker is confronted with the problem how

to meet Ci ∈ (Ci;Ci). One way is to implement an indirect effort tax by taxing the

profit streams. This leads to two problems: firstly, the implementation of an effec-

tive tax scheme requires the knowledge of the effort parameter eh, and secondly, an

issue which is only rarely considered in the relevant literature, technological progress

leads to cost reduction over time, affecting the profits and consequently the tax rate.

Related to our model, technological progress reduces firm-specific heterogeneity from

two to one dimensions because equation (7) changes into ei > ej due to the fact that

Cfix,j = Cfix,i or Cfix,j = Cfix,i = 0 holds in the long run, given θ ∈ (0, 1). But

why is there an incentive for policy actions at all? The answer to this question gives

the following proposition.

Proposition IV: Strong resource sustainability in the sense of resource

conservation is not possible, given cost reducing technological progress is

relevant and policy interventions ceased. �

Proof of Proposition IV

The following proof is based on a contradiction.

1. Case: Cfix,j = Cfix,i

(a) An existence condition for equilibrium B2 is that Ci > Ci for all t. Ob-

viously, this is not the case if Cfix,j = Cfix,i, because from equation (6)

it follows for t 7→ ∞ that Cfixe1 > Cfixe2 must hold in the long run.

Realizing B2, we must show that Cfix > Cfix. Inserting Cfix in equation

(12), we come to the conclusion that e2 > e1 which obviously contradicts

Cfixe1 > Cfixe2. Therefore equilibrium B2 cannot be met.
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(b) From 1a), we know that Cfix ≤ Cfix. This implies that equilibrium D2

theoretically can be met. To exclude this fix point, we have to show

that Cfix < Cfix. Evaluating this last expression yields that e1 > e2

which holds per assumption. Therefore, the only fixed point which can

be realized is A3.

2. Case: Cfix,j = Cfix,i = 0

(a) Again, we concentrate on one of the existence condition for equilibrium

B2: Ci > Ci for all t. Inserting Cfix = 0 in equation (12), we find e2 > e1

which is in conflict to e1 > e2. Therefore, equilibrium B2 cannot be met.

(b) Further, we can exclude equilibrium D2 as an potential equilibrium be-

cause of two reasons: firstly, for Cfix = 0, N would become negative

(N = −1) and further Cfix /∈ (Cfix, Cfix). Hence, only equilibrium A4

can be realized.

From the proof above we can deduce that if on the one hand the heterogeneous

cost structure across firms disappears, but on the other hand heterogeneity with

respect to harvesting effort remains, firm i always remains in the market. Given this,

equilibrium A3 or A4 are realized for sure. Clearly, this solution is suboptimal with

respect to resource heterogeneity because there exists other equilibria resulting in

higher levels of the resource stock in the long run due to the fact that M
(

1− ej
ξ

)
>

h(Ci) > M
(

1− ei
ξ

)
, given ei > ej . �

As we have seen from the proof of proposition IV, firm i associated with the high

harvesting effort remains in the market. If the policy aim is to establish the output-

sharing solution across heterogeneous firms or if resource conservation is the relevant

point, introducing a tax scheme with the cut of tax rate

τ̄πi = 1−


(
p− Cj

1+N

)
ej(

p− Ci
1+N

)
ei

 ∈ [0, 1] (16)

is one dynamic instrument realizing this goals, even in the long run.

15



Proposition V: Only if τ̄πi ≥ τ , the tax scheme is effective. More specif-

ically, if τ̄πi = τ , the coexistence solution is realized, and given τ̄πi > τ , resource

conservation is guaranteed in the long run. �

Proof of Proposition V

Given τ̄πi > τ , it follows that πj > πi(1− τ) which implies Θ < 0. Further, τ̄πi = τ ,

we have πj = πi(1 − τ) which coincides with Θ = 0. If πj < πi(1 − τ), this is

equivalent to Θ > 0. Therefore, only τ̄πi ≥ τ guarantees an effective tax scheme. �

Provided technological progress is a relevant issue, we are able to derive the following

proposition VI.

