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Measuring Strategic Firm Interaction in Product-Quality Choices:
The Case of Airline Flight Frequency

by

Jan K. Brueckner and Dan Luo*

1. Introduction

A voluminous theoretical literature deals with product differentiation and the choice of

product quality. Horizontal product differentiation, where products have no natural qual-

ity ordering, is usually analyzed in a spatial-competition setting in the Hotelling tradition,

with important contributions by d’Aspremont et al. (1979) and Salop (1979). Alternatively,

Gabszewicz and Thisse (1979), Shaked and Sutton (1982) and other authors study vertical

product differentiation, where products are ordered by quality and consumers have different

quality valuations.

Despite the existence of this large theoretical literature, empirical work on product-quality

competition is scarce. The purpose of this paper is to remedy this shortage by providing an

empirical analysis of quality competition between firms, with a focus on the airline industry.

The analysis studies what is probably the most important dimension of the quality of airline

service: flight frequency. The importance of frequency was first shown empirically in the

work of Morrison and Winston (1995), who use a multinomial logit model to analyze airline

choices by passengers. In addition to finding that choices are influenced by fares and other

elements of service quality, Morrison and Winston show that frequent daily departures by a

given airline on a route strongly influence travelers to choose it. More recently, the structural

demand estimates of Berry and Jia (2010) again show that flight frequency is highly valued by

consumers.1

Unlike existing empirical work on product-quality determination, which is structural in

nature and is discussed below, the paper attempts to measure the strength of strategic interac-

tion in quality choices by airlines. It does so by estimating flight-frequency reaction functions,

which give a carrier’s best frequency response to a competitor’s frequency choice. A statis-

1



tically significant slope coefficient provides evidence that strategic interaction occurs when

airlines choose flight frequencies, and the magnitude of the coefficient indicates its strength.

The competitor’s frequency, which appears on the right-hand side of the reaction function

along with carrier and route characteristics, is an endogenous variable, being jointly deter-

mined along with the carrier’s own frequency in a Cournot-Nash equilibrium. Therefore, an

instrumental variables approach is needed to generate a consistent estimate of the reaction

function’s slope.

Estimation of reaction functions is the focus of empirical work in a number of fields of

economics. In public economics, the tax competition literature contains many studies that

estimate reaction functions. Strategic interaction arises because tax rates in competing juris-

dictions must be taken into account when a given jurisdiction chooses its own rate, recognizing

that capital and labor migrate in response to tax-rate differentials. See Brueckner (2003) and

Revelli (2005) for surveys of this literature. In addition, reaction functions are sometimes

estimated in the literature on peer effects, where an individual’s choice of the level of some

decision variable depends on peer choices. Dietz (2002) and Dujardin, Peeters and Thomas

(2009) provide detailed surveys of the peer-effects literature. In both types of studies, the

endogeneity of the peer’s or the competing jurisdiction’s choice must be taken into account in

the estimation, an econometric problem that is analyzed by Manski (1993).

Estimation of reaction functions is, by contrast, less common in the industrial organization

literature. Price reaction functions are estimated in some papers as part of a procedure for de-

riving conjectual variations, which give a rival firm’s anticipated response when a firm changes

its price or output (see Liang (1989) and Dhar et al. (2005)).2 Many studies that estimate

price reaction functions can also be found in the marketing literature, with contributions by

Lazzarini et al. (2006) (who focus on the auto insurance industry), Reimer (2004) (who studies

the ready-to-eat cereal industry), Cotterill et al. (2000) (who analyze the market for private

label and branded grocery products) and Vickner and Davies (1999) (who study the spaghetti

sauce industry).

Although distinguished by its focus on reaction functions, the present paper is related to

a number of recent empirical studies analyzing the choice of product quality using structural
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models. The early structural literature (Berry (1994), Berry, Levinsohn and Pakes (1995))

treats product attributes as exogenous, but recent empirical models have portrayed firms as

choosing product quality along with price. In the models of Crawford, Shcherbakov and Shum

(2011) and Fan (2011), firms choose the levels of continuous measures of product quality

(for newspapers and cable television, respectively), while firms in Draganski, Mazzeo and Seim

(2009) choose which product varieties to offer (the empirical work focuses on ice cream flavors).

In each case, the empirical exercise yields estimates of taste and cost parameters, which are

used in the latter two papers to simulate the effects of mergers on product quality or variety.3

By contrast, the estimated reaction functions in this paper do not identify underlying utility

and production parameters, which are intermixed in the slope coefficient.4 Instead, the goal

of the paper is to measure the strength of strategic interaction, with the slope of the airline

reaction function of interest in itself, not the values of the underlying parameters.

To motivate the empirical analysis, the paper reviews the theoretical frequency-competition

model of Brueckner (2010). To avoid the complexity of the spatial-competition approach, which

is used by Schipper, Nijkamp and Rietveld (2003, 2007) and Lindsey and Tomaszewska (1999)

to study frequency competition, Brueckner’s approach assumes that consumers must choose

an airline before knowing their preferred departure times. As a result, a carrier’s average

flight frequency is what matters (along with the fare) in the choice between airlines, not the

departure times of individual flights. Despite the resulting elimination of space, the model

effectively involves horizontal competition in the Hotelling tradition, with exogenous brand

loyalty to individual carriers providing a choice friction analogous to the spatial friction in

the Hotelling model. In contrast to this approach, Borenstein and Netz (1999) carry out an

empirical analysis whose focus is the departure times of individual flights rather than overall

frequencies, and they rely on a spatial competition model to motivate the analysis. Their

goal is to identify market characteristics that lead to greater clustering of departure times for

different carriers.5

Data for the estimation of flight-frequency reaction functions is readily available from gov-

ernment sources, which tabulate monthly airline departures on each nonstop route. Variables

that shift a carrier’s reaction function include route characteristics (distance, endpoint popula-
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tions and incomes, a leisure-destination endpoint) as well as carrier characteristics, as captured

by dummy variables indicating airline identities. The hub status of the route endpoints for

the airline is another such characteristic. As noted above, the endogeneity of the competi-

tor’s frequency requires the use of instruments in estimating the reaction function, and the

theoretical structure helps in choosing appropriate variables. The chosen instruments are the

vector of carrier dummy variables for the competing carrier, which shift that carrier’s reaction

function and thus help determine its own frequency. These variables are used in two-stage least

squares estimation of the reaction function, and a statistically significant slope coefficient in the

second-stage regression is evidence of strategic interaction. An insignificant slope coefficient,

on the other hand, suggests that interaction is not present in the choice of flight frequencies.6

The estimation is carried out for nonstop duopoly routes. With only two carriers present,

interaction is more straightforward on such routes than on oligopoly routes. A pooled regression

is carried out first, where LCCs (low-cost carriers) are not distinguished from legacy carriers.

Since the coefficient of the reaction function might depend on the nature of the competitor, the

pooled duopoly regression is supplemented with regressions focusing on legacy-legacy, LCC-

LCC, and legacy-LCC duopolies.

In an extension of basic model, the paper also asks whether multimarket contact shifts

the frequency reaction function. Evans and Kessides (1994), Zou, Dresner and Windle (2011)

and others study the effect of multimarket contact on fares, finding that airlines show mutual

forebearance by pricing less aggressively on routes where multimarket contact with the com-

petitors is high (fearing retaliatory behavior on other jointly contested routes). The question

is whether such behavior extends to frequencies.7

Several conclusions emerge from the empirical analysis. First, the slope of the reaction

function is positive when the two duopoly carriers are of the same type. That is, frequencies

are strategic complements in duopolies involving two legacy carriers or two LCCs. Second, on

duopoly routes where carriers are of different types, weak performance of the carrier-dummy

instruments prevents definitive conclusions from being reached. Therefore, while the empirical

analysis shows the presence of strategic frequency interaction within carrier types, no conclusion

can be drawn regarding interaction across types. Third, analysis of the effect of multimarket
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contact suggests no evidence of mutual forbearance in the choice of flight frequencies within

carrier types.

The remainder of the paper is organized as follows. Section 2 provides the theoretical

framework. Section 3 presents the empirical model and discusses the data and construction

of the variables. Section 4 presents the main results, and section 5 introduces multimarket

contact. Section 6 illustrates how the results might be used to predict the effect of a change

in the airline operating environment, and section 7 offers conclusions.

2. Theoretical Framework

This section of the paper serves to motivate the empirical work by deriving a flight-

frequency reaction function like those estimated below from a theoretical model, drawing on

the framework of Brueckner (2010). The model focuses on a single transport market connecting

two cities. Passengers in the market have mass M , and the market is served by n competing

carriers, with n set equal to two given the duopoly focus. Carrier i operates fi flights that

are evenly spaced around a circle representing departure times, with i = 1, 2. A crucial fea-

ture of the model is that a consumer chooses a carrier before knowing his preferred departure

time, which is drawn from a uniform distribution on the circle. As a result, a carrier’s flight

frequency is all that matters, not the departure times of individual flights.

