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Zusammenfassung
In der vorliegenden Studie wird das Pricing aktiengebundener Lebensversicherungen 

mit Mindestgarantiezins in einem Gleichgewichtsmodell untersucht. Dazu werden 

Modelle zur Berechnung der Default-Option und der Ausfallwahrscheinlichkeiten ein-

geführt. Die Modelle binden Angebot- und Nachfrageüberlegungen, stochastische 

Zinssätze, stochastische Kapitalrenditen und Sterblichkeitsraten ein. Dabei basiert 

die betrachtete Zinsstruktur auf dem Cox, Ingersoll, Ross (1985) Modell. Der Einfluss 

der Startwerte der Default-Option auf die endgültigen Werte der Default-Option und 

der Ausfallwahrscheinlichkeiten wird numerisch analysiert, wobei die verwendeten 

numerischen Methoden eine hohe Konvergenzgeschwindigkeit und Robustheit im 

Hinblick auf die Startwerte der Defaultoption aufweisen. Es wird gezeigt, dass höhere 

garantierte Mindestrenditen zu höheren Ausfallwahrscheinlichkeiten, zu niedrigeren 

optimalen Kapitalwerten und veränderten Schadenzahlungen führen. Deshalb müs-

sen bei der Ermittlung der Mindestgarantie sowohl Risiko und Gewinn, als auch Vor- 

und Nachteile vorhandener Alternativen berücksichtigt werden. 

Schlagwörter: Ausfallwahrscheinlichkeit; garantierte Mindestrendite; aktiengebun-

dene Lebensversicherung 

Abstract
This paper examines the pricing of equity-linked life insurance including a minimum 

interest rate guarantee in a partial equilibrium framework. The models for calculating 

default option values and default probability are established. Those models integrate 

supply and demand considerations, stochastic interest rates, stochastic investment 

return, and mortality rates. The term structure of interest rates is based on the Cox, 

Ingersoll, Ross (1985) model. The paper analyses numerically the influence of initial 

values of default option on final default option values and default probabilities. Our 

numerical methodologies have high convergence speeds and the convergence pro-

cess is robust with respect to initial values of default option. Our results indicate that 

increased minimum guaranteed return rate will result in increased default probability, 

decreased optimal net present value and changed values of claim payment. There-

fore, the process of setting the minimum interest rate guarantee must take into ac-

count risk and benefit, as well as advantages and disadvantages of available alterna-

tives.

Keywords:  Default Probability; Minimum return guarantee; Equity-Linked life insu-

rance
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1 Introduction 

All business firms rely upon a variety of forms of financing. However, insurance com-

panies like, similarly to most other financial institutions (e.g., banks) are different from 

business firms because they create explicit liabilities whenever they sell their prod-

ucts. Indeed, its policyholders hold most of a typical insurer’s liabilities. An insurer’s 

success depends not only on charging adequate rates to cover costs, but also on 

being a negligible default risk to policyholders. Therefore, policyholders are wiling to 

pay for policies with comfortably low risk, and insurers must control default risks in 

order to sustain a competitive position in the marketplace. 

Mao, Carson, Ostaszewski and Luo (2004) extend option pricing models (Black and 

Scholes (1973), Cummins (1991), Grosen and Jørgensen (2000)) to measure default 

put option value, and to pricing of term life policies. Their approach incorporates sto-

chastic interest rate and correlation between two stochastic processes of interest rate 

and accumulated investment. In this work, we extend that approach to measure de-

fault option value and default probabilities within the context of an equity-linked life 

insurance product and determine optimal pricing for equity linked insurance con-

tracts. There are some papers that discuss the default risk and insolvency put option. 

Cummins and Danzon (1997) developed a two period pricing model subject to default 

risk. Demand for insurance is assumed imperfectly price elastic. Babbel et al. (2002) 

discussed fair value of liabilities based on financial economics. He points out that the 

fair value of premium (or liability) should be discounting liability cash flows at treasury 

rates minus the value of insolvency put options, as there must be some accounting 

for the default risks. In the established model, we use their analysis results and con-

sider the affect of the value of insolvency put option on the price of equity linked life 

insurance contracts. We also consider the solvency constraint. The contribution of 

this paper is the application of the Mao et al model to equity-linked term life insurance 

contracts, and the analysis of the effects of different parameters on insurance prices 

in this partial equilibrium model. A life insurance policy is said to be the equity-linked 

when the benefits are based on the market value of a specified stock investment 

portfolio. Based on the characteristic of U.S. products, the minimum guarantee indi-

cates guaranteed minimum death benefit with interest guarantees. There have been 

several papers in which pricing of the equity-linked life insurance was discussed. 

