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Rudolf Vetschera
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Abstract
The paper introduces a new method for the graphical representation of multi-
criteria decision problems with discrete sets of alternatives. The approach
proposed here extends projection techniques based on principal component
analysis by incorporating information about preferences between alternatives
in the graphical display. The advantages of principal component projection,
which provides a clear view of data values, and a projection orthogonal to in-
difference hyperplanes, which provides preference information, are both made
available to the user through a linear combination of projection matrices with
interactively changed weights. The approach developed here can further be
extended to more complex, nonlinear preference structures and strategies for
that extension are also discussed in the paper.

* Paper presented at IFORS-SPC 1 Specialized Conference on Decision Support Sys-
tems, Bruges, Belgium 1991
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1 Introduction

One problem arising in practical application of multicriteria analysis is to
convey the information available on decision alternatives to the user. The si-
multaneous display of several outcome dimensions easily leads to information
overload and thus reduces decision quality.

It has been suggested in the literature that graphical representations of in-
formation will facilitate holistic interpretation of the data available. Al-
though the use of graphics in general is sometimes over-valued and their
effect has to be studied in more detail (DeSanctis, 1984), graphical inter-
faces for MCDM techniques have gained considerable popularity (e.g. Kor-
honen/Laakso, 1986).

Graphical methods for displaying multicriterial data can roughly be classi-
fied into two groups. The first consists of approaches that mainly provide a
holistic, detailed image of all criteria for single or few alternatives. In many
MCDM software packages, standard graphical displays like bar graphs are
used to represent (current) solutions (e.g. in VIG: Korhonen, 1987). Other
possible types of displays include Chernoff faces (Chernoff, 1973), Star Dia-
grams (Kasanen et al., 1989) and Korhonen's Harmonious Houses (Korhonen,
1991). Since these techniques provide a detailed representation of all criteria,
their use is limited to a few decision alternatives.

In contrast, the second group is aimed at a representation of a larger set of
alternatives. This means that information cannot be displayed in detail on
all criteria, but criteria information has to be condensed in some way. This
can be achieved by projecting the data points from high dimensional criteria
space to some lower dimensional (usually 2- or 3-dimensional) projection
space. Projection techniques were used to represent MCDM problems by
Korhonen et al. (1980) and Lehert/de Wasch (1983). Specific methods based
on projection techniques are the GAIA method (Mareschal/Brans, 1988) and
BiPlot (Lewandowski/Granat, 1991).

Both GAIA and BiPlot are purely data driven techniques. They generate
a projection matrix via principal component analysis directly from the data
matrix or, as in the case of GAIA, intermediate results like a preference flow
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matrix. While this leads to an optimal approximation of data in the projec-
tion space, important preference information might be lost in the projection.
Consider, for example, the case in which preferences are given by a simple
linear utility function. Unless the projection matrix used is orthogonal to
the vector of scaling factors, points between which the user is indifferent
according to the linear utility function can end up at any location in the
projection space. The graphical representation of alternatives therefore gives
no indication of preferences.

In this paper, we discuss extensions to these projection techniques which
avoid the problem outlined above. The paper proceeds as follows: In section
two, we give a short review of the standard principal component analysis
approach. Section three extends this approach by incorporating weights of a
linear utility function to create a projection matrix orthogonal to indifference
structures. Section four illustrates the technique by a numerical example. In
section five, we outline possible extensions to the case of nonlinear utility
functions. Section six concludes the paper by identifying topics for further
work.

2 A Review of Basic PCA

In this section, we give only a brief introduction to principal component
analysis (PCA). The reader is referred to standard textbooks on multivariate
statistics (e.g. Bamberg/Baur, 1984) for further reference.

The goal of PCA is to provide a compact representation of multi-dimensional
data through a small number of so-called "factors". Let us consider a data
matrix X of N observations (alternatives) in K attributes (criteria). X is
assumed to be standardized so that the mean of each attribute (column)
is zero and its variance one. We can represent the entire matrix X by M
general and K specific factors as

M
xnk = $3 akmfnm + dkUnk (1)

m=l
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where xnk is the value of variable k in the nth observation, the akm are the
factor weights for factor m and variable k, the fnm are the factor values for
alternative n in factor m and dk and unk are the weight and value for the
specific factor for attribute k. The goal of providing a compact representation
is obtained by keeping M small. In matrix notation, we can rewrite equation
(l)as

