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A RECURSIVE ALGORITHM FOR VOLUME-BASED
SENSITIVITY ANALYSIS OF LINEAR DECISION MODELS

Rudolf Vetschera

Abstract

One problem impeding the use of linear decision models in practical applications is the difficulty in

precisely specifying weights. In this paper, we analyze an approach to establish the stability of a

decision, given approximate information on weights. This approach is based on comparing the

volumes of regions in weight space, in which different alternatives are optimal. To compute those

volumes, a recursive algorithm was developed. The efficiency of that algorithm is analyzed both

analytically and via computational experiments.

Zusammenfassung

Grundlage dieser Arbeit bildet ein Konzept fur die Sensitivitatsanalyse linearer

Entscheidungsmodelle. Die Sensitivitat einer Losung wird dabei durch das Volumen des Bereiches im

Parameterraum gemessen, in dem die betrachtete Losung optimal bleibt. Dieser Ansatz vermeidet

einige Probleme iiblicher, auf AbstandsgroBen beruhender SensitivitatsmaBe. Die dafiir erforderliche

Volumensberechnung mehrdimensionaler Polyeder erfordert jedoch hohen Rechenaufwand. Zur

Losung dieses Problems wurde ein rekursiver Algorithmus entwickelt, der in dieser Arbeit vorgestellt

und beziiglich seines Laufzeitverhaltens analysiert wird.
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1. Introduction

Linear decision models of the form

have become a common tool in analyzing decision problems under multiple criteria. Many different

approaches using such models have been developed. They differ in the interpretation of the values aik>

which are interpreted for example as partial utility of alternative a, in attribute k in multiattribute

utility theory (Keeney/Raiffa, 1976), or as local priorities of alternatives in the Analytic Hierarchy

Process (Saaty, 1980). Most methods also differ in the way the criteria weights wk are determined.

However, despite all those differences, the approaches using a weighted additive aggregation rule like

(1) have one problem in common: methods to measure the w^s often lead to conflicting results

(Schoemaker/Waid, 1982) which sometimes even violate the underlying axioms (Weber et al., 1988;

Delquie, 1993; von Nitzsch/Weber, 1993), or are faced with reluctance or resistance by the decision

maker to specify precise numerical values (Dickson, 1981; Arbel/Vargas, 1993).

!
To overcome this problem, several approaches have been developed for dealing with incomplete or

imprecise information on criteria weights. Some of these approaches will be described in more detail

in the following section. In section three of this paper, we will develop an approach to deal with this

problem based on the concept of volume in weight space. This approach allows us to determine the

probability that a given alternative will turn out to be optimal, given some (imprecise) a priori

information on possible weights, hi order to perform the necessary calculations, an algorithm was

developed to compute the volume of a polyhedron in n-dimensional space. This algorithm is presented

in section four, hi section five, the complexity of the algorithm is analyzed both theoretically and via

computational experiments. Section six concludes the paper by identifying some areas for future

research.

2. Sensitivity Analysis: Previous Approaches

2.1. Overview

Figure 1 provides an overview over different frameworks for sensitivity analysis in linear decision

models.
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Figure 1: Conceptual Framework

We can classify previous approaches to sensitivity analysis according to three criteria:

1. The inputs to the decision model, i.e. the type of information on weights that is assumed to be

available. Apart from the standard case of precise weights, the most common variants are the

specification of intervals (i.e. weight wk must lie between a lower and an upper bound), linear

constraints on weights (e.g. w3 > 2w4 indicating that the weight for attribute 3 must be at least

twice that of attribute 4) and probability distributions on weights.

2. The output of the decision model that is studied. In their standard form, linear decision models of

the form (1) generate a ranking of alternatives. Approaches for sensitivity analysis are, however,

not always concerned with the stability of the entire ranking of alternatives. Some approaches

consider for example only conditions under which the optimal alternative remains the same. Other

methods are concerned with subsets of the entire ranking, e.g. the first n alternatives, or "large"

changes in which an alternative moves by several ranks. Still other approaches deal with the

probability of certain changes.

