Imberman, Scott Andrew; Lovenheim, Michael

Working Paper

Does the market value value-added? Evidence from housing prices after a public release of school and teacher value-added

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Imberman, Scott Andrew; Lovenheim, Michael (2013) : Does the market value value-added? Evidence from housing prices after a public release of school and teacher value-added, CESifo Working Paper: Economics of Education, No. 4105, Center for Economic Studies and Ifo Institute (CESifo), Munich

This Version is available at:
http://hdl.handle.net/10419/69594

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Does the Market Value Value-Added?
Evidence from Housing Prices after a Public Release of School and Teacher Value-Added

Scott A. Imberman
Michael F. Lovenheim

CESifo WORKING PAPER NO. 4105
CATEGORY 5: ECONOMICS OF EDUCATION
FEBRUARY 2013

An electronic version of the paper may be downloaded
• from the SSRN website: www.SSRN.com
• from the RePEc website: www.RePEc.org
• from the CESifo website: www.CESifo-group.org/wp
Does the Market Value Value-Added?
Evidence from Housing Prices after a Public Release of School and Teacher Value-Added

Abstract

Value-added data are an increasingly common evaluation tool for schools and teachers. Many school districts have adopted these methods and released the results publicly. In this paper, we study the release of value-added data in Los Angeles by the Los Angeles Times newspaper to identify how measured value-added is capitalized into housing prices. This analysis is the first in the school valuation literature to examine property value responses to a value-added information shock, which is of interest as this measure is less correlated with demographics than typical school quality measures. Unique to this setting as well is the release of both school and teacher-level value-added data, which allows us to examine how property values respond to both types of information. Using a difference-indifferences methodology surrounding the release, we find that neither school nor teacher value-added scores are capitalized into home prices. Our results suggest that, despite the contentiousness following these data releases, homeowners do not consider value-added models as currently constructed to be a relevant school quality measure on the margin.

JEL-Code: H410, I200, R300.

Keywords: value-added, housing prices, capitalization, school quality.

Scott A. Imberman
Michigan State University
USA - 48824-1038 East Lansing MI
imberman@msu.edu

Michael Lovenheim
Cornell University
USA - 14853 Ithaca NY
mfl5@cornell.edu

January, 2013

We would like to thank seminar participants at the AEA Annual Meetings, the APPAM Fall Meetings, CES-Ifo, Georgetown and the University of Michigan along with Julie Cullen, Susanna Loeb, Stephen Machin, Steven Rivkin, Guido Schwerdt, Gary Solon, and Kevin Stange for helpful comments and suggestions. We would also like to thank the Los Angeles County Tax Assessor’s Office, the Los Angeles Times, the Los Angeles Unified School District, and Richard Buddin for providing us the data and for their assistance with the data. Finally we’d like to thank Margaret O’Rourke and Michael Naretta for excellent research assistance on this project. © 2013 by Scott Imberman and Michael Lovenheim. All errors and omissions are our own.
1 Introduction

The push to expand test-based accountability in US K-12 education has led to a significant rise in the amount of information available to the public about school quality. Such information typically consists of school-average test scores, which reflect many factors aside from the ability of schools to produce test score gains. Furthermore, information on individual teachers’ performance largely has been kept private. As a result, there recently has been a growing interest in providing results of teacher and school “value-added” assessments to the public. A number of school districts, such as Los Angeles, Houston, and New York City, have released such information, either voluntarily or by court order. Ideally, such measures isolate the teacher and school’s contributions to a student’s achievement by removing the influences of other observed and unobserved factors. This information thus provides new data to parents and homeowners on the local schools’ and teachers’ contribution to test score growth. However, to the extent that there is noise and bias embedded in value-added measures, release of this information has the potential to distort parental decisions about where to live as well as school staffing decisions. Furthermore, because value-added information typically comes from a complex statistical model, it is unclear how it is interpreted by parents. With more and more school districts and states providing value-added data to parents and local communities, understanding the extent to which these communities value this information is of primary policy importance. It also is important for school administrators and policy makers to understand the impact of value-added on land values as capitalization of value-added could affect the tax-base for school districts.

In this paper, we examine whether value-added information that is released to the public is capitalized into home prices. We make two contributions to the literature. First, to our knowledge, there has been no work done examining how parents value the value-added data generated by schools.\(^1\) Due to the increasing prevalence of value-added information and the likelihood that such information will continue to be released to local communities, estimating the extent to which value-added affects property values is of importance in its own right.

The second contribution of this analysis is to the school valuation literature. A large set of

\(^1\)Jacob and Lefgren (2007) find that parents do value teachers who raise achievement.
prior work examines how average test score differences across schools are capitalized into home
prices (Bayer, Ferreira and McMillan, 2007; Kane, Riegg and Staiger, 2006; Figlio and Lucas,
2004; Black, 1999). Most of these analyses use boundary discontinuity methods at school
attendance zone boundaries, comparing differences in home values across school boundaries
with different test scores. The results from these studies tend to find that a one standard
deviation difference in test scores is associated with two to five percent higher property values.
However, a drawback of using average test scores to measure school quality is that they are
highly correlated with the composition of schools and neighborhoods. Indeed, both Bayer,
Ferreira and McMillan (2007) and Kane, Riegg and Staiger (2006) show that neighborhood and
housing characteristics change at school boundaries due to endogenous parental sorting, and the
estimated effects of test scores on home prices is reduced significantly in these studies once they
control for neighborhood characteristics. These findings suggest that part of the capitalization
of test scores into property values is due to the high value placed on the composition of school
and neighborhood peers rather than on the school’s ability to educate students.

In order to isolate the capitalization of school quality as it relates to the production of learn-
ing, a school quality measure that is less related to demographic characteristics than are test
score levels is needed. Value-added represents such a measure, as it typically is generated using
statistical models that control for students’ prior test history in order to estimate the current
teacher’s and school’s contribution to learning through the student’s growth in test scores. As
we demonstrate, the value-added scores in our study are much more weakly correlated with
student characteristics than are test score levels, and the most of the information contained

2See Black and Machin (2011) for a comprehensive review of this literature. Much international work also
uses this method, such as Gibbons and Machin (2003, 2006) and Gibbons, Machin and Silva (2013) in England,

3Cellini, Ferreira and Rothstein (2010) show that investments in school facilities are highly valued by local
communities. These results are consistent with residents placing significant value on non-learning aspects of
schools.

4This is done in a few different ways. Some models simply control for lagged achievement and/or student
demographics and calculate residuals. Other more complex models include student fixed-effects or Bayesian
smoothers. See Guarino, Reckase and Woolridge (2012), Rothstein (2010), and Kane and Staiger (2008) for
discussions of the benefits and drawbacks of such models. We also note that value-added models have come
under considerable scrutiny on statistical grounds, suggesting value-added models may yield a very noisy, and
possibly biased, signal of school or teacher quality (Rothstein, 2010). Nonetheless, recent research has argued
that if done correctly, value-added methods can produce accurate measures of teacher and school quality (Kane
and Staiger, 2008; Chetty, Friedman and Rockoff, 2011).
in these estimates was not predictable using observable school characteristics before they were published. Thus, our results provide new information about valuation of a school quality indicator that provides previously unknown information about a school or teacher’s contribution to test score growth rather than information about the demographic makeup of the school.

While some prior work has shown that property values are unresponsive to value-added as calculated by the researcher (e.g., Dills, 2004; Downes and Zabel, 2002; Brasington, 1999; Haurin and Brasington, 2006), parents and homeowners do not have direct access to this information. It is thus unlikely they would respond to it because the information is not salient. In contrast, we study a unique and unanticipated release of value-added information for schools in the Los Angeles Unified School District (LAUSD). The value-added measures were easily available and widely discussed in local and national news outlets, making them highly salient to home buyers and local residents. To our knowledge, this is the first analysis to identify the responsiveness of home prices to the release of this type of school quality information.

The information experiment that forms the basis for our study began in August 2010, when the Los Angeles Times (LAT) published average value-added estimates for 470 elementary schools as well as individual value-added estimates for 6000 third through fifth grade teachers in LAUSD. In April 2011, LAUSD released their own value-added estimates, and in May 2011 the LAT updated their estimates to reflect the receipt of additional data. Prior to the initial release, California already provided information on the effectiveness of LAUSD schools through published passing rates on the California Standards Tests and Academic Performance Index (API) scores. The API scores are based on average school performance on standardized exams and thus provide a summary measure of school-average test score levels. When the LA Times released the value-added data, they also provided information about API scores and passing rates on the same web page. Although these were already publicly available, the LA Times intervention potentially increased public awareness of these scores.

Using home sales data we obtained from the LA County Assessor’s Office from April 2009 through September 2011, we estimate difference-in-difference models that identify how home

5Gibbons, Machin and Silva (2013) is the only study of which we are aware whose results suggest that test score levels and value-added are similarly valued.
prices change after the release of each set of value-added data as a function of the value-added scores. We find no evidence that the composition of home sales changed due to the information release, nor do we observe any change in foreclosure rates or differential pre-release trends as a function of value-added, which supports the use of our empirical methodology. Furthermore, using boundary discontinuity methods, we show that API scores are similarly capitalized into home prices as has been reported in other studies. We find no evidence, however, that value-added information is valued by local residents: the difference-in-difference estimates are universally small, are not statistically different from zero, and are sufficiently precise that we can rule out all but very small positive effects.

Unlike previous work on school quality valuation, we are able to examine how within-school variation in teacher quality is capitalized into property values, rather than just the school-level mean. It could be the case that home prices react more to the presence of a set of very good or very bad teachers, which school-level value-added can miss. We identify how home prices change as a function of the standard deviation of teacher value-added and the proportion of teachers in each school in each quintile of the value-added distribution. Our estimates are inconsistent with any home price response to the distribution of estimated teacher quality. Finally, we examine several potential sources of heterogeneity and find suggestive evidence that value-added information is more highly valued in lower SES schools.

Overall, our results indicate that value-added information, as presently constructed, is not valued by local communities. One potential conclusion that could be drawn from our estimates is that marginal homebuyers do not value the aspect of school quality that is embedded in value-added, namely the ability of schools and teachers to raise test scores. Alternatively, the public could ignore value-added information due to its statistical complexity as well as the uncertainty amongst the research community as to the accuracy of these measures.

