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Abstract

This paper provides a model of natural resource
exploration, where the sole motivation to explore arises
from a strategic incentive to preempt competitors. It is
assumed that private ownership rights over a finite
unexplored and commonly held resource stock can be
established through a costly deterministic exploration
process. The open-loop and the feedback Nash equilibrium is
analysed. It is shown that in between intervals of soaring
exploratory activities there may be an interval where
exploration is declining over time.
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1. INTRODUCTION

In the economic literature, two motives for natural resource

exploration have been extensively discussed. The first is the

incentive to obtain information, where exploration is seen as

an input into the production of information on the uncertain

size or quality of the resource stock. (For example see Gilbert

(1977, 1979), Deshmukh and Pliska (1980), Arrow and Chang

(1982), and Hartwick (1983).) The second is the incentive to

save on extraction costs through exploration if costs vary

inversely with the size of proven reserves. (For example see

Peterson (1978), Pindyck (1978, 1980).)

In the model presented here the reason for engaging in a

costly exploration activity is different. The abovementioned

exploration incentives are absent because, by assumption,

uncertainty does not exist and resource extraction is costless.

However, a finite stock of unexplored natural resources is

assumed to be the common property of a given number of firms,

and private property rights over the as of yet unexplored

resources can be established through a costly deterministic —

"exploration process. Thus resources appropriated through

exploration are lost to other firms. This gives resource

exploration a strategic dimension since each firm has an

incentive to preempt its competitors on the commons by building

up a private stockpile of explored resources. The firms'

decision problem consists of balancing this incentive to



preempt (in order not to be preempted) against the incentive to

save on discounted exploration costs by keeping a low stock of

claimed resources. In order to focus attention solely on the

strategic interdependency of the firms on the commons, market

interdependencies are eliminated by assuming perfectly

competitive resource markets. 1 The gold rushes in the 19th

century provide an illustrative example for the situation

discussed in this.paper.

The model can also accommodate a number of contemporary

situations including those listed below.

Under the U.S. Mining Act of 1872 and the Mineral Leasing

Act of 1920, the federal lands are open to the public for

certain types of mineral exploration. If private party

prospecting is successful, the title to the minerals is

transferred in fee simple to the prospector. (See Krutilla and

Fisher (1975, p. 21) and Peterson (1978).)

Eckert (1974) and Lecomber (1979, p. 57f), amongst others,

have argued that exploration of the deep sea floor establishes

private property rights over previously undiscovered commonly

held manganese nodules.

A widely discussed common property problem is the case of

common pool oil extraction. More recent discussions on this

topic can be found in McMillan and Sinn (1984), Eswaran and

Lewis (1984) and Reinganum and Stokey (1985). The model to be

presented in this paper can accommodate this case if the

exploration rate is interpreted as the rate of oil extraction

from the common pool, the stock of explored resources as the



stock of oil kept in private storage, and the extraction rate

as the rate of sales drawn from those stores. 2

In section 2 the exploration model is developed as a

differential game. In sections 3 and 4 the feedback and the

open-loop Nash equilibrium is calculated. It is shown that in

the former the rent on claimable reserves is completely

dissipated while in the latter rent is strictly positive. A

notable property of the constrained equilibria is derived;

namely that in between intervals of growing exploration

activity there is a phase of declining market exploration in

the open-loop equilibrium while in the feedback equilibrium

market exploration is stagnant in that intermediate interval.

While in sections 3 and 4 firms are exogenously restricted

to play feedback or open-loop strategies respectively, in

section 5 the Nash equilibrium is derived under the assumption

that firms are free to choose between these different types of

strategies. It is shown that, if the choice between open-loop

and feedback strategies is endogenously determined, the

equilibrium to the exploration game is the open-loop Nash

equilibrium. In the remainder of section 5 some properties of

the open-loop Nash equilibrium are given. Section 6 concludes

the paper with some remarks on problems closely related to the

exploration game discussed in this paper.



2. THE MODEL

There is a given number n, n > 2, of symmetrical firms in a

competitive market for a nonrenewable natural resource of

homogenous quality. Let P = f(qm) be the inverse demand

function for the resource with f'(qB) < 0, and where

qm s Sj^q 1 is the rate of market extraction and q1 is the

extraction rate of firm i. 3 There is a finite cutoff price

Pc = f(0) < oo. Exhaustibility of the resource implies that

P = Pc in finite time tc. For simplicity, it is assumed that

the firms' time horizon, t3, is finite and t3 > tc • The

interest rate is fixed at r. Resource exploration is a

deterministic process so that the rate of exploration, s1 ,

equals the rate of discoveries.