3. The direction in which the analysis is performed. Here we can distinguish between models that

generate information about the outputs given some information about the inputs and models which

calculate information about the allowable inputs for certain outputs.

hi the following subsections we review previous approaches to sensitivity analysis according to the

information on weights that is used or generated, hi this presentation, we will use the following

notation, which has already been introduced in (1):

We consider a decision problem involving K attributes, which are indexed by k=l,...,K. Attribute k is

given a weight wt The decision is to be made among N alternatives, which will be indexed by ij etc.

The evaluation of alternative a, in attribute k is denoted by aik. Vectors of values will be written as

boldface letters, e.g. w is the vector of weights (w1,...,w^).
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2.2. Interval weights and constraints

Intervals on weights can be interpreted as a special case of constraints and many methods deal with

both types of information simultaneously, hi this paper, we also will not distinguish further between

these two types of information.

This kind of information is used in a wide variety of approaches. The first class of approaches takes a

decision-making perspective and tries to generate a (unique) optimal solution given imprecise weight

information. This kind of approaches is often called "decision making with incomplete (or partial)

information", a review of the relevant literature is given e.g. in (Weber, 1987).

Most techniques of this class are based on linear programming. An alternative a, is considered to be

potentially optimal, if a weight vector w can be found which simultaneously satisfies the condition

wkak V/V/ (2)
k=\ k=\

and the constraints the decision maker has formulated with respect to the wk's. If, for a certain

alternative, the resulting problem is infeasible, it is concluded that this alternatives cannot be optimal

given the available information on w. A related concept is that of dominance with respect to a set W

of possible weights (Rios Insua/French, 1991; French, 1992): an alternative a, dominates another

alternative ay- with respect to a feasible set W of weight vectors, if the evaluation of a; is at least as

good as that of a for all we W and strictly better for at least one weight vector. For specific types of

sets W, (Kirkwood/Sarin, 1985) developed quick tests for this form of dominance.

An approach developed by (Arbel, 1989) considers the entire ranking as output. This approach was

developed in the framework of the Analytic Hierarchy Process and is concerned only with one

hierarchical level. Therefore, the wk directly correspond to the evaluation of alternatives in the

attribute under considerations. The model developed by Arbel checks whether a consistent ranking of

all alternatives can be established for all vectors w which are feasible under a set of constraints

specified by the decision maker.

The two methods described so far take a set of constraints on the weights as given and analyze

possible outputs for this preference information. A technique developed by (Hansen et al., 1989)

considers the opposite direction: given the optimal solution to a multiobjective linear programming

problem, this method determines a range of weights in which the optimal solution remains the same,

hi the framework of the PROMETHEE outranking method, (Wolters/Mareschal, 1995) formulated a

linear programming model to determine the minimum change in weights which would make a

different alternative optimal. An analytical solution for a similar problem in the context of additive

models is given by (Barron/Schmidt, 1988).
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A similar point of view is taken by (Evans, 1984), who develops a measure of the sensitivity of a

decision. Evans partitions the set of standardized weight vectors, for which

* = 1 (3)

holds, into subsets in which a different alternative is optimal. Sensitivity of a certain choice is then

defined as the radius of the largest circle that can be inscribed in the subset corresponding to the

selected alternative. This approach is extended by (Rios Insua/French, 1991), who considered the

ratio of the distance of a given weight vector at which the optimal alternative changes and the largest

possible change in weights as a measure of sensitivity.

2.3. Probabilities

Only few approaches have been presented which explicitly take probabilities into account. One

approach was developed by (Saaty/Vargas, 1987), who used a simulation model, in which samples are

draw from judgment intervals in comparison matrices of the AHP. The model then proceeds to

compute intervals for the evaluation of alternatives and finally probabilities for rank reversals

between alternatives (Arbel/Vargas, 1993).

3. The Volume-Based Approach

The measures of sensitivity developed so far and reviewed in the preceding section measure

sensitivity mostly in terms of distances from a certain starting point w to a point where some change

in the output occurs. Using distances for this purpose has two disadvantages: The first problem is the

selection of a distance measure. It has been shown that the use of different distance measures like

various lp norms or the Tchebycheff norm will lead to different results (Rios Insua/French, 1991). The

second problem is that distances are not preserved by projections. If, for example, substitutions are

made based on a scaling condition of weights, the resulting distortion must explicitly be taken into

account in performing distance calculations (Schneller/Sphicas, 1985).