Brennan and Schwarts (1976, 1979) pioneered this type of analysis focusing on the 

case of an endowment policy. Bacinello (1993) extended Brennan and Schwartz’s 
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approach to the case of endogenous minimum guarantees. Milevsky and Posner 

(2001) discussed variable annuities insurance with guaranteed interest rate and gua-

ranteed death claim payment. Bacinello and Persson (2002) proposed the design 

and pricing of equity-linked life insurance under stochastic interest rates, which uses 

the term structure of interest rates proposed by Heath, Jarrow and Morton (1996). 

The advantage of the method proposed in our work, when compared with existing 

approaches, is that relevant options are easy to price and may be hedged either by 

long positions in the appropriate asset portfolio or by European call options on the 

same portfolio.

Von Neumann and Morgenstern (1944) pointed out that the when economic decision 

makers interact, both though decisions and behaviors, they form relationship of influ-

encing each other. Therefore, an economic principal must reflect on his/her counter-

part when making decisions. In line with that idea, we establish models of measuring 

credit risk and pricing equity-linked life insurance contract by balancing risks and 

revenue, at the same time, considering influences of default risk and claim payment 

paid by insurers (including investment revenue) on prices consumers are willing to 

pay for policies. Additionally, we propose a rational principle for selecting minimum 

guaranteed return rate. 

2 Pricing and Measurement Models of Default Risk 

2.1 Assumptions Underlying the Measurement Models 

In this section, we discuss the assumptions underlying the development of pricing 

and measurement models used in this study.

The insurer sells only life insurance. We consider single-premium equity-linked life 

insurance policies with term .Y  The contract is a contingent-claim affected by both 

mortality and financial risk.  Stochastic interest rates are used as discount rates and 

are derived by a continuous-time stochastic process. Mortality is also modeled as a 

random phenomenon (this contrasts with Giaccotto, 1986; and Panjer and Bellhouse, 

1980). Our model treats the insurance policyholder as an investor buying a financial 

asset. The insurer raises funds from policyholders, invests the funds, and pays bene-

fits/claims that may depend on investment income. 
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The insurance firm is assumed to have market power and thus be able to vary its 

premium volume by varying price (i.e., we do not assume perfectly competitive insur-

ance markets, but let us note that a decreasing demand function also applies to the 

aggregation of all companies in a competitive industry, so our assumption is not too 

severely restrictive). Capital markets are assumed to be perfectly competitive, fric-

tionless, and free of arbitrage opportunities.  All consumers purchase the same unit 

of insurance coverage, and their demand is a function of price, the claim payment 

including investment return, and default risk. Moreover, all policyholders are as-

sumed to be rational and non-satiated, and to share the same information.

Assume that the insurance firm considers a price for policies that is a function of 

quantities of policies, insolvency risks (financial quality) and claim payment:

� � � �� �, , , , ,g gPP n b n r n r�

where n � quantity of insurance sold; � � expected present value of claim payment 

for each exposure unit; Y �maturity time of insurance contracts; rg � minimum guar-

antee return rate; and b � the value of the default option—the current value of the 

insurance firm’s option to default if liabilities exceed assets at the claim payment 

date; � �, gQD n r �  default probability—the probability that liabilities exceed assets at 

the claim payment date. The default option value and default probability are inversely 

related to the price and liability. The following notation is used:

b n,rg� �: the value of the default put option

QD : default probability

n : quantity of insurance sold for single premium equity–linked life insurance policy 

rg : minimum guaranteed return rate 

PP(n,b(n,rg ),� (n,rg )) : life insurance single premium based on market price (i.e., not 

necessarily single benefit premium or any form of gross premium) 