Our findings have important implications for the release of these data more broadly in the US. Typically, the public release of value-added is contentious, with teacher groups arguing value-added is flawed and uninformative and with community advocates arguing that people have a right to know this information. Our results suggest that in their current form, the public does not respond to value-added information, and that while this information may not
be causing the distortions about which the opponents of publishing value-added data worry, they also are not being valued as relevant school quality information that constitutes the main reason for publishing these data.

2 The Los Angeles Times and LAUSD Value-Added Releases

In 2010, the Los Angeles Times newspaper acquired individual testing records of elementary students in Los Angeles Unified School District via a public information request. The achievement scores were linked to teachers so that a teacher and school value-added analysis could be conducted. The LA Times hired Dr. Richard Buddin to conduct the statistical analysis. Details on the methodology can be found in Buddin (2010), but the basic strategy is to use a linear regression model with teacher fixed-effects to calculate teacher value-added. Teacher fixed effects are replaced with school fixed effects to calculate school value-added. All models control for lagged test scores and controls for student characteristics. Following completion of the analysis, the newspaper wrote a series of articles explaining the methodology and other issues in LAUSD throughout the month of August 2010 as a lead in to the release of the data in a simplified form on August 26, 2010. The value-added data were presented through an online database and could be accessed by anyone with a computer without charge or registration.6 The database was searchable by school and teacher name and people also could access information through various links off of the main webpage.

Figure 1 shows an example of how the information was presented for a given school. Schools were categorized as “least effective,” “less effective,” “average,” “more effective,” and “most effective,” which refer to the quintiles of the value-added score distribution for LAUSD. However, as Figure 1 demonstrates, the black diamond shows each school’s exact location in the distribution, providing parents with the ability to easily estimate the school’s percentile. Although

6The current version of the database can be accessed at http://projects.latimes.com/value-added/. The web portal is similar to the one that was available in August 2010 but now provides information for more teachers and more detail on the value-added measures. In most cases one can access the original August 2010 release through links on the teacher and school web pages.
value-added scores were generated separately for math and reading, the LA Times based their categorization on the mean of the two scores. The figure also shows the location of the school’s API percentile. Although the API information was publicly available prior to August 2010, it was more difficult to find and was not accompanied by the heightened media attention that accompanied the value-added release. Thus, for many people, this API information could have been new. The value-added rank was not available in any form prior to August 2010. Finally, the web page provided passing rates on the math and English exams for each school, which was also publicly available prior to the value-added release. To keep our estimating equation simple, in our analyses we will assume that any response to the LA Times reprinting the passing rates will be reflected in responses to API.

A critical question underlying our analysis is whether LA residents knew about the release of this information and how to access these data. There is substantial evidence to indicate that residents were well-informed about the LA Times database. First, the Los Angeles Times is the largest newspaper in Southern California and the fourth largest in the country by daily weekday circulation, with 616,575 copies according to the Audit Bureau of Circulations. The existence of the database was widely reported in the newspaper: from August 2010 to May 2011, a total of 37 articles or editorials were written about the database, public response to the database, or value-added issues more generally. Given the high level of circulation of the paper, the attention paid to this issue by the LA Times likely reached many residents. Further, the release of the value-added data was mentioned in other outlets, such as the New York Times, National Public Radio, the Washington Post, ABC News, CBS News, CNN and Fox News. It also received much radio and television attention in the LA area in both English and Spanish, which is of particular importance for the Spanish-speaking population that is less likely to read the LA Times but for whom radio and television are dominant sources of news.

Second, the LAUSD teachers’ union and the national American Federation of Teachers were

7This assumption is sensible because API scores are calculated almost entirely through using these test pass rates.

8Some examples of Spanish language coverage include a story on Channel 22 on Nov. 8, 2010 covering a protest of the value-added after a teacher committed suicide (http://www.youtube.com/watch?v=RWKR8Ch06wY), a story covering an earlier protest on Channel 62 (http://www.youtube.com/watch?v=n1iNXtyPIRk), and a story on Univision 34 discussing LAUSD’s own value-added measures (http://www.youtube.com/watch?v=05dE0xLdpu8).
highly vocal in their opposition to the public release of the data. This culminated in a series of highly publicized and widely covered protests of the LA Times by teachers.\footnote{One of these protests occurred after an incidence in which a teacher with a low value-added score committed suicide. This incidence was also widely covered by local media.} Furthermore, US Secretary of Education Arne Duncan spoke about the value-added measures expressing his support. This indicates that news-makers were discussing the issue and gave it substantial media exposure. According to the LA Times, by late afternoon on the initial date of the release there were over 230,000 page views of the website for the database (Song, 2010). The article points out that this is an unusually large volume of views given that traffic tends to be higher during the week and provides \textit{prima facia} evidence that the value-added release was well-publicized and known to a large number of residents.\footnote{Due to the prevalence of the Internet in 2010, the penetration of this information in Los Angeles likely was at least as large as in Florida when they first released school report card information in the late 1990s. Figlio and Lucas (2004) show that the Florida information release, which was less contentious, had less publicity surrounding it, and occurred in a period in which information was more difficult to obtain, had large effects on property values.}

The initial August 2010 data release was followed up with two more information releases. In April 2010, LAUSD provided its own school-level (but not teacher-level) value-added measure called Achievement Growth over Time (AGT). Then, in May 2011, the LA Times updated the value-added results on its webpage to include another year of data, more teachers and some minor changes in the value-added methodology.\footnote{Details on the May 2011 LA Times methodology can be found in Buddin (2011). For this release, the LA Times also gave people the option to see how value-added scores changed using variations in methodology through an interactive program on the website. Since it is likely that most people who accessed the database did not attempt to compare different methods, we only use the value-added scores directly published on the website by the LA Times in our data.} While we estimate the effect of all three releases, our focus is on the information provided by the LA Times for a few reasons. One is that the LA Times uses a more econometrically sound value-added model. As discussed above, their model controls for lagged achievement and includes multiple years of data. Guarino, Reckase and Wooldridge (2012) argue that models like this (which they call “dynamic ordinary least squares”) are the most accurate. The LAUSD model, on the other hand, predicts student achievement growth from observable characteristics using one year of data after which the differences between predicted and actual achievement are averaged together across all students in a school.\footnote{Details on the LAUSD methodology can be found at \url{http://portal.battelleforkids.org/BFK/LAUSD/FAQ.html}.}
While the LA Times methodology may be more appealing to researchers, this does not indicate that parents believed it more. There are several reasons to suspect the LA Times data were more relevant to the public, though. First, the initial LA Times release was seven months prior to the LAUSD release. Thus, there was more time for that information to be absorbed by the public. If there is any substantial lag in the timing of when prices respond, our data – which end in September 2011 – will only be able to pick up effects of the initial release. Second, there was substantial discussion of the LA Times release in the news and responses by education organizations. The subsequent LAUSD release, however, elicited much less press coverage. Third, LAUSD did not release teacher value-added. While this will not necessarily matter for housing prices if parents value only the mean value-added in a school (a possibility that we test for below), the availability of the teacher information may have led more parents to seek out the LA Times information than the LAUSD information. Finally, it is easier to access the LA Times information. While both are available on the web, to access the LAUSD data people need to navigate through a series of links on the LAUSD website.

Despite our focus on the LA Times releases, we will nonetheless include estimates of the impacts of the LAUSD release in our regressions. Hence it is interesting to note that the correlation between both of the LA Times releases and the LAUSD value-added scores are very low. Figure 2 presents comparisons of the three school-level value-added measures using scatter plots with each school as an observation. The top left panel shows that the percentiles of the 2010 LA Times value-added are highly correlated with the 2011 LA Times value-added, with a correlation coefficient of 0.74. However, each of the LA Times value-added measures are very weakly correlated with the LAUSD measure - the correlation coefficients are 0.15 and 0.39 for the August and May releases, respectively. This likely reflects the differences in the methodology described above and the amount of data used.

3 Data

To assess the impact of the value-added data release on property values, we combine data from several sources. First, we use home price sales data from the Los Angeles County Assessor’s Office (LACAO). The data contain the most recent sale price of most homes in LA County as of
October, 2011, which in addition to LAUSD encompasses 75 other school districts. We restrict our data to include all residential sales in LAUSD that occurred between April 1, 2009 and September 30, 2011.13 From LACAO, we also obtained parcel-specific property maps, which we overlay with the school zone maps provided to us by LAUSD to link properties to school zones.14 The property sales data additionally contain information on the dates of the three most recent sales, the square footage of the house, the number of bedrooms and bathrooms, the number of units and the age of the house that we will use to control for any potential changes in the composition of sales that are correlated with value-added information.

We drop all properties with sale prices above $1.5 million (5% of households) and limit our sample to properties in elementary school zones in Los Angeles Unified School District that received value-added scores in the August 2010 release. About 25% of the residential properties in the data do not have a sale price listed. Usually, these are property transfers between relatives or inheritances.15 Hence, we limit our sample to those sales that have “document reason code” of “A,” which denotes that it is a “good transfer” of property. After making this restriction, only 7% of observations are missing sale prices. For these observations, we impute sales prices using the combined assessed land and improvement values of the property. For observations that have all three measures recorded, the correlation between actual sale price and the imputed sale price is 0.89, indicating that the imputation is a very close approximation to the actual market value. Furthermore, we know of no reason why the accuracy of the imputation procedure should be correlated with value-added information, which supports the validity of this method. Nonetheless, in Section 5, we provide results without imputed values and show they are very similar. Our final analysis data set contains 62,977 sales.

We obtained the exact value-added score for each school directly from Richard Buddin, and the April 2011 LA Times school value-added data as well as the August 2010 teacher-level

13Given that the value-added information only varies across schools within LAUSD, the addition of school fixed effects leaves little to be gained from adding the rest of LA County. Indeed, specifications using home price sales from all of the county, setting value-added percentiles equal to zero outside of LAUSD and controlling for school district fixed effects, provides almost identical results.

14The school zones are for the 2011-2012 school year.