We therefore propose to use volumes instead of distances to measure sensitivity. The comparison of

volumes was in a way proposed by (Rios Insua/French, 1991), who viewed their ratio of radii of

circles as an approximation to the ratio of areas, but did not extend this thought further.

The idea of using volumes was also used in the context of decisions under risk by (Starr, 1962), who

developed a "domain criterion" for ranking alternatives. His "domain" corresponds to the volume of a

region in probability space in which an alternative is optimal. This approach was developed further by

(Schneller/Sphicas, 1983 ) and (Eiselt/Langley, 1990). Its applicability to the context of multi-criteria

problems was first suggested by (Charnetski/Soland, 1978 ), who used Monte Carlo simulation for

approximately determining the volumes. The concept was also discussed by (Erkut/Tarimcilar, 1991)
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and (Eiselt/Laporte, 1992). These authors, however, did not develop a practical algorithm for actually

computing multidimensional volumes. (Antunes/Climaco, 1993) used areas in a graphical method to

analyze problems with three attributes, but this approach cannot be extended to problems with more

attributes.

Our approach can be outlined as follows: given some a priori information on weights in the form we

W, we partition the set W'vcAo regions in which different alternatives are optimal. For a given vector of

weights w and its associated optimal alternative a*, the sensitivity of that decision is then defined as

the ratio of the volume of the partition associated with a* to the entire volume of W. This ratio has a

straightforward interpretation: assuming that weight vectors are uniformly distributed over the set W,

it corresponds to the probability that a* is the optimal alternative if a weight vector is randomly

selected from W.

To formalize the concept, we will first consider the case in which no a priori information is available

other than the usual scaling of weights to

*=1 (4)
k=\

I
In order to be the optimal alternative, the evaluation of an alternative a, according to (1) has to be

better than the evaluation of all other alternatives. We therefore obtain the following linear model,

which describes the set of weights for which alternative a, is optimal:

(5)

4=1

The last equation in (5) can be used to substitute for one weight, e.g. wK. It should be noted that in

contrast to distance-based measures, the ratio of volumes will not be affected by this transformation

(Schneller/Sphicas, 1983). We obtain the following set of inequalities:

K-\

k=\

(6) defines a polytope in K-l - dimensional space. We will call this polytope a/s region of optimality.

Consider, for example, the case K=3. Then (6) defines a polygon, which is part of the unit triangle in

Wj/w2 space. Taken together, conditions (6) for all alternatives partition that triangle into different

regions (figure 2).
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Figure 2: Partitioning of the unit triangle

In figure 2, the unit triangle is partitioned into three regions, in which alternatives a ;, a2 and a5,

respectively, are optimal. The region of optimality for a3 is very small compared to the region for a2-

Given no additional a priori information on the weights, a2 is therefore the more likely choice and

conversely, a decision to select a3 should be analyzed more carefully.

4. The Algorithm

In this section, we will develop an algorithm for computing the volume of the K-\ - dimensional

polytope defined by (6). We will first introduce the main ideas graphically for the 2-dimensional case

and then develop the algorithm analytically.

4.1. Graphical exposition

Figure 3 graphically explains the calculation of the area of a polygon in two-dimensional space:

B

Figure 3: Computing the area of a polygon
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Starting from an arbitrary corner B, we partition the polygon into triangles by connecting B to all

other corners, e.g. C, and Ci+1. The area of each triangle between B and two other points C; and Cj+1,

which are adjacent to each other, can then be calculated as the determinant of the matrix formed by

the vectors (C, - B) and (C,+; - B). By summing the areas of all these triangles, we obtain the total area

of the polygon.

The same idea can be applied to calculate the volume of a 3-dimensional polyhedron: again we start at

an arbitrary corner point Bo of the polyhedron. Using the same method as above, we partition each

facet of the polyhedron into triangles emanating from a starting point B, on the facet. For two

neighboring points Cj and CJ+1 on the facet, we can compute the volume of the tetrahedron (BO JB,, C7,

C^;). The total volume of the polyhedron is obtained by adding up the volumes of all such tetrahedra.