( , )gENPV n r : expected net present value of the life insurance policy under 

consideration

p : non-claim payment expense percentage of claim payment 
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h : percentage of total investment income that can be used to pay benefit to the in-

sured

X(t) : benefit payable (or claim payment, in general, if the insured event is some-

thing other than death) upon death at time t

T (x) : future lifetime of an insured, the said insured assumed to be x year old 

Y : the maturity time of the insurance contract 

fx t� �: the probability density function of T, also dependent on the age of issue x

px� t :  the probability that insured aged x survives from age x + t to age x + t + 1 

1x t x tq p� �� �

� �� �Prt xp T x t� �

t q x� 1� t p x

� : expected present value of claim payment for each exposure unit 

AA : constant coefficient of the demand function (assumed linear) for single premium 
equity-linked life policy 

B,G,F : coefficients of the demand function for single premium equity-linked life pol-
icy corresponding to quantity of demand, insolvency risk, and expected present 
value of claim payment for each exposure unit respectively 

µ: long run equilibrium interest level (assumed independent of t)

	1 : standard deviation of cumulative investment in the predetermined investment 
portfolio of the policy, which we will refer to as a mutual fund (assumed independent 
of t)

r : short run interest rate 

	 : standard deviation of interest rate (assumed independent of t)


 : the speed of adjustment in the mean reverting process 

v(t) � exp � ru
0

t

� du
�


�
�

��
 = the discount function; it represents the time zero value of one 

unit of account at time t discounted using interest rates determined by a stochastic 

process

Table 1: Notation 



34

2.2 Pricing Model of Default Option Value 

Suppose that the initial asset 0D  is the premium income of the insurance firm so that 

� � � �� �0 , , , , .� g gD PP n b n r n r n�

The funds are invested in a mutual fund. Let us denote by tD  the market value at 

time t  of the accumulated investment in the mutual fund and by h  the percentage of 
investment income, which can be used to pay benefit to the insured. We write

PUTt � max(Xt � Dt ,0)              (1) 

for the value at time t  of a put option on the accumulated investment with exercise 
price Xt ,  where Xt is the cash flow of liability at time t  and

Xt � max Dt h,GUEt� �� �1� p� �� Dth � max GUEt � Dth,0� �� �1� p� �,    (2) 

where GUEt is minimum determined guaranteed account value as related to 

time,GUEt � n t qxe
rgt ,  and rg is the minimum guaranteed return rate. 

We assume that the benefit for the insured for each contract is one dollar (or a mone-
tary unit in general). We assume Dt  is described by the following stochastic differen-
tial equation under the equivalent martingale measure: 

dDt � rDtdt � 	1Dtdw
1,

where r  satisfies stochastic differential equation

dr �
 � � r� �dt � 	 rdw2 ,

and dw1, dw2  are two Wiener processes, possibly correlated, and �1,2  is their instan-

taneous correlation coefficient. This model is based on the approach of Cox et al 
(1985). The model is mean-reverting in the sense that the rate of return tends to re-
vert to the long-term average �,  with volatility of the rate proportional to the square 
root of the rate. Mean reversion is commonly assumed in models of interest rates, or 
returns on bond portfolios, because very low interest rates are associated with se-
vere recessions, while very high interest rates are associated with high inflation, and 
both of these extremes are typically counteracted with economic policy. But returns 
of stocks also may be modeled as mean-reverting. Fama and French (1988) pro-
duced a seminal work on mean reversion in stock returns. We believe the model pro-
posed to adequately represent investment portfolios of U.S. insurers, which tend to 
invest mostly in bonds, but further work research may be needed for portfolios for 
which mean-reversion does not apply.
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Based on the definition of insolvency put option and equation (1), the current value of 

insolvency put option is equal to the accumulated discounting value of put options 

with exercise price

Xt � Dth � max GUEt � Dth,0� �� �1� p� �,

for 0 � t � Y ,  that is 

� �

� � � � � � � �

0

0 0

( , )

( ) max ,0 max ,0 ,�

� �
� � �� �


 �
� � � �

� � � �� � � �

 � 
 �

�

� �

Y
Q

g t

Y Y
B t rQ Q

t t t t

b b n r E v t dPUT

E v t d X D E A t e d X D

  (3) 

where

� �

� �
� �
� �� �

2
2

1
2

2 2

2( )
( )