Letting T denote the circle’s time circumference, the interval between carrier 1’s flights

is T/f1. Since the largest gap between a flight and a preferred departure time is T/2f1, the

expected schedule delay (the difference between the preferred and nearest departure time) for

a consumer choosing carrier 1 is T/4f1. Letting v denote the cost per unit of schedule-delay

time, vT/4f1 ≡ γ/f1 is the cost of schedule delay, where γ ≡ vT/4. With p1 denoting the

carrier’s fare, the full price of travel on carrier 1 is then p1 + γ/f1. This full price depends on

the fare, a price variable, as well as frequency, a quality variable chosen by the carrier.

Consumers value consumption, denoted x, and trips, denoted t. If the consumer chooses

carrier 1, then utility is given by U(x, a1t), where the a1 factor measures the degree of brand

loyalty to carrier 1 (travel on carrier 2 generates utility U(x, a2t)). Brand loyalty is exogenous

and consumer-specific, with each consumer having particular values of a1 and a2. Loyalty
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provides a friction in the competitive market, so that a carrier is able to attract its most loyal

customers even when its fare is relatively high or its frequency low.

The consumer’s budget constraint is given by

x + (p1 + γ/f1)t = y, (1)

where y is income, and preferences are of the Cobb-Douglas form:

U(x, a1t) = x1−β(a1t)
β. (2)

Maximizing utility subject to the budget constraint gives

t =
βy

p1 + γ/f1

, x = (1 − β)y. (3)

The consumer’s indirect utility function for travel on carrier 1 can then be written as

V

(
p1 + γ/f1

a1

, y

)
≡ (y(1 − β))1−β

(
a1βy

p1 + γ/f1

)β

= κy

(
p1 + γ/f1

a1

)
−β

, (4)

where κ ≡ (1 − β)1−βββ. Note that, since the brand-loyalty parameter a1 appears multiplica-

tively in preferences, it does not affect the t and x solutions in (3) but does shift the indirect

utility function.

For the passenger to choose carrier 1 over carrier 2, V1 ≥ V2 is required, so that

V

(
p1 + γ/f1

a1

, y

)
≥ V

(
p2 + γ/f2

a2

, y

)
or a2 ≤

a1(p2 + γ/f2)

p1 + γ/f1

. (5)

For given fares and frequencies, a consumer’s brand loyalty to carrier 2 must therefore be

sufficiently small relative to a1 in order for carrier 1 to be chosen.
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The total number of travelers who prefer carrier 1 depends on the distribution of brand

loyalty, given by φ(a1, a2). A symmetric, uniform distribution is assumed, so that φ(a1, a2) =

M/α2, where a1, a2 ∈ [0, α]. The number of travelers who prefer carrier 1 is given by the

integral of φ over the region specified in (5), while the carrier’s passenger volume, denoted q1,

is the integral of this density weighted by the chosen trip volumes from (3). The expression

for q1 is thus

q1 =
βy

p1 + γ/f1

∫ α

a1=0

∫ a1(p2+γ/f2)

p1+γ/f1

a2=0

M

α2
da1da2

=
µ(p2 + γ/f2)

2(p1 + γ/f1)2
(6)

where µ = βyM is a market-size parameter, which depends on the trip utility exponent, income

and the passenger mass, all of which affect the aggregate demand for trips. Note that q1 in (5)

is a function of fares (p1 and p2) and frequencies (f1 and f2) for both carriers.

Letting s1 denote seats per departure, cost per flight is given by θ + τs1, reflecting a fixed

cost of θ and a marginal seat cost of τ . Note that the presence of the fixed cost provides a

source of increasing returns at the individual flight level, and that aircraft size is assumed not

to affect consumer utility, thus not being an element of service quality. The carrier’s total cost

can then be written as

f1(θ + τs1) = θf1 + τq1, (7)

using the fact that total seats, f1s1, must equal passenger volume q1. Using (6) and (7), profit

is then given by

π1 = (p1 − τ )q1 − θf1

=
(p1 − τ )µ(p2 + γ/f2)

2(p1 + γ/f1)2
− θf1. (8)

.

Carrier 1’s goal is to choose frequency and the fare to maximize profit, taking the choices of

its competitor as given. Although Brueckner (2010) analyzed simultaneous choice, it is useful
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to instead view the carriers as playing a two-stage game, with frequencies chosen in the first

stage and the fares chosen conditional on frequencies in the second stage, an order that makes

sense given that fares are more easily adjusted than frequencies. Maximizing profit by choice

of p1 gives the first-order condition

p1 = 2τ + γ/f1. (9)

This solution shows that carrier 1’s second stage choice of p1 is actually independent of carrier

2’s fare (p2) and frequency (f2), variables that would normally appear along with f1 on the

right-hand side of an equation like (9). The second-stage price equilibrium would then be

determined by simultaneous solution of such an equation and its counterpart for carrier 2

(yielding p1 and p2 as functions of f1 and f2). But (9) directly gives p1 as a function of f1

alone, a simplification that is due to the model’s particular structure.8

Plugging p1 from (9) into the profit function, profit can be rewritten as

π1 =
µ(γ+f2τ

f2
)

4(γ+f1τ
f1

)
− θf1. (10)

Computing the first-order condition for f1 and solving yields

f1 = −
γ

τ
+

1

2

√
γµ(τ + γ/f2)

θτ 2
. (11)

This is the reaction function, which gives carrier 1’s best response to carrier 2’s frequency choice.

Since f2 appears in reciprocal form, the reaction function is downward sloping, implying that

frequencies are strategic substitutes. Note that the slope varies with f2 but also depends on

all the parameters of the model.

It is important to recognize that the slope’s negative sign is conditional on the particular

structure of the current model. To derive a general expression for the slope of carrier 1’s

reaction function, let π1(f1, f2, p1, p2) denote the carrier’s profit as a function of frequencies
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and fares, and let p1(f1, f2) and p2(f1, f2) denote the second-stage fare solutions conditional

on frequencies. Substituting, profit can then be written as

π̃1(f1, f2) ≡ π1[f1, f2, p1(f1, f2), p2(f1, f2)]. (12)

The first-order condition for choice of f1 is ∂π̃1/∂f1 = 0, and totally differentiating this

condition yields the slope of carrier 1’s reaction function:

∂f1

∂f2

= −
∂2π̃1/∂f1f2

∂2π̃1/∂f2
1

. (13)

Since the denominator of (13) must be negative for the second-order condition to be satisfied,

the slope will take the sign of the cross-partial derivative in the numerator. This derivative,

however, will be a very complicated expression, as can be seen by referring to (12), and its

sign will generally be ambiguous and dependent on the detailed structure of the model. The

negative slope in (11) is thus by no means general, with a different model structure potentially

yielding an upward-sloping reaction function. Given this lack of generality, the current analysis

should be viewed as only providing an example of how an explicit frequency reaction function

can be derived in a full theoretical model, a demonstration that helps to motivate the ensuing

empirical work.9 A final point is that, while (11) is derived under the assumption that the

two firms are identical, the empirical reaction functions are allowed to differ across firms.

3. Empirical Model and Data

3.1. Empirical Model

The empirical analysis focuses on nonstop duopoly routes within the US. Flight frequency

for connecting trips is a less straightforward concept (involving layover times), which justifies

the nonstop focus. Estimation of the reaction function uses the following log-linear regression

model:

lnFREQim = α + δ lnFREQ−im + σXm + ηZim + εim, (14)
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where m denotes the route and i denotes the ith carrier serving it, with i = 1, 2 for the duopoly

case. lnFREQim is the log frequency of carrier i on nonstop route m and lnFREQ−im gives

the log frequency of i’s competitor, carrier −i. Xm is a vector of route-characteristics variables

including distance, endpoint incomes and populations, and a variable indicating a leisure route.

Zim represents carrier characteristics, which are mainly captured by a vector Dim of dummy

variables representing carrier identities, with the variable corresponding to carrier i turned on

and the rest set equal to zero. These dummies capture cost differences across carriers as well

as other idiosyncratic factors that affect frequency choices. Note that changes in Xm and Dim

shift the reaction function in a parallel fashion. Observe also that the log-linear model in (14)

represents an approximation to a possibly more-complex functional form, such as the nonlinear

relationship in (11). As a robustness check, results are also reported for a linear version of

(14).

To understand estimation of (14), consider the set of legacy-legacy duopoly routes, where

two legacies alone compete with one another. A reaction function is estimated for this legacy-

legacy subsample, as well as for other subsamples, as discussed in more detail below. Each

legacy-legacy route has two observations, one for each legacy competitor, with the frequency

values on the two sides of (14) switched between the observations but with the value of Xm

common between them. To estimate the reaction function for legacy-legacy competition, the

regression is run on this set of observations.

Eq. (14) and its counterpart for carrier −i constitute the two structural equations of a

simultaneous-equations system, which consists of the reaction functions for carriers i and −i.