4.2. The recursive procedure

To develop the algorithm more formally, we first rewrite (6) as a system of linear equations by

introducing slack variables Sj. Without loss of generality, we also assume that the volume of

polyhedron (6) is to be computed for alternative N, so the first N-l inequalities in (6) refer to

alternatives a} to aN.j. We obtain:

•wk + sk = ajK - ajK Vy ^ i

(7)

k=\

This is a system of N linear equations in N+K-l variables. A corner of the polytope corresponds to a

basis of (7), which contains N basic and K-l nonbasic variables. The number of nonbasic variables is

equal to the dimension of the problem.

To formalize the ideas we have developed graphically, we introduce the concept of a q-dimensional

facet. A q-dimensional facet of an m-dimensional problem is a set of basic solutions in which q

nonbasic variables can be exchanged for other variables and m-q nonbasic variables must remain

nonbasic. For example, a one dimensional facet is a line segment linking two adjacent basic solutions.

In moving along that line, only one nonbasic variable is replaced, the other m-1 nonbasic variables

remain the same. As another example, consider a two-dimensional facet of a three-dimensional

problem (m=3, q=2): that facet is defined by m-q = 1 constraint, so the slack variable of that

constraint must remain nonbasic, while the other q = 2 nonbasic variables can be replaced by other

variables.

hi order to compute the volume of the K-l- dimensional polyhedron defined by (7), we have to

analyze each of its K-2 - dimensional facets, which in turn contains K-3 - dimensional facets and so
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on until we end up with line segments which finally define the K-l- dimensional tetrahedra of which

the volume can be computed.

A similar decomposition approach was developed by (Cohen/Hickey, 1979). Their approach,

however, assumes that the polyhedron is given in the form of a set of vertices, from which the facets

must be constructed, hi the problem we consider here, those facets are already implicitly given via the

constraints. To apply the algorithm of (Cohen/Hickey, 1979), one would first have to compute and

store all vertices, from which the facets would be reconstructed. Apart from the storage requirement

associated with storing all vertices, this approach is also clearly inefficient from a computational point

of view, since information on the facet structure, which is readily available from the constraints, has

to be reconstructed from the vertices.

The problem of finding all K-2 - dimensional facets to a K-l - dimensional problem is closely related

to the problem of finding all vertices of a polyhedron, for which several algorithms have been

developed (Matheiss/Rubin, 1980). The algorithm developed here is a recursive variant of the

algorithm by (Manas/Nedoma, 1968), which basically consists of a branching procedure which

examines all neighboring basic solutions to a given basis. For each basis, we then proceed by

analyzing its adjacent facets of next lower dimension, which have not yet been analyzed.

To provide a compact representation of the algorithm, we use the following notation: let P be a

complete description of a basic solution and its associated simplex tableau. By P . B, we denote the set

of basic variables, P. NB is the set of nonbasic variables. P. w is the set of weights associated with the

current solution. The algorithm uses a procedure p i v o t ( i n , o u t , Po ld , Pnew), which performs

one pivot step on problem Pold. The variable entering the basis is denoted by i n , the variable

leaving the basis by o u t and Pnew is the new state of the problem after the pivot step. A global

variable wO represents the coordinates of an initial solution. The algorithm can then be formulated as

a recursive procedure V i s i t , which has the following parameters:

Parameter
d
u
m

V

f

P
V o l

Description
Dimension of the current subproblem
A set of variables which must remain nonbasic
A matrix, describing some points of the current K-l-
dimensional tetrahedron
The set of basic solutions (of dimension d) which
already has been visited
The set of d - 1 - dimensional facets already visited
for the current subproblem of dimension d
The current state of the simplex tableau
A variable in which the volume is being built up
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procedure Visit(d, u, m, v, f, P, vol);
variables
vl, ,fl, facet: set
i: integer
begin

v := v u {P.B}
if d = 1 then

vol := vol + DET(m)
else

for i e P.NB\u do
facet := u u {i}
if facet £ f then

append (P.w - wO) as last column to m

Visit(d-1, facet, m, vl, fl, vol)
f:=f u {facet}
end if

end for
for ieP.NB\u do

Pivot (i, out, P, PI)
if Pl.B € v then

Visit(d,u,m,v,f,PI,vol)
end if

i

end for
end if

end visit

The procedure twice iterates across all nonbasic variables which are not in set u. These two loops