Resource extraction is costless. However, exploration

costs for firm i, Cfs1), are a function of firm i's exploration

rate with C (si ) > 0, C'^s1) > 0. The model allows for

positive flow fixed costs which are incurred until exploration

is terminated for good. Thereafter no costs accrue in operating

the firm. For simplicity, we define t = 0 as the date when

exploration commences. Then necessarily inf[C(s1)/si ] < P at

t = 0.

R1 is the stock of explored resources at t in the

possession of firm i. This stock changes through time according

to

R1 = a' - q1 i = 1,...,n. (1)



Clearly R1, s1 and q1 are constrained to be nonnegative at

all times.

X is the common stock of unexplored resources at time t

over which firms can establish private property rights through

exploration. Therefore the change through time of X

is given by

X = - 2 s1
i = 1

(2)

Let T1 be the time when firm i terminates exploration for good.

Then firm i, i = l,...,n, is constrained by X > 0. The

state of the system at t = 0 is given by <R£,...,Rg,XQ> s zo,

with R̂  > 0, i = l,...,n, and XQ > 0.

The decision problem for each player then is

max J
qi ,si

=oj [p"
-rt

)]«e dt

W1

subject to equations (1) and (2) and

R*Tl2: 0, XT. > 0, si > 0, qi > 0,

T T 1

XQ given, and

"xi

given, where

> •

max . 3 P«qi «e dt

subject to

Ri = - qi , qi > 0, R* given, and Rj, > 0

and where qj, sj, j * i = l,...,n,

is taken as given by player i, i = l,...,n.



The optimization problem is set up to explicitly allow for

an eventual second phase [ri,t3], where a firm continues to

extract from its stock of claimed resources though exploration

is terminated for good at xi . Each firm i can freely set T1 in

the interval [0,t3], given Xxi > 0. At T 1, firm i ceases to

be a player in the exploration game.

We are interested in the properties of the optimal

feedback and open-loop strategies along the equilibrium
t 3 t 3

price path {P*}0 . To that end, some properties of {P*}0

are given:
t 3

Lemma 1. The equilibrium price path {P*}Q has the

following properties:

(i) {P*}o is continuous,

(ii) P* = Pc , all t > tc .

(iii) Whenever at least one firm i is unconstrained with

respect to A* > 0, P*/P* = r.

(iv) If all firms are constrained with respect to Ri > 0,

i = 1,...,n, P*/P* < r.

Proof, (i) and (ii): obvious, (iii): If at least one firm

is unconstrained, then the market can be supplied at zero costs

from private stockpiles, (iv): If all firms are constrained,

the marginal unit can be put on the market only at the marginal

'extraction costs' C'(s4). Conversely, if P*/P* < r no firm

will hold the asset 'claimed reserves'.!



3. THE FEEDBACK NASH EQUILIBRIUM

Feedback strategies may depend on time and the current state of

the system z = <RX,...,Rn,X>.

D_ejF _ijn_i._t;_̂ . o n 1 :

The s e t o f a d m i s s i b l e f e e d b a c k s t r a t e g i e s i s

Q̂ . = { q 4 ( t , z ) | qi > 0 , a l l ( t , z ) 6 [ 0 , t 3 ] x B}

S^ = { s i ( t , z ) | s i > 0 , a l l ( t , z ) e [ 0 , T * [ x B}

w h e r e

B * [ 0 , Ri + XQ ] x • • • x [ 0 , Rg + XQ ] x [ 0 , X Q ] .

and where we require

(i) q1(t,z) and si(t,z) to be continuous in (t,z), and

(ii) kq(t)«|z - z| > Iq^t.z) - q^t.z)! for some kq(t) > 0

ks(t)*|z - z| > •\si(tiz) - si(t,z)| for some ka(t) > 0 ,

where kq(t), ka(t) are nonnegative integrable functions

over [0,t3], [O.x1] respectively.

Conditions (i) and (ii) of Definition 1 ensure the existence of

a unique state trajectory through every initial value of zo.