15California allows relatives to transfer property to each other without a reassessment of the home’s value for property tax purposes. Due to property tax caps, this rule creates large incentives for within-family property transfers in California, and hence there are a lot of such transactions in the data. Because these transfers do not reflect market prices, we do not include them in our analysis.
value-added data were provided to us by the LA Times. The LAUSD value-added information was collected directly from Battelle for Kids, with whom LAUSD partnered to generate the value-added measures. The value-added data were combined with school-by-academic-year data on API scores, school average racial composition, percent on free and reduced price lunch, percent disabled, percent gifted and talented, average parental education levels and enrollment. These covariates, which are available through the California Department of Education, control for possible correlations between value-added information and underlying demographic trends in each school. To maintain consistency with the LA Times value-added data, we convert both the LAUSD value-added scores and API scores into percentile rankings within LAUSD.

We also link each property to its Census Tract characteristics from the 2005-2009 American Communities Survey (ACS). Given the strong correlation between test scores and demographic characteristics as well as the evidence of sorting by families in response to cross-sectional differences in test scores (Bayer, Ferreira and McMillan, 2007; Kane, Riegg and Staiger, 2006), it is important to control, to the extent possible, for differences in the demographic and socioeconomic makeup of neighborhoods as they relate to observed school quality. A full listing of variables used in our controls can be found in the notes to Table 5.

Summary statistics of some key analysis variables are shown in Table 1. The table presents means and standard deviations for the full sample as well as for the sample above and below the median value-added score for the 2010 LA Times release. On average, home sales in LAUSD are in Census Tracts that are about 50% black and Hispanic, but the schools these properties are zoned to are 73% black and Hispanic, with the difference ostensibly due to enrollments in private, charter and magnet schools. The schools in our data set also have a large proportion of free and reduced price lunch students. The second two columns of Table 1 show that value-added is not completely uncorrelated with school or census tract demographics, although housing characteristics are balanced across columns. The higher value-added areas have a lower minority share, higher property values, a more educated populace and have higher API scores. These correlations could be driven by the fact that better schools are indeed located

16The data is available at http://portal.battelleforkids.org/BFK/LAUSD/Home.html.
17Note that since the ACS counts Hispanic as a separate category from race, some of the black and white populations are also counted as Hispanic.
in the higher socioeconomic areas, or they could be an indication that the value-added models used do not fully account for underlying differences across students.

Figure 3 shows that, despite the differences shown in Table 1, value-added is far less correlated with student demographic makeup than API scores. The figure presents the non-free/reduced-price (FRP) lunch rate, API percentile (within LAUSD) and value-added percentile for each elementary school in LAUSD. The boundaries denote the attendance zone for each school. As expected, API percentiles, which are based on test score proficiency rates, map closely to poverty rates. High-poverty (low non-FRP lunch) schools tend to have lower API scores. While this relationship remains when replacing API with value-added, it is far less robust. There are many schools, particularly in the eastern and northern sections of the district, where API scores are low but value-added scores are high. Similarly, some schools with high API scores have low value-added scores. Figure 4 further illustrates this point. It provides scatter plots of API percentiles versus value-added percentiles for each of the three value-added measures. While there is a positive relationship between value-added and test score levels, it is quite weak - the average correlation between the measures of school quality is only 0.45. As seen in Figure 3, there are a number of schools which, based on API, are at the top of the distribution but according to the value-added measure are at the bottom, and vice-versa. For example, Wilbur Avenue Elementary had an API percentile of 91 in 2009 but an initial value-added percentile of 13. On the other end of the spectrum, Broadous Elementary had an API percentile of 5 but a value-added percentile of 97.

The fact the API rank and value-added rank are only weakly related to each other does not mean that the value-added information provided by the LA Times was new information. It is possible that each of these measures could be predicted based on existing observable characteristics of the school. In Table 2, we examine this issue directly, by predicting API, the percentile from the first LA Times value-added release, and the LAUSD value-added percentile as a function of school observables in the pre-release period. Column (1) shows the results for API percentile, and as expected, with an R^2 of 0.71, it is strongly related to school demo-

18A linear regression of the August 2010 LA Times value-added percentile on API percentile provides an estimate of 0.43 (standard error 0.04) but an R-squared of only 0.19.
graphics. In contrast, as shown in column (2) the value-added estimates are much more weakly correlated with school demographics. Only two of the estimates are statistically significant at the 5% level, and the R^2 is only 0.22. In Column (3), we add overall API and each student subgroup’s API scores as regressors to the model. The R^2 remains low at only 0.29. Thus, more than 70% of the value-added variation is unpredictable from the observable characteristics of the school, including test score levels. Further, in Columns (5) and (6) we see that these observables do an even poorer job of predicting the LAUSD value-added rank, with R^2s of 0.03 and 0.25 with and without including overall and by-category API as regressors, respectively.

Table 2 and Figures 3-4 show that the value-added data released to the public by the LA Times and LAUSD contained new and unique information about school quality that was not simply a measure of the school composition or prior test scores. Our identification exploits this new information by identifying the impact of value-added on housing prices conditional on API along with many other observable characteristics of schools and neighborhoods. Since these characteristics are observable to homeowners as well, we are able to identify the impact of this new information given the information set that already exists.

4 Empirical Strategy

Our main empirical strategy is to estimate difference-in-difference models that compare changes in property values surrounding the information releases as a function of value-added rank conditional on observable school and neighborhood characteristics, including API. Since value-added only was released for elementary schools, we ignore middle and high school zones. Our main empirical model is of the following form:

$$
Y_{ist} = \beta_0 + \beta_1 VA_{st}^{LATPooled} + \beta_2 VA_{st}^{LAUSD} + \beta_3 API_{st} + \beta_4 API_{st} \times Post_t + X_{st} \Gamma + H_s \Phi + \lambda_t + \gamma_s + \epsilon_{ist},
$$

(1)

where Y_{ist} is the log sale price of property i in elementary school zone s in month t. The key explanatory variable of interest is $VA_{st}^{LATPooled}$, which is a combination of the two LA Times
value-added measures. This variable is set equal to zero prior to the first release in September, 2010, is set equal to the value-added percentile in the first release from September 2010 to April 2011, and thereafter equals the value-added percentile provided in the May 2011 LA Times’ updated release. Pooling the two releases together makes the estimates easier to interpret. Nonetheless, it is possible that the impact of value-added may differ across both the first and second releases. Thus, we also estimated models with a separate variable that equals zero prior to each release and to that particular release’s value-added percentile thereafter. As these results were very similar to those found in the pooled model, we do not show them here. They are available by request.

While our focus is on the LA Times value-added, it is nonetheless important to account for the LAUSD value-added scores and the fact that the LA Times published API scores on the same web page as value-added scores. Hence, we include in equation (1) \(V_{LAUSD}A_{st} \), which equals zero prior to April 2011 and the LAUSD calculated value-added percentile thereafter. We also allow for the effect of API to vary post-September 2010. Our inclusion of school fixed-effects in the model \(\gamma_s \) implies that the coefficients on the \(VA \) and \(API * Post \) variables represent the difference-in-difference estimate of the effect of the value-added or API information release on property values.\(^{19}\) In order to account for the fact that there are multiple sales per school zone, all estimates are accompanied by standard errors that are clustered at the school level.

Equation (1) also includes an extensive set of controls to account for any confounding effects driven by the correlation between value-added and school demographic or housing characteristics. The vector \(X \) contains the set of school observables discussed above, including two lags of API, within-LAUSD API percentile rank in the given year, and the decile of the school’s API in comparison to other “similar” schools, as defined by the California Department of Education.\(^{20}\) The vector \(H \) is the set of house-specific characteristics and Census tract characteristics discussed above that further control for local demographic differences that are correlated with value-added and for any changes in the types of houses being sold as a function of value-added.

\(^{19}\)Note that unlike API, which changes each year, each value-added release provides a single value for each school, and thus main effects are removed by the school fixed effects. In models that do not include school fixed effects, main effects are included as controls as well.

\(^{20}\)Models that also control for student subgroup specific API provide similar results to baseline.
when each release occurs. Equation (1) contains both month-by-year fixed effects (λ_t) and school fixed effects (γ_s) as well, so all parameters are identified off of within-school changes in home prices over time and control for any general shocks to home prices in LAUSD in each month, including seasonal changes.

There are two main assumptions underlying identification of the value-added parameters. First, the model assumes that home prices were not trending differentially by value-added prior to each of the data releases. Using the panel nature of our data, we can test for such differential trends directly in an event-study framework. In Figure 5, we present estimates of the effect of each value-added and API release, where $VA_{st}^{LATPool}$ and VA_{st}^{LAUSD} are interacted with a series of indicator variables for time relative to the August 2010 LA Times release. Note that all of the estimates shown in this figure are from a single regression and in this particular model $VA_{st}^{LATPool}$ is set equal to the initial value-added percentile from the August 2010 release for all periods prior to September 2010. The top two panels of Figure 5 show no evidence of a pre-release trend in home prices as a function of LAT or LAUSD value-added. The estimates exhibit a fair amount of noise, but home prices are relatively flat as a function of future value-added rank in the pre-treatment period. Thus, there are no clear pre-treatment trends for either information release that would bias our estimates. For API, while there appears to be a slight downward trend in earlier months, it is not statistically different from zero and by 7 months prior to the release, property values flatten as a function of API.

Figure 5 also previews the main empirical finding of this analysis: home prices do not change as a function of value-added nor API post-release. However, these estimates are relatively imprecise, as the estimates in Figure 5 are demanding of the data. We thus favor the more parametric model given by equation (1). Nonetheless, Figure 5 demonstrates that pooling the estimates over each post-release period does not mask any time-varying treatment effects.

The second main identification assumption required by equation (1) is that the value-added percentile, conditional on school characteristics, is not correlated with unobserved characteristics of households that could affect prices. While this assumption is difficult to test, given the rich set of observable information we have about the homes sold, examining how these observables shift as a function of value-added will provide some insight into the veracity of this
assumption. Thus, in Table 3, we show estimates in which we use neighborhood characteristics, school demographics and housing characteristics as dependent variables in regressions akin to equation (1) but only including API percentiles, time fixed effects and school fixed effects as controls. Each column in the table comes from a separate regression, and each estimate shows how the observable characteristic changes as a function of value-added percentile after the LA Times data releases. Overall, the results in Table 3 provide little support for any demographic or housing type changes that could seriously impact our estimates. There are 58 estimates of housing and neighborhood characteristics in the table, one that is significant at the 5% level or higher and four more that are significant at the 10% level. While clearly these variables are not independent, if they were we would expect to falsely reject the null at the 10% level six times. Furthermore, the estimates, even when significant, are small. For example, a 10 percentage point increase in LA Times value-added post-release is associated with a decrease in the percent of household with children of 0.04 percentage points, which is a very small effect relative to the mean of 32%. Additionally, the signs of the estimates do not suggest any particular patterns that could cause a systematic bias in either direction.