could be combined into one, but the algorithm can better be explained by considering them separately,

hi the first loop, the d-1-dimensional subproblems of P are generated. As we have already explained,

a q-dimensional facet can be described by m-q nonbasic variables which must remain nonbasic. These

are stored in the variable facet, which thus uniquely identifies the facet under consideration. For each

facet, a new subproblem of dimension d - 1 is solved. It should be noted that new sets v l and f 1 are

created for each subproblem to be solved. Completion of that subproblem is then recorded in set f.

Once the recursive process has reached dimension d=l, a complete K-l-dimensional tetrahedron has

been constructed and its volume can be computed as the determinant of the vectors forming that

tetrahedron. Since the recursion on subproblems has gone through K-l levels, matrix m is square.

The second loop generates subsequent problems at the same dimension. This process is a recursive

formulation of the algorithm by (Manas/Nedoma, 1968) and simply consists of branching on all

nonbasic variables and visiting all those among the resulting basic solutions which have not yet been

visited.

The process is initiated at some feasible basis P. The weights associated with P are the "top" of all the

tetrahedrons that will be calculated. This point is connected to all the points generated by forming the

vectors (P.w - wO). The initial dimension of the problem is K-l.
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The algorithm can be easily adapted to problems in which the weights are restricted to a certain subset

W of the K-l-dimensional simplex as long as those restrictions are linear. If restrictions on weights

are given in the form of linear inequalities, these can simply be added to (7) with their respective

slack variables and the same algorithm can be applied. The number of nonbasic variables and

therefore the dimension of the problem remains unchanged in this case. If restrictions on weights are

formulated as equations, they reduce the dimension of the problem. This kind of restrictions can be

dealt with by substituting for one weight and solving the reduced problem.

4.3. Implementation aspects

As we will show in the next section, the algorithm introduced above requires considerable

computational effort, hi implementing the programs used to generate the computational results

presented in the next section, several techniques have been developed to reduce the computational

requirements. These methods do not alter the basic structure of the algorithm as presented. Still, by

introducing these techniques, the running time was reduced by a factor of about 10.

4.3.1.Pre-calculation of bases

Since procedure Vi s ' i t operates on facets of different dimensions, each vertex of the original

polyhedron will be visited several times. Computation time can thus be reduced if the basic solutions

to the problem are computed once, before procedure V i s i t is started, and are not re-computed in

each recursive invocation of the procedure.

The ratio between the total number of invocations of procedure V i s i t and the number of vertices of

the polyhedron depends on the dimension d of the problem and can be described by a function /

which is defined recursively as

/ ( 0 ) = 0
(8)

= f(d-\)-d + l

This function thus increases faster than the factorial. Especially for larger dimensions, the saving in

computing time achievable by pre-calculation of bases is therefore substantial. On the other hand,

complex problems might posses a large number of basic solutions, so the amount of information to be

saved for each basis is important.

It is not necessary to save the entire simplex tableau for each basis. On the other hand, unlike the

algorithm of (Cohen/Hickey, 1979), the present algorithm utilizes some information from the simplex

tableau, so it is not sufficient to store just the coordinates of the vertices, hi order to apply procedure

V i s i t , a graph structure is constructed, where each node of the graph represents a vertex of the

polyhedron. In each vertex, the following information is stored:
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1. The coordinates of the vertex

2. The set of basic variables

3. The set of nonbasic variables

4. For each nonbasic variable, a pointer to the basis resulting from replacement of that variable as

well as the index of the replaced basic variable is also stored.

The pointers to adjacent basic solutions correspond to the arcs of the graph. It can easily be seen from

the algorithm that this information is sufficient for execution of the procedure V i s i t .

4.3.2. Avoiding empty tetrahedra

Since it processes each facet at each dimension separately, procedure V i s i t generates tetrahedra of

volume zero. A tetrahedron will be empty if any point added to matrix m at some higher dimension is

re-entered into the matrix at a lower dimension or there is a linear dependency among the points in the

matrix. The first case can easily be checked and can lead to the elimination of an entire subtree of

recursive invocations, if such a duplication is detected at a high dimension. The second condition can

only be detected by computing the determinant, which is necessary for computing the volume, too and

therefore cannot be used to reduce computing time. Nevertheless, by checking for duplication of

vectors in m, the number of empty tetrahedra was reduced from over 90% to about 50% of all the

tetrahedra generated in the computational experiments.