Optimal feedback strategies can be determined recursively

applying the method of dynamic programming. To that end let

to = 0 and let

Vi(to.Zo) = SUP 0|
T [P-qi(t.z) - C(s*(t,z))]»

s'(t,z)

-rt
e - dt

-rt'
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subject to the conditions in problem (3). Define the

Hamiltonian

Hi = [P.qi(t.z) - C(s4(t,z))]*e~rt

+ 2

2 s<> (t,z) .
i

Let Q1 be the multiplier associated with the constraint

> 0. 4 Then an optimal feedback strategy must satisfy

dV'(t,z)/dt + max (H1 + Qi 'R1) = 0 (4)
€ Qi

6 S*.

qi(t.z) € Qi

at each point of differentiability of V^t.z). By the strict

convexity of the cost function these conditions are also

sufficient. Carrying out the optimization in.(4) entails

P-e rt = av'/aR' , (5)

[P - C(s1(t,z))]«e = SV/aX. (6)

These conditions do not require qi(t,z) to take any specific

value. It therefore can be assumed that qi(t,z) is some

function of time q#i(t) being the solution to

S" = 1q
j(t,z) = f-i(P*). Letting V£ -H dVi/dX, the candidate

functions satisfying equation (6) can then be expressed as

s^CtjZ.V'). The Hamilton-Jacobi equations are



[P*-q*i(t) - C(si(t,z,Vi))]-e

- 2 dVl/dRJ ''[s-* (t,z, VJ ) - qJ(t,z)]
j = 1 t x

x j = l
2 sJ (t.z.VJ) + Qi -Ri = 0 , (7)

x

where dV1/dR^ = P*-e , and where

Ri <"> 0 whenever Q1 <*> 0 , i = 1 n

The following lemma is proved in Appendix 1.

Lemma 2. There exists an optimal feedback strategy for

each firm i, i = l,...,n, consisting of functions q*i(t) and

s*i(t), dependent only on time, where s*i(t) is the solution to

= P*, all t € [0,v*[.

Remark 1. The strategy (q*i(t),s*i (t)) is firm i's optimal

feedback strategy for any chosen strategies of the other firms,

because for equations (A2) the Hamilton-Jacobi equation (7) is

independent of sJ and qJ for all j * i.

Remark 2. Since C'(s*i(t)) = P*, the intertemporally

optimal feedback exploration rate in each moment is the same as

the optimal static strategy. The latter is the 'maximal'

exploration rate a firm sensibly may consider under
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intertemporal and static optimization, since the rent on

unclaimed resources, V£ is completely dissipated under this

policy. 5

By the value function (Al), V^t.R 1) = R*-P*•©-'*, all

t > T 1. Hence the stock of claimed resources must be exhausted

in an optimal program once the cutoff price is reached. By

(iii) of Lemma 1, and Lemma 2, s#i(t) > 0 as t -* T1 .

However, qm -* 0 as P* -• Pc so that R* c > 0 if x
l = tc .

Therefore xl < tc in an unconstrained optimal program. No one

firm will terminate exploration for as long as claimable

resources are available. Consistency of the individual programs

in a Nash equilibrium then implies T1 = x, i = l,...,n. The

following proposition now follows directly from Lemmas 1 and

2.

Proposition .1. There exists an unconstrained feedback Nash

equilibrium in which firms have extraction and exploration

strategies which are functions of time only such that

(i) s*i (t) is the solution to C'(a'(t)) = P*, all

t € [0,v[, s*i(t) = 0, all t > T = r', i = 1, . . . ~n,

(ii) q*l(t) is a solution to f[Zj"=1 q
J(t)J = P*,

(iii) P* = Pc-e~
r(tc~t) all t e [O,tc],

P* = Pc all t > tc, and
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(iv) tc > r > 0, where

v is the solution to Xo = J Z*=1s*i(t) dt,

and where tc is the solution to
[tc n

Xo * Z°ml R£ - „] - Z;,,q"(t) dt.

Remark 3. The unconstrained feedback Nash equilibrium

consists of two phases. In the first, exploration increases

over time such that discounted marginal exploration costs are

constant, until the common property resource is completely

privatized. In the second, firms supply the market exclusively

from a stock of claimed resources.

For a ceteris paribus initial unexplored resource

endowment of sufficient size, the feedback Nash equilibrium is

constrained. In the unconstrained equilibrium, dP*/dXQ< 0.

By Lemma 2, for a low enough P* the initial market exploration

rate, sj*, must be declining if Xo is further increased. Since

dqg/dP* < 0, initial market extraction must therefore exceed

initial market exploration for large enough Xo. Claimed market

reserves, Rm, therefore must decline over an initial

interval until sm > qm. Cumulative sales drawn from Rg

must increase as P* decreases. Therefore, given R"}, there

must be a function Xo = X(R°) such that the feedback Nash

equilibrium is effectively constrained by R1 > 0,

i = 1, . . . , n, if Xo > Xo.