Another concern is that the release of a value-added score may induce changes in the number of homes sold in a school catchment area. Since we only observe prices of homes that are sold, we may understated the magnitude of the effect if having a lower value-added reduces the number of homes sold and this reduction comes from the bottom of the price distribution. To test this hypothesis, we estimate a version of equation (1) in which we aggregate the data to the school-month level and use the total number of sales or the total number of sales with a valid sales price in each school-month as the dependent variable. We find little evidence of a change in the number of sales. The estimate of the effect of LA Times value-added on total sales

21 The school characteristics estimates in Panel C use data aggregated to the school-year level. Since we do not have a year of data after the second LA Times release, we examine only the first LA Times value-added estimates in Panel C.

22 While not shown in the table, the estimates for the LAUSD value-added measure are significant at the 10% or lower level seven times and the estimates for API*post are significant at the 10% or lower level for only two variables. The former is slightly more than would be expected by random chance and thus provides some additional justification for focusing on the LA Times release. These results are available by request.

23 We include mean Census Tract characteristics of properties sold in a school zone and school characteristics but do not control for aggregate individual property characteristics as these may be endogenous in this regression.

24 Our data only cover the three most recent sales of a property. Thus, our measure of total sales will be slightly underestimated.
is -0.0066 with a standard error of 0.0051. Taken at face value, this would suggest that a 10 percentile increase in value added only reduces monthly sales by 0.07 off of a mean of 8.4. For sales with price data, the estimate is -0.0043 with a standard error of 0.0025. Estimates for LAUSD value added are smaller and close to zero.

The value-added releases we study come at a time of high volatility in the housing market, as home prices declined during this period throughout most of the United States. In the Los Angeles MSA prices declined by 4.5%.25 This was also a period with a large number of foreclosures in Los Angeles. If foreclosure rates are correlated with the value-added releases, it could bias our home price estimates because foreclosures tend to be sold at below market value. In order to provide some evidence on this potential source of bias, we use the number of foreclosures in each month and zip code in LAUSD that were collected by the RAND Corporation.26 We aggregate prices to the school-month level and use the zipcode-level data to approximate the number of foreclosures in the school catchment area in each month. The resulting estimates show little evidence of a correlation between value-added post-release and the number of foreclosures. None of the estimates for any of the three data releases is statistically significant. The estimate on the pooled LA Times release is only 0.003 (0.009), which indicates that a 10 percentile value-added increase post-release increases the number of monthly foreclosures in a school zone by 0.03, off of a mean of 5.7. Overall, the estimates described above along with those provided in Table 3 and Figure 5 provide support for our identification strategy.

5 Results

5.1 Pre-Release School Quality Valuation Estimates

Before presenting the main difference-in-differences estimates, it is important to establish that some measures of school quality are indeed valued by LA residents. Whether public school quality, or public school characteristics more generally, are capitalized into home prices in Los

25This calculation comes from the Federal Housing Finance Agency's seasonally adjusted home price index. Note that this decline was smaller than the 7% rate for the US as a whole during this period.

26These data are available at http://ca.rand.org/stats/economics/foreclose.html.
Angeles is not obvious, as LAUSD has an active school choice system in which students can enroll in their non-neighborhood school. There also is a large charter school and private school presence in the District. Thus, any finding that property values do not respond to value-added information could be driven by a general lack of association between local school characteristics and property values. Nonetheless, there are a few reasons to believe that this is not a major concern in the Los Angeles context. First of all, the open-enrollment program is small relative to the size of the district. In 2010-2011, only 9,500 seats were available district-wide, accounting for at most 1.5% of the district’s 671,000 students. Second, while LAUSD has a number of magnet programs, they are highly sought after and oversubscribed, hence admission to a desired magnet is far from guaranteed. Third, Los Angeles is a very large city with notorious traffic problems and poor public transportation, making it difficult for parents to send their children to schools any substantial distance from home.

To further address this issue, we estimate boundary fixed effects models using pre-release data from April 2009 to August 2010 in which API percentile is the dependent variable. This model is similar to the one used in Black (1999) as well as in the subsequent other boundary fixed effects analyses in the literature (Black and Machin, 2011) and allows us to establish whether average test scores are valued in LA as they have been shown to be in other areas.

Table 4 contains boundary fixed effects results, comparing home prices within 0.1 mile of elementary attendance zone boundaries. In column (1), which includes no other controls, properties just over the border from a school with a higher API rank are worth substantially more. For ease of exposition, all estimates are multiplied by 100, so a 10 percentage point increase in API rank is associated with a 4.5% increase in home values. In column (2), we control for housing characteristics, which have little impact on the estimates. However, controlling for school demographics in column (3) significantly reduces this association. This result is not surprising given the findings in Bayer, Ferreira and McMillan (2007) and Kane, Riegg and Staiger (2006). Nonetheless, in column (3), we find a 10 percentage point increase in API rank leads is correlated with a statistically significant 1.3% increase in property values. This estimate is roughly equivalent in magnitude to those in Black (1999) and Bayer, Ferreira and McMillan (2007). Thus, this school characteristic appears to be similarly valued in Los Angeles as in the
areas studied in these previous analyses (Massachusetts and San Francisco, respectively). It remains unclear, however, whether the capitalization of API scores is driven by valuation of schools’ contribution to learning or by valuation of neighborhood or school composition that is correlated with API levels.\(^{27}\) Our analysis of capitalization of value-added information is designed to provide insight into resolving this question, which is very difficult to do without a school quality measure that is not highly correlated with student demographics.

In order to underscore the fact that, conditional on achievement levels, value-added is weakly correlated with student demographics and that it is difficult to predict with pre-release observables, the remaining columns of Table 4 test whether value-added information is capitalized into property values prior to their release. If parents know which schools are the highest value-added from reputation or from factors we cannot observe, the value-added releases should not provide additional information about school quality. In columns (4) and (5) of Table 4, we estimate the same boundary fixed effects model as in column (3) but using the first release of LAT value-added and the LAUSD value-added as explanatory variables. Since all of the sales data used in Table 4 are from pre-August-2010, these models test whether future information about value-added is already capitalized into home prices. In column (4), there is a positive relationship between the LA Times value-added and property value differences across boundaries. However, some of this effect is likely due to the correlation, however weak, between LA Times value-added and API. As a result, when we add API percentile as a control in column (5), the relationship between value-added and test scores becomes smaller and is no longer statistically significant. The magnitudes of the value-added estimates also are very small. However, the API estimate is almost identical to that found in column (3), suggesting that the capitalization of API scores is not being driven by value-added information and that any information contained in the LA Times and LAUSD value-added estimates are not already capitalized into home prices prior to August 2010.

\(^{27}\)Ideally one would also like to control for neighborhood characteristics as well. However, typically the boundary areas in LAUSD are smaller than Census tracts, leaving most boundary areas entirely within a single tract. When we control for Census tract observables, the API coefficient becomes smaller and no longer is statistically significant. This suggests that either the main aspect of API that is capitalized into property values is neighborhood composition or that including our set of neighborhood controls leaves too little variation for identifying the role of API.
5.2 Difference-in-Difference Estimates

Table 5 presents the baseline estimates from equation (1). In each column, we add controls sequentially in order to observe the effect of the controls on the estimates. All estimates are multiplied by 100 so they show the effect of a 100 percentile increase in value-added on home prices post-release. In column (1), we included no controls other than those shown in the table, API score, API percentile, lagged and twice lagged API score, and school rank compared to ‘similar’ schools in California as determined by the California Department of Education. There is a positive but statistically insignificant relationship between the LA Times value-added and home prices post-release. When we add school and month fixed effects, however, the LA Times estimate turns negative and marginally significant. Nonetheless, as we add additional controls the point estimates attenuate and become insignificant. Similarly, we find no statistically significant impacts of the LAUSD value-added release nor the LA Times publication of API scores on housing price. The latter result is perhaps unsurprising because, as previously noted, API scores were available to the public prior to the LA Times publication and thus should only be capitalized into housing prices if people were unaware of them.

In interpreting our results, we focus on our preferred estimates in column (6). The point estimate of -0.027 on the LA Times value-added score implies that a 10 percentile increase in value-added reduces housing prices by 0.3%, but it is not statistically significant. Thus it is useful to consider how large of a positive effect on housing prices can be ruled out. The upper bound of the 95% confidence interval for a 10 percentile increase in value-added is 0.10. This is a very small estimate. To put it in perspective, suppose we were to increase a school’s value-added by 50 percentiles, which is equivalent to taking the lowest ranking school and making it an average school or taking an average school and making it the highest ranking school. The upper bound implies that this would generate, at most, a 0.5% increase in housing values.

Column (7) of Table 5 provides further evidence that value-added information does not affect property values. In this column, we provide results from a model similar to those used in Table 4 that restricts to properties within 0.1 miles of a school zone boundary and includes boundary fixed effects. Thus, the estimates are identified off of changes in property values
between properties on either side of a given attendance zone boundary when the value-added data are released. Table 4 shows that home prices do not vary systematically across borders with value-added in the pre-period, and the results from column (7) indicate that they do not change across these borders in response to the release of value-added information either.

As discussed above, a unique feature of the LA Times information release was that it included both school-average value-added and value-added rankings for over 6000 teachers in LAUSD. We now examine whether property values respond to variation in teacher quality, which is the first evidence in the literature on this question.

In column (1) of Table 6, we add the standard deviation of the value-added scores across teachers in each school interacted with the timing of the initial LA Times release to the model. If high-quality teachers are disproportionately valued (or if low-quality teachers have a disproportionately negative valuation), then a higher standard deviation will lead to higher (lower) property values conditional on school-wide value-added. The estimate on the standard deviation of teacher value-added is negative, but it is not statistically significantly different from zero at conventional levels. It also is small in absolute value, pointing to a decline in property values of only 0.006% for a one point increase in the standard deviation of teacher value-added.