X = FA' + UD (2)

The goal of principal component analysis is to explain as much of the variance
in each attribute of X as possible through the factors. Ideally, we would like
to obtain

X = FA' (3)

Since X is standardized,

R = i x ' X (4)

is the correlation matrix of X. It is also easy to show that

R = — X'X =
= | [AF'FA' + D'U'FA' + AF'UD + D'U'UD] = (5)
= AA' + DD

Ignoring the residual term DD, we obtain the fundamental theorem of prin-
cipal component analysis:

R = AA' (6)

It can also be shown that the columns of A consist of the eigenvectors of R.
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For the purpose of this paper, we are interested in obtaining the matrix F of
factor values, which are the projections of alternatives into lower dimensional
space. Once we have determined A, we obtain:

X = FA'
XA = FA'A (7)

XA(A'A)-1 = F

We therefore obtain the projection of X by postmultiplying X by a projection
matrix P = A(A'A)"1.

The criteria themselves can also be represented in projection space by pro-
jecting the criteria unit vectors. This makes it possible to give a condensed
representation of how well each alternative performs in each criterion. Figure
1 in section four provides an example of such a representation.

3 Preference-Preserving Projection

3.1 Introduction

In the standard PCA approach described above, the projection matrix P is
determined solely from the correlation matrix R of the standardized problem
data.

But when a two-dimensional graphical representation of the problem data is
intended to support the user's decision process, basic concepts of the user's
preference structure like preference or indifference between two alternatives
should also have an easily observable, intuitive graphical representation. For
example, indifference could be represented by a set of indifference curves
connecting points between which the user is indifferent.

For simplicity, we will assume in this section that the user's preference system
can be represented by a linear utility function of the form
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(8)

where xn is a suitably scaled attribute vector describing decision alternative
n, wk is the decision weight (scaling factor) given to attribute k and xn>k is
the fc-th component of xn. Vector x^ will also be interpreted as the n-th row
of a decision matrix X.

It is obvious that alternatives between which the user is indifferent, i.e. for
which £/(xn) is equal to some constant c, lie on a hyperplane in K-dimensional
space. However, for arbitrary projection matrices P of dimension K x 2,
these points can be projected anywhere in the two-dimensional graphical
representation.

The indifference hyperplanes of K-dimensional space will, however, be pro-
jected onto straight indifference lines in two-dimensional space if the projec-
tion is orthogonal to the hyperplanes. This is the case, for example, if vector
w is used as one column in P.

However, incorporating the scaling factors into the projection matrix is not
straightforward. The usual approach of PCA, as outlined above, is based on
standardized data, while the factors refer to a specific scaling of the data. It
is also necessary to take the first factor into account when determining the
remaining column(s) of the projection matrix. The following two subsections
will deal successively with these problems.

3.2 Non-Standardized Data

It can easily be seen that the indifference relation implied by (8) is preserved
when a constant term is added to any column of the decision matrix X. We
can therefore still assume that X is normalized to zero mean in all columns.
But (8) is not invariant to the multiplication of columns by a constant term,
so the column variances will be different from one. We denote the standard
deviation of attribute k by crk and define the matrix S as:
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0
(9)

We still assume that the factor values have a standard deviation of one, so
we obtain the following general model:

X = FA'S + UDS (10)

The correlation matrix is then given by

(11)

and we still have

R = AA' + DD (12)

so the first factor is still determined by the largest eigenvector of R. But the
factor values and the projection matrix are now determined differently from
above.

X
XS"1

XS^A
F
P

= FA'S
= FA'
= FA'A
= XS"1A(A'A)-1

= S"1A(A'A)-1

(13)

The interpretation of equation (13) is obvious: instead of standardizing the
data matrix to XS"1 and then obtaining the projection matrix through post-
multiplication by A(A'A)"1, the standardizing process can also be incorpo-
rated into the projection matrix P.
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3.3 Incorporating Preference Evaluations

From now on, we will only consider projections into two dimensional space,
which are all we need for representing data on a computer screen. Our goal
is to represent the preference relation implied by (8) via indifference lines.