Proposition VI: If technological progress is relevant, the profit tax turns

out to be a pure effort tax in the long run. �

Proof of proposition VI

Given θ > 0, Cfix,j = Cfix,i or Cfix,j = Cfix,i = 0 holds in the long run, and thus

the effective tax rate changes to τ̄πi = 1−
[
ej
ei

]
∈ [0, 1]. �

In this section, we have shown that output-sharing can be realized only under some

conditions, given technological progress is relevant. It is worth to note that the

derived effective tax rate (16) is not an one-shot tax rate, but even holds in the long

run, with the emphasis that it changes its interpretation from a profit to a pure

effort tax, due to the fact that τ̄πi → 1 −
[
ej
ei

]
for t → ∞. Thus, the tax scheme is

temporal effective and can be used to implement the output-sharing solution for all

t, even for the case of heterogeneous firms.

2.4 Numerical illustration and discussion

In this section, we conduct a simulation exercise of our model. The main target of

this numerical exercise is first to illustrate the stability of the different equilibria with

and without technological progress. Secondly, we proof the remaining propositions

numerically.

For the simulation exercise, we arbitrarily choose the parameter values as follows:

We set C(0)i = 10, C(0)j = 9, Cfix,i = 7, Cfix,j = 6, ei = 0.5, ei = 0.4, ξ = 0.6

M = 2, N(0) = 1, p = 9 s(0)i = 0.75 and s(0)j = 0.25.
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Obviously, e1C1 > e2C2 holds. For the cost range (Ci;Ci) we compute (9.6; 10.2)

and thus we will realize the coexistence equilibrium D1, with the corresponding

steady state values sD1
i = 0.33, ND1 = 0.56 and CD1

i = 10 for firm i and sD1
j = 0.67

and CD1
j = 9 for firm j. The flow of system (17) is graphically represented with

figure 2. Additionally, a representative trajectory is represented as a dashed line,

which starts from s(0)i = 0.75 and N(0) = 1 together with C(0)i = 10. The plotted

vector field supports the saddle-node birfucation point analysis conducted in proof

4.2.4.10

In appendix 4.3, you will find plotted time series of the the firm-specific market

shares sh, the profits per unit πh, the average profit across the market π as well as

the evolution of N for T = 500 simulated periods. From proposition III together

with equation (15), we know that firm specific profit streams must coincide in the

steady state. Looking at panel (a) of figure 5, we observe that after around 400

periods the steady state is realized.

The profit streams coincide which can be seen from the bottom graph of panel (a)

of figure 5. This is conform to proposition III. But what is the inherent dynamic of

this model? Let us have a look at the upper graph of panel (a) of figure 5.

Right at the beginning of the market share evolution process, firm i is confronted

with a cost disadvantage compared to firm j which cannot be balanced entirely by

the effort advantage given by ei > ej . Hence, πi < πj which leads to a considerably

market share loss of firm i for the first 150 periods. At the same time, firm j can

dramatically improve the market share ratio compared to firm i which is due to the

selection process defined in equation (4). At the same time, N is growing as the

market share of firm j rises. At around 400 periods the market share ratio becomes

constant because of the fact that the profit share is constant. This implies that N

must be constant, too. Interestingly, the average profit per unit nearly collapses

to zero, as firm-specific profits do. This is due to the fact that firm i starts with

a relatively high market share s(0)i = 0.75, and thus N is considerably decreasing

as N
N+1 does. Consequently, firm-specific profits per unit are decreasing as the

10With respect to figures 1, 2 and 3, si is directly associated with Ci whereas si is linked to Ci.
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average profit per unit π. After 25 periods the profits per unit pass through their

individual reversal points because the market share of j is increasing and further

N
N+1 is increasing in N which leads to a recovery of the profit streams until period

t = 400, where profit streams coincide at a steady state value of πh = π = 0.46. At

the end of the day, we observe a coexistence of both firms engaged in harvesting,

even in the long run. Again, this can be interpreted as a output-sharing solution

without communication (Schott et al. (2007)).