Proposition 2. There is a number Xo such that for Xo > Xo

the feedback Nash equilibrium is constrained. A constrained

feedback Nash equilibrium, in which the extraction and

exploration strategies depend only on time, has properties (i)

and (ii) of Proposition 1 and
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(iii) P* = Pi-e r(tl~t) an t € [O,ti[,

P* = Pi all t € [ti , t2 [,

P* = Pi-er(t~t2) all t e [t2ftc],

P* = Pc all t > tc,

Pi is the solution to P* = f[s"=1 s*i(t)f, and

(iv) tc > v > tz > ti > 0, where
n f tc n

tc is the solution to Xo + JV -̂ff*, = S .=1q*i (t) dt,

fr n
r is the solution to Xo = S._1s*l(t) dt,

t2 is the solution to Pi me = Pc ,

and where ti is the solution to
n

i
[ t i n f ti n

o\ ^ - i 5 " ^ d t = o\ *i**

Proof, (iii): By Lemma 2, sign s*i(t) = sign P*,

i = l,...,n. Since f'(qm) < 0, P* = 0 in the constrained

interval [ti,t2[ where sm = qm by definition, (iv): Since

sm = qm in [ti,t2[, P* < Pc in [ti,t2[. Hence Xz < tc . By

(iii) of Lemma 1, and Lemma 2, it then follows that x < tc or

else Ric > 0 which would violate (Al). Therefore,

tc > x > t2 > ti > 0 in a constrained equilibrium. The

remainder of (iii) and (iv) is straightforward. 1

Remark 4. In the constrained feedback Nash equilibrium

with a positive initial stock of claimed resources there is an

interval of stagnant exploration activities in between

intervals of growing exploratory efforts.
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THE OPEN-LOOP NASH EQUILIBRIUM

Open-loop strategies depend on time and the initial state of

the system.

The set of admissible open-loop strategies is

| qi(t) 6 Qi}

SJ = {si(t) | 8*(t) 6 Q'}

Optimal open-loop s t r a t e g i e s can be c a l c u l a t e d applying

control theory. From the necessary condi t ions for an optimal

open-loop s t r a t e g y for problem (3) we obtain

8* = P* - C ' ( s i ( t ) ) , (8)

a l / 8 * = r , (9)

p* = r . p * - Qi f (10)

Qi > 0 , Ri 5 0 , Qi «Ri = 0 , (11)

and the t r a n s v e r s a l i t y cond i t i ons

P*Tl> dWi(RiT i ,Ti)/dRi t i , R ^ - t P * ^ - dWi(Rix i ,r i) /dRiT i] = 0, (12)T l > d W ( R T i , T i ) / d R t i , R ^ t P ^ d W ( R x i , r i ) / d R T i

XT1> 0 , 8ixl> 0 , 8iTi -X x i= 0 , (13)

~ r T[ C ' ( s i ( T 1 ) ) « s i ( T 1 ) - C ( s i ( T i ) ) - S i . e " 1 ' 2 s J ( x * ) ] • e
0 j / l

> 0 , ( 1 4 )
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with strict equality if t3 > xl. 81 is firm i's resource rent

associated with the stock of unclaimed resources X. 6

Conditions (8) - (14) do not require ql(t) to take any

particular form. Therefore we can set qi(t) = q*i(t).

In case there is no second phase dW1/3R1.= 0 in

equation (12) so that in this case RlTi
= 0.

The optimization of the second-phase plan (if one

exists) is a standard problem. By property (iii) of the

equilibrium price path, P*/P* = r during firm i's second

phase. Hence ^Vi/^Ri.= P*. in equation (12). Furthermore

Ri = 0. But for a given cumulative extraction in the second

phase and an exponentially growing price,

= 0 .

Hence condition (14) implies

C (S1 (Ti ))«Si (Ti ) " C(Si(Ti)) - Si-e^'- 2 S^T1) > 0, (15)
0 j*i

with strict equality if t3 > T1. The proof for the following

lemma is given in Appendix 2.

Lemma 3. An optimal open-loop strategy consists of

functions q*i(t) and s**i(t), where s**i(t) is the solution to

C'fs^t)) = P* - di-ert, all t e [0,Ti[, and where 6£ > 0,

r'' < tc , and X r,= 0, i - 1, . . . ,n.