In column (2), we interact the proportion of teachers in each quintile of the value-added distribution with being in the post-August 2010 period. Again, we see little evidence that having a higher proportion of teachers with high value-added leads to higher property values, nor does a high proportion of low VA teachers reduce property values. This result is surprising, given the strong correlation between teacher quality and student academic achievement as well as future earnings (Rivkin, Hanushek and Kain, 2005; Rockoff, 2004; Chetty, Friedman and Rockoff, 2011). However, the teacher value-added as measured here could be rather unstable from year to year, as each estimate is based off of a small number of students assigned to each teacher. It therefore could be sensible to ignore one year’s teacher value-added scores if they are weak indicators of stable teacher quality measures.

The remaining columns of Table 6 present estimates based on alternatives to the modeling assumptions we make. In column (3), we use sale levels instead of logs. The estimates, once converted back to percentage terms relative to baseline, are very similar to those in Table 5. In
column (4), we average across all value-added measures in case the public follows a simple rule of thumb when assessing the multiple measures and takes the mean. We find no evidence for this hypothesis, as the point estimate is negative and not statistically different from zero. In the next two columns, we examine estimates separately for homes with more than two bedrooms and two or fewer bedrooms, since the former type of home is more likely to house families with children. Although the point estimates for the homes with more than two bedrooms are larger than those for homes with two or fewer bedrooms, with the exception of a negative estimate on \(API \times Post \) for less than two bedrooms, none of the estimates is statistically significantly different from zero at even the 10% level and they remain small. Thus, the value-added information does not influence property values even among the homes that are most likely to have children in them.

As previously discussed, it is possible that if a neighborhood has fewer school choice options there would be more capitalization of the local school’s quality. To test this, in column (7) we interact the value-added score with the number of charter schools within a one mile radius of the property. We find no evidence that the capitalization of value-added varies with the number of charter schools nearby. Results were similar using a two mile radius. Finally, in column (8) we test whether what matters is the size of the relative information shock rather than the value-added score itself. To do this, we replace our value-added measures with the difference between the value-added percentile and the school’s 2009-10 API percentile. As with \(VA^{LATPooled}_{st} \) and \(VA^{LAUSD}_{st} \), these measures are set equal to zero prior to the relevant value-added release. We find little to indicate that a larger positive shock generates larger increases in housing prices.

In Table 7 we present a series of robustness checks that allow us to assess the sensitivity of our main results and conclusions. In column (1) we do not control for lagged API, as changes in API may be correlated with value-added. Our estimates are unchanged by excluding these controls. In column (2) we drop the 7% of the sales data that are imputed (see Section 3). We then exclude properties with more than 8 bedrooms in column (3), which either are very large homes or are multiple unit dwellings. We alternatively exclude properties over 5000 square feet in column (4) and drop multiple unit properties in column (5). In each of these cases, the estimates are quantitatively and qualitatively similar to our baseline estimates. In columns (6)
and (7), we allow for there to be lags between when the information is released and when it impacts the housing market. We allow for both 3 and 6 month lags, setting the value-added to zero in first 3 and 6 months post-release, respectively. We continue to find no effect of value-added information on property values, although there is some weak evidence of a small impact from making API information more salient. Finally, in column (8) we limit our analysis to the period before LAUSD released their value-added measure and the second LA Times release. In this model, only the initial LA Times value-added data is known and there is no risk of “contamination” of our estimates from the additional releases. The results are very similar to the baseline estimates. Taken together, the results from Table 7 suggest that our findings are not being driven by outliers, the manner in which we measure home prices, or by the timing of the treatment.

Although there is no average effect of value-added information on property values, the extent of capitalization could vary among different types of schools or among different populations. We now turn to an examination of several potential sources of heterogeneity in value-added capitalization. In Figure 6, we present estimates broken down by observable characteristics of the school: 2009 within-LAUSD API quintile, median pre-release home price quintile, percent free and reduced price lunch, percent black, percent Hispanic, and percent white. Although the precision of the estimates vary somewhat, the point estimates are universally small in absolute value and are only statistically significantly different from zero at the five percent level in two cases (out of 45 estimates).

Nonetheless, it is worth noting that the estimate for the bottom quintile of pre-release sale prices, which is positive, is statistically significantly larger than the estimate for the top quintile, which is negative. Indeed, the estimates in the second panel do show a small but notable negative gradient in prior house prices, suggesting that lower-priced neighborhoods are more affected by value-added. Percent free/reduced-price lunch and percent Hispanic show similar patterns and the bottom and top quintiles are significantly different in both cases. Given that all three of these measures are correlated with socioeconomic status, these figures provide

28 We also analyzed whether getting a consistent signal whereby both the LAT and LAUSD measures are high or low has an impact. We found little evidence of this. These results are available by request.
some evidence that - to the extent the value-added scores are capitalized - the impact is larger in lower-income neighborhoods.

The last row of Figure 6 provides insight into two potential criticisms of using housing prices as our outcome measure. The first panel addresses concerns that many neighborhoods in Los Angeles have high rates of private schooling and thus are likely to be less sensitive to the quality of the local public school. We show estimates that are interacted with the private schooling rate in the census-tract of each property as estimated by the American Communities Survey. The mean private schooling rate in our sample is 20%, with a standard deviation of 31%. The estimates show little difference in capitalization by private schooling rate. In the second panel of the last row we measure variation by owner-occupancy rates, also calculated from the ACS. The concern here is that in neighborhoods with low owner-occupancy rates, sale prices may be less sensitive to school quality. The mean of this measure is 50.1%, with a standard deviation of 23.3%. Once again, we see little evidence of heterogeneity along this margin.

6 Conclusion

School districts across the country have begun to use value-added methodologies to evaluate teachers and schools. Although only a few large districts have released these results publicly, it is likely that more will in the future. Thus, it is important to understand whether and how this information is valued by local residents. Furthermore, value-added measures provide information about school quality that is less correlated with the school demographic makeup than are test score levels. Identifying how value-added information in particular is capitalized into housing prices can therefore lend new insight into the valuation of school quality that research focusing on test score levels as a school quality measure cannot.

This paper is the first to examine how publicly released school and teacher value-added information is capitalized into property values. We exploit a series of information releases about value-added by the Los Angeles Times and the Los Angeles Unified School District, which provided local residents with value-added rankings of all elementary schools and over 6000 teachers in the LA Unified School District. Using housing sales data from the LA County
Assessor’s Office, we estimate difference-in-differences models that show how home prices change as a function of value-added after each data release. Across myriad specifications and variations in modeling choices and data assumptions, we show that property values do not respond to released value-added information. Our estimates are sufficiently precise to rule out all but very small positive effects on average. However, using boundary discontinuity methods, we find that API differences across schools are capitalized into home prices, which indicates that school quality as measured by this outcome is valued by Los Angeles residents.

Unique to our study in the school valuation literature is the ability to examine home price effects based on teacher quality information. Similar to the school-level results, though, we find that property values are unresponsive to the within-school variance in teacher value-added. Nonetheless, we do find that, although they are generally not significantly different from zero individually, estimates that vary by low and high socio-economic status are significantly different from each other, indicating that the impact of value-added on housing prices has a small but negative gradient with SES.

Our estimates differ substantially from previous literature on school valuation that uses test score levels as a measure of school quality. This literature typically has found an effect on the order of 2 to 5 percent higher housing prices for each standard deviation increase in test scores (Black, 1999; Bayer, Ferreira and McMillan, 2007; Gibbons, Machin and Silva, 2009). Nonetheless, previous work examining how property values respond to researcher-calculated school value-added or changes in school test scores have findings similar to our own (Black and Machin, 2011), but those studies are distinct from ours as they implicitly assume that home buyers make the same calculations from available data. Thus, the fact that property values do not respond to these school quality measures could be due to a lack of awareness of this information.

The previous analysis most similar to this paper is Figlio and Lucas (2004), which examines the effect of property values from the public release of “school report cards.” They find releasing this information leads to large property value increases in the higher-performing districts. There are several potential explanations for why our results differ from theirs. First, the school report cards in their study are based on test score levels, which are highly correlated with other
aspects of schools, such as demographic composition. Even though demographic data was already available to the public, property values may be responding to the repackaging of that information into a simple and intuitive form rather than what the public perceived to be the school’s quality, *per se*. Second, the type of information contained in the Florida school report cards already was available to LAUSD residents in the form of API scores. The value-added information releases we study provide school quality data on top of this pre-existing information. Property values may respond less to these measures because the information shock about school quality is smaller or because the computational complexity of the value-added models, as well as the associated statistical noise in the estimates, render them uninformative for the marginal home buyer. One other explanation is that the release of three, often conflicting, value-added measures in LAUSD may have generated confusion amongst home buyers and thus led them to ignore all three measures. While this is possible, we note that there was a period of seven months (September 2010 - March 2011) during which the only value-added data available was that from the initial LA Times release. We find no evidence of increased property values during this period, nor do we see more capitalization when the value-added estimates agree.

That we find no effect of school or teacher value-added information on home prices suggests these school quality measures are not valued by local residents, at least on the margin. This is a surprising result, given the strong relationship found in other studies between these measures and student academic and future labor market success (Rivkin, Hanushek and Kain, 2005; Chetty, Friedman and Rockoff, 2011) as well as the contentiousness that tends to accompany the release of value-added data. In some sense, however, the heightened controversy could have driven the public to ignore the value-added. Not only did the public debate and the widespread coverage of the LA Times’ release in the media likely increase awareness of these methods, it also probably made the public more aware of the flaws in these measures. Thus the public may be rationally waiting for the research community to decide on what value-added measures are accurate before changing behavior in response to them. As a result, while value-added scores will undoubtedly be generated by more and more school districts and will be disseminated to the public in the near future, the evidence presented here suggests that in the current environment homeowners and parents do not value value-added as a relevant measure of school quality.
References

Los Angeles Teacher Ratings

Beckford Avenue Elementary
19130 Tulsa St., Northridge, 91326

A less effective than average school, according to “value-added” analysis.

A school’s value-added rating was based on the performance of all its students tested on the California Standards Tests in math and English. Value-added measures the collective difference between students’ expected growth and actual performance and is designed to analyze what the school contributes to learning. The state’s Academic Performance Index measures student achievement and is tied closely to students’ advantages outside school.