The before derived results are only valid if technological progress is excluded. Let us

assume from now that technological progress is relevant. Without loss of generality,

we set θ = 0.50. The cost range (Ci;Ci) is now a function of firm-specific fix costs

Cfix,h. This follows from equation (6). For given values Cfix,i = 7, Cfix,j = 6, the

cost range can be computed as (7.2; 7.8) and therefore the existence condition for

equilibrium A2 is met. This implies that firm j which earns profits considerably

below the average cost level leaves the market11. N , under this scenario, is a falling

function in N until the steady state level with NA2 = 0.33, π = πj = 0.46 and

πi = 0.44 is reached. Compared to the coexistence solution, NA2 is clearly below

ND1 , because ei > ej . Panel (b) in figure 5 replicates this scenario. Figure 3 shows

the dynamic of the reduced system (8) and the asymptotically globally stability of

the fixed point A2. It is worth to note that realizing the coexistence solution requires

an effective cut off tax rate of τ̄πi = 4.28%, given θ = 0.5012.

Now assume that Cfix,i is set to Cfix,i = 8 which is obviously above the defined

cost range of (7.2; 7.8). From this point of view, only the asymptotically globally

stable fixed point B2 can be met which can be seen in figure 4. In this case, firm

j earns profits slightly above πi for all t. Because of the inherent dynamic of the

reduced system (8), firm i is shacked out of the market indicating that the resource

conservation of the common-pool resource can be meet at best.

Because of the resulting monopoly of firm j, the stock of N will be the highest in

the steady state compared to NA2 and ND1 with NB2 = 0.67. As a consequence of

that, profits per unit N will be the highest in the steady state for both firms, with

11This result is conform to proposition IV.
12This replicates the implications derived from proposition V and VI
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π = πj = 0.85 and πi = 0.83, which can be seen in panel (c) of figure 5.

The last point which remains open is to illustrate proposition IV numerically. Reduc-

ing firm-specific heterogeneity which implies setting Cfix,h = 6, ∀ :, only equilibrium

A4 can be realized13. Secondly, we set Cfix,h = 0. Now fix point A3 is obtained

which is qualitatively comparable to A2 and A4
14. Obviously, proposition IV holds

numerically.
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vector.nb 1

Figure 2: Trajectory and corresponding steady state D1 of the reduced system (8)

3 Conclusion

In this paper, we have investigated the relationship between market dynamics,

dynamic resource management and environmental policy in a comprehensive co-

evolutionary framework. This framework perfectly fits to the discipline of ecological

economics (Boulding (1978), Boulding (1981)).

13Realizing A2, the profits per unit N reads as: π = πi = 0.56 and πj = 0.44.
14The profits per unit N reads as: π = πi = 1.12 and πj = 0.89.
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Figure 3: Trajectory and corresponding steady state A2 of the reduced system (8)

In contrast to static market entry games, in this paper we draw attention to the

effects of market dynamics on resource dynamics et vice versa, because (1) we have

shown that feedback processes are necessary for obtaining a better understanding

of what drives the dynamics between the evolution of common-pool resources and

the number of harvesters and more importantly, (2) this analysis has provided an

environment discussing sustainability in an appropriate inasmuch dynamic way.

By explicitly controlling for feed-back processes between market share-, resource-

and cost evolution, our analysis conducted in section 2.2.2 and section 2.2.3 has

identified three scenarios to which the dynamics of this co-evolutionary system con-

verge in the long run: (1) firm i, linked with the high harvesting effort remains in the

market. (2) Firm j, connected with the low harvesting effort survives, and (3) both

firms coexist in the market which leads to a sharing of the common-pool resource.