5. Complexity and Computational Results

The algorithm developed above is highly recursive. It can therefore be suspected that it will lead to

considerable computation times. In this section, we will analyze how different parameters of the

problem will affect computation times, first by theoretical considerations and then by presenting the

results of computational experiments. Specifically, we will consider the number of alternatives (iV)

and the number of attributes (K).

5.1. Theoretical analysis

5.1.1.Change in the number of alternatives

Two different cases have to be considered when analyzing the effects of an increase of the number of

alternatives on the computational effort involved. One has to distinguish between a situation in which

the volume of the region of optimality for one alternative is to be computed and a situation in which

one wants to analyze a complete partition of set W. If the algorithm is used for sensitivity analysis

with regard to an existing solution, the first situation applies, while other uses might lead to the

second situation.
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When we consider only the region of optimality for one alternative, the effects of increasing the

number of alternatives will not be dramatic, hi the first loop of the algorithm, each recursive

invocation of the procedure will decrease variable d, so the maximum level of recursion in this loop

depends only on the number of attributes, not on the number of alternatives.

The second loop generates subproblems of the same dimension. The number of problems generated

through this recursion is equal to the number of vertices of the polyhedron. From the Upper Bound

Conjecture (Matheiss/Rubin, 1980) we obtain the following upper bound on that number:

(N-[KI2^\ (N-[{K+\)l2t\
VN + \-K)+V N + l-K J ( )

where [.] denotes rounding down to the nearest integer. Increasing N in (9) will increase

computational effort linearly. We first consider the case of K being even. The Upper Bound

Conjecture then becomes:

\ (N-KIT\

so the two terms are identical. From the definition of binomial coefficients, we can obtain the factor

by which (10) increases when N is replaced by N+1 as:

(N + \-KI2\ I(N-KIJ\ = N + l-K/2
{ N + 2-K )/{N + 1-K) N + 2-K

which can be rewritten as:

* + l - * / 2 KJ2-1

N + 2KN + 2-K N + 2-K

Since the second term in (12), and a similar expression which can be derived for odd K, decreases

hyperbolically in N, the number of vertices and therefore the number of subproblems to be solved in

the second loop of our algorithm will increase only linearly with the number of alternatives. However,

this increase of vertices takes place at all levels of recursion from the first loop: not only the number

of vertices of the ^-/-dimensional polyhedron increases but also the number of vertices of the K-2, K-

3,... -dimensional polyhedra increases. Furthermore, the computational effort for each pivot step

increases linearly in the number of rows of the simplex tableau, which is equal to N. Therefore, the

total computation time for the algorithm could increase by a polynomial factor with an exponent equal

to the number of attributes.

Practically, this increase will probably only be about linear, since simulation studies like

(Matheiss/Rubin, 1980) have shown that for realistic problems, the number of vertices increases much
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slower than the Upper Bound Conjecture suggests. This result has also been conformed by our

experiments presented in the following subsection.

To obtain a complete partition of set W, one has to solve problem (6) for each alternative. However,

this does not lead to a linear increase in computation time, since for some alternatives no set of

weights exists which would make that alternative optimal. This means that the region of optimality for

such an alternative is empty. This condition can easily be verified, if problem (6) does not possess a

feasible solution. We therefore can expect the effect on computation time due to this factor to be less

than linear.

5.1.2.Change in the number of attributes

For changes in the number of attributes, however, we have to expect a rapid growth of computing

time. For any facet generated in the first loop, a complete d - 1 - dimensional subproblem has to be

solved. Increasing the number of attributes by one therefore increases the computational effort by a

factor which is equal to the number of facets in the upper problem. Since this factor is again bounded

by the Upper Bound Conjecture (9), we have in the worst case to expect faster than exponential

growth in computation times. Even if the number of facets increases only linearly in the number of

dimensions, growth in overall computation time would be faster than exponentially.