Remark 5. If players are symmetrical, a rational player

must expect others to be rational the same way as he himself

is. Since it is optimal for firm i itself to continue

exploration until X is exhausted, it is rational for this firm
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to expect 2. ,.si(xi) > 0 in case the exhaustion date is set

at a marginally later date. That is, a rational firm will not

conceive it possible to establish private property rights over

unclaimed resources simply by restraining exploration in order

to extend the exhaustion date past the date when all other

firms will have terminated exploration.

Remark 6. The difference between the optimal feedback and

the optimal open-loop strategy can be traced to the players'

ability to influence the duration of the game. Calculating the

optimal strategy recursively makes it optimal to claim as much

of the common stock left for exploration in the last moment of

the game, T1, as is optimal in a static game (compare Remark

2). This recursively accounts for the dissipation of rent at

earlier moments of an optimal feedback program. But it also

accounts for a reduction of the duration of the game (relative

to the open-loop case). If the game were of fixed duration,

then such a policy were not admissible, and a feedback optimum

depending on time only would necessarily coincide with an open-

loop optimum (Basar and Olsder (1982), section 6.2.2). 7

The open-loop Nash equilibrium can be characterized as

follows:

Proposition 3. The open-loop Nash equilibrium,

unconstrained by R' > 0, i = l,...,n, has the properties:

(i) 8Q > 0, and s**i(t) is the solution to

C'(si(t)) = (Po - 6io)'e
rt, all t e [0,v[,

v - v', i — l,...,n,
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(ii) q*(t) is a solution to f[S.=1q
i(t)] = P* ,

i — 1, . . . , n ,

(iii) P* = Pc>e~r(tc~t) all t e [O,tc],

P* = Pc all t > tc ,

(iv) tc > v > 0 , where
[r n

T is the solution to Xo = \ Si=1s**l(t) dt ,

and where tc is the solution to

X° + Si-x Rio =

Proof. Straightforward or else given in the proof to Lemma

3.

There is a number Xo, Xo = Xo(R"), such that the open-

loop Nash equilibrium is constrained if Xo > Xo . From

Propositions 1 and 3 it follows that Xo > Xo for all Rg,

that is to say, Xo may take values for which the feedback

equilibrium is unconstrained whereas the open-loop equilibrium

is constrained.

Proposition 4. For Xo > Xo the open-loop Nash —

equilibrium is constrained by R' > 0, i = 1, ...,n. In addition

to (ii) of Proposition 3 the constrained equilibrium has

the following properties:

(i) <?£ > 0, and s**i(t) is the solution to

C'Ca^t)) = P* - S1o-e
rt , all t e [0,v[ such that

s**(t) is increasing in t, all t € [O,ti[ and all

t e [t2,v[, s**'(t) is decreasing in t, all

t e [ti ,t2 [, v = T', i = 1, . . . ,n,
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(iii) P* is continuous such that

P* = P*'ert all t e [O,ti [ ,

r > P*/P* > 0 all t € [ti,t2[ ,

P*/p* * r all t e [t2)tc[ ,

P* = Pc all t > tc ,

where P*Q is the solution to

n f tl n f ti rt
Si=i Rio +

 0\ Si=1s**i(t) dt = 0\ f-UPo-e ) dt ,

(iv) tc > r > t2 > ti > 0 , where

tc is the solution to Xo + %"=1 RQ = J *2t"s 1 q**(t) dt

f r n
r is the solution to Xo = 2. =1s**

i (t) dt ,

t2 is the solution to Pc •e~
r'tc ~tz = f[S."=1s**

i(t2)],

ti is the solution to Po-ertl = f[S."=1s**
i(ti)] .

Proof, (iii): Only r > P*/P* > 0 in the constrained

interval [ti,t2[ is not straightforward. In Appendix 2 it was

shown that r > P*/P* > 0. Suppose P* = 0 in [ti,t2[. Then

qm = 0 in [ti,t2[, and by Lemma 3, si(t) < 0,

i = l,...,n. However, R1 = R1 = 0 so that q£(t) = si(t)

in [ti,t2[, i = l,...,n. Hence r > P*/P* > 0 in [ti,t2j_.

(i): Follows from Lemma 3 except that the market

exploration rate is declining in [ti,t2[. By (iii), P* > 0

in [ti,t2[. Hence qm = sm < 0 in [ti,t2[.

(iv): By Lemma 3, T1 < tc. Rj„= 0, i = l,...,n.

Hence t2 < T1 = T or else {P*}T could not be sustained.

The remainder of (iv) is straightforward. J 8
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The constrained open-loop Nash equilibrium is illustrated

in Figure 1.