We have proofed that the derived equilibria associated with (1) and (2) are globally,

asymptotically stable, whereas the equilibria (3) are globally saddle-node stable.
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Figure 4: Trajectory and corresponding steady state A2 of the reduced system (8)

Moreover, we have shown that the cooperative solution (2) does not necessarily lead

to a lower stock of the common-pool resource compared to the non-cooperative solu-

tions. Allowing harvesting cost-reducing technological progress, we further conclude

that strong resource sustainability is not possible, given policy interventions ceased.

This implies a dynamically sustainable resource management plan together with a

concerted policy scheme. On the basis of a profit-tax, which turns out to be a pure

effort tax in the long run, we introduce a time efficient tax scheme which guarantees

strong sustainability in the long run even across heterogeneous firms. Therefore,

we can conclude that a tax scheme is not seen as a substitute to a partnership so-

lution dealing with the common-pool problem, but should be rather treated as an

instrument establishing such a solution in the sense of a policy mix.

21



References

Atzenhoffer, J.-P. (2010). A Note on Imitation-Based Competition in Common-Pool

Resources. In: Environmental and Resource Economics, 47, pp. 299-304.
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pirical Evidence and Implications. In: Journal of the American Statistical Asso-

ciation, 58, p. 993-1010.

23



Noailly, J., van den Bergh, J. C. J. M., and Withagen, C. A. (2003). Evolution of

harvesting Strategies: Replicator and Resource Dynamics. In: Journal of Evolu-

tionary Economics, 13, pp. 183-200.

Ostrom, E. (1990). Governing the Commons: The Evolution of Institutions for

Collective Action. Cambridge University Press, Cambridge.

Ostrom, E., Gardner, R., and Walker, J. (1994). Rules, Games, and Common-Pool

Resources. The University of Michigan Press, Ann Arbor.

Regev, U., Gutierez, A. P., Schreiber, S. J., and Zilberman, D. (1998). Biological

and Economic Foundations of renewable Resource Exploitation. In: Ecological

Economics, 26, pp. 227-242.

Ruseski, G. (1998). International Fish Wars: The Strategic Roles for Fleet Licensing

and Effort Subsidies. In: Journal of Environmental Economics and Management,

36, pp. 70-88.

Sandal, L. K. and Steinshamn, S. I. (2004). Dynamic Cournot-competitive harvest-

ing of a Common Pool Resource. In: Journal of Economic Dynamics & Control,

28, pp. 1781-1799.

Schott, S., Buckley, N., Mestelman, S., and Muller, R. A. (2007). Output Shar-

ing in Partnerships as a Common Pool Resource Management Instrument. In:

Environmental Resource Economics, 37, pp. 697-711.

Stewart, K. M. (2003). The African cherry (Prunus africana): Can Lessons be

learned from an over-exploited medicinal Tree? In: Journal of Ethnopharmacol-

ogy, 89, pp. 3-13.

Van den Bergh, J. C. J. M. (2007). Evolutionary Thinking in Environmental Eco-

nomics. In: Journal of Evolutionary Economics, 17, pp. 521-549.

Walker, J. M. and Gardner, R. (1992). Probabilistic Destruction of Common-pool

Resources: Experimental Evidence. In: The Economic Journal 102 , pp. 1149-

1161.

24



Walker, J. M., Gardner, R., and Ostrom, E. (1990). Rent Dissipation in a limited-

access Common-pool Resource: Experimental Evidence. In: Journal of Environ-

mental Economics and Management, 19, pp. 203-211.

Yamamoto, T. (1995). Development of Community-Base Fishery Management Sys-

tem in Japan. In: Marine Resource Economics, 10, 21-34.