Since we project into i?2, the projection matrix is a K x 2 matrix. We will
indicate a projection matrix generating indifference lines in R2 by Q. A direct
way to generate indifference lines is to use vector w itself as one column of
Q. We therefore obtain the following structure for Q:

wx q12

(14)

To determine the second column of Q, we note that the factorial representa-
tion of X as FA' can be decomposed for the two-dimensional case as follows:

FA' =
/ l l

//Vl

/ll

/JVI

a2i

[an • • •

F ( 2 ) A'(2)

/ /V2

(15)
[ a 2 i . . .

Therefore, we can obtain the residual data matrix X(i) containing the data
not explained by the first column of Q as:



3 PREFERENCE-PRESERVING PROJECTION

X = FA'S

XS"1 = F(1) A'(1) + F (2) A'(2)

XS" 1 - F(1)A'(1) = F(2)A'(2)

X(i) = F(2)A'(2)

(16)

From the residual matrix X(i), the matrices A(2), F(2) and thus Q(2) can be
computed as outlined above.

In order to calculate X^), we need both the factor values F(Xj and the factor
loads A(i). The factor values are the projections of the data points and
correspond to the utility scores of alternatives. We now have to solve a
problem that is exactly the opposite of the usual problem of PCA: while one
is usually mainly interested in factor loads and, after computing factor loads,
might wish to compute factor values according to equation (7), we now want
to determine factor loads from given factor values.

Assuming that just the first factor provides a sufficient approximation of the
data, we can directly derive A(i) from F(X) as:

X S - = F(1)A'(1)
1 = F'(1)F(1)A'(1)

Alternatively, we could try to find an "optimal" A(i) which provides a best
approximation to X(i) in least squares sense by minimizing a residual matrix
E. Solving the regression problem

^ F ^ A ' ^ + E (18)

leads to normal equations of the form
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A'(1) = ( F ' F ^ F ' X S " 1 (19)

and thus exactly to the same result as above.

Therefore, it is possible to use the utility scores of alternatives as factor
values F(i), obtain from these the factor loads A(i) and finally the residual
data matrix X(X).

3.4 Combined Projection

Both representations, the one using P based on the standard PCA approach
and the one using matrix Q, have certain advantages and disadvantages. The
projection with Q allows the user to visualize indifference and preference
relations between alternatives along one axis. Furthermore, from

IQ =

PK2

(20)

it can easily be seen that the projection of criteria vectors will represent the
corresponding criteria weights on the same axis as the scores of alternatives.

On the other hand, providing utility values on one axis leaves only one di-
mension to represent all other aspects of the data. As can be seen from
the figures in section four, the projection onto the two principal factors pro-
vides a more powerful representation of criteria values of alternatives than
the preference preserving projection.

It is, however, possible to generate a unified representation by forming a
linear combination of both projection matrices as:

T = AP + (1-A)Q (21)

By changing the parameter A in this linear combination, the user can move
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freely between the two forms of projection. For example, the user may start
with A = 0 and progressively "untangle" the data values by increasing A
until a sufficiently clear picture of criteria values appears without completely
destroying the preference information from the Q-projection.

3.5 Indifference Regions

As soon as A is increased above 0, the projection is no longer strictly orthogo-
nal to the indifference hyperplanes. Each indifference hyperplane is therefore
projected onto the entire R2. Since the data range in practical applications
is finite, the projections of feasible indifferent data values onto R2 will form
a finite indifference region. In this subsection, we will develop a method for
determining the extent of this region for a given alternative.

We assume that data values in attribute k fall within a lower bound x± and
an upper bound xjt". The boundaries of a region in R2 containing all possible
points of indifference to an alternative xk can be determined by solving the
following two parametric linear programs:

maximize T ^ y + 0T<2)y
S- t (22)
yw = xnw v '

and

minimize T ^ y + 0T.(2)y

-•*• (23)
yw = xnw v '

where T^1) and T^2) are the first and second column of T. The first constraint
of these linear programs considers only attribute vectors indifferent to xn,
the remaining constraints take into account the possible data range. By
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Car
2 CV
Visa 11
205 GR
R4
R5GTL
Samba GL
Fiesta 1.1
Corsa 1.25
Polo 1100
MG Metro
Fiat 126
Fiat Panda
A112 Elite
Innocenti
Honda Civic
Mazda 323
Colt
Tercel
Skoda 120
Lada 2105

Price
28.3
44.3
44.8
29.8
44.9
43.0
33.3
38.0
43.4
47.5
21.6
34.3
37.8
36.4
44.6
44.9
46.3
45.3
26.2
30.6

Power
29.0
50.0
50.0
34.0
45.0
50.0
53.0
55.0
50.0
73.0
24.0
45.0
48.0
53.0
60.0
55.0
70.0
65.0
58.0
65.0

Tax
3.00
5.00
4.00
4.00
4.00
4.00
4.00
5.00
4.00
6.00
3.00
4.00
5.00
5.00
5.00
5.00
6.00
6.00
7.00
7.00

Speed
115.
140.
142.
110.
137.
143.
145.
152.
146.
163.
105.
140.
137.
145.
145.
160.
165.
155.
139.
147.