Value-added effectiveness

<table>
<thead>
<tr>
<th>Least effective</th>
<th>Less effective</th>
<th>Average</th>
<th>More effective</th>
<th>Most effective</th>
</tr>
</thead>
</table>

API rank (as a percentile)

Overall student performance

The California Standards Tests rank students into five categories from “far below basic” to “advanced.” The percentage of a school’s students who scored “proficient” or “advanced” is shown below. The 2010 test scores, which were released in August, were not used in The Times’ “value-added” analysis and may reflect recent changes in the school’s overall performance.

California Standards Tests (STAR)

Students scoring “proficient” or above:

<table>
<thead>
<tr>
<th>Year</th>
<th>Math</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>82.5%</td>
<td>74.9%</td>
</tr>
<tr>
<td>2009</td>
<td>84.9%</td>
<td>72.2%</td>
</tr>
</tbody>
</table>

Source: 2009, 2010 state data

Learn more about test scores and demographics at Beckford Avenue Elementary using the The Times’ California Schools Guide ».
Figure 2: Comparisons of the Three Value-Added Measures

Percentile ranking amongst LAUSD elementary schools using the three value-added scores. Each dot is a single elementary school.
Figure 3: API, Free/Reduced-Price Lunch, and Value-Added by Elementary School
Percentile ranking amongst LAUSD elementary schools using 2009-10 API versus percentile rankings and the three value-added scores. Each dot is a single elementary school.
The estimates in all panels come from a single regression and show the impact of an increase in value-added percentile on log sale price by month, using each quality measure. The second LA Times value-added ranking replaces the first in month 8. Controls include school fixed-effects, month of sale indicators, API percentile, API, two years of lagged API, the California DOE similar school rank and the following: Housing characteristic controls - the number of bedrooms, bathrooms and units in the home, square footage, and year built; School characteristic controls - percent of students of each race, percent free lunch, percent gifted, percent English language learners, percent disabled, and parent education levels; Neighborhood characteristic controls at the census tract level - percents of the population who are adult, minor, senior, foreign born, of each race, speak a language other than English, and who lived in the same house one year prior, the percent of adults who are married, institutionalized, veterans, of each education level, in the labor force, and unemployed, percent of households vacant and owner-occupied, average household size, family size, commute time and household income, the percent of households with children, single-parent families, receiving social security, receiving cash public assistance, and receiving food stamps and the poverty rate. Housing characteristics are also interacted with a linear time trend. The dotted lines are the bounds of the 95% confidence intervals that are calculated using standard errors clustered at the school level.
The value-added variable uses the LA Times value-added percentile from the August 2010 release until May 2011, at which point the variable is replaced with the value-added percentile from the May 2011 (2nd) release. Similar measures for the LAUSD value-added are included in the regressions but are not shown. Controls include school fixed-effects, month of sale indicators, API, two years of lagged API, the California DOE similar school rank and the following: Housing characteristic controls - the number of bedrooms, bathrooms and units in the home, square footage, and year built; School characteristic controls - percent of students of each race, percent free lunch, percent gifted, percent English language learners, percent disabled, and parent education levels; Neighborhood characteristic controls at the census tract level - percents of the population who are adult, minor, senior, foreign born, of each race, speak a language other than English, and who lived in the same house one year prior, the percent of adults who are married, institutionalized, veterans, of each education level, in the labor force, and unemployed, percent of households vacant and owner-occupied, average household size, family size, commute time and household income, the percent of households with children, single-parent families, receiving social security, receiving cash public assistance, and receiving food stamps and the poverty rate. Housing characteristics are also interacted with a linear time trend. The dotted lines are the bounds of the 95% confidence intervals that are calculated using standard errors clustered at the school level.
Table 1: Summary Statistics of Main Analysis Variables

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All Schools</th>
<th>LAT Aug VA Percentile</th>
<th>LAT Aug VA Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>≥ 50</td>
<td>< 50</td>
</tr>
<tr>
<td>Key Regression Variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sale Price</td>
<td>406,975</td>
<td>448,656</td>
<td>357,156</td>
</tr>
<tr>
<td></td>
<td>(259,887)</td>
<td>(278,007)</td>
<td>(226,722)</td>
</tr>
<tr>
<td>LAT Value-Added Percentile (Aug, 2010)</td>
<td>52.6</td>
<td>75.8</td>
<td>25.1</td>
</tr>
<tr>
<td></td>
<td>(29.0)</td>
<td>(14.6)</td>
<td>(13.8)</td>
</tr>
<tr>
<td>LAT Value-Added Percentile (May, 2011)</td>
<td>49.3</td>
<td>66.5</td>
<td>29.0</td>
</tr>
<tr>
<td></td>
<td>(29.5)</td>
<td>(24.6)</td>
<td>(20.5)</td>
</tr>
<tr>
<td>LAUSD Value-Added Percentile (Apr, 2011)</td>
<td>49.1</td>
<td>52.8</td>
<td>44.8</td>
</tr>
<tr>
<td></td>
<td>(28.4)</td>
<td>(27.7)</td>
<td>(28.6)</td>
</tr>
<tr>
<td>API Percentile (2009-10)</td>
<td>55.0</td>
<td>65.3</td>
<td>43.0</td>
</tr>
<tr>
<td></td>
<td>(29.2)</td>
<td>(25.7)</td>
<td>(28.4)</td>
</tr>
<tr>
<td>Characteristics of Census Tract of Property</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% White</td>
<td>53.3</td>
<td>59.8</td>
<td>45.5</td>
</tr>
<tr>
<td></td>
<td>(21.5)</td>
<td>(19.6)</td>
<td>(21.1)</td>
</tr>
<tr>
<td>% Black</td>
<td>10.5</td>
<td>6.1</td>
<td>15.6</td>
</tr>
<tr>
<td></td>
<td>(16.5)</td>
<td>(9)</td>
<td>(21.3)</td>
</tr>
<tr>
<td>% Hispanic</td>
<td>43.0</td>
<td>37.8</td>
<td>49.1</td>
</tr>
<tr>
<td></td>
<td>(29.2)</td>
<td>(28.9)</td>
<td>(28.3)</td>
</tr>
<tr>
<td>% of Adults with No HS</td>
<td>10.0</td>
<td>8.3</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td>(7.1)</td>
<td>(6.6)</td>
<td>(7.1)</td>
</tr>
<tr>
<td>% of Adults with HS Degree</td>
<td>20.2</td>
<td>19.1</td>
<td>21.5</td>
</tr>
<tr>
<td></td>
<td>(7.6)</td>
<td>(7.6)</td>
<td>(7.3)</td>
</tr>
<tr>
<td>% of Adults with Bachelor Degree</td>
<td>20.2</td>
<td>23.1</td>
<td>16.8</td>
</tr>
<tr>
<td></td>
<td>(12.6)</td>
<td>(12.3)</td>
<td>(12.1)</td>
</tr>
<tr>
<td>Median Household Income</td>
<td>62,820</td>
<td>69,056</td>
<td>55,420</td>
</tr>
<tr>
<td></td>
<td>(30,150)</td>
<td>(31,729)</td>
<td>(26,309)</td>
</tr>
<tr>
<td>School Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Black</td>
<td>12.7</td>
<td>9.4</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td>(17.2)</td>
<td>(11.8)</td>
<td>(21.3)</td>
</tr>
<tr>
<td>% Hispanic</td>
<td>61.5</td>
<td>57.0</td>
<td>66.7</td>
</tr>
<tr>
<td></td>
<td>(29.5)</td>
<td>(30.8)</td>
<td>(26.9)</td>
</tr>
<tr>
<td>% Eligible for Free/Reduced-Price Lunch</td>
<td>72.0</td>
<td>64.2</td>
<td>81.3</td>
</tr>
<tr>
<td></td>
<td>(29.4)</td>
<td>(31.5)</td>
<td>(23.5)</td>
</tr>
<tr>
<td>% Gifted</td>
<td>11.7</td>
<td>14.0</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td>(8.7)</td>
<td>(9.4)</td>
<td>(6.7)</td>
</tr>
<tr>
<td>% English Language Learner</td>
<td>28.9</td>
<td>26.3</td>
<td>32.0</td>
</tr>
<tr>
<td></td>
<td>(17.1)</td>
<td>(17.2)</td>
<td>(16.6)</td>
</tr>
<tr>
<td>% Special Education</td>
<td>12.3</td>
<td>12.4</td>
<td>12.2</td>
</tr>
<tr>
<td></td>
<td>(4.0)</td>
<td>(4.1)</td>
<td>(3.8)</td>
</tr>
<tr>
<td>Enrollment</td>
<td>417.6</td>
<td>397.1</td>
<td>441.8</td>
</tr>
<tr>
<td></td>
<td>(166.3)</td>
<td>(164.5)</td>
<td>(165.3)</td>
</tr>
<tr>
<td>Property Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># of Beds</td>
<td>2.9</td>
<td>2.8</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>(1.8)</td>
<td>(1.7)</td>
<td>(2.0)</td>
</tr>
<tr>
<td># of Baths</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>(1.7)</td>
<td>(1.5)</td>
<td>(1.8)</td>
</tr>
<tr>
<td>Square Footage</td>
<td>1573</td>
<td>1571</td>
<td>1575</td>
</tr>
<tr>
<td></td>
<td>(2159)</td>
<td>(1032)</td>
<td>(2989)</td>
</tr>
<tr>
<td>Observations</td>
<td>62,977</td>
<td>34,177</td>
<td>28,800</td>
</tr>
</tbody>
</table>

The sample is split based on the percentile ranking from the first value-added release by the LA Times in August, 2010. Standard deviations are shown in parentheses.
Table 2: Predictability of API and Value-Added Using Observable School Characteristics

