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MULTI-CRITERIA AGENCY THEORY

Rudolf Vetschera

Abstract

This paper extends standard agency theoretic models to explicitly take into account the
presence of multiple criteria at the agent level. Two possible approaches for this
extension are discussed. In the first approach, we consider only the minimum
information that the principal might posses about the agent's preferences towards
different criteria. It can be shown that, in this context, the principal has only weak
possibilities to influence the agent's behavior. In a second approach, a richer
information set is considered. In this context, it is possible to determine probabilities of
alternatives being selected by the agent. We also analyze how these probabilities can be
influenced by the principal, and how this affects the principal's net profit.

Zusammenfassung

In dieser Arbeit wird die Anwendung von Konzepten der Entscheidung bei mehrfacher
Zielsetzung auf Agency-Beziehungen untersucht. Dabei werden zwei Szenarien
bezuglich moglicher Informationsstande des Prinzipals iiber die Artenpraferenzen des
Agenten betrachtet. Im ersten Szenario verfugt der Prinzipal nur iiber minimale
Informationen bezuglich dieser Praferenzen und es kann gezeigt werden, daB unter
diesen Annahmen der Prinzipal nur sehr geringe EinfluBmoglichkeiten auf das Ver-
halten des Agenten hat. Im zweiten Szenario wird weitergehende Information unter-
stellt, die die Ableitung von Wahrscheinlichkeitsaussagen iiber die vom Agenten
gewahlte Alternative ermoglicht. Es wird untersucht, wie diese Wahrscheinlichkeits-
verteilung von Aktionsparametern des Prinzipals abhangt und zur Gestaltung eines aus
der Sicht des Prinzipals optimalen Anreizsystems benutzt werden kann.
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1 Introduction

1.1 Motivation

Agency models have developed during the last two decades into a powerful framework
for analyzing many problems in economics and management, especially concerning the
analysis of organizational setups (Spremann, 1987). Since agency theory is rooted in
traditional economic analysis, it also inherits many of the assumptions and limitations
which characterize economic theory (Nilakant/Rao, 1994). Like most economic models,
agency models are based on the assumption that the behavior of actors is driven by an
underlying optimization model. In an agency context, this view is applied to both
parties: the principal is often assumed to maximize profit, the agent maximizes his
utility.

r

This focus on single-criterion optimization can be seen as rather unrealistic. For the
principal, it can be argued that real goal systems of corporations are much more
complex than just profit maximization (Schiemenz/Seiwert, 1979; Zeleny, 1982; Roy,
1988). For the agent, standard agency models already exhibit a more complex goal
system underlying the utility function. The question here is whether the utility function
is a valid and workable representation of the agent's preferences towards these goals.

1.2 Overview of the paper

In this paper, we will provide a first look into the "black box" of underlying goals. Our
main focus will be on methods by which the agent's decision problem can be explicitly
analyzed in more detail. The paper is the first in a planned series of working papers, in
which we intend to develop a comprehensive methodology for studying multi-criteria
agency problems.

The remainder of this paper is structured as follows: In section two, we provide further
motivation for modeling agency problems as multi-criteria problems and analyze in
which parts of the overall framework of agency theory multi-criteria models should be
used. In sections three and four, we discuss two approaches to modeling the agent's
problem as a multi-criteria problem in more detail. Section five draws some conclusions
and outlines topics for further research.
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2 The role of multiple criteria in agency problems

As we have just argued, using single-criteria optimization models to describe the
behavior of economic actors might be seen as a very simplistic approach. In agency
models, there are two actors: the agent, who carries out some activity, and the principal,
on whose behalf that activity is carried out, who benefits from the activity and has to
compensate the agent for his effort.

The model can be extended from the traditional economic viewpoint of single criterion
maximization to a multi-criteria perspective for one or both of these actors. The
resulting four cases are outlined in table 1:

f

Agent

Criteria

One

Multiple

Principal

One

Case A

CaseC

Multiple

CaseB

CaseD

Table 1: Possibilities to introduce multiple criteria in agency models

Each of the four cases possesses unique characteristics, which can best be explained by
formulating general optimization models (under rather simplistic assumptions) for
them.

Case A corresponds to the standard way of formulating agency models: both actors are
assumed to optimize a single criterion. The mathematical structure of such an agency
model is that of a hierarchical optimization problem, i.e. an optimization problenuin
which at least one constraint involves the solution of another (lower level) optimization
problem (Anandalingam/Friesz, 1992). A very simple single objective agency model can
thus be formulated as follows (Spremann, 1987; Laux, 1990):

max.g(a*)-c(g(a*))
ceC

S.t.

u(a*,c(g(a*))) = maxu(a,c(g(a)))

u(a*,c(g(a*)))>umm

(1)

In model (1), a represents the agent's level of activity. It should be noted that, while
most agency models treat a as a scalar, it could as well be a vector if different types of
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effort are considered. For example, for a salesperson, the number of customers visited
and the persuasiveness of each visit might be considered two distinct types of effort.
This extension does not change the structure of the problem at all. Activity a is assumed
to lead to a result g(a). Depending on this result, the principal pays a compensation
c(g(a)) to the agent. It should be noted that in this very simple model, both g(a) and
c(g(a)) are assumed to be known functions. While this assumption is not typical for
agency problems and most models actually deal with situations in which g(a) is
stochastic, this simple model is sufficient for our purposes. We also assume that
compensation depends on the profit (and not, for example, directly on the effort). This
formulation is common for many agency models.