5.2. Computational results

To verify the theoretical considerations of the above section, several computational experiments were

performed. In this experiments, the algorithm developed in this paper was tested against a simple

simulation approach, in which the optimal alternative was computed at equally spaced grid points.

The volume of the region of optimality for each alternative was then computed as the number of grid

points in which that alternative was optimal, divided by the total number of feasible grid points.

Since that simulation approach generates the regions of optimality simultaneously for all alternatives,

in the first set of experiments the recursive algorithm was also run for all alternatives. Table 1 lists the

average CPU time (in seconds) and their standard deviations for 10 experiments each for various

numbers of attributes and alternatives. All tests were run on the Silicon Graphics Power Challenge at

the University of Konstanz computing center using the Irix Pascal compiler.
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Alternatives
5-

10

15

20

Attributes
3

0.016
0.005
0.063
0.007
0.179
0.016
0.443
0.016

4
0.069
0.019
0.192
0.045
0.427
0.111
0.833
0.126

5
0.790
0.350
2.011
0.826
3.683
1.120
4.798
1.754

6
21.627
11.485
73.080
44.708
90.160
45.187

155.378
76.086

Table 1: CPU times (mean and standard deviation for 10 experiments) for evaluating all alternatives

Figure 4 shows the development of running times for changing numbers of alternatives. Since running

times increase sharply with the number of attributes, these results are normalized so that the running

time for the case of five alternatives is set to 1 for all numbers of attributes.

30

25

20

15

10

5

— • — 3 Attributes
— • — 4 Attributes
—£—5 Attributes
—X—6 Attributes

10

Alternatives

15 20

Figure 4: Relative running times with increasing number of alternatives

The figure shows that, for a larger number of attributes, an increase in the number of alternatives

leads to an approximately linear increase in the calculation time. For problems with few attributes, the

increasing number of vertices to be generated in the initial phase leads to an exponential increase.

hi the next figure, we analyze the effect of changes in the number of attributes. The theoretical

considerations in the preceding subsection already have led to the conclusion that increasing the

number of attributes will increase the running time exponentially or even faster. This effect is clearly

visible from the results.
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Figure 5: Running times and number of attributes

To evaluate the performance of the algorithm, it was then compared to the running time of the naive

simulation approach. The running time of the naive simulation approach depends on the step size of

grid points. Instead of choosing an arbitrary step size, the two algorithms were compared by

computing the number of steps in the naive simulation approach which would lead to (approximately)

the same running time as the recursive algorithm. This also provides an estimate of the precision of

the naive simulation approach which would be possible using the same resources as the recursive

algorithm.

The equivalent number of steps in the naive approach was calculated as follows: In the naive

approach, the unit interval was divided into n steps for each attribute. Since the weights sum up to

one, only weights for K-l attributes were created in this way, from which the weight for the last

attribute can be directly computed. Denoting the time needed for processing one grid point by a, the

total computing time Ts for the naive simulation approach for K attributes is

Ts=a-nK'x (13)

First, the naive simulation approach was performed for some arbitrary number of steps n, leading to a

time Ts. From the actual computation time TR of the recursive algorithm, the equivalent number of

steps for the naive simulation approach ne was then calculated as

ne=n- (14)

Experiments indicated that using this approach, the running time of the recursive algorithm could

indeed be approximated by the naive simulation approach with a precision of about 10%.

Table 2 lists the means and standard deviations for ne for the experiments carried out. Lower numbers

here indicate better performance of the recursive algorithm, since a lower number of steps in the naive

simulation approach will lead to less precise results.
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Alternatives
5

10

15

20

Attributes
3

52.0
16.53
83.3

10.22
113.6
9.56

153.4
8.04

4
20.8
2.15
25.2
2.25
29.7
2.31
34.3
1.83

5
16.7
2.58
19.0
2.49
20.5
1.72
20.4
2.12

6
17.7
1.95
20.2
3.16
20.2

2.3
21.4
2.22

Table 2: Equivalent number of simulation steps (all alternatives)

The table indicates that the recursive algorithm initially gains performance relative to the naive

simulation approach when the number of attributes increases, and then the running time of both

algorithms evolves in parallel. With respect to the number of alternatives, the recursive algorithm

looses performance when the number of alternatives increases. This result is not surprising, since in

the naive simulation approach, additional alternatives only require that the score of the alternatives be

calculated at each grid point, while the effort associated with generating the grid points remains the

same.

hi another set of experiments, the algorithm was run only for one alternative. This setting corresponds

more closely to the case of sensitivity analysis, where one starts from a given optimal solution. Table

3 presents the resulting CPU times (average and standard deviations) for 10 experiments in every

parameter combination. Since total times were less in these experiments, it was also possible to run

experiments for seven attributes.