Consumption 1
6.80
6.30
5.80
6.30
6.30
5.80
8.80
8.70
9.20
9.00
7.30
7.10
7.80
7.20
8.00
8.40
7.60
8.80
8.30
9.50

Consumption 2
5.40
4.80
4.30
5.60
4.50
4.60
6.00
5.10
6.10
5.50
6.10
4.80
5.80
5.50
5.20
5.60
5.90
5.60
6.40
7.50

Table 1: Criteria values of alternatives

parametric variation of 6 from —oo to +oo, the first program generates the
upper half and the second program the lower half of the boundary.

4 Numerical Example

Data for the following numerical example is taken from the literature (Mareschal/Brans.
1988) to allow for easy comparison with other, existing approaches. Table 1
contains data on 20 different cars used in this example.

We further assume that vector w is given as (0.25,0.125,0.125,0.25,0.125,0.125).
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Figures 1 shows the resulting projections for A = 0.9. This projection is
very close to the standard representation from PCA. The criteria vectors
point into widely dispersed directions, so it is easy to identify the relative
performance of each alternative in each criterion. On the other hand, the
indifference region shown here for one alternative (alternative 9, the Polo
1100, represented in the display by a small rectangle) covers almost all other
alternatives. This indicates that the display cannot be used to infer the
ranking of alternatives from their position in the graph.

When A is reduced to 0.1, the arrangement of alternatives on screen more
closely reflects their ranking. The indifference regions become smaller and
the user can, for example, determine that alternative 17 is definitely better
than alternative 9, since the indifference regions shown in figure 2 do not
overlap.

A very low level of A finally corresponds to an almost completely orthogonal
projection (figure 3). Here, the indifference regions are almost straight lines
and the alternatives are arranged according to their ranking. This figure also
clearly shows that the weights given to criteria 1 and 4 are twice the weights
given to the other attributes. On the other hand, it is almost impossible to
tell from this figure which alternatives perform well in which criteria.

5 Nonlinear Preference Structures

5.1 Introduction

In the above analysis, we considered the simple case of a linear preference
structure. In this section we will examine possible extensions to the nonlinear
case, specifically additive utility functions and then completely nonlinear
structures.

Generally, we can specify two requirements which a graphical representation
of preferences should fulfil:
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= 00.90

- 0 . 4 - 0 . 3 - 0 . 2 - 0 . 1 0.0 0.1 0.2 0.3 0.4

Figure 1: Projection close to standard PCA
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Figure 2: Combined projection showing distinct indifference regions
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Figure 3: Orthogonal projection



5 NONLINEAR PREFERENCE STRUCTURES 17

1) Only alternatives between which the user is indifferent should be pro-
jected onto the same point in projection space.

2) All alternatives which are preferred to a given alternative should be
projected onto points with higher values on the axis representing pref-
erence evaluation.

Evidently, the linear projection technique used so far fulfils those require-
ments for strictly linear utility functions. On the other hand, it is also pos-
sible to show that hnear projections fulfil these requirements only for linear
utility functions. Requirement 1) can be formulated (for linear projection
matrices Q) as follows:

Consider two criteria vectors Xi and X2, which are projected onto the same
point, therefore XiQ = X2Q. Requirement 1) states that for any two such
vectors, U(xi) = U(x2) should hold. The condition XiQ = x2Q actually
defines two linear equations between the criteria vectors, from which two
constant trade-off rates between any three criteria can be derived. Since
we can select any criteria, the utility function must exhibit constant trade-
off rates between all criteria and therefore must be linear. Since it is not
possible to strictly fulfil the requirements by linear projections for arbitrary
utility functions (or more general multi-criteria evaluation techniques), we
will now discuss several alternative strategies for overcoming these problems
for different types of evaluations.