The solution to this system, which corresponds to the intersection of the two reaction functions,

yields values for lnFREQim and lnFREQ−im. The right-hand-side variable lnFREQ−im in

(14) is thus endogenous, which means that consistent estimation requires the use of instru-

ments. Proper instruments, used to generate predicted values of lnFREQ−im in a two-stage

least squares procedure, are the D variables that give carrier identities, but with values that

pertain to i’s competitor, carrier −i. Observe that these variables are excluded from (14),

making them suitable instruments in a simultaneous-equations setting. More generally, be-

cause they can be expected to satisfy relevance and exogeneity requirements, the competitor
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dummies are good instruments. First, along with the dummies Dim for carrier i itself, the

competitor dummies (D−im) affect equilibrium frequencies for both carriers by determining

the position of carrier −i’s reaction function. As a result, they are correlated with carrier −i’s

frequency. Second, the competitor dummies are not likely to be correlated with unobservables

that influence the position of carrier i’s reaction function (components of εim from (14)). In

other words, the identify of the other carrier competing in the market is not likely to be cor-

related with unobservables that affect a given carrier’s frequency choice. This claim is further

discussed and justified below. Note finally that, since the reaction function in (14) has one

endogenous right-hand side variable while the excluded vector D−im consists of more than one

dummy variable, the equation is overidentified.

The first-stage regression of two-stage least squares corresponds to the reduced-form equa-

tion for carrier −i, generated by the structural system in (14). Ignoring for the moment the

other variables in Z (considering only the carrier dummies), this equation is

lnFREQ−im = ζ + νXm + ρDim + λD−im + ξ−im, (15)

where

ζ =
α

1 − δ
, ν =

σ

1 − δ
, ρ =

δη

1 − δ2
, λ =

η

1 − δ2
, ξ−im =

δεim + ε−im

1 − δ2
. (16)

The ξ−im expression in (16) shows that lnFREQ−im is correlated with εim, leading to simul-

taneity bias in the OLS estimates of (14), as discussed above. Assuming |δ| < 1, which is

required for stability of the Cournot-Nash equilibrium, this correlation is positive (negative),

with the direction of bias upward (downward), as the reaction function slope δ is positive (neg-

ative). The OLS slope estimate is thus biased away from zero. In addition, if εim and ε−im are

positively correlated, as is likely given that unobserved route characteristics will be elements

of both error terms, then (16) shows there is an additional source of (positive) correlation

between lnFREQ−im and εim, which biases the OLS slope estimate upward.

The first-stage regression in (15) relates the competitor’s frequency to route characteristics

Xm, to its own identity, as captured by D−im (the vector of instruments), and to the identity
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of the other airline on the route, carrier i, as captured by Dim. Note that, in the legacy-

legacy duopoly case, the first-stage regression is estimated using each of the two observations

per route, with the values of the two carrier dummies switching between observations. Fitted

values for the frequencies on the right-hand side of (14) are then generated for both carriers

on a route, with the values differing because the estimates of the coefficient vectors ρ and λ

will be different.

In addition to Dim, another carrier-characteristics variable, denoted Him, measures the

hub status of the route endpoints for carrier i. This variable equals the geometric mean of

number of destinations served by the carrier from the route endpoints. A large value for this

variable, which indicates that one or both of the endpoints is a hub for the carrier, should lead

to high frequency on the route as the airline seeks to accommodate both passengers connecting

at the hub and passengers terminating their trips at the hub endpoint.

The same hub-status variable is also computed for the other carrier on the duopoly route,

and it might initially appear that it could serve as an instrument along with the competitor

dummies. However, overidentification tests usually show that competitor hub status is not a

valid instrument. In other words, the tests show that it is illegitimate to exclude this hub-

status variable from the right-hand side of the own-carrier reaction function. The implication

is that the position of the reaction function depends on endpoint hub status for both the

given carrier and its competitor. This conclusion is, in some sense, natural given that the

division of traffic on a route will be skewed in favor of the airline that operates a hub at one

endpoint. Failure to capture this traffic-division effect by excluding the other carrier’s hub-

status variable (measuring only own-carrier hub status) will give a false picture of the height

of the own-carrier reaction function. With the hub-status variables for both carriers appearing

the reaction function, the variable Zim then includes a vector Eim ≡ {Him, H−im} along with

Dim. Although it was initially suppressed to simplify the discussion, the Eim vector then

appears as covariate in the first-stage regression (15), as does E−im, which shifts carrier i’s

reaction function along with D−im. But since E−im and Eim just involve different orderings

of Him and H−im, the implication is that these two latter variables appear in the first stage.

In addition to estimating the legacy-legacy reaction function, reaction functions involving
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low-cost carriers (LCCs) are also estimated. In an analogy to the legacy-legacy case, a reaction

function is estimated for LCC-LCC duopoly routes, where two LCCs alone compete with one

another. But in addition to studying frequency competition between carriers of the same type,

asymmetric competition is also considered, with reaction functions estimated for duopoly routes

where a legacy carrier competes with an LCC. In this case, the reaction functions are allowed

to differ by the type of carrier, with an LCC’s response to an increase in frequency by a legacy

competitor allowed to differ from a legacy carrier’s response to an increase in LCC frequency.

Note that in estimating the LCC-legacy reaction function, the second-stage regression only

uses the LCC observations for the sample routes. Correspondingly, the legacy-LCC reaction

function is estimated using only the legacy observations in the second stage. Observations for

the other carrier type are used in the first-stage regressions, with a separate regression run for

each case.

Finally, a pooled model is estimated, where all three types of duopoly routes are intermixed

without distinguishing between carrier types. This model, which serves as a kind of benchmark,

assumes that carriers react in the same way to all competitors, independently of their own type

(legacy or LCC) or the type of the competitor. This assumption may be incorrect, and if so,

the validity of instruments is compromised. For the dummies to be valid instruments, they

should be uncorrelated with the unobserved determinants of own-carrier frequency, as noted

above. But with the carrier types mixed, the dummies indicate, for example, whether a legacy

carrier faces an LCC competitor rather than another legacy competitor on a route. The

position of the actual reaction function, however, might depend on the competitor’s type, with

a legacy carrier, for example, perhaps offering more flights when competing with an LCC. But

with the reaction function’s intercept constrained to be equal across cases, the effect of the

competitor’s LCC status would then be captured in the error term. The upshot is that the

other-carrier dummies would be correlated with the reaction function’s error term, leading to

biased estimates.

By contrast, when routes are divided according to the types of competing carriers, this

problem would appear not to be present. In the legacy-legacy case, for example, there is little

reason to expect that the particular identity of the competing legacy carrier would be corre-
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lated with the unobserved determinants of own-frequency. Similarly, conditional on an LCC’s

competitor being a legacy carrier, there is little reason to expect that the legacy’s particular

identity matters. While the same arguments may be valid in the LCC-LCC and legacy-LCC

cases, it could be argued that Southwest, the largest LCC carrier, may play a different role

than other LCCs. However, distinguishing among LCCs turns out to be impractical.10

3.2. Data

The data come from the US Department of Transportation’s T-100 service-segment data-

base, which contains domestic nonstop flight-frequency data reported by US carriers, with the

route endpoints being individual airports.11 The data are used to compute quarterly frequency

for the second quarter of 2010, a period after the completion of Delta/Northwest merger and

prior to the announcement of United/Continental merger. To ensure that flights are regularly

scheduled, monthly observations are dropped if the carrier is shown as performing fewer than

20 departures during the month. A carrier with less than 20 departures during each month of

the quarter is thus not counted as being present on a route. This restriction is also extended to

exclude routes with possible entry or exit during the quarter, a situation that would complicate

the measurement of frequency interaction. With entry or exit, some months would have small

or zero frequencies for a particular carrier while other months would exceed the 20-departure

threshold. Any route with such a frequency pattern for a carrier serving it is excluded.12

Following Brueckner, Lee and Singer (2012), legacy carriers are American (AA), Alaska

(AS), Continental (CO), Delta (DL), United (UA), US Airways (US) and Hawaiian (HA).

LCCs are jetBlue (B6), Frontier (F9), AirTran (FL), Allegiant Air (G4), Spirit (NK), Sun

Country (SY), Virgin America (VX) and Southwest (WN). Regional carriers are recoded as

their corresponding mainline carriers.

Since a carrier’s frequencies tend to be nearly equal in each direction on a route (with some

differences due to flight cancellations), the frequency measure is computed in a nondirectional

fashion. A carrier’s monthly departures are summed over the second quarter of 2010 for

each direction on a route, with the average across the two directions then computed. Among

the route characteristics, distance in miles between the two airports is reported in the T-100

database. Since longer distances should yield lower frequencies, a negative shift coefficient in
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the reaction function is expected. The income variable is the geometric mean of the high-

income shares of the two endpoint populations, with the share for an endpoint equal to the

proportion of households in the MSA containing the airport with annual incomes greater

than $75,000 (gathered from the 2010 State and Metropolitan Databook). The population

measure is the geometric mean of the endpoint MSA populations from the 2010 US Census of

Population and Housing Occupancy Status. Higher incomes and populations are expected to

shift the reaction function upward. Following Pai (2010), the leisure-route variable takes on

the value one when either endpoint is Las Vegas (LAS) or Orlando (MCO) and zero otherwise,

and its coefficient is expected to be positive. The endpoint hub-status variable is computed

for the first quarter of 2010 to avoid endogeneity. This variable, which equals the geometric

mean of the number of destinations served from the route endpoints by the carrier (including

international destinations), is computed using the T-100 database, and a positive coefficient

for the own-carrier variable and a negative coefficient for that of the competitor are expected.