25



4
A
p
p
e
n
d
ix

4
.1

S
te
a
d
y
st
a
te
s

S
te

ad
y

S
ta

te
N
∗

C
∗ i

s∗ i
θ

co
st

st
ru

ct
u

re
m

ar
k
et

st
ru

ct
u

re

B
1

M
( 1
−

e j ξ

) C
i(

0)
>

0
0

0
C
i(

0)
>
C
j
(0

)
6=

0
m

on
op

ol
y

fo
r

fi
rm

j

A
1

M
( 1
−

e i ξ

) C
i(

0)
>

0
1

0
C
i(

0)
>
C
j
(0

)
6=

0
m

on
op

ol
y

fo
r

fi
rm

i

D
1

h
(C

i)
C
i(

0)
>

0
g
(N

)
0

C
i(

0)
>
C
j
(0

)
6=

0
d

u
op

ol
y

H
1

0
C
i(

0)
>

0
s i

(0
)

0
C
i(

0)
>
C
j
(0

)
6=

0
d

ep
en

d
s

on
s(

0
) i

B
2

M
( 1
−

e j ξ

) C
f
ix
,i
>

0
0

θ
∈

(0
,1

)
C
f
ix
,i
>
C
f
ix
,j
6=

0
m

on
op

ol
y

fo
r

fi
rm

j

A
2

M
( 1
−

e i ξ

) C
f
ix
,i
>

0
1

θ
∈

(0
,1

)
C
f
ix
,i
>
C
f
ix
,j
6=

0
m

on
op

ol
y

fo
r

fi
rm

i

D
2

h
(C

i)
C
f
ix
,i
>

0
g
(N

)
θ
∈

(0
,1

)
C
f
ix
,i
>
C
f
ix
,j
6=

0
d

u
op

ol
y

H
2

0
C
f
ix
,i

s i
(0

)
θ
∈

(0
,1

)
C
f
ix
,i
≥

0
fo

r
{i
,j
}
∈
h

d
ep

en
d

s
on

s(
0
) i

A
3

M
( 1
−

e i ξ

)
0

1
θ
∈

(0
,1

)
C
f
ix
,h

=
0

fo
r
{i
,j
}
∈
h

m
on

op
ol

y
fo

r
fi

rm
i

A
4

M
( 1
−

e i ξ

) C
f
ix
,i
>

0
1

θ
∈

(0
,1

)
C
f
ix
,i

=
C
f
ix
,j
6=

0
m

on
op

ol
y

fo
r

fi
rm

i

T
ab

le
1:

S
u

m
m

ar
y

of
th

e
d

er
iv

ed
st

ea
d

y
st

at
e

co
n

d
it

io
n

s
fo

r
sy

st
em

(8
)

26



4.2 Proof of the global stability of the obtained steady states of

system (8)

4.2.1 Remarks

In this section, we proof the local as well as the global stability of the identified

fix-points of system (8). First, we proof the local stability of the obtained steady

states of the non-linear system (8). It is known that for a hyperbolic fix-point

(the real part of the Eigenvalues are nonzero), the flow of the linearized fix-point is

homeomorphic to the non-linear flow (sufficiently close to the fix-point). Before we

proceed, we transform system (8) which consists of three differential equations to a

system of two differential equations. We can follow this way because we know that

equation (5) is a first order autonomous differential equation with the solution given

by equation (6). Inserting expression (6) into equation (8) leads to

 Ṅ = ξN
[
1− N

K

]
− [
∑

h shfh(N)]

ṡi = si(1− si)(πi − πj).
(17)

The Jacobian matrix of system (17) reads as:

Jac ≡

 ∂Ṅ
∂N

∂Ṅ
∂si

∂ṡi
∂N

∂ṡi
∂si

 =

=

 −ξ(NM ) −N(ei − ej)

si(1− si) Θ
(1+N)N (1− 2si)Θ

 , (18)

with Θ ≡ N
N+1 [p(ei − ej)− eici + ejcj ] .

4.2.2 Proof of proposition I

We start with the proof of the local stability of equilibrium A1, A2, A3 and A4 by

evaluating the Jacobian matrix at A1, A2, A3 and A4 each. Table 2 shows the Eigen-

values and their respective signs for each fix-point.
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The sign of the second Eigenvalue χ2 for the steady states A1, A2, A3 and A4 is

clearly determined to be negative due to the fact that N > 0. However, the sign of

the first Eigenvalue for A1 and A2 is not determined ex ante: It could be positive,

zero or negative.

If the sign is positive, we obtain a saddle path for A1 and A2. If χ1 and χ2 are

negative, A1 and A2 define a stable node. Given the Eigenvalues are zero, we obtain

a later line equilibrium because the Jacobian matrix turns out to be singular.

From proposition I, it follows that si = 1 which leads to the conclusion that A1 and

A2 are strictly negative because Θ > 0 which stems directly from πi > πj . The

first Eigenvalue for the fix-points A3 and A4 is clearly negative due to the fact that

ei > ej . Therefore, the fix-points A1, A2, A3 and A4 are locally stable.

Steady State Eigenvalue χ1 Eigenvalue χ2 Fix-point

A1 −ΘA1 NA1

1+NA1
< 0 − ξNA1

K < 0 stable node

A2 −ΘA2 NA2

1+NA2
< 0 − ξNA2

K < 0 stable node

A3
p(ej−ei)
1+NA3

< 0 − ξNA3

K < 0 stable node

A4
p(ej−ei)
(1+NA4 )

+
Cfix(ei−ej)

(1+NA4 )2 < 0 − ξNA4

K < 0 stable node

Table 2: Summary of the derived steady state conditions for system (8)

The next point is to show that the equilibrium points A1, A2, A3 and A4 are asymp-

totically globally stable. This can be done by ruling out closed orbits. Referring to

the literature, two important results provide sufficient conditions that rule out the

possibility of periodic solutions: the Benedixon’s and Dulac’s criterion, whereas it

turns out that the Benedixon´s criterion can be traced back to the Dulac’s criterion

as a special case.15

Theorem 1: Dulac’s criterion. Assume that ẋ = f(x) is a continuously differ-

entiable vector field, on a simply connected open subset of R × R. If there exists

a continuously differentiable, real-valued function k(x) with {N, si} ∈ x such that

15The implication is, if neither of these two mentioned criteria are satisfied, there may be periodic

solutions or not.
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∇ · (kẋ) has one sign throughout R, there are no periodic orbits of the autonomous

system in R. �

Proof: Assume that there is a closed orbit C in the simple connected regionR. Let D

denote the interior of C. When C is transversed counterclockwise, Green’s Theorem

in the plane gives the following identity:∫ ∫
D
∇ · (kẋ) dD =

∮
C
(kẋ · n) dl, (19)

where n is the outward normal and dl is the element of arc length along C. The

integral on the left hand’s side of equation (19) must be nonzero, because ∇ (kẋ)

has one sign in R. The line integral on the right hand side of equation (19) equals

to zero because C is a trajectory. Thus, the tangent vector of C, ẋ, is orthogonal to

n which leads to ẋn = 0. This contradiction implies that no such C can exist. �

The problem which comes along with applying the Dulac’s and Benedixon’s criterion

is that it is sometimes pretty hard determining an appropriate weighting function

k(x), because there is no algorithm providing such a function. With respect to

system (17), we choose k(x) = 116 which, as we will see, is a good choice helping us

to provide a sufficient condition for the exclusion of periodic orbits.

Applying Dulac’s criterion, we can write:

∇ · (kẋ) =
∂

∂si
(kṡi) +

∂

∂N

(
kṄ
)
. (20)

Using the steady state condition si = 1 associated with the steady states A1, A2, A3

and A4, we can evaluate expression (20) further as:

∇ · (kẋ) = −ξN
K

+ (1− 2si)Θ = −ξN
K
−Θ < 0 (21)

Expression (21) turns out to be strictly negative, given N > 0 by assumption and

Θ > 0 because of the fact that πi > πj . Hence, ∇(kẋ) does not change sign in

D. Since the region si = 1 and N > 0 is simply connected and k(·) and f(·)

are smooth, Dulac’s criterion implies that there are no closed orbits in the positive

quadrant. Therefore, A1, A2, A3 and A4 are asymptotically globally stable. �
16For this choice, the Dulac’s and Benedixon’s criterion coincide.
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4.2.3 Proof of proposition II

The steady states B1 and B2 are locally stable which can be seen from table 3.