Alternatives
5

10

15

20

3
0.006
0.005
0.011
0.003
0.023
0.005
0.038
0.004

4
0.024
0.005
0.044
0.007
0.058
0.011
0.094
0.018

Attributes
5

0.243
0.082
0.439
0.085
0.661
0.084
0.750
0.250

6
6.513
2.222

15.241
6.086

19.266
5.617

25.252
7.889

7
279.343

44.206
884.912
251.099

1,384.114
337.816

2,107.716
647.318

Table 3: Running times (mean and standard deviation) for single alternative

Figures 6 and 7 provide the equivalent information to figures 4 and 5 for the case of single

alternatives. The results obtained here correspond very closely to those of the previous case.
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Figure 6: Relative running times for single alternatives when increasing the total number of

alternatives

- 5 Alternatives

-10 Alternatives

-15 Alternatives

-20 Alternatives

10000

1000

1100 t

10 •

1 • •

0,1 -

0,01 •

Attributes

Figure 7: Computation time for increasing number of attributes - single alternative

Here, the computing time increases almost linearly with the number of alternatives for all numbers of

attributes, although the variation is greater. Additional attributes cause the calculation time to increase

again slightly faster than exponentially.

6. Conclusions and Topics for Further Research

In this paper, we have analyzed the concept of volume-based sensitivity analysis for linear decision

models and presented a recursive algorithm by which the necessary calculations can be performed.

The volume-based approach presented here has several applications. As already discussed, it can be

used as a tool for sensitivity analysis. The volume of one alternative's region of optimality

corresponds to the probability that a decision maker using random weights will select that alternative.

Therefore, one can interpret a low value of that volume as an indication that the decision made is
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rather specific for the actual set of weights used and thus for the actual decision maker involved. This

interpretation can easily be conveyed to the user.

The approach developed here can not only be applied to determine the region of optimality for a

single alternative. In the same way, regions in weight space could be analyzed in which other

conditions hold. For example, by a simple reformulation of model (6), one can also determine the

volume of the region in which the entire ranking of alternatives remains unchanged.

As a tool for sensitivity analysis, the volume-based approach offers several advantages over other

approaches, hi contrast to distance-based approaches, it does not require the selection of a distance

measure, which has been shown to be a crucial factor in distance-based approaches. It is also not

sensitive to distortions due to projection into X-i-dimensional space, as are distance-based

approaches (Schneller/Sphicas, 1985).

The volume-based approach can also be used in other fields. It generates a probability distribution

over alternatives selected given partial (or even no) information on the decision maker's preferences.

One can therefore also think of this approach as a tool for modeling an unknown (or partially known)

decision maker's preferences. Such a tool could be used, for example, in an agency setting to model

preference of an agent about whom the principal has only partial information.

The largest problem which impedes the use of this approach is the computational effort required by

the recursive algorithm. It should be noted, however, that the implementation used for the

computational tests was designed for easy modification and testing. With sufficient tuning of the

implementation, problems with seven attributes could probably be solved in more reasonable time.

This might be sufficient for practical purposes, since seven attributes are often regarded as a limit on

the cognitive abilities of decision makers, which should not be exceeded, at least not on one level of a

hierarchy of attributes (Miller, 1956).

Another approach, which could considerably speed up computation, is parallelization of the

algorithm. The recursive algorithm introduced here is extremely well suited for massive parallel

systems. The subproblems of lower dimension, which are generated during the first loop of the

algorithm, are completely independent of each other and do not interact with the upper level once they

are generated. They therefore could be dispatched to different processors without problem, leading to

a drastic reduction in overall execution time of the algorithm.
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