<table>
<thead>
<tr>
<th>Dependent Variable →</th>
<th>(1) API Percentile</th>
<th>(2) LAT 1st VA Percentile</th>
<th>(3) LAT 1st VA Percentile</th>
<th>(4) LAUSD VA Percentile</th>
<th>(5) LAUSD VA Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Black</td>
<td>-0.559***</td>
<td>-0.452*</td>
<td>-0.134</td>
<td>0.179</td>
<td>0.322</td>
</tr>
<tr>
<td></td>
<td>(0.101)</td>
<td>(0.260)</td>
<td>(0.182)</td>
<td>(0.215)</td>
<td>(0.211)</td>
</tr>
<tr>
<td>% Hispanic</td>
<td>-0.069</td>
<td>0.084</td>
<td>0.076</td>
<td>0.205</td>
<td>-0.060</td>
</tr>
<tr>
<td></td>
<td>(0.095)</td>
<td>(0.239)</td>
<td>(0.174)</td>
<td>(0.214)</td>
<td>(0.267)</td>
</tr>
<tr>
<td>% Asian/Pac Islander</td>
<td>0.328***</td>
<td>0.520</td>
<td>0.153</td>
<td>-0.049</td>
<td>0.099</td>
</tr>
<tr>
<td></td>
<td>(0.085)</td>
<td>(0.329)</td>
<td>(0.205)</td>
<td>(0.203)</td>
<td>(0.332)</td>
</tr>
<tr>
<td>% FRP</td>
<td>-0.070</td>
<td>-0.026</td>
<td>0.047</td>
<td>0.302</td>
<td>0.562**</td>
</tr>
<tr>
<td></td>
<td>(0.113)</td>
<td>(0.187)</td>
<td>(0.225)</td>
<td>(0.187)</td>
<td>(0.237)</td>
</tr>
<tr>
<td>% Gifted</td>
<td>0.655***</td>
<td>0.561**</td>
<td>0.263</td>
<td>0.598*</td>
<td>0.183</td>
</tr>
<tr>
<td></td>
<td>(0.166)</td>
<td>(0.274)</td>
<td>(0.316)</td>
<td>(0.334)</td>
<td>(0.327)</td>
</tr>
<tr>
<td>% ELL</td>
<td>-0.541***</td>
<td>0.153</td>
<td>0.354*</td>
<td>-0.080</td>
<td>0.327</td>
</tr>
<tr>
<td></td>
<td>(0.112)</td>
<td>(0.178)</td>
<td>(0.184)</td>
<td>(0.200)</td>
<td>(0.201)</td>
</tr>
<tr>
<td>% Special Ed</td>
<td>-0.441*</td>
<td>0.140</td>
<td>0.555</td>
<td>0.598</td>
<td>1.369***</td>
</tr>
<tr>
<td></td>
<td>(0.239)</td>
<td>(0.391)</td>
<td>(0.489)</td>
<td>(0.393)</td>
<td>(0.454)</td>
</tr>
<tr>
<td>Enrollment</td>
<td>-0.011**</td>
<td>-0.010</td>
<td>0.000</td>
<td>0.012</td>
<td>-0.454</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.009)</td>
<td>(0.009)</td>
<td>(0.010)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>% Parents HS Grad</td>
<td>0.041</td>
<td>0.086</td>
<td>-0.362</td>
<td>-0.362</td>
<td>-0.281</td>
</tr>
<tr>
<td></td>
<td>(0.139)</td>
<td>(0.191)</td>
<td>(0.243)</td>
<td>(0.243)</td>
<td>(0.208)</td>
</tr>
<tr>
<td>% Parents Some College</td>
<td>0.356**</td>
<td>0.052</td>
<td>-0.376</td>
<td>-0.376</td>
<td>-0.391</td>
</tr>
<tr>
<td></td>
<td>(0.155)</td>
<td>(0.227)</td>
<td>(0.288)</td>
<td>(0.243)</td>
<td>(0.272)</td>
</tr>
<tr>
<td>% Parents Bachelors</td>
<td>0.320</td>
<td>0.378</td>
<td>0.202</td>
<td>0.202</td>
<td>-0.134</td>
</tr>
<tr>
<td></td>
<td>(0.202)</td>
<td>(0.301)</td>
<td>(0.354)</td>
<td>(0.354)</td>
<td>(0.339)</td>
</tr>
<tr>
<td>% Parents Graduate</td>
<td>0.107</td>
<td>0.332</td>
<td>0.221</td>
<td>0.221</td>
<td>-0.149</td>
</tr>
<tr>
<td></td>
<td>(0.173)</td>
<td>(0.273)</td>
<td>(0.364)</td>
<td>(0.364)</td>
<td>(0.387)</td>
</tr>
<tr>
<td>API Percentile</td>
<td>0.214</td>
<td>0.322</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.210)</td>
<td>(0.211)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>397</td>
<td>397</td>
<td>397</td>
<td>397</td>
<td>397</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.706</td>
<td>0.216</td>
<td>0.294</td>
<td>0.038</td>
<td>0.251</td>
</tr>
</tbody>
</table>

All measures are for the 2009-10 school-year. Columns 3 and 5 also include API scores for the following subgroups: black, Hispanic, white, Filipino, Asian, Pacific Islander, Native American, disadvantaged, special education, and English Language Learners. Values for groups that were too small for API scores to be provided are set equal to zero and an indicator for that measure being missing is set equal to one. Robust standard errors are in parentheses.***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively.
Table 3: Effect of Value-Added on Demographic and Housing Characteristics

Note: Estimates are multiplied by 100 for ease of presentation.

Panel A: Census Tract Characteristics of Property

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
<th>(11)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pooled LAT</td>
<td>VA Pctl</td>
<td>Pooled LAT</td>
</tr>
<tr>
<td>Children</td>
<td>-0.14</td>
<td>(0.10)</td>
<td>-0.39**</td>
<td>(0.19)</td>
<td>-0.07</td>
<td>(0.11)</td>
<td>0.30*</td>
<td>(0.16)</td>
<td>0.11*</td>
<td>(0.06)</td>
<td></td>
</tr>
<tr>
<td>Senior</td>
<td>0.20</td>
<td>(0.12)</td>
<td>-0.03</td>
<td>(0.02)</td>
<td>-0.04</td>
<td>(0.17)</td>
<td>-1.67</td>
<td>(0.05)</td>
<td>-1.67</td>
<td>(0.11)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0.14</td>
<td>(0.12)</td>
<td>-0.12</td>
<td>(0.08)</td>
<td>0.07</td>
<td>(0.09)</td>
<td>0.08</td>
<td>(0.09)</td>
<td>0.08</td>
<td>(0.09)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>-0.11*</td>
<td>(0.06)</td>
<td>0.22</td>
<td>(0.19)</td>
<td>0.02</td>
<td>(0.09)</td>
<td>0.22</td>
<td>(0.09)</td>
<td>0.22</td>
<td>(0.09)</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>0.16</td>
<td>(0.22)</td>
<td>-0.00</td>
<td>(0.01)</td>
<td>-0.00</td>
<td>(0.01)</td>
<td>-0.00</td>
<td>(0.01)</td>
<td>-0.00</td>
<td>(0.01)</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>-0.18</td>
<td>(0.19)</td>
<td>-0.03</td>
<td>(0.10)</td>
<td>0.22</td>
<td>(0.01)</td>
<td>0.36</td>
<td>(0.24)</td>
<td>0.36</td>
<td>(0.24)</td>
<td></td>
</tr>
<tr>
<td>Island Race</td>
<td>-0.01</td>
<td>(0.19)</td>
<td>0.36</td>
<td>(0.56)</td>
<td>0.08</td>
<td>(0.07)</td>
<td>0.21</td>
<td>(0.29)</td>
<td>0.21</td>
<td>(0.29)</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td>-0.03</td>
<td>(0.33)</td>
<td>0.21</td>
<td>(0.19)</td>
<td>0.06</td>
<td>(0.24)</td>
<td>-0.11</td>
<td>(0.01)</td>
<td>-0.11</td>
<td>(0.01)</td>
<td></td>
</tr>
<tr>
<td>% Pac</td>
<td>-0.02</td>
<td>(0.02)</td>
<td>-0.02</td>
<td>(0.08)</td>
<td>-0.02</td>
<td>(0.08)</td>
<td>-0.02</td>
<td>(0.08)</td>
<td>-0.02</td>
<td>(0.08)</td>
<td></td>
</tr>
<tr>
<td>% Other</td>
<td>-0.13</td>
<td>(0.33)</td>
<td>0.73</td>
<td>(0.36)</td>
<td>-0.21</td>
<td>(0.22)</td>
<td>-0.21</td>
<td>(0.22)</td>
<td>-0.21</td>
<td>(0.22)</td>
<td></td>
</tr>
<tr>
<td>% Mult</td>
<td>-0.00</td>
<td>(0.04)</td>
<td>-0.21</td>
<td>(0.36)</td>
<td>-0.21</td>
<td>(0.22)</td>
<td>-0.21</td>
<td>(0.22)</td>
<td>-0.21</td>
<td>(0.22)</td>
<td></td>
</tr>
<tr>
<td>% Hisp</td>
<td>-0.14</td>
<td>(0.07)</td>
<td>0.71*</td>
<td>(0.05)</td>
<td>0.11</td>
<td>(0.05)</td>
<td>0.11</td>
<td>(0.05)</td>
<td>0.11</td>
<td>(0.05)</td>
<td></td>
</tr>
<tr>
<td>% Institutionalized</td>
<td></td>
<td></td>
<td>0.71*</td>
<td>(0.05)</td>
<td>0.11</td>
<td>(0.05)</td>
<td>0.11</td>
<td>(0.05)</td>
<td>0.11</td>
<td>(0.05)</td>
<td></td>
</tr>
</tbody>
</table>

Each cell is a separate regression. The data cover April 2009 through September 2011. Observations for all Census Tract characteristics are 62,997. For property characteristics, the sample sizes are 60,631, 60,855, 60,345, and 61,004 for # of units, age of property, # of bedrooms, # of bathrooms and square-footage, respectively. For school characteristics, there are 1,189 school-year observations. The pooled LA Times value-added variable uses the value-added percentile from the August 2010 release until May 2011, at which point the variable is replaced with the VA percentile from the May 2011 (2nd) release. All regressions include API, API*post, school and month fixed-effects. Standard errors clustered at the school level are in parentheses,***,** and * indicate significance at the 1%, 5% and 10% levels, respectively.
Table 4: School-Zone Boundary Fixed-Effects Estimates of Impact of API on Ln(SalePrice) - 0.1 Mile Buffer Using pre-August 2010 Sales

<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>API Percentile</td>
<td>0.449***</td>
<td>0.411***</td>
<td>0.133***</td>
<td>0.132***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.048)</td>
<td>(0.041)</td>
<td>(0.044)</td>
<td>(0.048)</td>
<td></td>
</tr>
<tr>
<td>LAT 1st VA Percentile</td>
<td>0.053*</td>
<td>0.030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
<td>(0.032)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAUSD VA Percentile</td>
<td>-0.012</td>
<td>-0.029</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.026)</td>
<td>(0.027)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>25,316</td>
<td>25,316</td>
<td>25,316</td>
<td>25,316</td>
<td>25,316</td>
</tr>
<tr>
<td>Housing Characteristics</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>School Characteristics</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Note: Estimates for all models are multiplied by 100 for ease of presentation.