The objective function of (1) represents the assumptions about the principal, who is
assumed to maximize her1 net profit. The net profit is the profit resulting from the
agent's activity minus the compensation that has to be awarded to the agent. The
principal has to decide upon a compensation function c. The first constraint represents
the maximizing behavior of the agent, who is assumed to select a level of activity a* at
which his utility is maximized. The second constraint of (1), which is often called
"participation constraint", guarantees the agent a certain minimum utility. It is
assumed that an agent will participate in the relationship only if he can achieve at least
the utility level umin.

It should be noted that this formulation contains another implicit assumption about the
agent. Whenever the value of a, which leads to maximum utility, is not unique, the

agent will choose among those solutions the one that maximizes the principal's profit.
While this assumption is sometimes mentioned in the literature, e.g. (Laux, 1990), it is
not considered problematic since given the "right" type of functions, a scalar
optimization model will not or only rarely fail to provide a unique solution. Thus, it is
possible to link a more or less directly to c, which makes this model tractable by

conventional solution methods for non-hierarchical optimization problems. For example,
if a is scalar, then this constraint is replaced by the first order condition du/da = 0.

In case B, only the principal is assumed to pursue several criteria, while the behavior of
the agent is modeled via single criterion optimization. Methodologically, this is the
simplest way of introducing multiple criteria into the agency model. Model (1) now
becomes

1 Throughout this paper, we will refer to the principal as "she" and the agent as "he" to allow for

simple distinction
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vmaxg(a*) - c(g(a*))

(2)

ceC

s.t.

u(a*,c(g(a*))) = maxu(a,c(g(a)))
aeA

u(a*,c(g(a*)))>umin

where "vmax" denotes vector maximization and g is a vector of consequences from the
activity. To consider different consequences separately is only meaningful if either the
functions are stochastic or a is also a vector of different activities. Otherwise, the single
scalar value of a would already imply all outcomes and thus provide a compact
representation of the entire outcome vector. The compensation c can be either a scalar
or a vector. In the first case, the value of c is subtracted from the corresponding
component of g in the objective function. If, for example, the only type of compensation is
money and profit of the principal is one of the components of g, the agent's pay is
subtracted from the principal's profit. If compensations of different kinds are awarded to
the agent (e.g. payment, extra days of vacation, privilege symbols etc.), the elements of c
are subtracted from the corresponding elements of g.

In (2), the agent's/optimization problem is still a scalar problem. Therefore, similar
arguments as above can be made concerning the replacement of this optimization
problem by a standard constraint hnking c and a*. Problem (2) then becomes a standard

multi-objective decision problem, which could be solved by the principal using any of the
many methods which have been developed for this class of problems (Hwang/Masud,
1979; Shin/Ravindran, 1991).

In case C, problem (1) becomes

maxg(a*)-/(c(g(a*)))
CEC

S.t.
(-a*,c(g(a*))) = vmax(-a,c(g(a)))

aeA

1 — l.max

c (s(a*)) > c •

There is now possibly a vector c of compensations to be considered and the agent solves

no longer a scalar optimization problem, but a vector problem in which those

compensations (as well as possibly several kinds of effort) are simultaneously optimized.

We assume that the agent is work-averse, so the effort is to be minimized. A vector
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optimization problem would also arise if several types of effort are considered. Even if

there is only one type of compensation and one type of effort, a multi-objective problem

has to be solved if effort and compensation are considered separately.

Apart from the fact that the agent now has to solve an optimization problem with
multiple criteria, two additional problems arise in this context: firstly, if there are
several types of compensation, their impact on the principal's profit has to be evaluated.
If the costs of different types of compensation (e.g. a more expensive office) are known,
this can be done by a (possibly even linear) function, which we denote by / in (3). The

second problem is more complex: if (several kinds of) effort and (several kinds of)
compensation are treated separately, it is no longer possible to formulate a single
participation condition. In (3), we therefore assumed that the agent has reservation
levels for all his objectives and will participate only if all his aspiration levels are
achieved or exceeded. While this might seem a straightforward and inconsequential
extension of the participation condition in (1), it has dramatic effects as we will show in
section 3.

Methodologically; this case is much more challenging than case B. It is no longer
possible to establish in advance a direct mapping from c to a. The operator "vmax" in (3)

can be interpreted in several ways. One possible interpretation is the classical vector
optimization problem, in which the solution corresponds to the entire set of
nondominated solutions. In this interpretation, it is possible that the set of alternatives
remaining feasible due to the first constraint of (3) is rather large. This has significant
implications for the entire optimization model. If we interpret "vmax" as classical vector
optimization, we implicitly assume in (3) that the agent will be indifferent between all
nondominated solutions. Among those nondominated solutions, the agent is further
assumed to choose the level of activity a* that maximizes the principal's profit. This

assumption is much harder to justify for a large set of nondominated solutions to the
agent's vector optimization problem than for a small set of equivalent solutionsTo a
scalar optimization problem.

Another interpretation of "vmax" is that the agent will actually solve the multi-criteria
optimization problem to find a unique "best" solution according to his preferences. While
this might be a more realistic scenario, it leads to severe problems in solving the
principal's optimization problem. It is no longer possible to replace the optimization
constraint by a standard constraint, because this would require a closed analytical
expression for the result of the multicriteria solution procedure, given the compensation
function(s) c. This would clearly contradict most assumptions made in multi-criteria
decision making, where it is usually assumed that not even the decision maker himself
is able to provide a comprehensive representation of his preferences in advance.
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It becomes evident that the amount of information on the agent's preferences which the
principal possesses becomes crucial for the formulation and solution of models of type
(3). In the next two sections, we will therefore discuss different scenarios about which
information might be available and their consequences in more detail.

Case D is a combination of cases B and C. The model here becomes

vmaxg(a*)-c(g(a*))
ceC

S.t.

(-a*,c(g(a*))) = vmax(-a,c(g(a)))
aeA

c (e(&*)) > c •

In this paper, we will not deal with this case, since most problems can also be illustrated

using case C.

In comparing the four cases, it becomes evident that the main difference between single-
and multi-objective models lies in the representation of preferences. Preference models
are of even greater importance in agency theory than in other areas of economic
analysis. In agency theory, the preference representation for the agent is not just a
device which the modeling economist uses to represent that actor in the model.
Implicitly, it is also assumed that the principal, in selecting an incentive system, uses
the same model of the agent's preferences. To put it differently: if one were to design a
compensation scheme based on a standard agency theoretic model like (1), one would
have to know the agent's utility function. The standard model of case A (and also case~B)'
therefore describes a situation in which the principal has full information about the
agent's preferences.

This assumption of full information on the agent's preference has been relaxed in the
literature (Laux, 1990). There are two main approaches to deal with uncertainty about
the agent's preferences: In the first approach, the problem of the principal is modeled as
a decision problem under uncertainty, e.g. by supposing a known probability
distribution over different utility functions the agent might possess. The principal then
designs the compensation system so that she maximizes her expected utility (or
expected profit in the case of a risk neutral principal). The other approach is concerned
with the design of so-called "self selection" contracts. Here, the principal offers different
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compensation systems specifically designed for the different types of agents. One feature
in the design of these contracts is that each kind of agent will be best off when actually
choosing the type of contract designed for him (and at the same time maximizing the
principal's profit).

Both approaches, while allowing for some uncertainty, presume that the principal has
quite detailed information about the preferences of the possible types of agents. This
information is still assumed to be rich enough to allow the representation of those
preferences in the form of utility functions. In the following two sections, we will
introduce alternative ways of modeling, which are based on less stringent information
requirements. The first approach we will be discussing is concerned with the minimum
set of information a principal might possess about potential agents. In the second
approach, which is motivated by work on decision making under incomplete information
and sensitivity analysis, we will consider a somewhat richer information set.

3 The minimum information approach
/

3.1 Assumptions

What is the minimum information a principal will need in order to design an incentive
system? One can plausibly argue that in order to design an incentive system for a given
person (or class of persons), one has at least to know what the goals of that person are.
One can hardly design a system of financial rewards for a guru who has vowed to live
permanently in absolute poverty (and intends to keep that vow). One also needs to know
the direction in which each goal is optimized (i.e., does that person prefer earning more
money to earning less, working longer hours to shorter hours, etc.).

As soon as the set of criteria and their respective direction of improvement is
established, it is a tempting next step to introduce the dominance criterion as an
additional assumption about the agent's preferences. While this criterion introduces a
certain requirement on the agent's level of rationality, this minimal level of rationality
can plausibly be assumed for an economic actor. We therefore define the minimum level
of information on the actor's preferences on which we will base the analysis of this
section as follows:

1. The agent's goals are known.

2. The directions in which these goals are to be optimized are known.

3. It is known that the agent will not select a (weakly) dominated solution.
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It should be noted that a third assumption besides assumptions 1. and 2. above is
needed in order to exclude any solutions from further consideration. As long as we use
only assumptions 1. and 2., the agent might still choose any feasible alternative under
any system of incentives and so the preference model will not help to solve the
principal's design problem.

Strictly spoken, assumption 3. above is not the minimum information about the agent's
preferences. The minimum consists in knowing exactly one element of the preference
relation (under a given incentive scheme). Knowing one element of the agent's
preference relation would allow the principal to conclude that the less preferred
alternative will not be chosen by the agent, thus eliminating it from further
consideration. However, here we are concerned with defining a minimum level of
preference information that can be defined in more general terms, and which is also
plausible to assume. Plausibility also leads us to use the weak rather than the strong
dominance relation as third assumption. While strong dominance will eliminate fewer
alternatives (and can thus be regarded as the weaker assumption), it seems hardly
imaginable that an agent would forego a possibility to improve on at least some of his
goals without loss in the other goals.

3.2 Model Formulation

Using this set of assumptions, we can rewrite (3) more specifically as

maxg(a*)-/(c(g(a*)))
ceC

S.t.

(-a*,c(g(a*)))e£#(-a,c(g(a))) (a)

aeA

i (b)

c,(g(a*))>clmin

i (c)
cn(g(a*))>cHjmm (5)

where

£#(-a,c(g(a))) = {(-a,c(g(a))):3a' € A:a\ <a,,c,(g(a')) > c,(g(a)),a'* a} (6)
aeA

is the set of all nondominated alternatives. For simplicity, we will denote that set by E.

In (6), we assume that all kinds of effort are to be minimized and all kinds of compen-

sation are to be maximized. We also assume that all kinds of effort are indeed relevant
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objectives for the agent (i.e. there is no component of a about which the agent does not
care).

As we have already stated before, this model also contains the implicit assumption that
among those alternatives between which the agent is indifferent, he will chose the best
one for the principal. As long as our preference model is restricted to dominance, this
means that the agent will be indifferent between all nondominated alternatives.

3.3 Analysis of the model

The question now arises whether this weak set of information is actually sufficient for
the principal to control the agent's behavior and to design an adequate incentive system.
In model (5), control over the agent's behavior means changing the set E. Only if that set
is changed can the principal expect a different outcome. Unfortunately, the principal's
possibilities are rather restricted as the following theorem shows:

Theorem 1: Set E cannot be changed by strictly monotone changes in the compensation

system.

/
Proof: The proof is straightforward. If alternative a is dominated by alternative a', the
relationships c/g(a)) < c/gfa')) holds for ally, with at least one strict inequality. For any
strictly monotone transformation of the cj, this relationship is preserved and therefore
alternative a remains dominated by a'. On the other hand, if a is not dominated by a', at

least one of two possible conditions must hold: The first possibility is that there is at
least one inequality among the c/s in the other direction, which is also not changed by a
strictly monotone transformation. The other possibility is that a requires less effort than
a'. This property also does not change by a strictly monotone transformation of the
compensation. Thus, no change in the dominance relation can be effected by a strictly
monotone transformation of the compensation functions.

Therefore, if we assume that the compensation function is a strictly monotone function
of the outcomes (i.e. the agent gets more compensation whenever the result of his
activities is better), set E remains the same for all such strictly monotone compensation
systems and therefore the agent will not change his behavior.

It is hard to imagine a compensation system which is not monotone at all in outcomes
(i.e., where for some outcomes, higher outcomes will lead to a higher compensation but
for other outcomes, higher outcomes will lead to lower compensation for the agent). The
only remaining possibility to influence the agent's behavior therefore is a transfor-
mation of the compensation scheme which is monotone, but not strictly monotone:
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Theorem 2: Set E can be reduced by a transformation of the compensation system,

which is monotone but not strictly monotone.

Proof: Consider two alternatives a and a', which possess the following characteristics:

1. at < a) for all /, with at least one strict inequality (i.e., a dominates a' with respect to

effort)

2. Cj(g(a)) > Cj(g(a')) for all but one / (i.e. a would also dominate a' with respect to

compensation, but is worse with respect to one kind of compensation).

3. c/g(a)) < cj(g(a')) (i.e., we denote the dimension in which a is worse than a' byy).

When we apply a monotone (but not strictly monotone) transformation / to the j-th.

compensation, which has the property that f(cj(g(a))) =f(c/g(a'))), a now dominates a' and
therefore a' is eliminated from set E.

t

Two points should be noted with respect to theorem 2: First, this theorem only shows
that the set of nondominated alternatives can be reduced by a transformation of the
compensation functions, but it cannot be enlarged. The second part of the proof of
theorem 1 still holds. It is not possible to make a dominated alternative nondominated
by a monotone change in the compensation function. One can make two alternatives
equal in terms of compensation. But in order to make a dominance relation vanish,
these two would also have to be identical in the effort involved. This change would make
them the same alternative. Furthermore, by a monotonous transformation of the
compensation function, the principal can only eliminate alternatives which involve
higher effort by the agent. It is intuitively clear that in the extreme case, where
compensation is equal for all alternatives, a work-averse agent would choose to work as
little as possible. Therefore, this possibility of influencing the agent's behavior is
probably of little help to the principal.

Apart from this disappointing result, the minimum information approach has several
other disadvantages. Since the different criteria are no longer aggregated into one
utility function, there are several aspiration levels for the different criteria in model (5).
The intersection of feasible points according to these constraints generates a cone in the
agent's criteria space. Therefore, by selecting appropriate aspiration levels, the agent
can restrict the set of feasible solutions to one element. It is thus possible for him to
obtain any efficient solution, even if the set of feasible solutions is not convex. While this
effect potentially poses a severe limit on the principal's ability to control the agency
relationship, its actual impact will depend on various other factors. In order to actually
reduce the feasible set to one element, a potential agent must be able to formulate
arbitrary demands with respect to all aspects of the relationship. For example, a
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potential employee must be able to formulate demands with respect to pay, hours
worked, days off etc. and must credibly argue that he will accept employment only if all
his conditions are met. If a potential agent's position is indeed that strong, he would
probably be able obtain a comparable level of compensation even if his utility function
were known to the potential principal. If the agent is in a weaker position, he will only
be able to set his aspiration level at a dominated point, leading to a set of nondominated
solutions that contains more than one element. Figure 1 illustrates this effect for the
case of one kind of compensation and effort:

Figure 1: Aspiration levels and feasible efficient solutions

Figure 1 presents the agent's problem in effort/compensation-space. The solid curve
represents the maximum compensation that can be awarded to the agent, given the
corresponding level of effort. This maximum level can be equal to the principal's profit
from the activity (g(a)). If the principal has an aspiration level concerning her net profit,
below which no agency relationship will be established, it is equal to g(a) minus that
aspiration level.

If the agent's position is strong enough to plausibly argue that his true aspiration levels
are at point A, this will be the only point remaining in the feasible efficient set. If, on
the other hand, the agent has to fix his aspiration levels at the (dominated) point B, all
efficient points which dominate point B will remain feasible. These are the points
located on the curve between points Bi and B2.

Another problem of the minimum information approach is caused by the potentially
large size of set E. Model (5) is formulated as an optimization model, therefore the best

solution (according to the principal's objective functions) which fulfills constraints (a) to
(c) will be chosen. This means that among the efficient solutions, the agent will select
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the solution which is best for the principal. This is probably not a realistic model of the
agent's behavior.

This last problem could be overcome by a modification of model (5). For example, instead
of always selecting the best efficient solution, it could be assumed that the agent
randomly picks one efficient solution. However, since the other problems of this
approach are rather severe, we will not elaborate such possible modifications.

4 A partial information approach

The preceding section has shown that simply assuming that the agent obeys the
dominance criterion does not provide a preference model which is detailed enough to
allow for effective control by the principal. On the other hand, full information of the
principal on the agent's preferences is unrealistic. In this section, we will therefore
develop an approach covering the middle ground between those two extremes. The
general idea of our approach is outlined in figure 2:

Agent's
references/

Agent's
decision
problem w

Choice
Probability
distribution
alternatives

Figure 2: A partial information approach

Given the agent's decision problem about the level of inputs he wishes to apply, the
choice the agent makes depends on his preferences. If the principal does not have
complete information on the agent's preferences, she cannot make an exact prediction of
the agent's choice. Our goal will therefore be to determine a probability distribution on
the set of the agent's actions. If the principal knows the probability distribution of the
agent's actions for a given system of incentives, her selection problem for the system of
incentives becomes a decision problem under uncertainty. Depending on the principal's
risk attitude, this problem then can be solved by determining the incentive system that
has the highest expected payoff or highest expected utility.

To operationalize this general framework, two questions have to be answered:



Multi-Criteria Agency Theory Blbllofhsk Ck*S hiLuiu.:-, 13
% W^stw/irtschfift Kiel

1. How can incomplete information on preferences be specified?

2. How can this information on preferences be translated into a probability distribution
of the agent's actions?

In the following subsection, we will develop a model for a specific choice situation, in
which we show how these questions can be answered in that setting. Problems that
might be arise for other decision techniques will then be illustrated in the subsequent
subsection.

4.1 A linear model

4.1.1 Assumptions

The model is based on the following situation:

1. The agent can only choose among a finite set A of possible actions. Each action is
characterized by specific levels of effort(s) and compensation(s). To simplify the
exposition, we will not distinguish any more between efforts and compensations.
Rather, we will describe each action by a vector of K attributes: a, = (aih...,aiK). These

values are known to the principal.

2. The agent's utility function is linear in the attributes and thus has the form

where the w '̂s are unknown to the principal. The weights are assumed to be scaled so
that ^T wk = 1.

3. The principal might possess some additional information on the w^'s.

The question now is how can the principal, given this information, determine the
probability that the agent will select each alternative ar?

To develop a model for this task, we first have to clarify in which form the principal's
additional information on the weights is available. Two possibilities for encoding such
information have been discussed in the literature (Arbel/Vargas, 1993): probability
distributions and constraints.

Probability distributions can be formulated independently for single weights or jointly
for the entire weight vector. Probability information about weights has been used in
some papers on sensitivity analysis of linear models, especially the AHP (Saaty/Vargas,
1987; Paulson/Zahir, 1995) to determine the influence of parameter uncertainty on
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decision outcomes. So far, no analytical methods have been developed to link probability
distributions of parameters to the probabilities of choosing a certain alternative. In the
papers published so far, simulation techniques have been used.

Constraints can either take the form of bounds on single weights or link several
weights. This kind of information on weights has been considered in the fields of
decision making under incomplete information (Franke, 1978; Hannan, 1981;
Kirkwood/Sarin, 1985; Hazen, 1986; Weber, 1987; Arbel, 1989; Malakooti, 1989) and
sensitivity analysis (Evans, 1984; Schneller/Sphicas, 1985; Vetschera, 1986;
Barron/Schmidt, 1988; Rios Insua/French, 1991). The motivation for that kind of
analysis was the problem of a decision maker who is uncertain about his preferences
and consequently not able to specify the weights precisely, but prefers to provide only
interval or ordinal information about the weights. In this context, analytical models
have been developed, which will form the basis of our approach.

We therefore assume that the information the principal has about the agent's weights
can be formulated as a set of constraints, which define a set W of feasible weight vectors.

Apart from linearity, we do not make further assumptions on the types of constraints
involved. For example, such constraints might take the form of lower and upper bounds
on weights:

M^<Wt<W, (8)

or they might be more complex constraints linking several weights. Constraints linking
several weights might, for example, represent ordinal information on the importance of
criteria.

The next step in the principal's problem can now be formulated as follows: Given that
the agent's weights come from set W, what is the probability that the agent will chose a
certain alternative a,? To answer this question, we also need information on the
probability distribution of weight vectors within W. Using the principle of insufficient
reason, we assume that weight vectors are uniformly distributed over W.

4.1.2 Model formulation

Using these assumptions, we can now construct a formal model. We denote by O(aJ the

region in weight space in which alternative a, is optimal from the agent's point of view.

We will call this set a/s region of optimality. In order to be optimal, a, has to be better

than all the other alternatives according to the agent's linear utility function. O(a/) is

therefore defined by the following set of constraints:
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V/*/ (9)
*=1

Furthermore, we have to take into account the scaling constraint

A = l

and the information the principal has about the agent's preferences:

wzW (11)

(9), (10) and (11) together define Ofai). For the time being, we will assume that the

principal has no additional information on the agent's preferences. In this case, W

corresponds to the entire weight space and (11) need not be considered in the model.

(9) and (10) define a polyhedron in K-1 - dimensional space. Since we assume uniform

distribution of weights within the feasible region, we can apply Starr's domain criterion

(Starr, 1962; Charnetski/Soland, 1978; Erkut/Tarimcilar, 1991; Eiselt/Laporte, 1992) to

determine the probability that a, is the optimal alternative for the agent. This proba-

bility is given as the ratio of the volume of the polyhedron O(aj) to the volume of the K-1 -

dimensional unit simplex or to W in the general case. Algorithms to calculate the

volumes of such polyhedra have been described in (Cohen/Hickey, 1979) and (Vetschera,

1996).

Since the volume of the unit simplex is constant, the probability depends only on (9) and

(10). We can therefore use this system of linear inequalities to study the principal's

possibilities to influence the agent's decision.

4.1.3 Analysis of the model

For this purpose, we have to analyze how changes in the data value of one attribute will

affect the probability distribution of alternatives. One might think of this attribute as

the level of compensation that the principal pays to the agent. Since the compensation

depends on the output of the decision (and we are dealing with certainty), the

compensation which the agent will receive when selecting each alternative can directly

be interpreted as an attribute of the alternatives.

Are there possibilities for the principal to change the probabilities of some alternatives

being chosen by manipulating the attribute values? The answer to this question is

trivially "yes" if arbitrary changes in attribute values are allowed, since the principal

can then always make one alternative outstandingly attractive to the agent. More

realistically, however, are transformations that affect the outcomes of all alternatives in
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a similar manner. For simplicity, we will consider only additive and multiplicative
transformations.

For additive transformations, we obtain the following

Theorem 3: The probability of choosing a certain alternative is not changed when
outcomes of all alternatives in one attribute are changed by the same
constant amount.

Proof: To prove theorem 3, we rewrite (9) as:

wk-(ajk-aJk)>O\/j*i (12)

*=i

If we add a constant z to the value of all alternatives in some attribute c, we obtain

(<*i,c + z) - (ajtC + z)= aic - ajtC (13)
f

and thus the constraints defining the polyhedron are not changed.

The case is more difficult for multiplicative transformations. The possibility to influence
the agent's decision depends on how the agent interprets this change. Ther situation can
be summarized as follows:

Theorem 4: When the outcomes of all alternatives in one attribute are multiphed by a
constant factor, the probability of choosing a certain alternative changes
only if the agent does not fully adjust for range effects.

To explain what we mean by range effects, we rewrite the model when outcomes in one
attribute are multiplied by a factor a as:

(14)

The question now is whether the agent should (and will) adjust weight wc to reflect the

new scaling of outcomes. Whether such an adjustment is made depends on the nature of

the change. If the change is perceived as a pure change in scale (e.g., if compensation to

the agent is paid in Yen instead of Dollars), an adjustment is likely to take place. If the

change is not perceived as a change of scale, but as a change in substance (e.g., the

agent gets a raise of 10% on his compensation), than no adjustment will take place.

If weights are adjusted, the model does not become (14), but in fact becomes



Multi-Criteria Agency Theory 17

k • (a* ~ajk) + wca • (aic ~Vjc) ^ 0

1 ( 1 5 )

k*c

In model (15), one column is multiphed by a constant factor. Geometrically, this means
that one dimension of the weight space is expanded (or contracted) by a factor of a.
Therefore, the volume of the polyhedron will change by the same factor. But so will the
volume of the "unit" simplex (which then of course is no longer the unit), and the ratio
will remain the same. Thus the probability of choosing alternative a, will not be affected.

On the other hand, if no (or insufficient) weight adjustment takes place, the shape of the
polyhedron will change according to (14) and thus the probability distribution of alter-
natives will be modified. Computational experiments have shown that the resulting
change in probabilities is nonlinear in a.

4.1.4 Evaluation methods

So far, we have only discussed general properties of the model. In order to apply the
model to a specific situation, methods are needed to compute the volume of the
polyhedron defined by (9) and (10). Following (Arbel/Vargas, 1993), two approaches to
this problem can be distinguished: exact algorithms based on mathematical
programming techniques, and simulation techniques.

Algorithms to compute the volumes of an n-dimensional polyhedron have been
presented by (Cohen/Hickey, 1979) and (Vetschera, 1996). Both algorithms provide exact
(within numerical precision) solutions. They can be applied when W corresponds to the
entire unit simplex and when linear constraints on the weights are given. Since these
algorithms calculate the volume of a polyhedron, the probability that the agent selects a
certain alternative can only be determined if the weights are uniformly distributed over
set W. Simulation studies have shown that the running time grows exponentially with
the number of attributes considered.

The probability that an alternative is optimal for the agent can also be determined via
simulation. In simulation techniques, weight vectors are either systematically generated
throughout the entire feasible parameter space or are randomly sampled
(Charnetski/Soland, 1978; Saaty/Vargas, 1987; Steuer/Sun, 1995). The optimal
alternative is then determined for each set of weights generated. After a sufficiently
large number of experiments, the probability that an alternative is chosen can be
determined as the ratio of the number of sample points in which that alternative was
optimal to the total number of (feasible) points sampled.
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In a strategy in which the parameter space is systematically scanned, the number of

data points and thus the computational effort grows exponentially with the number of

attributes. In random sampling strategies, the number of data points to be generated

can be set by the experimenter, but the quality of results might deteriorate if an

insufficient number of sample points is chosen. The algorithmic strategy and the

simulation strategy will therefore probably not be very different with respect to the

amount of computing time involved.

Unhke the algorithmic strategy, the simulation approach allows for the use of different

distributions of the weights. In random sampling, weights can be directly drawn from

their assumed joint distribution. Using the techniques of (Stewart, 1995), it is possible

to generate vectors exhibiting a pre-specified correlation of weights. In a scanning

approach, data points can be weighted according to the value of the density function.

The simulation approach therefore offers more flexibility than the algorithmic approach.

4.1.5 The principal's optimization model

Once the probability distribution of the agent's choice has been determined, it is possible

to construct the principal's optimization problem. The basic structure of that model was

defined in (3). Model (3) was formulated for the case of certainty, but now the principal

has only imperfect information'on the agent's preferences. For simplicity, we assume

that the principal is risk neutral.

We only consider a simple compensation system, in which the agent receives a fixed

percentage of the principal's gross profit as commission. The profit is modeled as one

attribute of the alternatives, which will be denoted by the subscript g. The fixed fraction

of the profit which is awarded to the agent is denoted by a factor c (0 < c < 1). We also

assume that the compensation is the only attribute which leads to costs for the principal

and thus reduces her profit. Therefore, if the agent selects alternative a,, the principal

obtains a gross profit of aig, from which the agent receives caig. This leaves the principal

a net profit of (l-c)aig.

The probability that the agent selects an alternative depends on W and the attribute

values of the alternatives for the agent, which in turn are influenced by the
compensation system. We will therefore denote these probabilities by/>fa,|c, W).

The principal's optimization problem can now be formulated as follows:

,W}(aig -c-aig)max
ieA

s.t. (16)

A = {i\c • aig > ag,aik >akVk± g)
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where A is the set of alternatives satisfying the agent's aspiration levels for all

attributes.

4.1.6 Numerical example

In this subsection, we will illustrate the model by an numerical example. We consider
the following decision problem involving five alternatives and three attributes:

Alternatives

Al
A2
A3
A4
A5

Zl=cag

for c=0.1
0.30
0.50
1.00
0.20
0.00

Attributes
Z2

0.86
0.13
0.00
0.60
1.00

Z3

0.80
0.25
0.40
1.00
0.00

Table 2: Data for example

The first attribute is the compensation the agent would receive at a compensation level
of 10% of the principal's profit.

Since we are dealing with three attributes, the resulting problem after substitution of wj

will be two-dimensional and thus can be plotted in w/w^-space. The resulting partition

of the unit simplex is shown in figure 3:

Factor=1.000

Figure 3: Partition of the unit simplex
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The corresponding probabilities for choosing the alternatives are listed in table 3 for
various levels of c.

Alternative
c=0.05
c=0.1
c=0.35

A l
0.474
0.424
0.238

A2
0.000
0.000
0.000

A3
0.128
0.275
0.628

A4
0.326
0.253
0.116

A5
0.072
0.047
0.018

Table 3: Probabilities of choosing the alternatives

As can be seen from figure 3 as well as table 3, there is no combination of weights that
would make alternative A2 optimal. Al is the most likely choice for c=0.1, the selection

of A5 by the agent is possible, but unlikely. As a next step, we can analyze how the

probabiHties change if the compensation awarded to the agent changes. In performing

this analysis, we assume that no adjustment for range effects takes place, i.e. the agent

actually perceives these.changes as changes in the level of compensation, not as changes

in scale.

Figures 4 and 5 show the partition of wj/\V2- space that would result if the compensation

factor c is changed from 0.1 to 0.05 and 0.35, respectively. Since Alternative A3 is the

best alternative with regard to, compensation, its share of the simplex increases when

the values of that attribute increase. The opposite holds for A5, which is the worst

alternative with regard to compensation.

Factor=0.500

'0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4: Partition of the unit simplex for c=0.05
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Factor=3.500

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 5: Partition of the unit simplex for c=0.35
r

Figure 6 presents the development of the probabilities for all alternatives when factor c

is varied from 0.05 to 0.35. As can clearly be seen from the figure, the changes in

probabilities are nonlinear.

p 0,7

0,05 0,08 0,11 0,14 0,17 0,2 0,23 0,26 0,29 0,32 0,35

•A1 -^ — A 3 -A4 -A5

Figure 6: Development of choice probabilities for changing compensation factor c

On the other hand, if the agent would fully adjust for range effects, no change in

probabilities would take place. Figure 7 exhibits the partition of w/w^-space for a factor

of c = 2 and full compensation. The region of feasible weights is compressed along the x -̂

axis, but the ratio of areas remains the same.
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Adjusted weights

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 7: Partition of the unit simplex with adjustment for range effects
r

Using the probabilities shown in figure 6, we can compute the expected profit of the

principal. Assuming that all alternatives are acceptable to the agent, i.e. aspiration

levels for attributes Z2 and Z3 are zero, we obtain

max
ceC ie{l,3,4,5}

(17)

Figure 8 shows the development of (17) when c is varied from 0.05 to 0.35.

I
Q.

5,5

5

4,5

4

3,5

3

2,5
0,05 0,08 0,11 0,14 0,17 0,2 0,23 0,26 0,29 0,32 0,35

Factor c

Figure 8: Expected profit for changing compensation factor c

The maximum profit of the principal is obtained for a factor of about c=0.25. It should be

noted that a unique, non-trivial optimum exists even in this simple model, where both

the compensation function and the agent's utility function are linear.
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4.2 Other decision techniques

The approach'developed here can be used not only for linear utility functions. To

illustrate its application to other decision criteria, and the problems that might arise in

such applications, we consider a Tchebycheff criterion of the form

-'*) (18)

where r^ is a reference or aspiration level for attribute k. This kind of criterion is widely

used in multi-criteria decision making (Steuer, 1989) and has several advantages over

additive functions (Wierzbicki, 1986). Most notably, it allows for the characterization of

all (weakly) efficient solutions, while when using additive functions, alternatives that

are dominated by linear combinations of other alternatives will never be chosen.

In the Tchebycheff criterion (18), the reference levels r^ play a similar role as the

weights Wk in the additive model (7). They are the (unknown) parameters representing

the agent's preferences towards the attributes. Similar to (9), the set of parameter

combinations for which alternative a, is optimal can be described by a system of

inequalities .'

fla -rk)> min(ajk -rk (19)

Unlike the additive model, there is no scaling constraint linking the reference levels of

all attributes. In order to avoid system (19) being unbounded, the reference levels can be

restricted to the same range as the data values. Assuming that the data values are all

scaled to the unit interval, we obtain:

0<rA<l V£ (20)

Due to the min operator, (19) is not a set of linear constraints. It is therefore possible

that the region of optimality for an alternative is not a convex set. As an example, we

consider the following two alternatives:

Alternatives
Al
A2

Attributes
Zl Z2
0.8
0.6

0.35
0.55

Z3
0.6
0.4

Table 4: Example for the Tchebycheff criterion

For a vector of aspiration levels r=(0.1, 0.4, 0.5), we obtain the following evaluations:
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Al: min(0.8 - 0.1, 0.35 - 0.4, 0.6 - 0.5) = min(0.7, -0.05, 0.1) = -0.05

A2: min(0.6 - 0.1, 0.55 - 0.5, 0.4 - 0.5) = min(0.5, 0.05, -0.1) = - 0 . K -0.05

and therefore Al is preferred to A2. For another level of aspiration levels r'=(0.9, 0.6,

0.5), we obtain:

Al: min(0.8 - 0.9, 0.35 - 0.6, 0.6 - 0.5) = min(-0.1, -0.25, 0.1) = -0.25

A2: min(0.6 - 0.9, 0.55 - 0.6, 0.4 - 0.5) = min(-0.3, -0.05, -0.1) = -0.3 < -0.25

and therefore Al is also preferred. However, for the linear combination of aspiration
levels 0.5r + 0.5r' = (0.5, 0.5, 0.5), A2 is preferred:

Al: min(0.8 - 0.5, 0.35 - 0.5, 0.6 - 0.5) = min(0.3, -0.15, 0.1) = -0.15

A2: min(0.6 - 0.5, 0.55 - 0.5, 0.4 - 0.5) = min(0.1, 0.05, -0.1) = -0.1 > -0.15

Figure 9 shows the regions of optimality for the two alternatives in rilr2 - space:

0,8

0,6

0,4

0,2

r

1 v tilN
f AA ' H I r-

— —

V

r ' . - - •

0,2 0,4 0,6 0,8

Figure 9: Non-convex regions of optimality for the Tchebycheff criterion

The solid line separates the two regions of optimality. Both points r and r' are in the

region where Al is better, but their linear combination (the middle of the dashed line) is

in the region where A2 is preferred.

Although the region of optimality for an alternative as defined in (19) might be non-

convex, it consists of convex parts. Let &,* denote the attribute in which the minimum is

obtained in the Tchebycheff criterion (18) for alternative a,-. The region of optimality for

the alternative can be determined as the union of subregions defined by the following

systems of inequalities:
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a... -r.. >a... -r. . V /* i
ik, k, jk kj •>

(21)
a*-r^ajk]-r

k>
 V-7, Vk*k]

The first set of inequalities in (21) ensures that a/ is the optimal alternative in that

region, the second set ensures that the evaluation is indeed determined by kj*. By

calculating the volume of the polyhedron (21) for all possible combinations of the kj*, the

volume of the entire region of optimality can be determined. In figure 9, the boundaries

of those subregions are indicated by the dotted lines.

It is therefore possible to use the techniques similar to those developed for the case of
linear utility functions for other multicriteria decision methods.

5 Conclusions and topics for further research

In this paper, we have outlined some possibilities for considering multiple criteria in an
agency context. Multi-criteria modeling can be seen as a more realistic way of
representing preferences of actors in this setting.

One important result of the first group of models presented here is the great importance
which the information available to the principal has on her possibilities to influence the
agent's behavior. For the minimum information case, we have shown that the principal's
possibilities are also very restricted. If more information is available, the principal's
potential to influence the agent's decision also increases, although the relationships
involved are rather complex. One could place standard, single-criteria agency models at
the other end of the spectrum: in these models, the principal has even more information
about the agent's preference structure and consequently, the problem becomes less
complex. This result opens a wide field of research topics, in which various other
information levels can be studied. —

Another dimension, along which this research can be extended, is the decision situation
considered. In this paper, we have dealt mainly with the choice among a finite set of
well-defined alternatives. This situation is not typical for agency models, where
decisions involving continuous variables are more frequently studied. In the field of
multi-criteria problems, this field corresponds to multi-objective problems as opposed to
the multi-attribute problem analyzed here. Both problems are relevant and occur in
practical settings. Adapting the methodology developed here to multiobjective problems
is, however, not a trivial task.
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The analysis in this paper was also restricted to the case of certainty. In many agency
problems, uncertainty is important and this aspect should also be taken into account in
multi-criteria agency models.

Developing a comprehensive multi-criteria agency theory is therefore a considerable
research agenda, from which, in the long run, both research areas will profit. On one
hand, it should lead to more realistic agency models. On the other hand, problems
arising out of agency settings should also lead to new developments in the field of multi-
criteria decision making.
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