Summary statistics for the data are presented in Tables 1–3. Table 1 shows the number

of duopoly routes broken down by carrier mix, while also showing flight frequencies by carrier

type. Note that legacy carriers offer higher frequencies on average than LCCs. Table 2 presents

variable means and other statistics, while Table 3 shows airline presences on duopoly routes

by tabulating the percentage of these routes on which a given carrier is present.

4. Main Empirical Results

This section present the main results. Several diagnostic tests are carried out for each

model, including the Durbin-Wu-Hausman exogeneity test and the Sargan overidentification

test. In addition, to appraise instrument strength, the first-stage F statistic for the instruments

is computed and compared to rule-of-thumb value of 10.

4.1. Results for the pooled duopoly case

To start, the pooled duopoly model, where LCCs and legacy carriers are not distinguished,

is analyzed. The sample consists of 371 routes, with two carrier observations per route. Ta-

ble 4 presents results for the pooled duopoly regression, with columns (1) and (3) showing

the estimated coefficients for the OLS and 2SLS regressions, respectively. The OLS results
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are presented for comparison, and the regressions use clustered robust standard errors, with

clustering by route. Such clustering is needed because omitted route-specific variables affect

frequencies for both duopoly carriers, leading to error correlation within each route.

The central result in Table 4 is the estimate of the reaction function’s slope, given by the

coefficient of the competitor’s frequency variable. Under the log specification, the slope shows

the percentage in change in carrier i’s frequency in response to a 1 percent increase in −i’s

frequency. While the estimated OLS slope coefficient is positive and significantly different

from zero, the 2SLS estimate is only one-third as large and statistically insignificant, a finding

that appears to suggest the absence of strategic frequency interaction. However, the diagnostic

tests on the instruments indicate that this conclusion may be unwarranted, as follows. The

Durbin-Wu-Hausman test rejects exogeneity of the competitor’s frequency at the 10 percent

level (see the footnote to Table 4). In addition, the first-stage regression, shown in the first

column of Table 5, yields an F statistic of 19.28 for the instruments, suggesting that they are

not weak. But the Sargan overidentification test soundly rejects validity of the instruments,

with a p value below 1 percent (see the footnote to Table 4). The test thus suggests that the

second-stage error term is correlated with the competing-carrier dummies, a possibility that

was recognized in the previous discussion.

This finding points to a need to distinguish between carrier types in attempting to estimate

reaction functions. However, before turning to this task, it is useful to consider the estimated

coefficients of the remaining variables in Table 4, even though these coefficients could be biased

given the failure to properly correct for endogeneity of the competitor’s frequency. As expected,

an increase in endpoint populations and incomes shifts the reaction function up, while an

increase in distance shifts it down. The reaction function is higher on a leisure route, and

it shifts upward when the carrier serves more destinations from the route endpoints, shifting

down when the competitor serves more such destinations.

The carrier dummy coefficients indicate, in percentage terms, frequency differences across

carriers relative to American (the omitted carrier). For example, the US coefficient of 0.20

indicates that US Airways offers frequencies about 20 percent higher than American, holding

the competitor’s frequency and route characteristics constant.
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Even though the results in Table 4 are not reliable, an understanding of the setup of first-

stage regressions is needed for the subsequent analysis. Looking more closely at column (1) of

Table 5, the IV prefix on the second set of carrier dummies indicates that they belong to the

competing carrier. Recall that the first-stage regression gives the Cournot-Nash equilibrium

solution for carrier −i’s frequency, which corresponds to the intersection of reaction functions.

Since both reaction functions appear to shift out for a shorter route, one with larger populations

or high-income shares, or for a leisure route, equilibrium frequencies both rise, as seen in the

estimated coefficients. The competitor hub-status coefficient indicates that a larger number of

competitor destinations served from the endpoints leads to higher competitor frequency. The

coefficients of the own hub-status variable, expected to be negative, is positive but insignificant.

Predicted frequencies on a duopoly route served by, say, UA and DL are found as follows.

To find UA’s predicted frequency, the IVUA dummy is set equal to 1 along with the DL dummy,

and the competitor hub-status variables are set at UA’s values while the own hub-status

variables take DL’s values. DL’s predicted frequency is found by the reverse substitutions.

4.2. Results for the legacy-legacy duopoly case

The unsatisfactory results for the pooled regression show the need to distinguish between

carrier types, and this section accordingly restricts the sample to the 166 duopoly routes served

by two legacy carriers, yielding 332 observations. Table 6 shows the OLS and 2SLS results.

The 2SLS slope coefficient is now statistically significant and positive, and it is considerably

larger in magnitude than the OLS coefficient, which is also significant, an outcome that is

discussed further below. The 2SLS estimate suggests that a carrier raises its own frequency

by about 0.7 percent in response to a 1 percent increase in the competitor’s frequency. This

finding indicates that frequencies are strategic complements rather than substitutes, in contrast

to the prediction of the theoretical model. Recall, however, that a different model structure

could yield a positive slope like the one in Table 6. Moreover, the slope coefficient shows that

strategic interaction is very strong, with a carrier responding in almost one-for-one fashion to

an increase in its competitor’s flight frequency.

To judge whether the resulting evidence of strategic interaction is credible, the diagnostic

tests on the instruments must be checked. Exogeneity of the competitor’s frequency is rejected
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at the 5 percent level, and the F statistic for the instruments is slightly above the rule-of-

thumb value of 10, suggesting that they are not weak (see the second column of Table 5). In

addition, the overidentification test indicates that the instruments are valid, with a p value

of 0.51. Therefore, all of the diagnostic tests are favorable, indicating that the existence of

strategic frequency interaction among legacy carriers is a valid inference from the results.

Although distance, income, and the endpoint hub-status variables shift the reaction func-

tion as before, the population and leisure-route coefficients, though positive, are insignificant

(the income coefficient is also only marginally significant). Despite the relatively large F statis-

tic, only the Continental carrier dummy coefficient is individually significant, showing that CO

frequencies are about 20 percent greater than American’s, other things equal.

As a robustness check for the legacy-legacy case, Table 7 shows the results for a linear,

rather than log-linear, regression. In addition to this functional-form change, the population,

income, and hub-status variables are now all computed using simple means of the endpoint

values rather than geometric means. The first-stage regression is shown in the first column of

Table 8. Although the F statistic for the instruments falls to 8.26, slightly below the rule-of-

thumb value, the overidentification test continues to show validity of the instruments.13 The

reaction-function slope coefficient remains significantly positive, and in addition, coefficients

for all of the shift variables are now significant. These findings show that the evidence of

strategic interaction is reasonably robust to changes in the form of the regression.

4.3. Results for the LCC-LCC duopoly case

This section restricts the sample to the 35 duopoly routes served by two LCCs, yielding

70 observations. Table 9 shows the OLS and 2SLS results for the log-linear specification.

Although the reaction-function slope coefficient is insignificant in the OLS case, the 2SLS

slope is significantly positive. Its magnitude of 0.76 is close to that in the legacy-legacy case,

indicating that the strength of strategic interaction is similar within the two carrier types,

being strong in both cases.

The diagnostic tests on the instruments are again fully satisfactory, as in the log-linear

legacy-legacy case. Exogeneity of the competitor’s frequency is soundly rejected, the value of

the F statistic for the instruments is almost 18 (see Table 5), and the overidentification test

18



fails to reject validity of the instruments (with a p-value of 0.72). Therefore, as in Table 7, the

evidence of strategic frequency interaction is credible.

Among the shift variables, the population, income, and leisure-route coefficients are in-

significant, while the remaining coefficients are significant with the expected signs. With

LCCs more oriented to nonbusiness passengers than legacies, the failure of the high-income

shares to shift the reaction function may be plausible (recall that this variable’s coefficient

was marginally significant in the legacy-legacy case). Also, with LCCs tending to serve leisure

passengers on all routes (leisure or otherwise), the insignificance of the leisure-route coefficient

may make sense. The only LCC with frequencies significantly different from those of jetBlue,

the omitted LCC carrier, is Virgin America, whose frequencies appear to be more than twice

as high.14

As a robustness check, Table 10 presents the LCC-LCC results for the alternative specifi-

cation, with the second column of Table 8 showing the first-stage regression. The 2SLS slope

coefficient is again positive and significant, suggesting the presence of strategic interaction.

Although the F statistic for the instruments falls to 7.77, the overidentification test continues

to show their validity, with a p value of 0.89.15 Among the shift variables that had insignificant

coefficients under the log-linear specification, population now has a significantly positive effect

on frequencies.