All regressions include month and boundary fixed-effects. Each column comes from a separate regression that uses sales from April 2009 to August 2010. School characteristics include percent of students of each race, percent free lunch, percent gifted, percent English language learners, percent disabled, and parent education levels. Housing characteristic controls include the number of bedrooms, bathrooms and units in the home, square footage, and year built. Housing characteristics are also interacted with a linear time trend. Standard errors clustered at the school level are in parentheses. ***,** and * indicate significance at the 1%, 5% and 10% levels, respectively.
Table 5: Effect of Value-Added Information on Log Sale Prices

<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAT VA Percentile</td>
<td>0.023</td>
<td>0.025</td>
<td>-0.042*</td>
<td>-0.030</td>
<td>-0.029</td>
<td>-0.027</td>
<td>-0.014</td>
</tr>
<tr>
<td>× Post Aug 2010</td>
<td>(0.046)</td>
<td>(0.047)</td>
<td>(0.023)</td>
<td>(0.020)</td>
<td>(0.020)</td>
<td>(0.019)</td>
<td>(0.021)</td>
</tr>
<tr>
<td>LAUSD VA Percentile</td>
<td>0.002</td>
<td>-0.011</td>
<td>0.001</td>
<td>0.004</td>
<td>0.003</td>
<td>0.011</td>
<td>-0.029</td>
</tr>
<tr>
<td>× Post Mar 2011</td>
<td>(0.021)</td>
<td>(0.039)</td>
<td>(0.028)</td>
<td>(0.028)</td>
<td>(0.027)</td>
<td>(0.025)</td>
<td>(0.023)</td>
</tr>
<tr>
<td>API Percentile</td>
<td>-0.049</td>
<td>-0.049</td>
<td>0.000</td>
<td>-0.013</td>
<td>-0.009</td>
<td>-0.013</td>
<td>-0.005</td>
</tr>
<tr>
<td>× Post Aug 2010</td>
<td>(0.040)</td>
<td>(0.038)</td>
<td>(0.023)</td>
<td>(0.025)</td>
<td>(0.026)</td>
<td>(0.025)</td>
<td>(0.028)</td>
</tr>
</tbody>
</table>

Month of Sale | N | Y | Y | Y | Y | Y | Y |
Housing Characteristics| N | N | N | N | Y | Y | Y |
School Characteristics | N | N | N | N | N | Y | Y |
Neighborhood Characteristics| N | N | N | N | N | Y | Y |
School Fixed-Effects | N | N | Y | Y | Y | Y | Y |
Boundary Fixed-Effects (0.1 mi)| N | N | N | N | N | N | Y |

The data cover April 2009 through September 2011 and are at the property sale level. The pooled LA Times value-added variable uses the value-added percentile from the August 2010 release until May 2011 at which point the variable is replaced with the VA percentile from the May 2011 (2nd) release. All regressions include school and month fixed-effects along with controls for API, two years of lagged API, API percentile, and the school’s rank relative to comparison schools defined by the California DOE. School characteristics include, percent of students of each race, percent free lunch, percent gifted, percent English language learners, percent disabled, and parent education levels. Neighborhood characteristic controls are at the census tract level and include percents of the population who are adult, minor, senior, foreign born, of each race, speak a language other than English, and who lived in the same house one year prior, the percent of adults who are married, institutionalized, veterans, of each education level, in the labor force, and unemployed, percent of households vacant and owner-occupied, average household size, family size, commute time and household income, the percent of households with children, single-parent families, receiving social security, receiving cash public assistance, and receiving food stamps and the poverty rate. Housing characteristic controls include the number of bedrooms, bathrooms and units in the home, square footage, and year built. School-average value added measures are included as controls in column (1). Standard errors clustered at the school level are in parentheses. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively.
Table 6: Effect of Value-Added Information on Log Sale Prices - Alternative Models

<table>
<thead>
<tr>
<th>Note: Estimates for all models except (3) are multiplied by 100 for ease of presentation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Include Std Dev of Current Teacher VA</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>LAT Pooled VA Pctl</td>
</tr>
<tr>
<td>× Post Aug 2010</td>
</tr>
<tr>
<td>LAUSD VA Pctl</td>
</tr>
<tr>
<td>× Post Mar 2011</td>
</tr>
<tr>
<td>API Pctl</td>
</tr>
<tr>
<td>× Post Aug 2010</td>
</tr>
<tr>
<td>LAT Teacher VA</td>
</tr>
<tr>
<td>Standard Deviation</td>
</tr>
<tr>
<td>LAT Teacher VA</td>
</tr>
<tr>
<td>% in 2nd Quintile</td>
</tr>
<tr>
<td>LAT Teacher VA</td>
</tr>
<tr>
<td>% in 3rd Quintile</td>
</tr>
<tr>
<td>LAT Teacher VA</td>
</tr>
<tr>
<td>% in 4th Quintile</td>
</tr>
<tr>
<td>LAT Teacher VA</td>
</tr>
<tr>
<td>% in 5th Quintile</td>
</tr>
<tr>
<td>Average Across</td>
</tr>
<tr>
<td>All VA Measures</td>
</tr>
<tr>
<td># of Charters</td>
</tr>
<tr>
<td>Within 1 Mile</td>
</tr>
<tr>
<td>LAT VA × Charters w/in 1 Mi</td>
</tr>
<tr>
<td>LAT Minus</td>
</tr>
<tr>
<td>API</td>
</tr>
<tr>
<td>LAUSD Minus</td>
</tr>
<tr>
<td>API</td>
</tr>
<tr>
<td>Observations</td>
</tr>
</tbody>
</table>

The data cover April 2009 through September 2011 and are at the property sale level. The pooled LA Times value-added variable uses the value-added percentile from the August 2010 release until May 2011 at which point the variable is replaced with the VA percentile from the May 2011 (2nd) release. LAT Teacher Value-Added uses value-added scores from the Aug 2010 release for teachers working in a given school in 2009-10. All regressions include school and month fixed-effects along with controls for API, two years of lagged API, API percentile, and the school's rank relative to comparison schools defined by the California Department of Education. School characteristics include, % of students of each race, % free lunch, % gifted, % English language learners, % disabled, and parent education levels. Neighborhood characteristic controls are at the census tract level and include % of the population who are adult, minor, senior, foreign born, of each race, speak a language other than English, and who lived in the same house one year prior, the % of adults who are married, institutionalized, veterans, of each education level, in the labor force, and unemployed, % of households vacant and owner-occupied, average household size, family size, commute time and household income, the percent of households with children, single-parent families, receiving social security, receiving cash public assistance, and receiving food stamps and the poverty rate. Housing characteristic controls include the number of bedrooms, bathrooms and units in the home, square footage, and year built. Housing characteristics are also interacted with a linear time trend. Standard errors clustered at the school level are in parentheses. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively.
Table 7: Effect of Value-Added Information on Log Sale Prices - Specification Checks

<table>
<thead>
<tr>
<th>Exclude</th>
<th>Drop Lagged API VA</th>
<th>Drop Properties w/ > 8 Bedrooms</th>
<th>Drop Properties w/ > 5000 sf</th>
<th>Drop Multi-Unit Properties</th>
<th>3 Month Lead</th>
<th>6 Month Lead</th>
<th>Limit to April 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAT Pooled VA Pctl</td>
<td>-0.031 (0.019)</td>
<td>-0.025 (0.019)</td>
<td>-0.033* (0.019)</td>
<td>-0.033* (0.018)</td>
<td>-0.015 (0.013)</td>
<td>-0.009 (0.020)</td>
<td>-0.011 (0.019)</td>
</tr>
<tr>
<td>× Post Aug 2010</td>
<td>0.021 (0.024)</td>
<td>0.009 (0.023)</td>
<td>0.011 (0.025)</td>
<td>0.013 (0.025)</td>
<td>0.006 (0.016)</td>
<td>0.011 (0.035)</td>
<td>0.011 (0.024)</td>
</tr>
<tr>
<td>LAUSD VA Pctl</td>
<td>-0.011 (0.025)</td>
<td>-0.009 (0.025)</td>
<td>-0.009 (0.023)</td>
<td>-0.009 (0.022)</td>
<td>-0.030* (0.016)</td>
<td>0.011 (0.021)</td>
<td>0.044* (0.026)</td>
</tr>
<tr>
<td>× Post Aug 2010</td>
<td>0.025 (0.025)</td>
<td>0.025 (0.025)</td>
<td>0.023 (0.023)</td>
<td>0.022 (0.022)</td>
<td>0.011 (0.016)</td>
<td>0.020 (0.021)</td>
<td>0.026 (0.026)</td>
</tr>
</tbody>
</table>

Note: Estimates for all models are multiplied by 100 for ease of presentation.

The data cover April 2009 through September 2011 and are at the property sale level. The pooled LA Times value-added variable uses the value-added percentile from the August 2010 release until May 2011 at which point the variable is replaced with the VA percentile from the May 2011 (2nd) release. LAT Teacher Value-Added uses value-added scores from the Aug 2010 release for teachers working in a given school in 2009-10. All regressions include school and month fixed-effects along with controls for API, two years of lagged API, API percentile, and the school’s rank relative to comparison schools defined by the California Department of Education. School characteristics include, percent of students of each race, percent free lunch, percent gifted, percent English language learners, percent disabled, and parent education levels. Neighborhood characteristic controls are at the census tract level and include percents of the population who are adult, minor, senior, foreign born, of each race, speak a language other than English, and who lived in the same house one year prior, the percent of adults who are married, institutionalized, veterans, of each education level, in the labor force, and unemployed, percent of households vacant and owner-occupied, average household size, family size, commute time and household income, the percent of households with children, single-parent families, receiving social security, receiving cash public assistance, and receiving food stamps and the poverty rate. Housing characteristic controls include the number of bedrooms, bathrooms and units in the home, square footage, and year built. Housing characteristics are also interacted with a linear time trend. Standard errors clustered at the school level are in parentheses.***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively.