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Abstract

The paper proves that the Bayesian approach to learning and expectations forma-

tion implies no propositions that could conceivably be refuted by observation. For

a (non-expanding) universe infinite in time but finite at any point of time, it is
r

shown that by a suitable choice of priors, any betting strategy can be rational-

ized. Consequently, no sequence of future choices can be excluded on the basis of a

decision maker's v. Neumann-Morgenstern utility function, her knowledge of past

observations, and the assumption of Bayesian rationality. Since no betting strategy

is irrational, Bayesianism is useless as a normative theory as well.

JEL Classification: B41, C l l , D81, D83, D84

Keywords: Bayesianism, Bayesian learning, decision theory, expectations, learning,

rational expectations, rationality, rationalizability, subjectively expected utility the-

ory, subjective probability



1 Introduction

In the literature on expectations formation, the rational-expectations hypothesis

(REH) is giving way to theories of learning.1 In view of the history of the subject,

this development is not surprising. However, to use the famous Knightian distinc-

tion, it again shifts the focus of interest from risk to uncertainty. The present paper

argues that the accepted theory of decision making under uncertainty in economics,

subjectively expected utility (SEU) theory or Bayesianism, is unable to deal with

the problems of uncertainty and learning:" Its only implication, as a normative (or

prescriptive) and as a positive theory, is "anything goes". This result does not im-

ply that models employing Bayesian rationality are necessarily useless. However, it

most certainly discredits the claim that only such models are respectable. Moreover,

it sheds new light on the relation between Bayesian and bounded rationality.

From Rational Expectations to Rational Expectations Formation

The REH is defined by two assumptions: (i) Agents' expectations are subjective

probability distributions over (usually: future) events, (ii) The subjective distribu-

tions conditional on the agents' information coincide with the objective conditional

distributions. Thus, the REH allows for risk but excludes uncertainty; there is

nothing left to learn but the realizations of random variables with known probabil-

ity distributions.2 However, Muth's (1961) basic idea, sometimes called the weak

version of the REH, was that agents form expectations by rationally acquiring and

processing information. Muth himself never developed this idea, which requires

a theory of rational learning, but immediately jumped to a variant of the strong

version of the REH. In a way, the recent literature walks where he jumped.

By assuming that not all the probability distributions for all the potentially in-

fluential variables are known, the weak version of REH introduces uncertainty and

therefore implicitly invokes the SEU theory a. k. a. Bayesianism. The first name

derives from the theory's claim that in a situation of uncertainty, a rational decision

1 Cf. Kirman & Salmon (1995) for a recent overview.
2 On the REH, see, e.g., Frydman k Phelps (1983) and Pesaran (1987: ch. 1 and 2). Macroeco-

nomic models often assume that objective and subjective distributions agree only w. r. t. the mean.
In the present context, this variant of REH is of no importance.



maker maximizes his or her subjectively expected utility. The second name, which

we will prefer, is explained by the fact that the theory implies a theory of rational

learning, which proceeds via Bayes' theorem and therefore is referred to as Bayesian

learning. According to Bayesianism, learning is a byproduct of intertemporal de-

cision making. A rational decision maker derives expectations, which again take

the form of subjective probability distributions, from an initially chosen subjective

prior distribution by conditionalization on past observations. The derived posterior

distribution is viewed as the result of learning.3

So while the REH assumes that subjective probability distributions just coin-

cide with the objective distributions, Bayesian learning focuses on the dynamics of

changes in subjective distributions. This immediately leads to the question of stabil-

ity or convergence: Does Bayesian learning converge to rational expectations, i.e.,

does it lead to a convergence of the subjective towards the objective distributions?

There are two aspects to this question. The minimal requirement for rational ex-

pectations is the convergence of subjective and objective distributions (expectations

convergence). However, it is natural to assume, as it is often done, that rational

expectations are based on knowledge of the true model of the economy, supple-

mented by knowledge of the objective distributions of the variables exogenous to

this model. Accordingly, there arises the additional question of the convergence of

beliefs concerning the model (model convergence).

In both of these senses, convergence is not guaranteed; moreover, no type of

convergence implies the other.4 As the literature on self-fulfilling prophecies shows,

expectations convergence is possible without model convergence. Model convergence

without expectations convergence is also possible, as an example by Blume & Easley

(1995) shows, which will be discussed below.5 Bayesianism as an account of ideal

3 The classical exposition of Bayesianism is Savage (1954); see also Kiefer & Nyarko (1995) for

a summary and discussion with special reference to learning and expectations formation.
4 Of course, model convergence together with convergence of beliefs concerning the distribution

of exogenous variables implies expectations convergence. However, note that our definition of model

convergence does not say anything about the beliefs concerning exogenous variables.
5 See Earman (1992: sections 6.3-6.5) for a short overview on the positive convergence results.

On self-fulfilling prophecies see Pesaran (1987: 23) and, extensively, Farmer (1993). There is

a further aspect to the convergence problem: not convergence to the truth but intersubjective

convergence, which seems to be enough for some Bayesians, especially those who believe that



learning is therefore not without its problems: Even the beliefs of an ideal Bayesian

learner who does not dismiss the truth from the outset and who faces no costs of

gathering further information are not inevitably bound to converge to the truth.6

It is not clear, however, what lesson, if any, should be drawn from the possible

failure of convergence. From an economist's point of view, the real issue is decision

making, not learning, and a failure of beliefs to converge to the truth is not necessar-

ily an indication that the decisions based on these beliefs are mistaken in some sense

(cf. Kiefer & Nyarko 1995). On the contrary, Bayesians are bound to claim that

they do not understand in which sense the maximization of subjectively expected

utility could ever lead to mistakes. Is this not the very definition of rationality?

Then which criterion could be behind a criticism of such decisions? Of course, with

hindsight there are usually many decisions that would have been better than a de-

cision maximizing subjectively expected utility. But there seems to be no criterion

that can be employed to criticise the decisions of an ideally rational Bayesian before

uncertainty is resolved.

So the possible failure of convergence, while certainly disappointing from a

Bayesian perspective, provides no decisive argument against the approach. How-

ever, there remain other possible lines of criticism. Bayesian rationality may be

unachievable in practice, inconsistent, or empty. The first claim is often heard, the

second never (and rightly so, I believe). The present paper advances the third.

"objective" probabilities are just subjective probabilities held be several people in common. The
latter position will be discussed only in passing; see the critical remarks on "rational priors" in
section 4.

6 The quintessential learning problems are posed by the sciences, social sciences included. Not
surprisingly, therefore, Bayesianism provides a scientific methodology. See Howson & Urbach
(1989) for an exposition and defense and Earman (1992) for a sympathetic but nonetheless critical
overview. This methodology ties in neatly with the Bayesian perspective in statistical inference,
eloquently defended by Learner (1978) and others. The methodological literature is especially
relevant in our context. For example, to those acquainted with the literature on the problem of
induction it is of course quite obvious that there can never be a guarantee that a learning procedure
will converge to the truth. Cf. Humphreys (1990) for a short introduction to the problem.



Staking out the Claims

At first sight, the claim that Bayesianism is empty may not be very convincing.

After all, the modern version of Bayesianism, based on Savage (1954), emerged as

an extension of v. Neumann-Morgenstern (NM) utility theory (cf. Hacking 1990:

176), which in turn encompasses utility theory as used in the theory of demand.

From the Bayesian perspective, NM utility theory is the special case resulting from

the assumption that the objective probabilities of all events are known with certainty.

And utility theory results if these objective probabilities are all either 0 or 1. In the

latter case, there exist "operationally meaningful theorems" (OMTs), i.e., theorems

that potentially could be refuted by observations.7 These theorems are usually

called the axioms of revealed preference (RP).8 How can Bayesianism be empty if

it implies the RP axioms for certain situations where the decision maker believes,

among other things, that all relevant probabilities are 0 or 1? The answer is obvious:

Bayesianism implies OMTs for situations that are characterized by certain beliefs

on the part of the agent. If it is impossible to check independently from the success

or failure of the theorems whether the agent holds these beliefs or not, the theorems

have no empirical content.

The critical point is that beliefs are endogenous in the wider framework of

Bayesianism. It is trivial that Bayesianism is not empty in some sense because

it restricts actions once (some of) the beliefs of the decision maker are given. How-

ever, beliefs cannot be observed any better than preferences; in fact, it is one of the

tenets of Bayesianism that beliefs have the same status as preferences in every re-

spect (cf. Kiefer & Nyarko 1995). The unobservability of preferences is the rationale

of the RP approach to the theory of demand. The RP argument showed that the

7 Samuelson's concept of "operational meaning" coincides with Popper's (1959) definition of
empirical content and is therefore not tied to the obsolete methodology of operationalism. We stick
to this phrase since it is well-known in economics, esp. in connection with the revealed-preference
approach.

8 Modern developments can be summarized by Afriat's theorem, which states that the GARP
(generalized axiom of RP) is equivalent to the assumption of a locally nonsatiated, continuous,
concave and monotonic utility function. GARP is inconsistent with many finite sequences of price
vectors and corresponding consumption bundles. Thus GARP summarizes the empirical content
of standard demand theory. See Varian (1992: 133) for an exposition.



theory of demand actually implies restrictions on observed behavior, setting limits

to the rationalizability of choices.9 The present paper considers a similar question.

The focus it not on preferences but on beliefs. We assume that the NM utility

function of an agent is known; his or her system of beliefs, however, is assumed to

be unknown.10 We furthermore assume that the agent is perfectly rational in the

Bayesian sense of the term. The question is: Can we conclude on the basis of the

NM utility function and some observed sequence of past choices that at least some

sequences of future choices cannot occur?

The answer to this question cannot be found in the RP literature. The orig-

inal RP approach does not apply to decision making under risk and uncertainty

anyway. While some/relevant extensions have been found, there are no OMTs cov-

ering Bayesian learning and expectations formation.11 Such theorems would be

9 Before Samuelson (1938, 1947) developed this approach, it was not clear whether anything
about future choices could be learned from the observations of past choices of an individual. There
was one simple and not very interesting restriction on individual demand-functions implied by
the theory, namely, zero homogeneity. Beyond that, it seemed that by postulating arbitrary (but
still stable) preferences, almost any sequence of choices could be rationalized. It was unclear
whether the Slutsky decomposition implied restrictions on observable behavior, i.e., reactions to
non-marginal changes in prices and income (cf. Samuelson 1947: 107 fn. 13, Blaug 1992: 142).

10 One obvious weakness of Bayesianism as a positive theory (which will, however, not be pursued
here) is that it leaves open the choice of the utility function. Even in a certainty context, a sequence
of choices does not reveal preferences if there is no intertemporal separability. However, in the
present context we are prepared to grant knowledge of the NM utility function. This has to be
done anyway whenever we discuss Bayesianism as a normative theory since it is natural to assume
that at least decision makers themselves know their own NM utility functions.

11 Border (1992) develops an RP approach to choice among lotteries with monetary rewards.
The observer knows only that more money is preferred to less. If observer and observed agree
on all (objective) probabilities, any choice behavior that is not statistically dominated can~be
rationalized by postulating a suitable utility function. The RP approach of Green & Osband (1991)
is based on assumptions that deviate from Savage's (1954) framework in several ways. A direct
comparison of results is therefore not possible. Kim (1992) considers choice under uncertainty
but excludes learning, i.e., conditionalization on past observations. This can more reasonably be
interpreted as subjective certainty concerning an objective probability distribution that is unknown
to the observer. In Kim's set-up, the observed agent chooses from varying sets of uncertain
prospects, where observed choices are assumed to reveal strict preference. Observed choices cannot
be rationalized by a suitable probability distribution and a suitable NM utility function iff the
following condition holds: There exists a probability distribution F which can be used to construct



relevant not only for Bayesianism as a positive theory of human behavior but also

for Bayesianism as a theory or definition of rational behavior. Assume that Mike

the Manager asks Betty the Bayesian for advice. Betty cannot take Mike's current

beliefs for granted because it is an open question which beliefs are rational given

Mike's knowledge of the past.12 So it is natural for Mike to ask: Given what I know

about the past, and given my NM utility function, is there anything I should not

do? Is there a sequence of future choices, including reactions to new information,

that can be classified as irrational? If, as I will argue, Betty can give no advice

of this kind, Bayesianism is empty not only as a positive but also as a normative

theory.

Whether we consider the normative or the positive theory of decision making,

then, we are interested in theories that restrict the set of actions that can be ra-

tionalized. One such restriction is of course well-known. Let us assume that an

NM utility function is given. Bayesians have always argued that their definition

of rationality clashes with certain decision principles like the maximin principle.13

Generalizing the respective argument, we can use the NM utility function to de-

fine a set of dominated actions: An action A is dominated if and only if for every

assignment of probabilities to events, there always exists at least one action pre-

ferred to A. Bayesianism implies one restriction on behavior for a given NM utility

function, namely, that no dominated action is chosen. Let us call this restriction

the dominance principle. By definition, the dominance principle has nothing to do

with learning: Whatever the agent learns about the true state of the world and the

a lottery A and a lottery B over the preferred and the rejected prospects, respectively, such that
the individual is indifferent between A and B. Such violations of Bayesian rationality can only
be observed in an experiment where the subject is confronted with lotteries A, B chosen by the
experimenter and where both agree on the distribution F. The lotteries A, B cannot be inferred
from observations. A violation is represented by a state of indifference; it will not be observed if
the subject chooses A.

12 Agents' beliefs concerning past observations are assumed to be true throughout the paper.
Of course one may doubt whether all the observation statements one happens to believe in are
actually true. This is the much-discussed problem of the "empirical basis", cf. Popper (1959: ch.
1). Assuming that the problem is absent amounts to a concession to Bayesianism.

13 This point has been most often stressed in connection with statistical decision theory, cf.
Lindley (1972: 13-15). Insofar as the literature uses loss instead of utility functions, it refers to
the principle as the minimax principle.



probabilities this state implies for events, the set of dominated actions as defined

above remains fixed. The present paper claims that nothing beyond the dominance

principle follows from Bayesianism. This means that Bayesianism is empty as a

theory of learning and expectations formation.

However, once this claim is accepted, it becomes difficult to defend the idea

that the dominance principle actually yields some content. Identifying dominated

actions already requires at least some knowledge about one's surroundings. For

instance, burning money will often be a dominated action. But once I believe that

I impress my business partners or the gods by lighting my cigar with a burning

thousand-dollar note, things may look different. Of course, some such beliefs will

be superstitious. But the superstitions of today are the wisdoms of yesterday. It

takes learning to i'dentify superstitious beliefs, which brings us back to square one. If

Bayesianism is empty as a theory of learning, the dominance principle yields neither

predictions nor advice.

Claims that the notion of rationality employed in economics is "almost empty"

are not difficult to find. Hahn (1996: 186) states that in an intertemporal context,

rationality "buys only a small bit of an answer" since it has to be supplemented

by a theory on agents' beliefs. Concerning the content of Bayesian rationality in

game theory, Blume & Easley (1995: 26) conclude that content mostly derives from

restrictions on the set of beliefs. They make the assumption that rationality is

common knowledge and restrict considerations to rationalizable strategies in the

sense of Bernheim (1984). If even this restriction does not set limits to rational

behavior, a similar conclusion for a truly general setting is very plausible. Bicchieri

(1993: 14, esp. fn. 9) restricts the predictive usefulness of Bayesian rationality to

stable environment and choice situations familiar to the agent; in a footnote,j?he

mentions that there are convergence problems in the case of complicated priors.

Arrow (1990: 29) writes that the rationality hypothesis by itself is "weak" and that

its force derives from the addition of supplementary hypotheses. Ledyard (1986)

demonstrates that Bayesianism is empty for a quite general game-theoretic setting.

However, his results are derived mainly by variations of utility functions, assuming

beliefs to be given. Maybe for this reason, he is still convinced of Bayesianism's

value as a normative theory (Ledyard 1986: 60, 80f). Lucas (1976), in defending

the strong version of the REH, claims that Bayesianism "in many applications" has



"little empirical content".

The claim that Bayesianism is empty may be dubbed the folk theorem of decision

theory. It shares the anything-goes character of the folk theorem in game theory.

Moreover, it seems to be in the air; there is neither a completely general proof nor

an original source.14 Of course, there is a difference between the claim that Bayesian

rationality is "weak" and that it is empty; the folk theorem as stated here is stronger

than the statements just quoted. The difference stands behind Arrow's (1990: 31)

conviction, shared by many critics of Bayesian rationality, that rationality is difficult

to achieve. This implies that rationality restricts behavior because otherwise there

can be no difficulty. Those who are dissatisfied with the Bayesian approach seem to

have mixed feelings: Rationality is almost empty but nevertheless somehow difficult

to achieve—which implies that it cannot be completely empty.15

The paper undertakes to refute this idea. It is easy after all to be rational in the

Bayesian sense, or so I will argue. Since any actions are known to be rationalizable,

it would be sheer pedantry, and clearly irrational, to actually construct rational-

izations. Rationalizations are interesting only if one is able to tell good ones from

bad ones. Bayesianism gives no hint of how to do this. Even worse: Bayesianism

cannot be supplemented by rules that allow to distinguish between good and bad

rationalizations. Any such set of rules would be not a supplement but a substitute

for Bayesianism: Since such rules would have to judge rationalizations on the basis

of experience, they must provide a theory of learning different from Bayesianism.

The latter would then be parasitic on another theory of learning. It is difficult to

see why this other theory should be invoked only once as a first step in a learning

process.

14 Cf. Binmore (1992: 369ff, esp. fn. 17) on the folk theorem in game theory.
15 Of course, one may hold the view that, while every behavior can be rationalized, such ra-

tionalizations are difficult to achieve. If one defines rational action as action accompanied by a
appropriate rationalization, rationality is completely empty and nevertheless difficult to achieve.
However, even this statement is true only for one meaning of "difficult": According to the results of
the present paper, rationalizations are easy to come by, although it would be tiresome to actually
construct them.



Chaos and Rationalizability

In order to demonstrate the emptiness of Bayesianism, we have to show that any

sequence of actions can be rationalized on the basis of any kind of experience. More

precisely: Consider the set of all contingent plans or strategies conceivable for an

agent.16 Bayesianism requires the agent to start from a subjective prior distribution

over a set of hypotheses covering all the contingencies. The NM utility function

together with this distribution determine the optimal strategy. We show that the

agent can invert this procedure by choosing a strategy instead of a prior distribution.

A rationalization of this strategy is provided by a set of hypotheses and a prior prob-

ability distribution over this set such that, come what may, the strategy maximizes

the subjectively expected utility on the basis of the posterior distribution. That is:

Every contingent action specified by the startegy is optimal in case the contingency

arises.17 Our proof is based on a set of quite simple hypotheses that can always be

used to construct such a rationalization.

We start from a classical decision problem. A decision maker needs to predict the

outcomes from a an infinite sequence of experiments, where each single experiment

results in either 0 or 1. Later, we will generalize the problem and consider the

development of a finite and non-expanding universe, i.e., a universe with a finite

description of given maximum length at every point in time. Such a description

can be "digitalized". Technically, we will therefore be concerned with predicting an

infinite sequence of "experiments" where each single experiment results in a string

of Os or Is of length n. The generalization will be trivial; so the simple problem is

worth our attention.
16 "Contingent" means: conditional on events. A contingent plan picks an action for every

contingency. Note that many actions may have to be formulated in the "try to . . . " form. If some

experience leads you to believe that you are a ghost you may try to walk through a wall; however,

at least according to my current system of beliefs, you will not succeed. If we are pedantic, even the

idea that you may be able to try to walk through a wall presupposes some knowledge, namely, that

it is possible to try to do this in certain situations. But I am not interested in blocking Bayesian

arguments from the outset; so I will not pursue any questions as to the tacit presuppositions of

Bayesian analysis. Instead, I am willing to make all concessions necessary to get the analysis going.
17 Of course, a strategy may imply the same actions for all contingencies. In this case, it

degenerates to a fixed course of actions.



As potential explanations of the sequence, we consider a set of deterministic

instead of stochastic hypotheses. The basic assumption is that of a specific de-

terministic law describing a simple chaotic dynamic process known as baker-map

dynamics. Learning takes place in a set of alternatives generated by combining the

baker-map dynamics with different conjectures about an initial value or starting

point for the dynamic process.

A similar example—the tent-map dynamics—has been discussed recently by

Blume k. Easley (1995). They consider the problem of asymptotic learning, showing

that although Bayesian learning converges towards the true initial value (which is

all there is to learn), predictions will not improve due to the chaotic nature of

the deterministic process. The same result holds for the baker-map dynamics. It

complements the no-convergence results mentioned earlier by demonstrating that

model convergence does not imply expectations convergence.

However, we can get more mileage out of the machinery of chaotic dynamics. In

Blume & Easley's analysis, the true law of the process generating the Os and Is is

chaotic, and this law is known to the agent. Blume & Easley's result is based on

the fact that information about the past is known to imply no restrictions for future

developments. Chaotic dynamics, then, allows for cases where Bayesian learning

does not improve the quality of predictions. This is an interesting point, but of

course no decisive argument against Bayesianism. No procedure can improve on

Bayesian learning in the case of the tent-map or the baker-map dynamics.18

The present paper is not at all concerned with the question of how Bayesian

learning fails if the agent is confronted with a chaotic process. In our analysis, the

question of the true law governing the sequence of Os and Is is not very interesting.

The reality the Bayesian tries to come to grips with may be very simple. The chaos is

in the Bayesian's head rather than outside. The problem is not the actual complexity

of reality but the complexity of learning when the set of hypotheses becomes very

large.

Our argument shows that Bayesian rationality becomes empty if the decision

maker considers a sufficiently large set of hypotheses. The set of hypotheses de-

scribed with the help of the baker map is such a large set. Whatever the real

18 I am not implying that Blume & Easley do not agree with this evaluation.

10



process generating the sequence of Os and Is is like: Considering the baker-map dy-

namics as an explanation already implies that any experience can be accommodated

without implications for future actions. Thus our set of hypotheses can be used to

rationalize any strategy. This moreover shows that it is a very trivial task to con-

sider such large sets. The Bayesian predicament is relevant even at a comparatively

low level of sophistication.

Let me shortly explain the intuition behind the result. Note first that, as will be

demonstrated, the result is trivial for finite sequences of observations. The baker-

map dynamics comes into play only in the infinite case, where it can be used to

formulate a dynamic system on the unit interval that produces an infinite sequence

of Os and Is. This sequence just reveals the inital value or starting point of the

system with ever increasing precision: The information provided by n observations

is equivalent to the determination of a subinterval of the unit interval by n bisections.

The sequence,, of bisections will eventually converge to the initial value. However,

after any finite number of Os and Is, the remaining interval known to include the

initial value still contains initial values that can produce any kind of extension to

the sequence. In other words: the set of hypotheses represented by the set of initial

values is so rich that, for any possible future, there is a hypothesis consistent with

the past and predicting this future.

This is exactly the embarrassment of theoretical riches confronting an ideally

rational decision maker in any context. Logically, one can never infer the laws

governing the world from a finite number of past observation. While many theories

may be eliminated over time, it is quite trivial that there always remain enough

theories consistent with any kind of future. This is, in a nutshell, the problem of

induction. If the situation were different, there would be something about the future

that by logic alone could be deduced from past observations. The idea that this is

impossible might be called Hume's Impossibility Theorem (HIT). HIT implies that

rational learning, if restricted to the application of deductive logic alone, yields no

restrictions for decision making.19 The present paper proves that Bayesian learning,

19 The consequences of HIT for decision making are often cast into the form of another problem
of induction. If the fact that logic and experience weed out too few theories is swept under
the carpet, this creates a bulge—called the pragmatic (in contrast to the epistemic) problem of
induction—one stumbles over when considering the question of which theories to use in practical

11



which employs more than just deductive logic, also yields no such restrictions.

This result is no surprise once it is made clear how many degrees of freedom

Bayesianism leaves to the decision maker in setting up the initial beliefs. But it

is surprising that a sufficiently rich set of hypotheses can be introduced in such a

simple and compact way. If not much sophistication is needed to experience the

problem generated by too many logical possibilities, maximum sophistication will

necessarily lead to this problem. Perfect rationality involves logical omniscience

(cf. Earman 1992: 121f), i.e., awareness of all logical possibilities and of all logical

connections between all conceivable assumptions. Perfectly rational Bayesians have

the option of restricting the set of hypotheses by choosing a prior distribution that

assigns probability 0 to large subsets of hypotheses. But this requires consideration

of the full set of logical possibilities, at least as a first step. Taking into account

such a rich set of hypotheses ̂ 'however, leads to a problem that is equivalent to the

problem of predicting chaotic motion.

Further Proceedings

Let us shortly summarize our line of argument. We will show that any strategy can

be rationalized. Therefore, Bayesianism is empty from a normative point of view.

Moreover, it is also empty from a positive point of view since without restrictions to

rationalizability, past choices reveal nothing about future choices. Even if we make

assumptions that allow for the existence of a set of dominated actions, nothing will

ever be revealed but this set; there is no restriction on behavior that originates from

rational learning. Even if we know the NM utility function of a Bayesian agent, we

cannot predict behavior beyond the fact that the agent will choose no action that is

dominated. So whatever we assume about the utility function, we get nothing out

of the assumption that the agent processes information according to the Bayesian

principles of rationality. Muth's (1961) conjecture that the theory of rational in-

formation processing can be used to solve the problem of expectations formation is

thus refuted. Moreover, there is no reason to assume that Bayesian learning will ever

converge to rational expectations in any sense (model or expectation convergence)

decision making. Cf. Musgrave (1989: section 4) and Miller (1994: 20-23, 38-45), whose solution
rests on the assumption that it is possible to reduce the number of acceptable theories drastically.
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even in a case where (i) the true model is exceedingly simple, (ii) there are no costs

of gathering information and (iii) the true model is included among all the models

considered by the Bayesian agent.

The paper proceeds as follows. Section 2 introduces a simple decision problem,

which is then used to formulate precise questions. Preliminary answers to these

questions are given for the finite case. Section 3 introduces the baker-map dynamics

to create a set of hypotheses for the decision problem in the infinite case. The

analysis of the finite case given in section 2 is extended to the infinite case. It is

shown that no restriction on the choice of strategies emerges from Bayesian learning.

Section 4 considers generalizations beyond the simple decision problem considered

in sections 2 and 3. The last section offers some conclusions. The appendix contains

proofs referred to in the text.

2 A Simple Decision Problem under Uncertainty

The present section introduces a simple decision problem under uncertainty. The

problem is composed of an infinite sequence of subproblems, providing ample time

for learning. This setup will be used to give a sharp formulation of our general

problem in the form of three questions. A preliminary answer for the case of a finite

sequence sketches all the main points of the general argument.

Posing Questions

In this and the next section, we will be concerned solely with the following somewhat

artificial situation.

Adam & Eve and the Money-Spinner. Adam the Agent owns a mysterious black

box connected with a screen and a keyboard. The screen displays either 0 or 1; in

fixed intervals the screen goes black and then again shows one of the digits.20 The t-

th observation is denoted by xt, t = 1 , . . . , oo. At every point in time t — 0 , 1 , . . . , oo,

20 The set-up is equivalent to observations of consecutive tosses of a coin where there are two
outcomes, heads and tails, corresponding to the outcomes of 0 and 1 in the present example. We
do not use the more familiar coin-tossing example since the set of alternative hypotheses can be
described more naturally in connection with the neutral black-box set-up.

13



Adam places his bets on the next digit by typing in a number yt £ {0,1,.. . ,Y}.

Doing nothing implies yt = 0. So the sequence of events is as follows: At t = 0,

Adam chooses yo- At t = 1, xx appears and Adam chooses y\. And so on. At time t,

Adam knows x* = ( x i , . . . , xt) and chooses yt in the light of this information. This

applies also to t = 0, since we let x° denote "no information". If xt+\ = 0, the black

box produces yt perfect one-dollar notes. If x t+i = 1, it produces Y — yt equally

perfect one-dollar notes. Adam is risk averse and strictly prefers more money to

less at every point in time. His NM utility function u: IR+ t-> IR at each point in

time is increasing and strictly concave in money. For the purposes of numerical

examples, we will choose v(y) = ln(l + y) and Y — 10. Adam's information at time

t encompasses all the facts just explained, all past observations x*, and all his past

choices yi = (y0 , . . . ,yj- i ) , where y° again denotes "no information".

Eve the Economist observes Adam. Her information at time t coincides with

Adam's; specifically, she knows his NM utility function.

In order to simplify the problem, we assume that both Adam and Eve know

(i.e., rightly believe) that Adam's choices have no influence on the sequence of

digits appearing on the screen. •

The following three questions define the problem we are interested in by recourse

to the situation of Adam and Eve.

Question 1 Can Eve exclude some logically possible sequences (yx
t,yt) as incom-

patible with the assumption that Adam is an ideally rational Bayesian agent?

Question 2 Can Eve, after observing a sequence x*, give good advice to Adam from

a Bayesian point of view?

Question 3 Is there any restriction on the system of Eve's conditional probabilities

Pr (j/t+i = i | (xt+1, yt)), i = 0 , 1 , . . . , Y resulting from the hypothesis that Adam is

an ideally rational Bayesian agent?

Question 1 concerns Bayesianism as a positive theory that should yield predic-

tions of Adam's behavior. Question 2 concerns Bayesianism as a normative theory

that could be used by Eve to advise Adam. Question 3 concerns Bayesianism as a

methodology used by Eve to analyze the behavior of Adam.

14



Of course, all three questions are strongly interrelated. We will show that Adam

can rationalize any choice of strategy. It follows that question 1 must be answered

in the negative. The same goes for question 2. If any strategy can be rationalized,

there is nothing a Bayesian advisor can say except "Do what you want". The answer

to question 3 is slightly more involved. There is a difference between questions

1 and 3. A negative answer to question 1 implies that no OMTs exist. But a

Bayesian could still claim that Bayesianism as a methodology allows to conclude

that certain sequences (a;*,y*) become very improbable if Adam is rational. If that

were possible, it would provide a Bayesian argument against Samuelson's definition

of "operationally meaningful". A negative answer to question 3 presupposes that

we demonstrate that Eve's system of conditional probabilities for Adam's actions is

arbitrary.21 '

For all three questions, it is presupposed that Adam and Eve, the observed

and the observer, argue from certain knowledge of Adam's utility function. In this

respect, we grant more knowledge than usually is available to observers, but this is

necessary in case of question 2 and harmless otherwise. In another respect, we are

not so liberal: Eve starts with no knowledge concerning Adam's beliefs. One may

argue that this is an unrealistic assumption. A real-world economist may actually

know something about the beliefs of real-world agents. I do not want to deny this.

However, knowledge about the beliefs of one's fellow humans certainly is the product

of learning. One is not born with the knowledge that other people do not (or do)

believe in witches. The question is whether such knowledge will result from Bayesian

learning.

Nuts and Bolts

Let us shortly summarize the Bayesian analysis of Adam's problem. The state space

of observables for Adam's problem is the set of all infinite sequences of Os and Is:

SQ = {0,1}°°. Bayesianism requires that Adam chooses a probability measure A on

21 Actually, we could extend the problem by letting Eve bet on Adam's behavior. This would
enable us to consider Eve's actions instead of her system of beliefs. However, this yields no further
insights.
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(a cr-algebra of subsets of) So-22 Let xf be a potential sequence of t observations.

Since A must be chosen such that Adam can solve his decision problem, we know that

it has to imply conditional probabilities for the events xt+i = 0 and xt+\ = 1, de-

noted by Pr (xt+1 = i |a:'), i = 0,1. The unconditional probabilities Pr (#i = i | x°)

are included in this notation. The probabilities Pr(x t + i = i\xl) yield Adam's ex-

pectations concerning the next observation if he actually observes xf. Technically,

Adam revises his prior probability measure A, or learns in the Bayesian sense of the

term, by conditioning on the subset on So identified by past observations. The result

of learning at time t are the conditional probabilities for all potential future obser-

vations Pr (xt+n = i | a;4), n — 1 , . . . , oo, where xl are the actual past observations.23

A problem results if Adam observes a sequence xl that has subjective probability

0 under his prior. In this case, he is free to choose a new prior distribution. We will

22 According to the Bayesian approach of Savage (1954), subjective probabi l i t ies and the NM

util i ty function are de te rmined joint ly. However, as B inmore (1993: 207) and A u m a n n (1987: 13

fn. 13) point out , it is one of the fundamenta l aspects of Bayesianism t h a t preferences and beliefs

can be separa ted (a l though they share a comparab le s t a tus , see the remarks by Kiefer & Nyarko

referred to above) . Th i s implies t h a t an agent can be sure as to his NM uti l i ty function wi thou t

being clear a b o u t wha t his beliefs should be . See also the r emarks of B inmore (1993: 207) on

Savage's posit ion and on "massaging the pr iors" .
23 Note t h a t A d a m does not know enough in order to identify a set of d o m i n a t e d act ions or s t r a te -

gies. As already argued, the identification of domina t ed sets depends on knowledge. For example ,

if A d a m addi t ional ly knew t h a t there never will be more t h a n three Is in a row, there are clearly

many domina ted s t rategies . On the other hand , we could modify the decision p rob lem such t h a t

A d a m ' s knowledge as specified so far is sufficient to identify domina t ed s t rategies . Consider the fol-

lowing modification: A d a m can type in two numbers , yto and y t \ , where (yto, Vtx) £ { 0 , 1 , . . . , 10}

and 2/to + yti < 10. T h e n u m b e r of one-dol la r notes he gets is y tJ if xt+i = i. Moreover, let A d a m

have the str ict ly convex ut i l i ty function of a risk lover. T h e n the only n o n - d o m i n a t e d choices are

(j/tO)J/ti) = (0,10) and (yto, J/ti) = (10 ,0 ) . However, this results from the a s sumpt ion t h a t A d a m

knows the sequence of digits Xt to be independent from his choices. There is a lways a degree of

uncer ta in ty t h a t does not allow for the identification of domina ted s t rategies . In the modified

example, the best act ion becomes (yto,yti) = (9 ,1) if A d a m believes t h a t xt+\ = 0 if and only if

y t l = 10. So once we do not gran t the knowledge of independence between the digits on the screen

and A d a m ' s choices, there will again be no domina t ed set. T h e independence a s sumpt ion allows

for a simpler presenta t ion because the observable events Xt a l ready form a s t a t e space, while a po-

tential influence of choices on the sequence of 0s and Is requires a s t a t e space of h idden variables

explaining such potent ia l influences.
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be able to avoid this problem (see p. 19 below), which in any case only increases the

difficulties of predicting Adam's choices.

Bayesian rationality, as traditionally received, requires that Adam chooses the

probability measure on So in an indirect way. He should choose a set "H of mutually

exclusive hypotheses, each of which implies objective probabilities for all potential

future observations. Let / be a set indexing the hypotheses, i. e., "H = {Hg}$eI. Then

the probabilities specified by hypothesis Hg will be denoted by Pr (xt = i \ Hg) and

Pr (a;* | Hg).24 Furthermore, he has to choose a subjective probability measure fi on

(a cr-algebra of subsets of) %. The set of hypotheses % together with the probability

measure \i implies a prior probability distribution on the state space So- However,

we consider another, extended state space Sy = So x / , where each element is

a pair consisting of an infinite sequence of observations and a number denoting

a hypothesis from H. The subjective probability measure fi on "H, together with

the objective .probabilities specified by the hypotheses in 'H, implies a probability

measure on the extended state space Su- Given the subjective probability measure

on the set of hypotheses^ we can compute subjective probabilities for events, notably

the unconditional probabilities25

(a) PrM (xt = i\ H) d= f
(1) ,

(b) PrM(aj*|W)d^

PrM (xt = i \~H) is the subjective probability for xt = i before any observations have

been made; Pr^ (x* 11-L) is the corresponding subjective probability for a sequence of

t observations.
24 Some Bayesians reject any notion of objective probabil i ty; cf. Hacking (1990: 173f) on different

views. Such strict subjectivists will admi t only determinist ic hypotheses, and they have to t rans la te

the joint assumptions of absence of uncertainty and presence of risk (typical of the REH) into the

Common Prior Assumption, as it is done by A u m a n n (1987: 12ff). In order to simplify the

exposition, we admi t only objective probabili t ies on the level of hypotheses. Nothing will depend

on this, however. Strict subjectivists can easily restate all the a rguments in their language. Only

when we assume the t rue hypothesis to be stochastic (in section 4), strict subjectivists can no

longer follow; they are not in the target group of the respective a rgument .

25 / f(6) dfi(9) denotes the integral of f(9) w . r . t . the probabil i ty measure p taken over 0 G

ACL Note that, despite this notation, fi is a set function.
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Again, each observation identifies a subset of the extended state space <S{y, and

again learning proceeds by conditionalizing on this subset. The difference to the case

without hypotheses is that changes in the probabilities of the observable states can

be traced back to changes in the probabilities of the hypotheses. The conditional

probability for subsets of hypotheses indexed by A C / can be defined as

Pr (V | He) dfi(9)

which allows to define conditional probabilities for the next observation:26

(3) Prtl(xt+l = O\HAxt)d= fPr(xt+1=0\Hg)dfi(6\xt)
J I

Adam knows that there is no influence from choice at one point in time to con-

sequences at other points in time. The only connection between choices is learning.

Given the obtaining beliefs, each act of choice can be considered separately from

the others. Therefore, Adam is maximizing his subjectively expected utility at each

point in time t, solving the problem

(4) max {Pt • v(yt) + (1 - pt) • v{Y - yt): yt € No, Y - yt > 0} ,
Vt

where pt = PrM (x t+1 = 0 | H A a;').

Basically, we want to show that Adam can rationalize in advance any betting

strategy, i.e., any sequence of contingent choices. A rationalization can obviously

be found if it possible to fix the posterior probabilities in advance, before any obser-

vations are actually made.27 More precisely: A rationalization can always be found

if for any predetermined infinite sequence of probabilities pt, t = 0 , . . . , oo, there

exists a set of hypotheses Ii and a subjective probability measure \x on Ti such that

(5) PrM (xt+i = 0\n A**) =pt for all aj* G {0,1}' and t = 0 , . . . , oo

26 ct/y) denotes logical conjunct ion ( " and" ) . Propos i t ions or sets of proposi t ions are ei ther given

a n a m e like 7i, or some obvious no ta t ion is used as in the case "xf", which in a conjunct ion like

"% A xtv s t ands for the t proposi t ions "At t ime s, x, is observed", s = 1,.. .,t. '"HA x ° " is of

course equivalent to "H".
27 T h i s is of cpurse a sufficient, no t a necessary condi t ion.
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Such a set of hypotheses and attached prior distribution will be called a rational-

ization of the betting strategy. The analysis will be simplified by the assumption

that a sequence of bets, if it can be rationalized at all, can be rationalized without

assuming any probabilities PrM (xt+i = i | "H A a;*) to be 0. This is the case because yt

is a discrete variable.28 Actually, all variables figuring in realistic decision problems

should be discrete, even time. You cannot plan to meet a friend at •K past eleven

because there is no clock that is infinitely precise. In general, there are no mea-

surement processes that could ever determine a real number with infinite precision.

Given discreteness, any decision that is optimal if some event has zero probability

will also be optimal if the probability of the respective event is small enough. There-

fore it is never necessary to rationalize decisions by setting certain probabilities to

zero. r

Approaching Answers

Let us turn to the task of finding a set of hypotheses that could be used to rationalize

every betting strategy. It is instructive to begin with a set that will not do, for

instance, the set of hypotheses described by the condition that 0 and 1 always

alternate (xt+i ^ xt for all i). It contains two hypotheses, one implying x\ = 0,

the other x\ = 1. This set is obviously not rich enough to yield a rationalization

for every betting strategy since already the first observation fixes the probabilities

for all further events at either 0 or 1. Given the NM utility function, this uniquely

determines the rational betting strategy after one observation. What is required

for our purposes is a set rich enough for Adam to adjust his beliefs to any past

28 It is moreover necessary to assume that the utility is real-valued. If the utility functions can
take on values in the extended reals [—oo,+oo], discreteness is not sufficient for this result. "We
then have to admit conditional probabilities of 0 or 1. This makes it necessary to consider the
problem of how Adam proceeds if a zero-probability event occurs. Kiefer & Nyarko (1995: 49)
provide the arch-Bayesian answer: Adam should choose in advance new prior distributions that
will be used after such an event. This gives enough degrees of freedom to generate all our results.
However, since this case yields no additional insights, we restrict the analysis to real-valued utility
functions. Note that Kiefer & Nyarko consider restrictions on the new priors ("proper conditional
probabilities"). On the general question of constraining the choice of priors, see section 4 on
"rational priors".
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without thereby restricting his probability assignments to future events, whatever

these assignments are. The set described by xt+i ^ xt is much to small to fulfill this

requirement.

Sets of hypotheses that are rich enough are provided by deterministic processes

with chaotic behavior. Most of the paper will be concerned with such a potential

explanation of the inner workings of the box. In this subsection, however, we prepare

the ground by analyzing a very trivial case. We assume that Adam, instead of

having to choose infinitely often, has to choose only twice. This allows for a simple

description of a sufficiently rich set of hypotheses.

We start with Adam's state space So == {0,1}2, conveniently described by a

cross table:

' X2

0

1

s

0

iPoo

Pio

Pr (X2 = 0)

1

Poi

Pn
Pr (X2 = 1)

Pr(
Pr(

£

1

= 0)

-1)

Pij = Pr (Xi = i A X2 = j) factors into Pr (X2 = j \ X\ = i) • Pr (Xi = i), i, j =

0,1. The distribution for Xi and the two conditional distributions for X2 can be

chosen independently from each other, without any restrictions. If Bayesianism does

not require more than that some such distribution is chosen, it is empty, since then

Adam can rationalize any contingent plan. For example, he may decide to choose

yo = Y and, independently from the first observation, yi = 0. This can be achieved

by setting p(Xi = 0), p(X2 = l p ^ = 1) and p(X2 = l|Xi = 1) all smaller than ^ .

The following values do the trick:

X2

0
1

s

0
0.

0.

0

.855
0445

8995

0
0.
0.

1

.095
0055

1005

0
0

E
.95
.05
1

The question is whether the Bayesian requirement of blowing up the state space
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So by formulating some hypotheses yields restrictions. Quite obviously, this is not

the case for our simple example. It is useful, however, to go through the argument

since this delivers the clue to the extension to infinite sequences of observations.

Let us describe the four possible outcomes of the two observations by a random

variable x ^ i , ^ ) = ~£~ + ~f~ taking on values in JO, j , | , |> . Let us assume that

Adam considers a set H of four hypotheses Hg, where for reasons that will become

apparent we index the hypotheses by 6 G JO, | , §, §}• Assuming the probabilities

given above, we have the following state space Su, where the state space So now

occurs as the last column:

9

X

0

1/4

1/2

3/4

E

P
9oo

9io

920

930

Pr(ffo)

1/4

901

9n

921

931

Pr (Hi)

1/2

902

912

922

932

Pr (H.)

3/4

903

913

923

933

S

0.855

0.095

0.0445

0.0055

1

The probabilities qji factor into Pr (x = j\Hg) • Pv(Hg). The requirement to

generate the probabilities of the state space So by choosing a distribution over the

hypotheses in % can be fulfilled in many ways; the most trivial is to consider the

following deterministic hypotheses: HQ and Hi state that the screen will always

show 0 or 1, respectively. H±_ and Hi state that 0 and 1 always alternate, i.e.,

xt+i ^ xt, where Hi assumes x\ = 0 and Hi assumes Xi = 1. Translating these
4 2

hypotheses concerning xt into hypotheses concerning Xi w e find that Hg implies

X = 9. Thus qtJ is 0 for i ^ j . The probabilities P r (# 0 ) = 0.855, Pr ( # i ) - =

0.095, Pr ( # i ) = 0.0445 and Pr (#3) = 0.0055 form the unique prior over U that

generates the specified marginal distribution over So-

Obviously, any betting strategy for finitely many bets has such a trivial rational-

ization. For a sequence of T observations, there are 2T points in So corresponding to

2T possible values of x- Let / be the set of values for X- Specify a hypothesis Hg for

every point in So that predicts that x = & w m be realized. Only the probabilities on

the main diagonal of Su, then, can be different from 0. A probability distribution
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over So fixes the probabilities Pr (x = 9). Any such distribution can be rationalized

by setting PT (Hg) — Pr (x = 9). The deterministic hypotheses form the corners of

a 2T-dimensional simplex. The probability distribution over So is a point on the

simplex. Each such point results from a unique convex combination of the corners.

The deterministic hypotheses form a basis for all these distributions.

Of course, it is possible to additionally consider stochastic hypotheses. These

hypotheses correspond to additional points in the above-mentioned simplex. Since

the deterministic hypotheses already form a basis, the inclusion of stochastic hy-

potheses will make the distribution over the set of hypotheses non-unique in many

cases. It is then possible to get rid of some of the deterministic hypotheses. In fact,

since we can rationalize any choices without recourse to degenerate probabilities, we

could restrict considerations to distributions on So in the interior of the simplex.

For such distributions, we can always find any number of stochastic hypotheses that

rationalize the distribution. In the extreme case, we take just a single hypothesis

rationalizing expectations in terms of objective probabilities. However, for any set

of hypotheses that does not include all the determinstic hypotheses, there are always

prior distributions over the state space So that cannot be rationalized. So the set

of all the deterministic hypotheses is the minimal set that is always rich enough to

generate all priors over So-

In the finite case, a rationalization is a trivial matter. The question is whether

this is different once we consider an infinite sequence of observations and actions.

This is where chaos comes in. We are going to show in the next section that the

baker-map dynamics provides a set of hypotheses that is rich enough to generate

all possible distributions on the state space. There will be a strong analogy to the

finite case as analyzed in this section. One could of course argue that it is enough

to concentrate on the finite case since every real agent can only take a finite number

of decisions. However, much of the literature and many models in economics are

concerned with asymptotic properties. Therefore, we will extend the analysis to

infinite sequences in order to make clear that Bayesian rationality is empty even

asymptotically.

22



3 Chaotic Beliefs

A Chaotic Clock

The following set of hypotheses describes the evolution of the inner states of Adam's

black box as a deterministic process depending on an initial value. The law of

the deterministic process is the baker-map dynamics, which can be graphically

illustrated as the output of a chaotic clock (fig. 1). The clock has only one pointer;

the dial shows the real numbers in the intervall / = [0,1). Initially, the pointer

deviates by an angle u = 29n from the 0 position, thus pointing at 9. At t =

1,2,..., oo, the pointer moves by doubling the angle u>. Adam's black box shows 0

if and only if the pointer is in the first half of the dial.

Insert fig. 1 from the end of the paper!

According to the chaotic-clock hypothesis, the inner states of the black box at

t = 0 , 1 , . . . , oo are described by a real variable, the pointer position zt £ / . These

inner states evolve deterministically, but it can only be observed whether the pointer

position is zt = [O, |J\or zt = | , 1J. These states are indicated by xt = 0 and xt = 1,

respectively. The deterministic law by itself does not allow for a prediction of future

observations; an assumption concerning the starting point or initial value Zi — 9 is

also necessary. Thus there is a set H* of chaotic-clock hypotheses Hg, one for each

initial value 9 £ I. The dynamical system corresponding to H* is29

(a) xt = g(zt) =f 2 • zt div 1

(6) (b) zt+l = h(zt) =f 2 • zt mod 1

(c) zi = 9.

Note that we will use the chaotic clock again to generalize our results to the case

of a finite universe: The chaotic clock provides a universal theory that is capable

29 «div" denotes integer division; "mod" denotes the indivisible rest of the integer division, i.e.,

x mod n = x — (x div n). On the baker-map dynamics, see Ford (1983), Devaney (1989: 18

example 3.4, 39, 52) and Schuster (1988: 107f). The graphical illustration is due to Davies (1987:

ch. 4). On coin tossing and dyadic development see also Bremaud (1988: 28-31).
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of explaining everything. Of course, this kind of explanation would be completely

uninteresting from a scientific perspective. However, this is beside the point. The

significance of the chaotic clock lies in the fact that it leads to the typical problems

connected with a very rich set of hypotheses.

In order to analyze the consequences of uncertainty concerning 9, Adam has to

know how xt develops for a given 9. This is very simple in principle. Every 9 G /

can be expressed in binary form as

oo a

® ~ Yl ^ = 0-010203- • •
n = l Z

where 9n is 0 or 1 (dyadic development). We adopt the rule that the representation

must have infinitely many Os. Thus | should be represented as 0.10 and not as

0.01, where a bar over a digit denotes infinite repetition. We use 0 as a reminder,

since this sequence of 0s has a meaning in our context. Moreover, in order to avoid

cumbersome notation, we use 1 in expressions like [0.a0,0.al) to denote the upper

boundary of an interval.

Every real number has a unique dyadic development with infinitely many 0s.

The sequence generated by the chaotic clock is just the dyadic development of the

starting point:

( 9 = 0.9i9293---9t---

x t = 9t

This follows from two mathematical facts: (i) We have 9 > | if and only if 9X — 1.

(ii) Doubling the angle u> = 29n shifts all 0,- to the left by one position except for

9\, which is eliminated since an angle of 2TT is interpreted as an angle of 0.

Every sequence of 0s and Is with an infinite number of 0s represents a starting

point. For finite sequences, the deterministic law can generate any sequence what-

soever. Any restrictions on sequences and, correspondingly, on beliefs could only

derive from considering infinite sequences.

Why should Adam ever consider a set of hypotheses like "H*? The point is that

all these hypotheses represent logical possibilities and that Adam, being perfectly

rational, is logically omniscient. He therefore is aware of all these (and many more)

hypotheses and their implications. Of course, he may throw out many hypotheses

in the process of selecting priors. But in doing so, he is aware of the fact—which
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will be demonstrated in the next subsection—that he can rationalize any betting

strategy by choosing suitable priors. The selection of priors on such a large set of

hypotheses will be seen to be equivalent to the problem of predicting chaotic motion.

It is a further important point that W fulfills all the formal requirements of a

scientific theory: It assumes a simple mechanism governed by a law of motion that

produces different results according to the initial position of the mechanism. While

not even the Swiss could actually produce the chaotic clock (exactly doubling an

angle requires infinite precision), physical processes that lead to chaotic dynamics

are not rare, and imperfect observability can produce the kind of irregular behavior

characteristic of the chaotic clock.

We go on to show that the system of conditional probabilities Pr (x i+1 = 0|JC')

can be chosen arbitrarily and still be derived from a prior probability measure on

H*. This implies that any sequence of actions can be rationalized in advance, i.e.,

before any observations are made, since one of the possible assignments always is

Pr (xt+i = 0 | xf) — pt for all xl, which fixes the posterior probabilities. For such an

assignment, Bayesianism is just a fig leave, allowing Adam to pass predetermined

values off as the result of learning. Of course, Adam can also allow for any influence

of observations on his behavior instead. He can choose freely between any sequence

of actions, conditional on the past or completely predetermined or any mixture of

both. There is, of course, one restriction on his system of beliefs: At no point in

time, Adam can assign a positive probability to the event Fo that the number of

Os will be finite. Or in other words: Adam has to believe that it is impossible

that the sequence of observations will end in an unbroken infinite sequence of Is.

This restriction just results from the fact that the baker-map dynamics is unable to

produce an unbroken infinite sequence of Is: For xn = 1 for all n > t, the pointer of

the chaotic clock has to point to 1 at time t, which is impossible since 1 is not on the

dial. We will denote this restriction by Pr (Fo | V.*) = 0, since it holds independently

from the subjective probability measure on W. At the end of this section, we will

show that even this restriction on beliefs can easily be removed.

The following subsection is slightly more technical than previous explanations.
It is possible to skip it without losing the thread of the argument.
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The Dynamics of Belief

We turn to the dynamics of beliefs and predictions generated by the chaotic-

clock hypotheses /H*. Since these hypotheses are deterministic, the probabilities

Pr (xt = 0 | Hg) are either 0 or 1, i. e., Hg yields certain or point predictions. Uncer-

tainty enters via the uncertainty concerning 9 £ I. As a Bayesian, Adam chooses

a subjective probability measure on (a cr-algebra of subsets of) / . The posterior

probabilities Px(Hg\xt) of the hypothesis Hg after t observations is 0 if the first

digits in the dyadic development of 9 do not agree with the observations. It is im-

portant to understand how subsets of {Hg} are eliminated or falsified by successive

observations.

We use the following trivial connection between dyadic expansions and bisections.

For each 9 G / , there exists a unique sequence of intervals (henceforth called basic

intervals) of the form

(8) ><(»)'=

with the following properties: (a) The sequence starts with / . (b) Any other interval

in the sequence is generated by bisecting its precursor and selecting either the upper

or the lower interval resulting from the bisection as member of the sequence, (c) The

intersection of the intervals converges to 9.30 There is a unique sequence of such

bisections converging to a given 9 since the basic intervals are open to the right.

In each step of the bisection, write down the digit 0 if the lower and the digit 1 if

the upper of the two intervals generated by the bisection is part of the sequence.

The sequence of Os and Is so generated is just the dyadic development of 9. The

reverse also holds: The dyadic expansion of a number in / determines the sequence

of bisections of / converging to this number.

Now compare the dyadic development of starting points with the observations.

To any sequence xf of t observations corresponds a number x = O.X\X2 • • • xt in

dyadic expansion and therefore a sequence of bisections. These bisections agree

with the bisections generated by the dyadic expansion of the starting point. The

30 For definitions and some facts concerning the basic intervals and bisections see the respective
section of the appendix. Fig. 3 in the appendix illustrates the definition of the basic intervals
h(m).
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latter is unknown; however, the observations x1 reveal the first t digits of its dyadic

expansion and therefore the first t bisection steps. If x € him), Adam knows that

0 G It(m).

If Adam wants to have well-defined probabilities Pr^ (xt+i = i\xl) for any po-

tential sequences of observation xl, he should include all the basic intervals into

his cr-algebra of subsets of / . We are going to show that choosing such a cr-algebra

yields no restrictions on his decisions. Therefore, we can safely assume that /j,(It(m))

is well-defined for all m and t.

The foregoing analysis established a one-to-one relation between a potential se-

quence of observations xt and basic intervals It(m) = [O.xix2 • • • xt0,Q.XiX2 • • • xtl).

The prior probability of the sequence xl is the probability of the interval It(m).

Thus instead of PfM (x* \H), we use

(9) Pt(m) = /•t(A(m)) •
i

As already mentioned, the posterior probabilities of the hypotheses Hg with 9 €"

It(m) are 0: They have been falsified by the observations. Given that Adam knows

that 9 G It(m), he can easily compute the posterior probability of xt+i = 0. The

next observation will be 0 (1) if and only if the starting point 9 is in the lower

(upper) of the two subintervals It+i(2m) and / (+i(2m + 1). Thus we find

(a) P ^

Pt{m)

Let us denote these conditional probabilities by

Pt+i(s)

Q - j \ _ /_ \ <»« ) ^K2'

iff s even or zero

Pt+i(s)
—7 r- otherwise

for t > 0. Then we can express the prior probability prim) as a product of condi-

tional probabilities qt(s(t)) with t < T:

T

(12)
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We illustrate these considerations by a diagram, where a tree structure is used to

derive the conditional probabilities from the prior distribution and vice versa (fig. 2).

Every time-point t = 0 , . . . , T is assigned a set of 2* nodes Nt(m), m = 0 , . . . , 2*""1

residing in the intervals It(m). The nodes and the intervals are numbered from left

to right. From each node there emerge two branches, the left (right) one representing

the observation xt+i = 0 (xt+i = 1)- Every branch emerging from a node leads to a

further node.

Insert fig. 2 from the end of the paper!

Every starting point 9 G / leads to a path through the tree determined by

its dyadic development, a zero at the j-th dyadic place implying that at node

Nj_i(m) the left one of the two branches is taken, which means that the left of

the two intervals resulting from the next bisection step is taken. The information

concerning past observations at time T can therefore be expressed by specifying the

current node or interval. Moreover, the node A^(m) will be reached if and only if

9 G / r ( m ) - Thus the probability of reaching node Nr(m) is Pt(m) as defined in (9).

This probability is the product of probabilities qt(s) for t < T as expressed by (12).

The probabilities qt(s) are the probabilities of going left or right from a given node;

they are therefore, as already defined above in (11), the conditional probabilities of 0

and 1 given the past connected with the node. Of course, the two probabilities qt(s)

and qt(s -f 1) relevant at node Nt^i(s) (s even or zero) add up to 1. We may assume

that no qt(s) ever becomes 0; so the subjective probability of reaching a node may

never be 0. Given a probability distribution over the unit interval, all the qt(s) can

be determined since all the Pt(m) are determined. The latter is trivial since pt(m)

is just the probability assigned to the basic interval /<(m).

However, we are more interested in the inverse operation. If one goes through

a certain path, one in effect carries out a sequence of bisections of the unit inter-

val. These bisections determine with ever greater precision the starting point 9 that

would give rise to the path, if, as explained before, an xt = 0 (xt = 1) is interpreted

as an instruction to take the left (right) turn at the current node. Assigning proba-

bilities 9t(s) to all the branchings of all the possible paths determines probabilities
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Pt(m) for all the intervals. For finite time, this obviously results in a probability

distribution over the unit interval / . There are always infinitely many densities com-

patible with the initial choice of the conditional probabilities. The simplest of these

densities is a unique piecewise continuous density that is constant on each /^(m).

In the appendix it is proved that this is also true for the case of an infinite

number of observations. This is not obvious. In fact, as already mentioned, it is

not literally true in general but only if the restriction Pr(Fo|'H*) = 0 is fulfilled,

i.e., if the probability implicitly assigned by the conditional probabilities qt(s) to

the event Fo that there will be a finite number of Os is 0. Under this condition,

the probabilities qt(fn) attached to the basic intervals It(m) are shown to induce a

probability measure on the unit interval.

Adam as an ideally rational person is always aware of the implications of all the

assumptions he is considering. When choosing the priors over W, he is aware of the

implications for the conditional probabilities qt(s). Thus instead of choosing a prior

over TV, Adam can as well choose the conditional probabilities qt(s)- What he does

not know in advance are the conditional probabilities that will turn out to be his

posterior probabilities because they are picked out among the probabilities (10) by

the actual sequence x*.

Implications

The result of the last subsection is summarized in an informal way in the following

proposition.31

Proposition 1 Let Fo be the event that there will be a finite number of Os. Let

H* be the set of chaotic-clock hypotheses described by (6). Consider an arbitrary

assignment of numerical values to all the conditional probabilities Pr(x t + i = i | a;*)̂

i = 0,1. If and only ifPv(F0) — 0 under this assignment, there exists a probabil-

ity measure [i on "H* such that the conditional probabilities PrM (xt+i = i \'H* A a;')

coincide with the values assigned to Pr(z t + i = i\xi). The probability measure /z is

unique.

31 A formal statement of the proposition is theorem 9 in the appendix. The appendix moreover
contains a proof of the theorem.

29



The conditional probabilities PrM (xt+\ = i | as*) are the posterior probabilities if

the agent actually observes xl. Proposition 1 states that Adam is almost completely

free in his choice of the conditional probabilities. For example, assume that the

prior is a uniform distribution with densitity f(9) = 1 over / . Then the subjective

probability of xt+i = 0 is equal to | , independently from the past observations

xt32 However, we have to take one final step in order to get rid of the restriction

Pr (Fo) = 0. We introduce a very slight modification of the chaotic-clock hypothesis.

We assume that the angle between the pointer and the zero position is not doubled

as before but quadrupled:

(a) xt = g(zt)

(13) (b) zt+i = h(2 • zt)

(c) Zl = 9.

The functions g, h are defined as in (6). For any 9 = O.0i#203 • • • 9t- • ••, the original

system (6) yields the observations xt = 9t. The modified system (13) yields xt —

92t-i, i.e., every second digit of the dyadic representation of the starting point is

irrelevant. Therefore a starting point 0.10 generates an unbroken infinite number of

Is. The same is true for 0.1011. Since both dyadic representations have an infinite

number of 0s, they are legitimate. The sequences generated by the modified system

result from deleting every second digit from the sequences generated by the original

system. This removes the restriction that the sequence has to contain an infinite

number of 0s. It implies, however, that an infinite number of starting points will lead

to the same sequence of observations. This creates no problems; it just means that

there will be many priors that rationalize the same set of conditional probabilities.

Let us call the set of modified chaotic-clock hypotheses H**. Our results are

then summarized informally by the following proposition.33

3 2 Cf. Bremaud (1988: 29) who, however, does not discuss subjective probabilities or other

than uniform distributions on / . Blume & Easley (1995: 19f, 36f) demonstrate for the t e n t - m a p

dynamics that in the case of a density continuous at the start ing point, the posterior distr ibution

will converge to the uniform distribution. It is easy to show tha t the same result holds for the

baker-map dynamics.
3 3 The appendix shows tha t deleting every second digit still yields a probability measure on the

set of all sequences.
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Proposi t ion 2 Let %** be the set of modified chaotic-clock hypotheses described

by (13). Consider an arbitrary assignment of numerical values to all the condi-

tional probabilities Pr (xt+\ = i {x*), i = 0 ,1 . There exist infinitely many probability

measures fi on H** such that the conditional probabilities PrM (xt+i = i \'H** A xl)

coincide with the values assigned to Pr (xt+i = i\xt).

Proposition 2 implies that Adam can always find a rationalization for any betting

strategy. This answers question 1. Bayesian rationality is empty as a positive theory;

Eve cannot exclude any sequence of actions of Adam on the basis of the hypothesis

that Adam is rational in the Bayesian sense. Nor can Eve give any advice to Adam,

even if she knows his NM utility function, since no sequence of actions is irrational,

whatever observations have been made. This answers question 2: Bayesianism is

empty as a normative theory. The answer to question 3 seems to be quite obvious:

How can there be a restriction on Eve's subjective probabilities concerning Adam's

actions if no sequence of actions can be excluded? However, we will provide a formal

answer to question 3 that will confirm this intuition. Eve may consider Adam and

the money-spinner as a big black box. Knowing that no sequence of actions can be

excluded on the basis of her knowledge, she confronts a similar, although slightly

more general problem as Adam. To this problem we can apply the generalization

considered in the next section.

4 Generalizations

This section generalizes the results of the last section and ties up some loose ends,

namely, the inclusion of stochastic hypotheses and the question of rational priors.

A Theory of Everything

We turn to the variant of Eve's problem connected with question 3, i.e., to the

problem of an economist trying to predict the behavior of rational agents and using

Bayesianism as a methodology. Since Eve is a Bayesian herself, she is not overly

impressed by the fact that Bayesianism yields no OMTs concerning Adam's behavior

since the Bayesian methodology allows a continuum of beliefs between "ruled out"
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and "still possible". However, this is not going to help her. Eve's problem is not

different from Adam's except for the number of states at each point of time. She is

perfectly rational and therefore logically omniscient. Thus she confronts the set of

all logically possible hypotheses, a set that is rich enough to accommodate any past

without restricting the scope of expectations concerning the future. She knows that

Adam is rational, but she also knows the results of the previous section, namely,

that this implies no restriction on Adam's betting strategy. Therefore she is in no

better position to predict Adam than to predict the digits generated by the black

box. For a formal proof, we have to generalize the results of the last section to larger

spaces of observables. This presents no difficulties.

Eve's state space of observables, So, consists of all sequences of Os and Is that

could conceivably be generated by Adam's black box and of all choices open to

Adam. Moreover, she might observe other things like Adam's facial expression or

his pattern of consumption that are or are not related to Adam's betting behavior.

Sticking to our premise that all observable variables can only range over a finite set

of values, we assume that Eve's observable universe can be "digitalized": Each state

can be described by a finite string of Os and Is. Since the number of different states

is not necessarily 2n for some n > 0, we have to allow for the possibility that several

strings describe the same state. With this caveat, Eve's space of observable states

is <So=
f { 0 , l , . . . , 2 " - l } ° ° , n > l .

Again, we describe a sufficiently rich set of hypotheses with the help of a chaotic

clock. Eve considers Adam and the money-spinner as a big black box that displays

one of 2" different configurations, i.e., combination of observables, at each point in

time. The configurations are determined by a chaotic clock that makes n angle-

doubling ticks at each point in time. The dial is divided into 2™ sections:

Configuration i comes up if the pointer is in In(i). The behavior of the black box is

described by the following dynamical system:

(a) xt = gn(zt) = 2" • zt div 1

(14) (b) zt+1 = hn(zt) ^ 2" • zt mod 1

(c) zi = 9
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This dynamical system works very much like (6), with the difference that the shift

from Zt to Zt+i now concerns a string of n digits instead of 1 digit, if we look at

the dyadic expansion of the zt. Accordingly, xt is now a natural number between 0

and 2™ — 1. If we express xt as a dyadic number, it will be of maximum length n.

We include leading Os to bring each xt up to this maximum length. The dynamical

system thus generates a sequence of strings of length n, where each string consists

of Os and Is. The sequence generated by the chaotic clock is again the dyadic

development of the starting point:

1 2 t

9 = O.Ox • • • 8n 9n+i • • • 92n • • • 0 ( t _ i ) n + l • • • 8tn • • •

i-th string

The new chaotic clock is completely equivalent to the old one, except that it

reveals the dyadic expansion of the starting point blockwise instead of digit by

digit. For this reason, the same restriction holds: The chaotic clock is unable to

produce an unbroken infinite sequence of strings consisting of Is only. The remedy

is the same as before: We ignore every second digit. This leads to the following

system:

(a) xt = gn{zt)

(16) (b) z t + 1 = hn(2 -zt)

(c) zi = 9

The set of hypotheses corresponding to the starting points 9 G / is denoted by "H**.

It provides a "theory of everything" for universes that can be digitalized at every

point in time but are infinite in time. Since the possibilities of assigning probabilities

to sequences are not affected by the fact that these sequences are now revealed in a

blockwise fashion, the previous results still apply, and we can generalize proposition

2 to the case of arbitrarily large but finite universes.

Proposition 3 Let "H** be the set of modified chaotic-clock hypotheses described

by (16). Consider an arbitrary assignation of numerical values to all the condi-

tional probabilities Pr(x t + 1 =i\xt), i = 0 , 1 , . . . ,2n — 1, n > 1. There exist in-
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finitely many probability measures /J, on "H** such that the conditional probabilities

PrM (z<+i = i | %** A xl) coincide with the values assigned to Pr (xt+i = i | xf).

This answers question 3. Bayesianism as a methodology is completely useless

in predicting rational behavior because there are no OMTs covering this behav-

ior. Eve's expectations concerning Adam's behavior will be completely arbitrary.

Moreover, the analysis of this section shows that the restriction of Adam's problem

to predicting single digits is immaterial. Everything works as before as long as he

considers a universe the observable aspects of which are finite.

Stochastic Hypotheses and Non—Convergence

In section 2, we have already seen that for a finite sequence of observations, nothing

changes if we additionally include stochastic hypotheses among a sufficiently rich

set of deterministic hypotheses. We now extend this result to infinite sequences. We

avoid the notational complications raised by large universes and go back to Adam's

problem. It will be obvious that the results generalize.

The observable state space is again So = {0,1}°°. The most general form of

stochastic hypothesis Adam could consider specifies conditional objective probabili-

ties Pr(x t + i = i | as*), i = 0,1 for all potential sequences xf. We already know that

from a Bayesian perspective, each such hypothesis is equivalent to the set of hypothe-

ses %** in conjunction with a subjective probability measure on H**. The set of all

deterministic hypotheses again forms a basis generating (subjectivist equivalents of)

all the stochastic hypotheses from subjective probability measures. This is another

way of stating proposition 2? Moreover, we can generate any probability measure on

rl** as a probabilistic mixture of several such measures. From this it already follows

that in general we can rationalize betting strategies partly or completely in terms of

stochastic hypotheses. Nevertheless, it is instructive to consider an example where

additionally to ~H** a stochastic hypothesis is introduced explicitly. This allows the

construction of illustrative non-convergence examples.

Let us consider a very simple stochastic hypothesis, namely, the fair-coin hy-

pothesis H implying Pr (zt+i = i | H) = | . Assume that Adam has already decided

to explain the behavior of the money-spinner by the set of chaotic-clock hypotheses

W*. He has already chosen a subjective probability measure on this set. Now it
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occurs to him that, additionally, he should consider H. Is it necessary for him to

adjust his prior to do this? It depends. We have already mentioned the fact that

the rationalization of a betting strategy never requires the use of degenerate proba-

bilities. More precisely, without ruling out any betting strategy, we can assume that

Adam has chosen a probability measure fi characterized by

l 0 < / < 2

for all xf. From this assumption it already follows that the prior fj, takes the fair-coin

hypothesis H into account, if implicitly.

In order to see this, remember that from a Bayesian viewpoint, H is equivalent

to the uniform prior u on rl**, i. e., we have Pru (xt+i = 0 \W* A xl) = | . Consider

another prior A on H** that is related to the old prior \x in the following way: If

PrM (xt+i = 0 | H** A x*) = p, then PrA (xt+1 = 0 | H** A xl) = f(p), where

r, N def P —

Proposition 2 guarantees the existence of A. Obviously, the old prior // is equivalent

to a probabilistic mixing of A and u: Just give a weight of / to u and a weight of

1 - / to A. If Pr,, (xt+i = 0 | V.** A x*) = p, then Pr,.u+(1_0.A (xt+1 = 0\HAxt) is

/ • | + (1 — /) • f(p), which just equals p by the definition of / . In other words: The

old prior /J, on H** can be interpreted as implicitly assigning a subjective probability

of / > 0 to (the subjectivist equivalent of) the fair-coin hypothesis H. Along these

line, we could easily show that // implicitly assigns a positive probability to (the

subjectivist equivalent of) any stochastic hypothesis anybody would like to consider.

Sets of stochastic hypotheses can be considered analogously.

This result can be used to construct very strong counterexamples to convergence.

Just assume that the fair-coin hypothesis H is true. Even if Adam assigns a positive

probability to the truth—which is a very strong bias in favor of the truth since

there is a continuum of hypotheses—, he can rationalize any betting strategy. For

example, Adam may stick in all eternity to the strategy yt+\ = xt • Y, i.e., putting

all the money on xt+\ = i if xt = i. This is perfectly rational, whatever evidence

in favor of the fair-coin hypothesis somebody else, e.g., Eve, might discover in the

observations. Of course, since Eve is a Bayesian herself, she might also start with a
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bias in favor of the truth without ever converging either to the truth or to Adam's

opinions. Any result according to which Bayesian learning leads to convergence to

the truth (i.e., to rational expectations) or to intersubjective agreement is based

on a suitable restriction of the priors. If one wants to argue that convergence is an

implication of rationality, one has to find an argument in favor of rational priors.

Rational Priors

There is a tradition in economics and game theory that tries to rule out the arbi-

trariness of priors. Some Bayesians, e.g., Aumann (1987: 7, 13f), defend the view

that, even though there are no restrictions on priors, all rational agents should hold

the same subjective probabilities if they have been exposed to the same experiences.

This view is known as the Harsanyi Doctrine or the Common Prior Assumption

(CPA). Aumann refers to Savage in this context (without giving a reference) and

conjectures that Savage would have accepted the CPA. I disagree (cf. Savage 1962:

11, 13, 14). However, Savage was convinced that in practice experience often leads

to convergence of opinion. But this is not a starting point for Bayesianism; it is

a fact in need of explanation. For convergence, one needs priors that are not too

different. The CPA just begs the question in assuming identical priors.

The CPA makes sense only if there exist canonical or rational priors before any

experience. This leads to the classical problem of whether there is an acceptable

"principle of insufficient reason" determining probabilities before experience. This

idea, going back to Laplace, has been criticized by many authors (cf. Learner 1978:

22-39, 61-63; Howson k Urbach 1989: 45-48, 285, 289; Earman 1992: 14-17, 138-

141). It had been revived by Keynes and others in the form of a theory of "logical"

probabilities, i. e., uniquely determined a priori probabilities of the logically possible

hypotheses. One of the arguments in favor of Bayesianism has been the discovery

that such probabilities do not exist.34 It seems not to be a promising way of further

34 This appears already to have been a conjecture of Ramsey, the earliest of the modern
Bayesians, who made this argument against Keynes, one of the early proponents of logical or,
as Hacking calls them, rational probabilities; cf. Hacking (1990: 165, 170). The Keynesian pro-
gram was taken up later by Carnap; it was intended to provide one of the cornerstones of logical
positivism. There is a widespread agreement today that this program foundered in just the way
Ramsey conjectured: There are no logical probabilities; cf. Howson fe Urbach (1989: 48-56).
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development to revive this idea again. As the history of the subject presents itself,

the burden of proof that there is an acceptable "principle of insufficient reason" rests

with those in favor of the CPA.

However, it is possible to distill an argument in favor of rational priors from the

results presented so far. It is worth the effort to spell out this potential argument

and to refute it.

As already mentioned, Blume & Easley (1995: 19f, 36f) demonstrate for the tent-

map dynamics that in the case of a density continuous at the starting point, the

posterior distribution will converge to the uniform distribution. The latter implies

a probability of | for xt = 0. It is tempting to interpret this result, which also holds

for the baker-map dynamics, as saying that in the long run, i.e., for sufficiently

large t, everybody with a "reasonably simple" prior over / will assign a subjective

probability of roughly | to xt = 0. "Reasonably simple" priors are those that can

be described by a continuous prior. In other words: Reasonable folks learn after

a while that this chaotic process is more or less equivalent to tossing a fair coin.

This provides an argument for starting with a uniform prior: If Adam and Eve

foresee that any reasonable prior /i for large t leads to PrM (xt+i = 0 {H** A xl) w |

independently from the actual observations x1, they should anticipate the inevitable

result of the learning process and already start with the uniform prior u that from

the beginning implies Pru (xt+i = 0 | %** A x1) = | . If this is indeed a rational prior,

then Adam and Eve should both adopt it, and Eve would be able to perfectly predict

Adam on account of the assumption that he is rational (if he actually is rational).

However, this argument is fundamentally mistaken. The result of Blume &

Easley shows that the identification of continuous densities with "reasonably sim-

ple" priors would be a big mistake. It ignores the fact that simplicity is not a

property inherent to a proposition but, if there is a tenable definition of simplic-

ity at all, a property of the way a proposition is expressed. Let A be a prior with

PrA (xt+i = 01%** A xl) = | . A cannot be described with the help of a continu-

ous density on "H**. Viewed from this perspective, the prior is very complicated.

Nevertheless, the description we have actually used is as simple as that for the uni-

form prior and arguably much simpler than any description of other priors based on

continuous but complicated densities.

Moreover, it would be a mistake to give a special status to the long-run results
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of the learning process. The decision to adopt a continuous prior is a decision to

consider 0 and 1 to be equally probable in the long-run. These long-run results

are not a result of learning; they are imposed on the learning process. Therefore,

even if one restricts priors to those describable by a continuous density, it is not the

case that one anticipates the results of learning by adopting the uniform prior from

the outset. The actual (in contrast to the possible) results of learning cannot be

anticipated by definition.

The attitude of most Bayesians concerning rational priors is probably best sum-

marized by Edward Learner. He states that rational priors, in order to reflect ig-

norance, would have to be dominated in their influence on posterior distributions

by any set of data. Such priors simply do not exist (Learner 1978: 62, 111, 114).

Although defending the Bayesian standpoint, he views it as a "critical defect" of

Bayesianism that priors are different to find for the individual and vary among

different persons (Learner 1978: 11). The importance of this fact for statistical

analysis is not our concern. In the case of decision theory, at least, it has serious

consequences.

5 Conclusion

With the help of our simple example we have shown that a perfectly rational

Bayesian decision maker can rationalize any betting strategy in advance. Bayesian-

ism is empty as a positive and as a normative theory of decision making. Moreover,

Bayesianism as a methodology for predicting the behavior of Bayesian agents is as

helpless as any other methodology.

This does not imply that every model using Bayesian learning is useless. If such

a model generates a restricted set of solutions, this results from restrictions on prior

beliefs of the agents. The combination of Bayesianism with restrictions on priors

could generate solutions that coincide with the results from a more reasonable the-

ory of rational behavior, if there is one. The solutions could even, as the proponents

of as-if reasoning never tire to point out, agree with actual behavior. However, acci-

dental success of this kind is cold comfort to those who are interested in a theory of

rational behavior. What we have shown in effect is that any application of Bayesian-
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ism just provides a special example of bounded rationality, probably without the

psychological plausibility often associated with bounded-rationality theorizing.

Let us explain this point more carefully. The real-world counterpart to the

perfectly rational (PR) Bayesian is the boundedly rational (BR) Bayesian. Let

us call these hypothetical individuals Priscilla and Brian. Brian is not logically

omniscient; he does not—although, as we have shown, he easily could—consider a

set of hypotheses sufficiently rich to rationalize any behavior. However, Brian knows

the results we have derived. He is aware of the fact that clever Priscilla is able to

rationalize any behavior and that, even if he was unable to do the same, she could

do it for him if there were a chance to ask her. Brian starts with a restricted set of

hypotheses. Moreover, there are only some prior distributions that appeal to him,

for whatever reasons. All these priors yield restrictions for his actions. Should Brian

accept these restrictions as requirements of rational behavior?

The main problem is that BR Bayesianism is a substitute for PR Bayesianism.

Brian believes that ideally he should ask Priscilla for advice. If he knows that

Priscilla would offer to rationalize anything he would like to do, why should he

accept the limits set by BR Bayesianism? It is not as if the rules of BR Bayesianism

protect against mistakes that could be identified as such by Priscilla. To Priscilla,

there are no mistakes; therefore there cannot be any protection. Why, then, should

anyone be particular about "learning" procedures? And what could be the difference

between perfect rationality and bounded rationality? If Brian applies Bayesian

procedures, he is doing nothing essentially different from applying a rule of thumb.

From Priscilla's point of view, the results can be rationalized as those of any other

rule of thumb.

Of course, Brian could reject Priscilla's point of view. If we find another theory

of perfect rationality, different rules of thumb may no longer appear to be equiva-

lent. And even if Bayesian procedures under certain circumstances get better marks

than other procedures, it will not be for Bayesian reasons. Actually, I believe that

there are bits and pieces of another theory of perfect rationality, to be found in the

methodology of science (or rather the non-Bayesian accounts thereof). But this is

another story.
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Appendix

This appendix contains a proof of the central result of the paper. This result is used

but not proved in the text. In order to make the paper self-contained, the following

subsection gives (some of the) necessary basic definitions and results presupposed

later on.

Some Important Definitions and Theorems

Def. 1 (Partition) A partition of a set A is a finite system of disjoint subsets

Ai C A, i = 1 , . . . , n with \J?=1 A{ = A.

Def. 2 (Semiring) 7Z C V{Vi) is a semiring in ft if

2. A,B eU^ ADB e1l, and

3. there exists a partition of A\B in 71 for all A, B £ 71.

Def. 3 (Ring) 71 C V(ft) is a ring in ft if

l.n^®,

2. A, B e 11 -» A U B € 71, and

3. A, B £ 71-> A\B £ 11.

Def. 4 (Algebra) A ring A C V(Vt) with ft 6 A is called algebra.

Def. 5 (cr—Algebra) A C 'P(ft) is ca//ed a-algebra in ft i/

l. ft e A

.̂ Ae A^- ft\A e ^

e w [An eA]-
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Lemma 1 For every A G T-̂ ft) there exists a smallest a-algebra containing A,

called the a-algebra generated by A and denoted by o~(A).

Def. 6 Given a sequence {An} of sets, An j . A means An+1 C An and A — fl^Li An,

and An | A means An C An+1 and A = [j^Li An.

Def. 7 (Set Functions) A function fi:7l^R, where R denotes the extended reals

and 71. C V(Q), is called a set function. For the following definitions, let 71 be a

semiring. Moreover, let A G 71 and C, G 7Z for all i, where the C{ are pairwise

disjoint. Then /J, is

• non-negative, if fi(A) > 0 for all A;
t

• finite, if |//(A)| < oo for all A;

. additive, »/JX=1 den-* /i(u?=1 Ci) = E?=I

. a-additive, if \J^1 Ct e 71

Def. 8 (Charge) A charge is a set function fj, on a semiring that is additive and

non-negative with fi($) = 0.

Def. 9 (Content) A content is a charge on a ring.

Def. 10 (Premeasure) A premeasure is a a -additive content.

Theorem 1 A finite content fi on a ring 7Z is a premeasure if and only if for every

sequence {An} in 71 with An I 0 limn-^x, fJ,(An) = 0.

Proof. Cf. Bauer (1978: 23, Satz 3.2). •

Def. 11 (Measure) A measure is a premeasure on a a-algebra.35

Theorem 2 Every finite premeasure on an algebra A C T-̂ ft) can be extended to a

unique measure on a(A).

35 Aliprantis fc Border (1994: 282) use the term measure more generally for a non-negative,
finite and <r-additive charge on a semiring. They have no special term for "measure on a cr-algebra".
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Proof. Cf. Bauer (1978: 35, Satz 5.7). Note that an algebra A C V(tt) is a ring

containing ft, and that a finite content (and therefore a finite premeasure) on an

algebra is also cr-finite (cf. Bauer 1978: 34, Def. 5.6, 35, Lemma 5.8). •

Def. 12 (Probability Measure) A probability measure is a measure \i on a a-

algebra E with //(£) = 1.

Def. 13 (Borel Sets) The a-algebra generated by the system of half-open intervals

[a,b) (where [a,b) = 0 if b < a) is called the a-algebra of the Borel sets ofR.

Lemma 2 The restriction of the a-algebra of the Borel sets to the interval [0,1) is

a a-algebra generated by the half-open intervals [a,b) C [0,1).

Proof. Obvious, since the intersection of intervals of the form [a, b) is always an

interval of the same form. •

Def. 14 (Measurable Space) A set X equipped with a a-algebra of subsets A is

called a measurable space and denoted by (X, A).

Def. 15 (Measurable Function) A function f:(X,A)^(Y,B), where A and B

are algebras of subsets of X and Y respectively, is measurable if f~x(B) £ A for

each B £ B.

Lemma 3 A function f: (X, A) i-> (Y, B) between measurable spaces, where C is a

family of subsets of Y and B = o~(C), is measurable if and only if f~l(C) £ A for

every C G C.

Proof. See Aliprantis k Border (1994: 279). •

Basic Intervals

Definitions, lemmata and theorems in this and the next section are mostly specific

to this paper.

We consider the set of intervals [a, 6) £ [0,1) that result from iterative bisections

of the unit interval. We call these intervals basic intervals. The basic intervals are

bounded by certain fractions.
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Def. 16 (Basic Intervals) The elements of the set

def
J = 0 U {/n(m): 0 < m < 2 " , m,n £ INO}

are called basic intervals. The interval l|£, ^^rO £ X, where 0 < m < 2n and

n G IN0, is called the m-th basic interval on level n and denoted by In(m). The unit

interval /o(0) is also denoted by I.

The basic interval In(m) is one of the intervals we can find by n bisections of

the unit interval. Fig. 3 illustrates the numbering of the basic intervals introduced

by the definition of In(m).

Insert fig. 3 from the end of the paper!

Def. 17 (Interval Bounds) The set

Po ^ | ^ - : n , m G IN0, 0 < m < 2n\

is called the set of bounds for the basic intervals. The set P = Po\0 is called the set

of the upper bounds.

Note that, with the exception of 1, the upper bound of one interval is the lower

bound of another.

The following properties of the basic intervals can easily be verified by a glance

at fig. 3.

Lemma 4

a) The 2n basic intervals {•/n(jrO}ro "̂o form a partition of the unit interval.

b) Let /n(m) be a basic interval and k > n > 0. The 2k~n basic intervals defined

by {h(l)}i=a, where a = m- 2k~n and b = (m + 1) • 2k~n — I, form a partition

ofln(m).
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c) Let In(m), Ik{l) be basic intervals with k > n > 0. Then

f
I (/) otherwise,

where a = m- 2k~n and b = (m + 1) • 2k~n - 1.

We will use some simple properties of infinite sequences of basic intervals. Note

that we can always transform a finite into an infinite sequence by endlessly repeating

the last element. With this convention, we subsequently assume all sequences of sets

to be infinite. Moreover, we assume that the first element of a sequence has index

0 if nothing else is said. We therefore write {An} for {An}^L0.
t

Lemma 5 For any sequence {An} in I with An J, 0 and An ^ 0 for all n, there

exists a p £ P and an n such that

for all n > n, where k: UM0'—>• INo is non-decreasing with lirrin^oo k(n) = oo.

Proof. Consider the sequence {Bn} of closures of the An. This sequence forms a

standard bisection converging to a real number p, i. e., Bn I {p}. In order for An J, 0,

there has to be an h such that p £ An for all n > h. Moreover, p must be excluded

from the An with n > n but included in their closure. Thusp must be in the set P

of upper bounds of the basic intervals. Since Bn \. {p}, p must be the upper bound

for all An with n > n. Thus the An form a subsequence of Ip — ^,p) for n > n. •

Subsequently, we will mostly be concerned with finite unions of basic intervals.

Def. 18 (Configurations) A finite union of basic intervals is called a configura-

tion. The set of all configurations is denoted by T.

Def. 19 (Uniform Partitions) A partition of a configuration into basic intervals

of level n is called a uniform partition on level n.

The following result on uniform partitions is obvious in view of lemma 4.

Lemma 6
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a) Every configuration has a uniform partition on some level.

b) If a configuration has a uniform partition on level n, it has a uniform partition

on every level n > n.

c) Any two configurations have a uniform partition on the same level.

Lemma 7 The set X is a semiring.

Proof. 1 is (i) not empty and (ii) contains 0. Lemma 4 shows that (iii) I contains

the intersection of any two elements. Lemma 6 ensures that A, B £ X have uniform

partitions on a common level since basic intervals are also configurations. Therefore,

(iv) A\B is a union of ,basic intervals. •

Theorem 3 The set T of configurations is an algebra in V(I).

Proof. T is (i) not empty, (ii) contains 0, and (iii) contains / . Let A, B be two

configurations. The definition of a configuration ensures that AUB is a configuration.

Thus we have (iv) closure under finite unions. Lemma 6 ensures that A and B have

uniform partitions on some common level n. Therefore, A P\ B and A\B are unions

of basic intervals of level n and thus configurations themselves. Thus, we have (v)

closure under finite intersections and (vi) closure under relative complementation.

Therefore, T is an algebra. •

The following result goes one step further than theorem 3.

Theorem 4 The a-algebra generated by I, denoted by a(I), is the a-algebra of the

Borel sets of the unit interval I.

Proof. a(I) containes every interval [a, b) with a < b G I. This can be seen as

follows. Any a and any b can be generated as limes of a countable sequence of

bisections, i.e., as intersection of a sequence of basic intervals of higher and higher

levels:
oo

a = f] In[m(a,n)}
n=0
oo

6= f]ln[m(b,n)}
n=0
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We get the interval [a, b) as countable intersection of sets Mn, i. e., as

oo

[a, 6 ) = f]Mn,
n=0

where
m(b,n)

Mn ^
k=m(a,n)

a(X) therefore contains all the intervals [a, b). By lemma 2, the set of these intervals

generates the cr-algebra of the Borel sets. •

Def. 20 For every sequence {An} in T with An+i C An for all n, let the strictly

increasing function k: INo i—y INo select a level on which a uniform partition of An

exists. Let the function /: INo•—> IN0 select an element 7^(n)(/(n)) of this uniform par-

tition such that Ik(n+i)(l(n + 1)) C /^(n)(/(n)). If such an element does not exist,

then use 0 instead of some /jt(n+i)(m)- Then the sequence j/fc(n)(/(n)) j _ in X is

called a basic subsequence of the sequence {An}.

Lemma 8 Every sequence {An} in T with An+i C An for all n has a basic subse-

quence.

Proof. Follows from lemma 6. D

Lemma 9 Let there be a sequence {An} in T with An I 0 and An ^ 0 for all n.

Then the sequence has at least one basic subsequence {Un} with Un ^ 0 for all n.

Moreover, for all basic subsequences {Un} of {An} we have Un 4- 0-

Proof. Assume that all basic subsequences of {An} were identical with 0 for all

n > h. Then An = 0 for all n > n by the definition of a basic subsequence, which

contradicts the assumptions of the lemma.

Assume that Un I U where U ^ 0. Then An \. A and U C A since it follows from

the definition of a basic subsequence that Anf)Un = Un for all n, which contradicts

the assumptions of the lemma. D

Def. 21 (Limit Point) Given a sequence {An} in T with An I A and A G T', a

point x £ {0,1} with An fl \x — ^r,a;J / 0 for all n is called a limit point of {An}.
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Lemma 10 Let there be a sequence {An} in T with An | 0 and An / 0 for all n.

a) {An} has at least one limit point.

b) All limit points of {An} are in P.

Proof. According lemma 9, there exists a basic subsequence {Un} of {An} with

Un I 0 and Un ^ 0 for all n. According to lemma 5, there exists a p £ P and an n

such that

for n > n and some non-decreasing function k: INo>->-INo with lim™-^ k(n) = oo. In

fact, by the definition of subsequence, Un+i C Un, which requires that k(n) is strictly

increasing in the relevant region, i.e., for n > n. Because Un is a subsequence, we

have Un fl An ^ 0 for all n. Therefore p is a limit point (see def. 21).

Let us assume that there was a limit point x of {An} with x £ P. Then An 0

\x — ^,x) 7̂  0 for all n. However, since x ^ P, there exists no basic interval such

that x is its upper bound. Thus there is always some Un £ X such that x £ Un C An.

This implies An 4- A with x £ A, which contradicts the assumptions of the lemma.

D

Lemma 11 Let C be the set of all limit points of a sequence {An} in T with An J. 0

and An ^ 0 for all n. Then between any two elements of C there must be some basic

interval that contains no elements of C. Obviously, this implies C ^ Pf) In(m), i. e.,

C never contains all points of P in some basic interval.

Proof. We derive a contradiction from the assumptions of the theorem and the

assumption that there are two points a < b £ C such that every non-empty basic^

interval [x,y) with x > a and y < b contains further elements of C. Consider a

uniform partition of An at level k. By the definition of limit points, every point in

[a, b) must be in some basic interval of the partition. Therefore, every An contains

[a, b). Thus we have proved that An \. A with [a, 6) £ A, which contradicts An I 0.

D

Lemma 12 The set C of all limit points of a sequence {An} in J- with An \. 0 and

An ^ 0 for all n is compact.
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Proof. Since C £ P, C is bounded. It remains to be shown that a sequence of limit

points converges to a limit point if it converges at all. Let {qi}°l0 be a sequence in C

converging to some point q. This means that for every open set Un C R with q £ U

there exists an k such that g, £ Un for i > k. Let Un = (q — ^,qj U \q,q+ j ^ ) .

Since with every limit point some open set containing the limit point is in Un, and

since every open set containing a limit point has a non-empty intersection with every

An, we have An D Un ^ 0 for all n. Now assume that the upper part \q,q + -^j of

each Un always contained a point of the sequence. From this it would follow that

A | A with q £ A: An n \q, q + ^ J is never empty, which implies that each An

has to contain some basic interval \q, q-\- ^). Since A \. A =£ $ contradicts the

assumptions of the lemma, there has to be an / such that qi £ (q — £;,q) for i > I.

This implies that An D \q — ^, q) ^ 0 for all n. Applying definition 21, we find that

q £ C. Therefore C is compact. •

Our considerations are based on intervals [a, b). There exist analogous definitions

and results for intervals (a, b]. All proofs can be applied mutatis mutandis. We

therefore omit all proofs for the respective lemmata and theorems.

Def. 22 (Inverse Basic Intervals) The elements of the set

Xd={(a,b): a,beP, a < b}

are called inverse basic intervals.

Def. 23 (Inverse Configurations) A finite union of inverse basic intervals is

called an inverse configuration. The set of all inverse configurations is denoted

byT.

Def. 24 (Inverse Counterparts) The inverse counterpart of a basic interval 1n(m)

is the inverse basic interval ( f s - , 2 ^ denoted by In(m). The inverse counterpart

of a configuration A is the inverse configuration A that results from replacing the

basic intervals in any uniform partition by their inverse counterparts. The inverse

counterparts of the elements ofX and T are the elements in X and J- of which they

are inverse counterparts.
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Theorem 5 The setX of inverse basic intervals is a semiring. The set T of inverse

configurations is an algebra in V(I).

Theorem 6 For every sequence \ An > of inverse configurations with An 4- 0, there

exists either an n such that An = 0 for all n > n, or a compact set C of limit points

with £ C P 0 \ l .

The following theorem connects limit sets of sequences with limits of sequences

of inverse counterparts.

Theorem 7 For every sequence {An} of configurations with An | 0, there exists

either an n such that An = 0 for all n > h, or a compact set £ of limit points with

£ C IP. In the latter case we moreover have An \. C, where An denotes the inverse

counterpart of An.

i

Proof. The first sentence is just a summary of previous results on limit points and

therefore requires no additional proof. Thus we concentrate on the second sentence.

From the definition of a limit point, we know that for all p £ £ the intersection

An H \p— ~^,pj is never empty. Thus there exists some non-decreasing function

k: IN0"—̂  IN0 with limn_>.oo k(n) = oo such that

is a basic subsequence of {An}. Then

is a subsequence of JAn}, and An \. A with p £ A. Since the same argument holds

for every p £ £, we have shown that £ C A. It remains to be shown that A C. C So

let x £ A. This implies x £ An for all n and therefore An D \x — ^r ,z j ^ 0, which

implies a; £ £ by the definition of a limit point. n

Basic Charges

We define a finite charge on X (called basic charge) by attaching numbers between

one and zero to each basic interval In(jn)- The extension of a finite charge on X to a
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finite content on the algebra T is trivial. We then use the concept of limit points of

a sequence An I 0 in J- to find a necessary and sufficient condition for the extension

of the content on J to a probability distribution on the cr-algebra of the Borel sets

of the unit interval / . This extension follows from standard theorems once we have

shown that the content on T is cr-additive and hence a premeasure.

Def. 25 (Basic Charge) Let there be a real number qn(m) £ [0,1] attached to each

basic interval In(m). Let these numbers have the property qn(m — 1) + qn(m) = 1 if

m > 0 is odd. The set function /u: Xi—>• R+ recursively defined by

r

0

1

m - 1
2

(f)
)]• qn(m)

h(m)

if

if

if

if

A = 0
A= I

A T (m\
/i — in\m)

A = In(m)

with

with

m

m

>

>

0

0

odd

even

is called a basic charge.

The recursion works as follows: Consider a sequence {A n } n = 0 of k + 1 basic

intervals with the property An 4- Ak where no level from 0 to A; is left out. So Ao is /

and Ak = Ik{m) for some 0 < m < 2k. Then qk(m) is the product of all the ^-values

connected with the precursors of Ak in the sequence. In constructing the sequence,

there are always two possibilites for the next step given the first n steps: taking

the higher or the lower of the two subintervals on the next level. The ^-values for

these two possibilities add to 1. This construction principle obviously leads to the

following properties of the function /u.

Lemma 13 The basic charge has the following properties, where the second is a

generalization of the first:

a) 2±\
m—0

b) J2 At(^n(m)) = /•'(•̂ fc(O) tf the basic intervals In(m) with m £ M. form a
meM

uniform partition of Ik(l)

Lemma 14 The basic charge is a finite charge on X.
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Proof. (i) X is a semiring, (ii) Lemma 13 in effect states that the basic charge is

an additive set function, (iii) //(0) = 0 as well as (iv) non-negativity are already

part of the definition, (v) Finiteness again follows from lemma 13 and the recursive

definition of the basic charge. •

An extension to the algebra T of configurations is trivial.

Lemma 15 Let fi be a basic charge on X. Let the function fi*:F*-+ [0,1] be defined

by

7 1 = 1

where the Cn form some uniform partition of A. fi* then is a finite content on T.

Again, all the definitions and results apply mutatis mutandis to inverse basic

intervals and configurations. We summarize these trivial facts in the following the-

orem. /

Theorem 8 Let fi be a basic charge on X and fi* its extension to T. Let

and p,*:Jri-}R+ be defined by the condition that inverse counterparts are assigned

the same value by JJL and ft and fi* and Jl*, respectively. Then jj, is a finite charge

(called inverse basic charge) on X and jl* is a finite content on T'.

We now give a necessary and sufficient condition for the basic charge to induce

a probability measure on a(X).

Theorem 9 Let fi be a basic charge on X and fi* its extension to J-. Let jl be the

inverse basic charge and jl* its extension to T. fi* can be extended to a probability

measure on a(X) if and only if the following condition holds: For any £ C P and-

for all sequences \An\ in T with An \. C, lim^oo jl*(Anj = 0. The extension is

unique.

Proof. We first show that fi* is a premeasure on T, which is a necessary condition

for its extension to a probability measure, fi* is a finite content on an algebra.

According to theorem 1, fi* then is a premeasure if and only if lirrin^oo fj,*(An) = 0

for all An 4- 0- According to theorem 7, either (a) An = 0 for some ft or (b)

there exists a compact set of limit points £ £ P. lirrin-Kx, fi*(An) — 0 is trivially
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fulfilled in case (a), as the definition of the basic charge shows. We therefore con-

sider only sequences An 4- 0 with An ^ 0 for all n. Then theorem 7 shows that

An 4 £, where An is the inverse counterpart of An. However, by the definition of

the inverse basic charge and its extension, fl*(An) = fi*(An) for all An and thus

lim^oo jl* (An) = limn_).oo fi*(An). Therefore lim^oo jl* (Anj = 0 is necessary and

sufficient for l imn-^ fi*(An) = 0. Since we obviously can construct a sequence An for

any predetermined set of limit points (by considering an infinite union of sequences

of basic intervals generating these limit points), the condition of the theorem is

necessary and sufficient for limn-Kx, fi*(An) = 0 to hold for all sequences {An} with

An 4- 0 and An / 0 for all n.

The rest of the proof is simple. We have already shown that the cr-algebra

generated by T is the <7-algebra of the Borel sets of / . Theorem 2 allows us to

extend the premeasure fi* in a unique way to the cr-algebra of the Borel sets. Since

fi*(I) = 1, we1 have shown that the basic charge under the conditions of the theorem

induces a unique probability measure on / . •

A Probability Measure on the Cantor set

We now consider the Cantor set C = {0,1}°° of all infinite sequences of Os and Is.

In the text this set is denoted by So, the state space of observables. The following

considerations are less formal than those of the last two subsections.

Consider the metric on C generated by

OO I i / |

,/ \ def v—v \Xn i/n

d{xy) £71=1

where xn and yn are the n-th element in the sequences x and y, respectively. The

topology T induced by this metric is a system of open sets determined by

£<?: d(x,y) <r £ IP

Each sequence in this set agrees on the first t elements xt = (XQ, ... ,xt), where t

falls if r rises (cf. Aliprantis k Border 1994: 93). We consider the cr-algebra <x(T)

generated by the topology T. This is the cr-algebra on the state space of observables

used in the text.
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As has been demonstrated in the text, each xf corresponds to a unique basic

interval and vice versa. There is a one-to-one function / : a(X) (->• cr(T)] this function

is described in the text with the help of the baker-map dynamics. The function is

measurable since the inverse image of an element of T is always in the cr-algebra

a(X). Therefore, a probability measure on a(X) induces a probability measure on

cr(T). However, by theorem 9, the measure on the Cantor set will always have

the property that measurable sets of sequences with a finite number of Os have

probability 0.

In the text, this restriction is overcome by using another mapping from a(X) to

cr(T). This mapping can be defined in the following way. Let g:a(C)^a(C) be a

function that takes the open set corresponding to x* to the open set corresponding

to y*', where t' = t div 2 and y1' is defined by deleting every odd-numbered element

in xl. Let h = g o f. Then h is measurable since both / and g are measurable.

The inverse image under h of an element of T is always a finite union of disjoint

intervals from X. Again, the measurability of h ensures that a probability measure

on a(X) induces a probability measure on a(T).

56



1/2

Fig. 1: A chaotic clock. The figure illustrates the baker-map dynamics as behavior of

a chaotic clock. There is one pointer that can point to all real numbers in the intervall

/ = [0,1), where the vertically upward position is zero and the vertically downward position

is | . Initially, the pointer deviates by an angle u — 20TT from the vertically upward position,

thus pointing at the real number 9. A t £ = l , 2 , . . . , o o , the pointer moves by doubling the

angle u. If the pointer comes to rest in the first half of the dial, the screen of Adam's black

box shows 0; otherwise it shows 1.
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Fig. 2: Illustration of the example by a tree diagram. The abscissa shows the set / of all
possible starting points 9 for the process described by (6). The ordinate shows a subjective
density f(9) on /. Below the coordinate system is the tree of possible sequences of Os and
Is for T = 4 periods. The left branch of each node corresponds to the occurrence of xt — 0.
The sequence of Os and Is determined by 9 £ A (where A is the basic interval /4 (11)) is
given by the unique path through the tree leading to A. For T = 4, all 9 in A lead to the
same path (indicated by solid lines) since their dyadic development is identical for the first
four places. Thus the subjective probability for the solid-line path is fA f(9) d9.
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ig. 3: Basic intervals. The figure demonstrates the numbering of the basic intervals.