Please note that Θ turns out to be negative because of πj > πi.

Steady State Eigenvalue χ1 Eigenvalue χ2 Fix-point

B1 ΘB1 N
B1+1
NB1

< 0 − ξNB1

K < 0 stable node

B2 ΘB2 N
B2+1
NB2

< 0 − ξNB2

K < 0 stable node

Table 3: Summary of the derived steady state conditions for system (8)

Applying Dulac’s criterion once again, we find with the steady state condition si = 0:

∇ · (kẋ) = −ξN
K

+ Θ < 0 (22)

which is clearly negative, since Θ < 0. Hence, the fix-points B1 and B2 are asymp-

totically globally stable since the region N > 0 and sj = 1 is simply connected and

k(·) and f(·) fulfill the smoothness conditions implied by Dulac’s criterion. �

4.2.4 Proof of proposition III

Proposition III tells that Ci ∈ (Ci;Ci), which implies πi = πj . Further, the condition

Ci >
1
ei

[p(ei − ej) + ejCj ] must hold. If πi = πj , it follows immediately that Θ = 0.

For Θ = 0, the Jacobian becomes singular. Thus, at least one Eigenvalue must be

zero which can be seen from table 4.

Steady State Eigenvalue χ1 Eigenvalue χ2 Fix-point

D1 0 − ξND1

K < 0 saddle-node

D2 0 − ξND2

K < 0 saddle-node

Table 4: Summary of the derived steady state conditions for system (8)
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For this constellation, system (17) exhibits an entire line of fix-points on g(N),

whereas the Eigenvector associated with the Eigenvalue zero is the direction vector

of the system. We know that one existence condition for D1 and D2 postulates that

Θ = 0. Obviously, any marginally, infinitesimally change of Θ in the positive or

negative direction drives the flow of system (17) completely out of these equilibria

towards A1 or A2
17 or to B1 or B2

18. In the case of Θ = 0, linearization of

system (17) is not sufficient to deduce any information about the dynamic behaviour

of the non-linear system (17), because Θ = 0 serves as a cut-off variable which

separates saddle path equilibria and nodes19. Hence, Θ is defined as the so-called fold

bifurcation point, because one stable node and one saddle collide and both disappear

right at Θ = 0. A necessary condition for fold bifurcation is that det(Jac) = 0 or

χ1 = 0, which obviously holds for system (17). Because of the fact that tr(Jac) 6= 0,

we call the fold bifurcation equilibrium a degenerate equilibrium20.

If we could further exclude the possibility of closed orbits, obviously no limit circle

bifurcation can occur globally. To show this, we use the Poincaré map, together with

Dulac’s criterion. As shown in section 4.2.2 and section 4.2.3, the steady states A1

to A4 and B1 and B2 are globally asymptotically stable. With respect to a Poincaré

mapping, this implies that every trajectory from a given starting point converges to

the steady state und thus no closed orbits may occur. Referring to equation (20)

and considering the fact that Θ = 0, we obtain:

∇ · (kẋ) = −ξN
K

< 0 (23)

which is clearly negative due to the fact that N > 0. Since the region N > 0

and si ∈ (0, 1) is simply connected and k(·) and f(·) again fulfill the smoothness

conditions implied by Dulac’s criterion, the existence of limit circles can be ruled

out. Hence, no limit circle bifurcation can occur globally and thus the steady states

D1 and D2 are saddle-node-stable. �

17This implies that Θ > 0 and θ ∈ (0, 1) or θ = 0.
18This requires that Θ < 0 and θ ∈ (0, 1) or θ = 0.
19Suppose for a moment that Θ > 0. Then A1 and A2 can be described as stable nodes, but B1

and B2 are saddle path equilibria, et vice versa for Θ < 0.
20The non-degenerate conditions are tr(Jac) = 0 or χ2 6= 0.
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4.3 Time series for sh, πh, π̄ and N
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Figure 5: Computed time series based on the simulation exercise conducted in section

2.4
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