Remark 7. With reference to Remark 5, the equilibrium is

stable in the sense that a firm i can have no incentive to

restrain its own exploration with an eye to being the sole

explorer past the equilibrium T.

Put Figure 1 about here

Remark 8. There can be only one constrained interval.

After a constrained interval, market exploration is increasing

and exceeds market extraction which is decreasing

so that Rm > 0. Hence the end of a constrained interval

cannot preceed the beginning of another constrained interval. 9
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5. ENDOGENOUS CHOICE BETWEEN FEEDBACK AND OPEN-LOOP STRATEGIES

In the previous analysis the firms were exogenously restricted

to either feedback or open-loop strategies. A natural question

is what will be the Nash equilibrium for this game if firms are

free to select from among feedback and open-loop strategies.

Then the set of admissible strategies is given by Definition 1,

because strategies which depend only on time are contained in

the sets Qi, and S^ . However, contrary to the case discussed in

section 3, if a firm restricts itself to the subset of

strategies which depend only on time, it may choose a strategy

which does not satisfy the criterium of recursive optimality,

i.e. a strategy which is not perfect in the sense of Selten

(1975). A Nash equilibrium for this game is defined as follows:

PlM.i.ll. 3: T h e strategy 2n-tuple

(q1(t,z),s1(t,z),...,qn(t,z),sn(t,z)) is a Nash equilibrium

for the game where firms can choose open-loop and feedback

strategies if and only if

(i) qi = qi(t.z) e Qi, s1 = si(t,z) € S*, i = l,...,n,

(ii) (qi.s1) may be imperfect if qi and s1 are

independent of z, i = l,...,n, and

(iii) Ji (ql ,sl , . . . ,q" ,S") > Ji(ql,S1,...

for all qi(t,z) e Qi and all si(t,z) e Si,
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An equilibrium for this game can take one of three forms. All

players choose their optimal open-loop strategy, all choose

their optimal feedback strategy, or k players, 1 < k < n-1,

choose open-loop strategies and n-k players choose a feedback

strategy.

It will be shown that the Nash equilibrium for this game

is the open-loop Nash equilibrium defined in Propositions 3 and

4. To that end it will be shown that Lemmas 2 and 3 pertain to

the case where the choice between open-loop and feedback

strategies is endogenously determined.

Suppose player i is considering to choose a feedback

strategy. Then the optimal feedback strategy must satisfy

equation (7), where sj and q-> , j * i, depend only on time if

firm i expects firm j to choose an open-loop strategy.By Remark

1, the value function (Al) is a solution to the Hamilton-Jacobi

equation for any choice of other firms between open-loop and

feedback strategies. Consequently Lemma 2 also applies to the

game discussed in this section.

Now suppose firm i considers to choose an open-loop

strategy. It must expect that all other firms j,

j *• i = k + l,...,n, which are expected to choose a feedback

strategy will select the dominant feedback strategy

(q*J(t),s*J(t)). Firm i therefore must expect that the

strategies of all n firms are functions of time only. Hence,

firm i's optimal open-loop strategy must satisfy conditions (8)

- (14). Lemma 3 therefore also applies to the game where the
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choice between open-loop and feedback strategies is

endogenously determined. By Lemma 2, the optimal feedback

strategy belongs to the set of admissible open-loop strategies.

However, by Lemma 3, it is not an optimal open-loop strategy,

and therefore (q**(t),s*i(t)) must imply a lower payoff than

(q*1 (t) .s**1(t)). Therefore we can establish:

Proposition 5. The open-loop Nash equilibrium is the

equilibrium for the exploration game where firms are free to

select open-loop and feedback strategies and rank all

strategies according to the associated stream of payoff.

In the remainder of this section some properties of the

open-loop Nash equilibrium are given.

Proposition 6. The open-loop Nash equlibrium is

inefficient compared to total surplus maximization.

Proof. If n = 1, problem (3) characterizes the

optimization problem of a social planner maximizing total

surplus. All the optimality conditions for an optimal open-loop

strategy also apply to the social planning problem except

condition (15), which is replaced by C ' ( S ( T ) ) > C(s(T))/s(T) .

Hence S(T) > 0 if there are positive flow fixed costs, so that

T < tc and the transversality condition must hold with strict

equality. If there are zero flow fixed costs, S(T) = 0 is

possible, also implying strict equality of marginal and average
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costs. Comparing C ' ( S ( T ) ) = C(S(T))/S(T) with equality (15),

and noting that 8£ > 0 in the open-loop Nash equilibrium,

reveals that the final exploration rate is excessive in the

open-loop Nash equilibrium. By backward induction, the open-

loop equilibrium exploration then is excessive in at least a

final interval, which in the case of the unconstrained

equilibrium extends until t = 0. J 10

Proposition 7. As n -» <», the open-loop Nash equilibrium

has the properties:

(i) lim 6* = 0 and lim s**i(0) = C'-1(P*)%
fl -» • n -»<»

i = 1, . . . ,n ,

(ii) lim x = 0 .

Proof. For n -» a>, 2"^isJ(T
i) -» a> so that

equality (15) can only be fulfilled if 8* -» 0,

i = l,...,n. Then by equation (8), C'(si(t)) -> P* , and by

the finiteness of Xo , x -» 0 as n -* oo. I

Remark 9. For n -» oo the open-loop Nash equilibrium is

unconstrained and converges towards the feedback Nash

equilibrium. With an infinite number of firms on the commons

claimable resources are almost instantaneously exhausted,

leaving an individual firm no freedom to influence the length

of the game. For this game of 'fixed' duration, the open-loop

and the feedback Nash equilibrium must coincide (compare Remark

6).
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6. CONCLUSION

If a cake becomes the common property of a number of decision

makers, the problem of how to eat a cake of finite size then

becomes a problem of how to appropriate a cake of dwindling

size. In the context of resource exploration, this paper

examines the decision problem in which a cake can either be

instantaneously eaten as it is appropriated at costs, or else

be costlessly conserved in private stores.

In addition to being relevant to the situations given in

the introduction, the model may also shed some light on other

related situations.

A sale in a department store can transform an ordinary

reproduceable consumer good into an exhaustible common property

commodity. Stockpiles of sales items in private households may

be evidence of some of the considerations discussed in the

present paper. Asymmetric information between housing

developers and land owners in suburban growth areas may lead to

a race between developers - for the appropriation of the

Ricardiah rent on land closer to the city center - well in

advance of actual development. During the times ,of imperialism

european powers were engaged in a race to get their share of

the free cake 'Africa'. Today property rights over Antarctica

are at best only vaguely defined. And in the future, outer
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space may provide a plethora of other examples, where the

commonality of resources may give rise to a claiming rush

similar to the one discussed in this paper.
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APPENDIX 1

Proof of Lemma 2. Consider the value functions

-rTfT1

[P*(T)«q*i(T).- C(s*i(T))]«e dT

fTi .
+ tj R

+ Rj «P* (t) -e"

-rT
(T)-P*(T)«e dT

i = 1, . . . , n. (Al)

Upon differentiating this value function we obtain

Vj =

= P*-e

= 0

-rt

all j * i , i = l,...,n,

i=l,...,n,

and upon recalling that R1 = R1 = 0 in a constrained

interval and P*/P* = r in an unconstrained interval

.q*i (t) _ c(s*i (t))] -e
-rt if Qi > 0

r t

(A2)

(A3)

(A4)
- [P*-q*i(t) - C(s*i(t))]-e - Ri-P*-e otherwise

i = 1, . . . , n .

Substituting equations (A2), (A3) and (A4) into equations (7)

we obtain dVi/dt - dVi/dt = 0 , i = l,...,n. J
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APPENDIX 2

Proof of Lemma 3. Suppose T1 = tc. By equation (10), if

p*/p* = r> all t e [OjT
1[, then firm i is unconstrained so

that by equations (8) - (10) C'(si (t))/C'(si(t)) = r,

all t e [0,Ti[. For t -» tc , qm •* 0, q*i(t) -» 0 and

s1(t) > 0. However, for T1 = tc, H^4= °- Hence T1 < tc

if firm i is unconstrained.

Suppose firm i is constrained. Then we might have

t2 = T1 = tc, where t2 is the end of a constrained phase

where R1 = R1 = 0 and si(t) = q*l(t). Then

s1 (t) = q*i(t) •* 0 as t -> tc so that Rj = 0, if

t2 = T1 = tc . However, for si (t) -» 0 as t -• T1 condition

(15) is violated given positive flow fixed costs.

If there are zero flow fixed costs, condition (15)

is fulfilled with strict equality for s1 (t) •+ 0 as t -* T1

and 8* = 0, in case tc = xi = t2. If 8£ = 0, s4(t) > 0

whenever P > 0, as must be the case for t •» tc. But for

t -* tc = T1 = t2 , s1 (t) > 0 and ql (t) -> 0 are once again

violating the condition qi(t) = si(t) for t -» t2 . Therefore

xi < tc .