4.4. Results for the legacy-LCC and LCC-legacy duopoly cases

With the previous results showing the presence of strategic frequency interaction within

carrier types, the next step is to investigate interaction across types. Unfortunately, however,

this investigation turns out to be unsuccessful. The reason is that, for both the legacy-LCC

and LCC-legacy cases, the performance of the competing-carrier dummies as instruments is

unsatisfactory. On the 170 duopoly routes where the carrier types are mixed, the competing-

carrier dummies have little influence over the frequencies chosen by the competitor. Evidently,

when paired with a carrier of the other type, a competing carrier’s identity appears not to

matter in determining its own frequencies. In other words, when it comes to frequencies, all

legacies behave the same way when their competitor is an LCC, and vice versa, a pattern that

has no obvious explanation.
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This outcome, which holds in both the legacy-LCC and LCC-legacy cases, can be illustrated

by considering the latter case.16 Table 11 presents the OLS and 2SLS results for the the LCC-

legacy case, showing the LCC reaction function when a legacy carrier is the competitor (the

log-linear specification is used). The 2SLS slope coefficient is not significantly different from

zero, which might be viewed as evidence that LCC carriers do not consider legacy choices in

setting their own frequencies, a plausible possibility. However, the last column of Table 5 shows

a very low F statistic of 0.97 for the instruments, none of whose coefficients are individually

significant at the 5 percent level. Even though the overidentification test cannot reject validity

of the instruments, the tiny F statistic means that the 2SLS results are not reliable. Therefore,

the absence of strategic LCC interaction with a legacy competitor, although a tantalizing

conclusion, is not credible. The legacy-LCC regression (not shown) also yields an insignificant

2SLS slope, but it suffers from the very same instrument deficiencies. The upshot is that the

present data cannot generate a reliable measure of strategic interaction across carrier types.

The same obstacle arises for a sample of 87 oligopoly routes. Focusing on 3-carrier routes,

and estimating reaction functions for a pooled model as well as for the 1-legacy/2-LCC and

1-LCC/2-legacy cases, the performance of the carrier-dummy instruments is unsatisfactory

in each case (results are not shown).17 The first-stage regressions yield unacceptably low F

statistics, again indicating that flight frequencies do not vary significantly across carriers on

such routes.

4.5. Overall lessons

The challenge in estimating reaction functions is to find instruments that help determine

the level of the endogenous right-hand variable, in this case the competitor’s flight frequency.

Good choices for instruments are variables that shift the competitor’s reaction function without

being correlated with the unobservable determinants of the carrier’s own frequency. Variables

that, in principle, meet this requirement are measures of the competing carrier’s characteristics.

One such characteristics variable, which is actually both carrier- and route-dependent, is the

endpoint hub-status measure, but it turns out to be invalid as an instrument since it directly

determines own-frequency, as discussed above. A remaining choice is the vector of dummy

variables indicating carrier identities. As long as these variables shift the flight-frequency
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reaction function, with carrier identities mattering in the choice of frequencies, these variables

should perform successfully as instruments.

As the preceding discussion shows, the dummy variables meet this requirement for some

types of routes but not others. On duopoly routes where the carriers are of same type (both

legacies or both LCCs), carrier identities matter in the determination of frequencies. But on

mixed duopoly and oligopoly routes, as well in the pooled oligopoly case, carrier identities

do not exert enough influence on frequencies to be viable as instruments. Given this failure,

one might wonder whether objective carrier-characteristics measures might do a better job.

However, regressions using several such variables, including cost per seat mile and several

measures of fleet size relative to network size (presumably a determinant of frequencies), did

not yield better results for the problematic mixed-route cases. This outcome is no surprise,

of course, since carrier dummies offer the most comprehensive way of capturing differences in

carrier characteristics.

Another approach, which follows Berry et al. (1995), is to choose an instrument related

to the other “products” offered by a carrier. The chosen instrument is the weighted average

of the competitor’s (logged) flight frequencies on the other routes it operates that do not

share endpoints with the given route, with larger weights used on routes that have endpoint

populations similar to those on the given route. This instrument, however, performs poorly by

itself, and including it along with the carrier dummies does not improve the results.

With no other attractive instruments apparently available, the present results may offer the

best that can be done in investigating strategic interaction in the choice of flight frequencies.

Fortunately, it appears that the strength of interaction can be measured with some confidence

for at least some types of routes.

One final note of caution regarding the results concerns the direction of bias in the OLS

estimates of the reaction-function slopes. While the discussion in section 3 indicated that the

OLS slope should be biased away from zero, the legacy-legacy and LCC-LCC estimates yield

the opposite pattern, with the positive 2SLS slope estimates being larger, not smaller, than the

OLS estimates. This outcome might suggest that the instruments, despite passing the various

diagnostic tests, are somehow invalid. More fundamentally, the finding instead might indicate
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that the Cournot-Nash depiction of the choice of flight frequencies is inappropriate, with some

other behavioral model being relevant instead. Or, recognizing that the slope estimates are

random variables, the finding may just reflect statistical noise.

5. Multimarket Contact

Evans and Kessides’ (1994) work on multimarket contact added an important innovation to

reduced-form models of airline pricing by showing that extensive contact between competitors

on other routes could soften price competition on a given route, with carriers fearing retaliation

elsewhere when they cut fares. Evans and Kessides showed that airlines with high multimarket

contact practice “mutual forbearance” by charging higher fares on routes they jointly serve.

With the view of airline competition broadened to include both fares and frequencies, a nat-

ural question is whether mutual forebearance exists in both the quality and price dimensions.

In other words, do airlines with high multimarket compete less vigorously in frequencies on

routes where they are both present? While this question could be addressed in a reduced-form

fashion, it also can be addressed in the current, reaction-function context. The question then

is whether multimarket contact shifts the reaction function downward, with carriers offering

lower frequencies on routes where multimarket contact with the competitor is high.

To address this question, a contact variable is constructed following Evans and Kessides

(1994), and the variable is then added to the previous legacy-legacy and LCC-LCC duopoly

regressions. For a duopoly route, the contact measure is simply the total number of routes

on which the two carriers are both present. Table 12 shows the matrix containing these route

counts for all pairs of carriers.

Table 13 presents the results. To simplify the table, the dummy variables are omitted and

only 2SLS estimates are displayed. With the coefficient of the contact measure insignificant

in both regressions, the results suggest that multimarket contact does not shift the reaction

functions in the legacy-legacy and LCC-LCC cases, a finding that contradicts the mutual

forbearance hypothesis.18 A possible explanation is that, with frequencies a less-prominent

competitive tool than fares, airlines need not adjust their competitive behavior in the frequency

dimension in response to high multimarket contact, letting mutual forebearance in prices do
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all the work.

In the present context, the reduced-form results of Evans and Kessides (1994) correspond

the estimates of the first-stage regression. These results, which are not shown, provide a some-

what different picture. Although the coefficient of the contact variable is insignificant in the

LCC-LCC first-stage regression, the legacy-legacy first stage shows a significant and positive

coefficient, indicating that multimarket contact raises equilibrium frequencies. This outcome

is a consequence of the positive reaction-function coefficient for contact, which indicates that

both functions shift outward (although not in a statistically significant fashion) as multimarket

contact increases, raising equilibrium frequencies. This conclusion is, of course, the opposite of

what mutual forebearance would predict and is thus counterintuitive. Moreover, the failure of

the contact effect to appear significantly in the reaction functions themselves casts some doubt

on the conclusion. The lesson to be drawn is that the results definitely do not show evidence

of mutual forebearance in frequency choices, with the effect of multimarket contact possibly

running in the opposite direction for legacies, although not for LCCs.

6. Using the Estimates

The estimated reaction functions can be used to predict the effects on flight frequencies of

changes in the airline operating environment, which may shift the positions of the functions for

one or more carriers. Consider, for example, the impact of a change in an individual airline’s

“scope clause.” A scope clause is now typically part of the collective bargaining agreement

between a legacy carrier and its pilot’s union, with the clause limiting the extent to which

the airline’s service can be operated by regional carriers. The goal is to limit the reliance on

regional-carrier pilots in providing service under the airline’s brand name, preserving jobs for

the pilots who fly the mainline fleet. A scope clause often limits the number of regional aircraft

that can be operated as well as their seat capacities, with both limitations serving to cap the

number of non-mainline seats that the carrier can use in providing its service. Relaxation of

a scope clause thus allows greater reliance on small planes, either by allowing a larger number

to be used or by allowing the operation of larger regional aircraft (which remain smaller than

mainline planes) in the provision of service. The mainline carrier therefore gains flexibility in
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matching aircraft to market conditions.

Scope clauses are relevant to the present analysis because, by limiting the use of small

planes, they may constrain a carrier’s ability to provide high flight frequencies. For example,

carriers might be prevented from raising frequencies on high-volume routes by adding a few

regional-jet flights each day to supplement mainline operations, a change that would require

raising the share of such jets in the combined fleet. From the perspective of the current

framework, the key observation is that relaxation of a carrier’s scope clause may lead to an

upward shift in its reaction function, with a higher frequency provided for any given level of

the competitor’s frequency. Concretely, this change would be reflected in an increase in the

coefficient of the dummy variable identifying that carrier. The larger dummy coefficient, in

effect, raises the carrier-specific intercept of the reaction function.