5.2 Additive Utility Functions

Under rather general conditions (Keeney/Raiffa, 1976), multi-attribute util-
ity functions take the additive form

(24)

where wk is the criterion weight and uk() is the partial utility function of
criterion k.
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In this case linearity can formally be maintained when partial utility val-
ues uk(xk) are used instead of the criteria values xk themselves. But the
question arises whether graphs generated by this formal substitution can be
meaningfully interpreted and thus are a useful decision aid.

Graphs as those shown in section four serve three purposes: they provide
information about:

1) the ranking of alternatives;

2) the importance of criteria;

3) the performance of alternatives in criteria.

Functions 1) and 2) are not affected at all by projecting partial utility values
instead of actual criteria values. Function 3) is changed: a projection no
longer indicates how well alternatives perform in different criteria, but rather
how the performance is valued according to the partial utility function. But
this information is also an important decision aid, so the third function is
also maintained. Graphs based on partial utility values rather than criteria
values are therefore meaningful decision aids and the methodology presented
above can be applied to the case of additive utility functions.

5.3 Nonlinear preference structures

If arbitrary utility functions are considered, no such formal substitutions
are possible. In this ease, it is either possible to strictly adhere to the re-
quirements specified in the beginning of this section and consequently use
nonlinear projections or to maintain linear projections while deviating from
the requirements.

5.3.1 Nonlinear projection

The concept of preference-preserving projection embedded in XQ can di-
rectly be extended to nonlinear evaluations. Instead of calculating utility
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scores of alternatives through postmultiplication by vector w, they can be
directly incorporated into the image matrix. We define a matrix V as:

V =
v12

(25)
VN2

where U(x.n) is the utility value of alternative xn and vn2 is obtained by
projection of xn onto a single factor.

Instead of combining projection matrices through linear combination as in
the preceding section, a linear combination of the projected images given by
AXP + (1 — A)V could then be used to combine standard principal component
analysis with the preference-preserving projection.

This technique will fulfil both requirements specified above. Since one coor-
dinate of the projection is given by the utility score, only alternatives having
identical utility scores can be projected onto the same point and the ordering
requirement is also clearly fulfilled.

But it is no longer possible to provide a representation of criteria as in the
case of linear projections. One could use the evaluation of hypothetical al-
ternatives having the best score in the attribute to be represented and the
lowest score in all other attributes to represent criteria. But such alterna-
tives would receive an overall score of zero in many evaluation methods and
thus be projected onto a straight vertical line through the origin. The main
advantage of a graphical representation of criteria would thus be lost.

5.3.2 Approximation

An alternative to nonlinear projection with actual scores is a linear approx-
imation of the nonlinear evaluation system. Given the evaluation of alter-
natives, a set of "pseudo-weights" could be determined which, when used
in a linear utility function, would represent these evaluations as closely as
possible. This approximation can, for example, be based on least square
regression or on the minimization of absolute distances.
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This approach has several advantages over the nonlinear projection approach
outlined above: It still leads to a linear projection, in which it is possible
to provide an adequate representation of criteria along with the alternatives.
The "pseudo-weights" computed during the approximation would graphically
be represented as shown in the previous section and thus provide a valuable
insight into the importance with which criteria enter the evaluation process.

Using a linear approximation instead of actual evaluations from the decision
technique employed, makes it also possible to represent results of decision
techniques which generate only ordinal (and possibly even incomplete) eval-
uations, e.g. outranking methods (Roy/Vincke, 1984).

6 Conclusions and Further Research

In this paper, we have developed a method of simultaneous graphical rep-
resentation of performance data on alternatives and their preference evalua-
tions. This method allows for easy and direct evaluations of a large number
of discrete alternatives in several criteria.

While application of this concept to simple linear utility functions is straight-
forward, its extension to nonlinear structures requires the development of lin-
ear approximation techniques, which is the focus of ongoing research efforts.

Another important topic is the integration of this concept into a general,
graphic-oriented decision support environment. Such an environment would
not only use the projection technique developed here for providing informa-
tion about alternatives, but would also exploit graphic interaction techniques
for data manipulation and evaluation tasks. The development of such an in-
tegrated software system, which is envisioned as a common "front-end" to
several multi-attribute decision techniques, is the main task of a research
project currently being undertaken.
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