With T1 < tc < t3, firm i is unconstrained with —

respect to the terminal exploration date, and condition (15)

must hold with strict equality.

Suppose 8i = 0. Then by equations (8) and (15),

P*i= C ' ( S i ( T i ) ) = C ( S i ( T i ) ) / S i ( T i ) = i n f [ C ( S * ) / S i ]

Since t = 0 is defined as the date when exploration

begins, we must have P* > inf[C(s1)/s1]. However by

equation (10), P* is growing exponentially if Q1 = 0,
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all t e [O.T1[ so that P*. > inf[C(s1)/si J if exploration

takes place at all. Hence 8£ > 0 if R1 > 0 is never

binding.

If the firm is constrained, there is an interval where

P*/P* < r. The proof that 8£ > 0 also in the constrained

case then is completed if it can be shown that 0 < P*/P* < r.

Suppose P* < 0 in a constrained interval [ti,t2[. By

equations (8) and (9), if P* < 0, s1 < 0, i = l,...,n, for

8i > 0. However, in [ti,t2[, qm = sm > 0, if P* < 0. Hence

P* > 0 in [0,tc[ and therefore 8i > 0, i = l,...,n.

For 6£ > 0, equations (9) and (13) imply that

Xri = 0. J
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NOTES

* This paper is based on my Ph.D. thesis 'Common Access and

Strategic Considerations in Natural Resource Exploration'

(The London School of Economics (1985)). I would like to thank

A. Ingham, J. Lane, C. Noebel, J. Rapport and 0. Schneider for

helpful discussions. My greatest personal debt, however, is to

my supervisor David de Meza who imparted to me continuous

encouragement, sharp criticism and stimulating discussions on

the topic. Any remaining errors are of course solely my

responsibility.

1. Another interdependency in common property resource

exploration may occur if prospectors do not know which sites

have already been appropriated. Then sequential exploration of

an already claimed area may occur, making a firm's

appropriation costs a function of cumulative discoveries of the

entire industry. This externality is discussed by Peterson

(1978). The strategic dimension of exploration, however, is

neglected there due to the assumption of an infinite size of

the unexplored resource stock. In contrast, we will concentrate

here exclusively on the strategic aspect by assuming that a

firm's exploration-cum-discovery costs depend only on that

firm's exploration rate.
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2. A common pool oil extraction model with private storage

facilities is discussed by Sinn (1984). There, costs arise from

keeping the oil in the private store but not from the

appropriation process itself. Furthermore markets are assumed

to be oligopolistic. Finally, firms are assumed to be able to

influence each others extraction and sales rates but to take

the timepath of the stock of common oil as exogenous. In

contrast, here it is assumed that firms take each others

extraction and sales rates as exogenous but can influence the

rate of decline of the common oil stock. On this last point see

Mohr (1985).

3. Time subscripts are suppressed whenever possible without

ambiguity.

4. The nonnegativity constraint on q1 and s1 will be neglected.

It will be seen that the optimal strategy satisfies these

constraints.

5. McMillan and Sinn (1984), and Reinganum and Stokey (1985)

provide other examples, where in a continuous time model of

common property resource exploitation optimal feedback

strategies require an exploitation effort which is 'maximal' in

this sense.
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6. Since claimed resources can be sold on the market at zero

costs, the rent on explored resources is always equal to the

equilibrium price P*.

7. Notably, the proof that the feedback optimum differs from

the open-loop optimum is based on the transversality condition

(15) which is associated with a firm's ability to determine the

duration of the game. With the length of the game fixed,

equation (15) vanishes.

8. In Definition 2 only continuous functions are admitted. A

more general approach would be to admit piecewise continuous

strategies. Then at the moments of transition to or from a

constrained interval the costate variable associated with the

constrained state variable could be discontinuous. In the

present model the costate variable associated with the stock of

claimed resources is equal to the market price. From the

'Seierstad and Sydsaeter sufficiency conditions' it follows,

however, that the resource price is continuous at ti and t2

even if piecewise continuous strategies are admitted. Admitting

only continuous strategies therefore does not distort the

results.

9. For the same reasons this also must be true for the

constrained feedback Nash equilibrium. Also, from Propositions

1 - 4 it readily follows that along the feedback and open-loop
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equilibrium trajectories the constraints q1 > 0, s1 > 0 are

never tight.

10. Comparing Lemma 2 with Lemma 3 one can conclude that the

same is true for the feedback Nash equilibrium.
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Figure 1
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