How will a relaxation of one carrier’s scope clause affect flight frequencies? Consider the

case of American Airlines (AA), which has recently negotiated a relaxation of its scope clause

under bankruptcy proceedings, and consider a route where AA competes with another legacy

carrier (call it YZ). The upward shift in AA’s reaction function, which is shown in Figure 1,

will lead to a new Cournot-Nash equilibrium with higher frequencies for both American and

carrier YZ. In addition, the figure shows that AA’s frequency will rise by more than YZ’s in

moving to the new equilibrium. Analytically, let δ denote the reaction function’s slope (as

in (14)) and let ηAA denote AA’s dummy coefficient (represented by the intercept α in (14)

since AA is the omitted carrier). Then, letting ηAA change by ∆ηAA and using f ’s to denote

frequencies (as in the theoretical model), the changes in frequencies on the route, ∆fAA and

∆fYZ , must satisfy

∆fAA = ∆ηAA + δ∆fYZ (17)

∆fYZ = δ∆fAA, (18)

where (17) and (18) come from AA’s and YZ’s reaction functions. Solving yields

∆fAA =
∆ηAA

1 − δ2
, ∆fYZ =

δ∆ηAA

1 − δ2
(19)
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Using the δ value of 0.625 from the linear specification in Table 7, (19) shows that ∆fAA =

1.641∆ηAA and ∆fYZ = 1.026∆ηAA. Therefore, fAA increases by almost twice the increase

in the AA intercept, while the increase in fYZ about matches the intercept’s increase. The

ratio of the two changes is 1.641/1.026 = 1.600 = 1/δ. The lesson is that a relaxation of an

legacy airline’s scope clause (reflected, by assumption, in a larger dummy coefficient) raises

equilibrium frequencies on all the duopoly routes where it competes with another legacy carrier,

but that its own frequency rises by sixty percent more than that of its competitor. Although

it is not possible to quantify the connection between AA’s scope clause and the magnitude of

ηAA or to validate the assumption that the clause only affects the intercept, these calculations

show how the estimates from the model might be used to generate qualitative insights.

A final point is that the first-stage estimates, which correspond to the reduced-form of the

structural model, could be used instead to generate analogous conclusions. However, because

the first-stage estimates are derived statistically, not through algebraic manipulation of the

reaction-function estimates, the answers from this method may be different.19

7. Conclusion

This paper has provided empirical evidence on product-quality competition in the airline

industry. Focusing on a main element of quality, flight frequency, the paper has estimated

reaction functions in a search for strategic interaction in the determination of frequencies. Re-

gressions for duopoly routes where two competitors are of the same type (two LCCs or two

legacy carriers) yield credible, significantly positive 2SLS slope estimates. Strategic interaction

therefore appears to occur on such homogenous routes, and the slope estimates indicate that it

is strong, with a carrier responding in almost one-for-one fashion to an increase in its competi-

tor’s frequency (a conclusion that applies on both legacy and LCC routes). But on duopoly

routes where the competing carriers are of different types, the weak performance of the instru-

ments, which are needed to identify strategic interaction, prevents a strong conclusion from

being reached. Therefore, while the analysis shows the presence of strategic interaction within

carrier types, the existence of interaction across types remains an open question. Regressions

including a multimarket-contact variable show no evidence of mutual forbearance in frequency
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competition within carrier types.

With little existing empirical work on product-quality competition in the industrial orga-

nization literature, this paper points the way toward a possible new line of research. In other

industries where substantial quality variation is observed, either cross-sectionally or intempo-

rally, reaction functions could be estimated in an attempt to expose the nature of strategic

interaction.
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Table 1: Duopoly Route Structure

Route Structure Mean Frequency Number of Routes

Legacy LCC

pooled 427.55 276.28 371

legacy-legacy 402.94 − 166

LCC-LCC − 232.36 35

legacy-LCC 475.62 294.37 170

Table 2: Summary Statistics for Duopoly Routes

Variable Mean Std.Dev. Min Max

Frequency 378.622 249.396 78 1797

Distance 819.846 545.192 67 2918

Geometric Mean of Income above $75,000 34.783 4.392 23.769 51.327

Geometric Mean of Population (in hundred thousands) 30.079 15.266 5.670 95.529

Leisure Route 0.094 0.292 0 1

Geometric Mean of Number of Destinations 19.828 16.211 0 169
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Table 3: Airline Presences on Duopoly Routes

Airline Code Airline Share of Routes

AA American 14.15%

AS Alaska 3.50%

CO Continental 6.87%

DL Delta 16.44%

UA United 15.09%

US US Airways 11.05%

HA Hawaiian 0.27%

B6 JetBlue 4.72%

F9 Frontier 2.43%

FL AirTran 9.03%

G4 Allegiant Air 0.13%

NK Spirit 1.21%

SY Sun Country 0.13%

VX Virgin America 0.27%

WN Southwest 14.42%
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Table 4: Pooled Regression for Duopoly Routes

OLS 2SLS

(1) (2) (3) (4)

Variables Coeff. Std.Err. Coeff. Std.Err.

Log Competitor Frequency 0.301** (0.058) 0.129 (0.103)

Distance -0.0004** (0.0001) -0.001** (0.0001)

Geometric Mean of Income above $75,000 0.017** (0.004) 0.022** (0.005)

Geometric Mean of Population 0.005** (0.002) 0.007** (0.002)

Leisure Route 0.167** (0.054) 0.178** (0.065)

Geometric Mean of Own # Destination 0.017** (0.002) 0.017** (0.002)

Geometric Mean of Competitor’s # Destination -0.004* (0.002) -0.001 (0.002)

AS 0.110 (0.115) 0.114 (0.111)

B6 -0.285** (0.110) -0.325** (0.106)

CO 0.260** (0.082) 0.248** (0.079)

DL 0.031 (0.065) 0.011 (0.062)

F9 -0.059 (0.103) -0.061 (0.094)

FL -0.254** (0.072) -0.234** (0.076)

G4 -0.713** (0.097) -0.863** (0.125)

HA 0.111 (0.096) 0.163 (0.102)

NK -0.200 (0.110) -0.182 (0.105)

SY -0.620** (0.093) -0.535** (0.107)

UA 0.051 (0.065) 0.042 (0.061)

US 0.212** (0.066) 0.199** (0.065)

VX 0.562** (0.151) 0.557** (0.136)

WN -0.214** (0.068) -0.208** (0.067)

Constant 3.321** (0.305) 4.112** (0.504)

Observations 742 742

R
2 0.528 −

1 ** p<0.01, * p<0.05.

2 Standard errors are clustered robust, clustering by route.

3 Dependent variable: Log Own Frequency.

4 test of exogeneity: p = 0.076

5 test of overidentifying restrictions: Sargan chi-squared(13) = 34.101 (p = 0.001)
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Table 5: First-stage Regressions for Duopoly Routes

Pooled Legacy-Legacy LCC-LCC LCC-Legacy

(1) (2) (3) (4)

Variables Coeff. Coeff. Coeff. Coeff.

Distance -0.001** -0.001** -0.001** -0.001**
(0.0001) (0.0001) (0.0001) (0.0001)

Geometric Mean of Income above $75,000 0.025** 0.025** 0.012 0.018*
(0.006) (0.008) (0.027) (0.009)

Geometric Mean of Population 0.008** 0.004 0.021** 0.004
(0.002) (0.003) (0.005) (0.002)

Leisure Route 0.168* 0.114 -0.050 0.424**
(0.083) (0.184) (0.123) (0.129)

Geometric Mean of Own # Dest. 0.002 0.001 0.014 0.001
(0.001) (0.002) (0.009) (0.004)

Geometric Mean of Competitor’s # Dest. 0.016** 0.019** 0.040** 0.010**
(0.002) (0.003) (0.008) (0.003)

AS 0.187 0.115 NA NA
(0.113) (0.151)

CO 0.020 0.002 NA NA
(0.104) (0.119)

DL -0.008 -0.419** NA NA
(0.071) (0.096)

UA 0.007 -0.131 NA NA
(0.118) (0.131)

US 0.102 0.109 NA NA
(0.090) (0.107)

HA 0.344 0.041 NA NA
(0.239) (0.174)

B6 -0.195 NA Omitted Omitted
(0.108)

F9 0.074 NA 0.453 0.086
(0.152) (0.250) (0.213)

FL 0.301** NA 0.421 0.526**
(0.100) (0.219) (0.163)

G4 -0.744** NA 0.121 NA
(0.123) (0.206)

NK 0.232 NA 0.796* 0.149
(0.200) (0.351) (0.226)

SY 0.555** NA NA 0.348
(0.130) (0.196)

VX 0.329** NA 1.039** 1.075**
(0.123) (0.234) (0.224)

WN 0.033 NA -0.00003 0.232
(0.072) (0.197) (0.130)

Constant 4.709** 4.896** 3.859** 4.858**
(0.206) (0.255) (0.884) (0.369)

Continued on next page.
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Table 5: Continued from previous page

Pooled Legacy-Legacy LCC-LCC LCC-Legacy

(1) (2) (3) (4)

Variables Coeff. Coeff. Coeff. Coeff.

IVAS 0.140 -0.017 NA 0.264
(0.132) (0.195) (0.208)

IVCO 0.257* 0.211 NA 0.455
(0.116) (0.135) (0.272)

IVDL -0.075 -0.464** NA 0.334
(0.085) (0.092) (0.188)

IVUA 0.039 -0.105 NA 0.269
(0.119) (0.128) (0.203)

IVUS 0.194 0.234 NA 0.334
(0.108) (0.142) (0.200)

IVHA 0.191 -0.064 NA NA
(0.144) (0.228)

IVB6 -0.413** NA Omitted NA
(0.127)

IVF9 -0.143 NA 0.467 NA
(0.104) (0.239)

IVFL -0.194 NA 0.224 NA
(0.120) (0.169)

IVG4 -1.236** NA -0.047 NA
(0.128) (0.210)

IVNK -0.140 NA 0.485** NA
(0.137) (0.175)

IVSY -0.437** NA NA NA
(0.152)

IVVX 0.662** NA 1.876** NA
(0.202) (0.228)

IVWN -0.262** NA 0.052 NA
(0.094) (0.241)

Observations 742 332 70 170

R
2 0.500 0.436 0.711 0.590

F-statistic for the IVs 19.281 10.013 17.634 0.969

1 ** p<0.01, * p<0.05.

2 Standard errors are clustered robust, clustering by route.

3 Dependent variable: Log Competitor Frequency.
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Table 6: Legacy-Legacy Regression

OLS 2SLS

(1) (2) (3) (4)

Variables Coeff. Std.Err. Coeff. Std.Err.

Log Competitor Frequency 0.417** (0.078) 0.695** (0.110)

Distance -0.0003** (0.0001) -0.0001* (0.0001)

Geometric Mean of Income above $75,000 0.015** (0.005) 0.007* (0.003)

Geometric Mean of Population 0.003 (0.002) 0.001 (0.001)

Leisure Route 0.108 (0.106) 0.039 (0.064)

Geometric Mean of Own # Destination 0.018** (0.003) 0.018** (0.003)

Geometric Mean of Competitor’s # Destination -0.007** (0.002) -0.012** (0.003)

AS -0.056 (0.201) -0.102 (0.208)

CO 0.221* (0.092) 0.236* (0.101)

DL -0.220** (0.077) -0.165 (0.093)

UA 0.037 (0.072) 0.049 (0.079)

US 0.155 (0.092) 0.152 (0.100)

HA -0.134 (0.125) -0.105 (0.176)

Constant 2.743** (0.401) 1.454** (0.547)

Observations 332 332

R
2 0.499 −

1 ** p<0.01, * p<0.05.

2 Standard errors are clustered robust, clustering by route.

3 Dependent variable: Log Own Frequency.

4 test of exogeneity: p = 0.015

5 test of overidentifying restrictions: Sargan chi-squared(5) = 4.319 (p = 0.505)
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Table 7: Legacy-Legacy Regression with Linear/Average Specification

OLS 2SLS

(1) (2) (3) (4)

Variables Coeff. Std.Err. Coeff. Std.Err.

Competitor Frequency 0.560** (0.063) 0.625** (0.112)

Distance -0.067** (0.014) -0.059** (0.020)

Average Income above $75,000 6.429** (1.634) 5.583** (2.016)

Average Population 1.646** (0.609) 1.426* (0.657)

Leisure Route 82.373** (20.615) 72.152** (25.612)

Average of Own # Destination 7.197** (0.740) 7.310** (0.683)

Average of Competitor’s # Destination -4.900** (0.678) -5.253** (0.705)

AS 181.901 (111.214) 174.426 (116.650)

CO -37.199 (36.102) -41.028 (36.408)

DL -39.594 (25.883) -39.295 (25.968)

UA -94.344** (29.245) -97.968** (29.294)

US 35.426 (31.407) 30.927 (34.524)

HA 161.253* (65.726) 153.034* (71.643)

Constant -168.608** (58.905) -146.194* (70.237)

Observations 332 332

R2 0.616 −

1 ** p<0.01, * p<0.05.

2 Standard errors are clustered robust, clustering by route.

3 Dependent variable: Own Frequency.

4 test of exogeneity: p = 0.555

5 test of overidentifying restrictions: Sargan chi-squared(5) = 4.414 (p = 0.492)

33



Table 8: First-stage Regressions with Linear/Average Specification

Legacy-Legacy LCC-LCC

(1) (2)

Variables Coeff. Coeff.

Distance -0.160** -0.225**
(0.032) (0.039)

Average Income above $75,000 12.595** -1.066
(3.355) (8.326)

Average Population 4.088** 4.298**
(1.389) (1.171)

Leisure Route 166.853** -23.544
(44.347) (41.543)

Average of Own # Dest. -1.306* -1.010
(0.614) (4.705)

Average of Competitor’s # Dest. 6.527** 18.697**
(0.626) (3.871)

AS 176.351* NA
(79.994)

CO 31.489 NA
(35.231)

DL -67.528 NA
(38.266)

UA -5.204 NA
(46.588)

US 83.270 NA
(45.304)

HA 215.741 NA
(138.096)

B6 NA Omitted

F9 NA 17.637
(73.654)

FL NA 2.586
(66.202)

G4 NA -42.404
(82.314)

NK NA 63.201
(91.321)

VX NA 310.330**
(78.358)

WN NA 2.075
(70.484)

Constant -379.966** 64.990
(141.611) (292.615)

Continued on next page.
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Table 8: Continued from previous page

Legacy-Legacy LCC-LCC

(1) (2)

Variables Coeff. Coeff.

IVAS 279.419* NA
(132.052)

IVCO 7.292 NA
(41.558)

IVDL -69.915 NA
(35.778)

IVUA -75.071 NA
(41.516)

IVUS 113.125* NA
(46.179)

IVHA 325.217** NA
(94.299)

IVB6 NA Omitted

IVF9 NA -13.586
(53.840)

IVFL NA -28.715
(35.805)

IVG4 NA 150.929
(80.963)

IVNK NA 27.052
(54.457)

IVVX NA 520.073**
(86.366)

IVWN NA -77.515
(53.882)

Observations 332 70

R
2 0.457 0.725

F-statistic for the IVs 8.266 7.766

1 ** p<0.01, * p<0.05.

2 Standard errors are clustered robust, clustering by

route.

3 Dependent variable: Competitor Frequency.
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Table 9: LCC-LCC Regression

OLS 2SLS

(1) (2) (3) (4)

Variables Coeff. Std.Err. Coeff. Std.Err.

Log Competitor Frequency -0.085 (0.226) 0.762** (0.211)

Distance -0.001** (0.0002) -0.0003* (0.0001)

Geometric Mean of Income above $75,000 0.022 (0.031) -0.006 (0.015)

Geometric Mean of Population 0.021** (0.006) 0.005 (0.004)

Leisure Route -0.066 (0.141) -0.019 (0.072)

Geometric Mean of Own # Destination 0.049** (0.010) 0.033** (0.012)

Geometric Mean of Competitor’s # Destination 0.004 (0.008) -0.021* (0.008)

F9 0.564* (0.246) 0.212 (0.391)

FL 0.078 (0.229) -0.194 (0.336)

G4 0.041 (0.191) 0.002 (0.194)

NK 0.366 (0.307) -0.203 (0.432)

VX 1.489** (0.356) 1.218** (0.218)

WN -0.015 (0.229) 0.093 (0.346)

Constant 4.271** (1.218) 1.414 (0.839)

Observations 70 70

R
2 0.630 −

1 ** p<0.01, * p<0.05.

2 Standard errors are clustered robust, clustering by route.

3 Dependent variable: Log Own Frequency.

4 test of exogeneity: p = 0.0004

5 test of overidentifying restrictions: Sargan chi-squared(5)= 2.875 (p = 0.719)
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Table 10: LCC-LCC Regression with Linear/Average Specification

OLS 2SLS

(1) (2) (3) (4)

Variables Coeff. Std.Err. Coeff. Std.Err.

Competitor Frequency 0.067 (0.206) 0.499** (0.152)

Distance -0.179** (0.059) -0.115** (0.033)

Average Income above $75,000 3.702 (7.260) -2.221 (3.922)

Average Population 3.624* (1.519) 2.183* (0.890)

Leisure Route -13.058 (38.119) -30.874 (23.140)

Average of Own # Destination 18.571** (2.940) 19.704** (3.741)

Average of Competitor’s # Destination -2.996 (2.661) -8.722** (2.874)

F9 -28.366 (44.955) -51.636 (54.126)

FL -43.097 (38.285) -51.401 (52.261)

G4 125.487** (44.007) 166.373** (54.665)

NK 2.732 (55.599) -32.766 (67.908)

VX 382.219** (105.172) 349.018** (62.049)

WN -95.915* (35.270) -106.018** (39.772)

Constant -74.513 (233.723) 102.444 (143.582)

Observations 70 70

R2 0.700 −

1 ** p<0.01, * p<0.05.

2 Standard errors are clustered robust, clustering by route.

3 Dependent variable: Own Frequency.

4 test of exogeneity: p = 0.076

5 test of overidentifying restrictions: Sargan chi-squared(5) = 1.661 (p = 0.894)
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Table 11: LCC-Legacy Regression

OLS 2SLS

(1) (2) (3) (4)

Variables Coeff. Std.Err. Coeff. Std.Err.

Log Competitor Frequency 0.236** (0.079) 0.093 (0.435)

Distance -0.001** (0.0001) -0.001** (0.0003)

Geometric Mean of Income above $75,000 0.022** (0.008) 0.025* (0.011)

Geometric Mean of Population 0.015** (0.002) 0.015** (0.003)

Leisure Route 0.062 (0.123) 0.124 (0.219)

Geometric Mean of Own # Destination 0.034** (0.005) 0.035** (0.005)

Geometric Mean of Competitor’s # Destination -0.001 (0.002) 0.000 (0.005)

F9 0.213 (0.152) 0.220 (0.149)

FL -0.094 (0.121) -0.027 (0.233)

NK 0.270 (0.186) 0.281 (0.183)

SY -0.041 (0.436) 0.007 (0.446)

VX 0.806 (0.457) 0.952 (0.622)

WN -0.174 (0.105) -0.147 (0.129)

Constant 3.038** (0.513) 3.787 (2.305)

Observations 170 170

R
2 0.610 −

1 ** p<0.01, * p<0.05.

2 Standard errors are clustered robust, clustering by route.

3 Dependent variable: Log Own Frequency.

4 test of exogeneity: p = 0.737

5 test of overidentifying restrictions: Sargan chi-squared(4) = 5.851 (p = 0.211)
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Table 12: The Number of Contact Points

AA AS B6 CO DL F9 FL G4 HA NK SY UA US VX WN

AA 309 4 32 26 85 4 12 0 4 6 0 192 33 12 8

AS 4 76 4 6 2 4 0 0 6 0 0 30 4 4 34

B6 32 4 122 10 54 0 16 0 0 8 0 20 14 12 18

CO 26 6 10 114 30 6 0 0 2 2 0 24 16 0 8

DL 85 2 54 30 347 13 100 0 8 22 2 43 55 8 48

F9 4 4 0 6 13 113 22 0 0 0 0 82 8 0 64

FL 12 0 16 0 100 22 180 2 0 6 0 8 14 0 42

G4 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0

HA 4 6 0 2 8 0 0 0 14 0 0 4 2 0 0

NK 6 0 8 2 22 0 6 0 0 38 0 2 2 2 6

SY 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0

UA 192 30 20 24 43 82 8 0 4 2 0 371 22 20 96

US 33 4 14 16 55 8 14 0 2 2 0 22 215 2 94

VX 12 4 12 0 8 0 0 0 0 2 0 20 2 26 4

WN 8 34 18 8 48 64 42 0 0 6 0 96 94 4 308
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Table 13: 2SLS Multimarket-Contact Regressions

(1) (2)

Variables Legacy-Legacy LCC-LCC

Log Competitor Frequency 0.732** 0.762**

(0.098) (0.214)

Contact 0.001 -0.001

(0.001) (0.005)

Distance -0.0001* -0.0003*

(0.00005) (0.0001)

Geometric Mean of Income above $75,000 0.006* -0.007

(0.003) (0.013)

Geometric Mean of Population 0.001 0.005

(0.001) (0.004)

Leisure Route 0.041 -0.025

(0.056) (0.056)

Geometric Mean of Own # Dest. 0.017** 0.034**

(0.003) (0.013)

Geometric Mean of Competitor’s # Dest. -0.013** -0.020*

(0.003) (0.009)

Constant 1.185* 1.426

(0.466) (0.816)

Observations 332 70

R
2 0.436 0.353

1 ** p<0.01, * p<0.05.

2 Standard errors in the bracket are clustered robust, clustering by route.

3 Dependent variable: Log Own Frequency.
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Footnotes

∗We thank Miguel Alcobendas, Jiawei Chen, Philip Gayle, Darin Lee and Ethan Singer for
helpful comments. However, any errors or shortcomings in the paper are our responsibility.

1Prior to airline deregulation, when price competition was not allowed, airlines were viewed as
competing excessively in flight frequency. Although deregulation enabled airlines to compete
more vigorously in fares, airlines appear to still compete in flight frequency, and frequency has
indeed increased since the hub-and-spoke system expanded airline networks (see Morrison
and Winston (1995)).

2The conjectural variation is criticized by game theorists because it introduces dynamics into
a static model in a logically flawed fashion.

3For earlier non-structural empirical work on product quality, see Mazzeo (2002) and Crawford
and Shum (2007).

4This mixture of parameters can be seen in the reaction function derived in the theoretical
analysis below (eq. (11)).

5Other empirical papers on flight frequencies include Pai (2010), who explores the deter-
minants of frequencies and aircraft sizes using a reduced-form approach, and Bilotkach et
al. (2010), who focus primarily on the relationship between the frequency choice and trip
distance, providing a theoretical model and empirical evidence. In other theoretical work,
Shah and Brueckner (2012) extend the model of Brueckner (2010) to the case of freight
transportation.

6While the slope of the reaction function derived in section 2 is nonzero, it would be possible in
principle for a theoretical model to generate a zero slope even when a carrier takes account of
its competitor’s frequency. Therefore, strictly speaking, a zero slope for an empirical reaction
need not imply the absence of strategic interaction. However, the most likely explanation
for such a finding is that a carrier ignores its competitor’s frequency in make its own choices.

7In work more closely related to the present exercise, Bilotkach (2011) studies the relation-
ship between flight frequencies and multimarket contact in a reduced-form model, while
Prince and Simon (2009) explore the impact of multimarket contact on flight delays and
cancellations.

8This property means that the equilibrium where fares and frequencies are chosen simultane-
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ously is the same as the one with sequential choice.

9Beyond generating a reaction function, Brueckner’s (2010) analysis is devoted to providing
both comparative-static and welfare analyses of the equilibrium with an arbitrary number
of firms, along with analysis of a free-entry equilibrium, where the number of firms adjusts
to ensure zero profit.

10In particular, the need to exclude one LCC from among the competitor dummies in re-
gressions where the competitors are LCCs (such as the LCC-LCC model) leaves only one
instrument and an exactly identified equation, which cannot be subjected to the overidenti-
fication test (see footnote 14 below).

11An alternate approach would rely on city-pairs rather than airport-pairs. This approach
could use the airport groupings for multiple-airport metro areas generated by Brueckner,
Lee and Singer (2012). While the airport-pair approach is used for simplicity, this city-pair
approach could be explored in further work.

12Frequency could still exceed the 20 threshold when entry or exit occurs midway through
a month, creating a misleading quarterly frequency total, but this drawback cannot be
addressed and thus creates a source of measurement error. Aside from entry and exit, most
cases with 20 or fewer departures involve flight diversions or other irregular events, which
lead to only a few flight operations.

13Note that exogeneity of the competitor’s frequency cannot be rejected under this new spec-
ification.

14Observe that IVB6 (jetBlue) is also omitted from the list of intruments. With the competitor
being an LCC by construction, the IV’s would sum to one without such an omission.

15Exogeneity of the competitor’s frequency is rejected at the 10 percent level.

16Recall that this regression uses only the LCC observations. With only one observation used
per route, clustering is unneeded.

17Routes with 3 legacies or 3 LCCs are too few in number for these cases to be investigated. In
the regressions, the average of the log frequency of the two competitors appears on the right-
hand side, as does the average of the competitors’ hub-status measures. This specification
follows from the assumption that the coefficients of the individual log frequencies and hub-
status variables are equal across the two competitors.
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18Allowing the contact variable to affect both the height and slope of the reaction function
again yields insignificant effects.

19Solving for the reduced form, AA’s dummy coefficient when it is carrier −i in (15) (that
is, the carrier whose frequency is being determined) is equal to ηAA/(1 − δ2), while its
dummy coefficient when it is carrier i (that is, the other carrier in the market) is equal to
δηAA/(1−δ2). The 1/δ factor by which AA’s frequency change exceeds that of its competitor
(from the text) would thus be found by taking the ratio of the IVAA coefficient and the AA
coefficients from the first-stage regression. Since AA is the default carrier, such coefficients
are not estimated, but the same point would apply to any other carrier, say Alaska (AS).
Thus, the effect of an increase in Alaska’s dummy coefficient on its own frequency relative
to the frequency of a duopoly competitor (which should equal 1/δ) would be given by the
ratio of the IVAS and AS coefficients in Table 8. This ratio is 279/176 = 1.58, which is very
close to 1.6 or 1/δ. While the analogous ratios for US Airways and Hawaiian Airlines are
1.36 and 1.51, respectively, the ratios for the other legacy carriers are not at all close to 1.6,
as they should be in theory, a result that is due to the reliance on statistical, rather than
algebraic, procedures to generate the reduced form.
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