2 1
( )

( ) 2 1

2

�� �
� �� � �� �

 �

�
�

� � � �

� �

t

t

t

eA t
g t

e
B t

g t

g t e


�
	
 �

�

�

�

� 
 �

� 
 	

h indicates the percentage of total investment income that can be used to pay benefit 

to the insured and EQ[�]denotes the expected value under the equivalent martingale 

measure. By using numerical approximation algorithms, we obtain the value of b . For 

a proof of existence of differential dmax Xt � Dt ,0� �,  and a proof of continuity of func-

tion b  please see the Appendix. 

2.3 Measurement of Default Probability 

We assume probability of default (default probability is similar to the “expected default 

frequency (EDF )” used by Moody’s-KMV (Ong, 1999) is QD , and default event can 

occur before the maturity time. Then QD  can be expressed as 
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� � � �� �� �

� �� �
� �

( , ) Pr Pr max ,0 1

max ,0 1
Pr ,

1 1

g Y Y t t t t
t Y

t t
t

t Y

QD n r D X D D h GUE D h p

GUE D h p
D

h p

�

�

� �� � � � � � � �� �

 �

� �� �
� �� �� �� �
 �

  (4) 

From equations of (3) and (4), we can know that the default boundary (default 

boundary is a level of asset value, possibly time dependent, such that the firm will 

default on its debt if the asset values falls below that level) is a function of time, policy 

number mortality rate and minimum guarantee return rate, and the default boundary 

is

BARRt � GUEt
1� p

1� h 1� p� �
� t q x ne

rgt 1� p
1� h 1� p� �

.      (5) 

Let the time horizon Y be divided into s time intervals of constant length. It can be 

shown that 

1

g i

i

s
r t

Y x t
i

GUE q ne��
�

��         (6) 

where �ti � ti � ti�1 .  Since 

�

rti � rti�1
�
 (� � rti�1

)�ti � 	 rti�1
�1 �ti

rti � rti�1
�
 (� � rti�1

)�ti � 	 rti�1
�1 �ti , i � 1,2,K ,s,

        (7) 

we have 

� �
1 1 1 11 2

1

0 1 2
0

1 ,    1, 2, ,

i i i i i

i

t t t t t

i

t
j

D D r D t D t

D r t t i s

	 �

	 �

� � � �

�

�

� � � � � �

� �
� � � � � �� �


 �
� �

     (8) 

where �1 � �1, �2 � �1�1,2 ��2 1� �1,2 ,  and �1,�2  are independent standard normal 

random  variables. We also have 

DY � D0 1� rti�t � 	1�2 �t� �
j�0

s�1

�
       (9) 

When parameters of rg ,�,
 ,	 ,	1,Y , x,�1,2 ,  the initial value of r0 ,  and the function of 

demand are given, by using numerical approximation, we can get the approximate 

solutions for default value b  and default probability .QD
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3 Optimization of Default Optimization of Default Boundary and 
Price of Insurance Contract 

3.1 Objective Function 

Since the default boundary is a function of time, policy number, and minimum guar-

antee return rate, we can establish objective function of maximizing expected net 

present value of profit, subject to the constrain of default probability less than or 

equal to a constant, which is assumed to be set endogenously by insurers or exoge-

nously by insurance regulators, in order to find the optimum number of policies, 

minimum guarantee return rate, price and optimum default boundary. The optimiza-

tion problem is to maximize returns(Revenues-expected claims+ value of default put 

option)while not allowing large default risks. We propose to quantify it as: 

� � � �� � � �Max ( , ) , , , , 1 ,g g gENPV n r PP n b n r n r n n p b� �� � � �            (10) 

subject to

(1) � � � �� �, , , , 0g gPP n b n r n r� �

(2) QD � QD n,rg� �� Pr DY � XY� �� Pr Dt
t�Y

�
max GUEt � Dth,0� �1� p� �

1� h 1� p� �
�



�

�

�
� � CON

where CON is a constant. The minimum return guarantee means that if the invest-

ment income earned by the insured’s investments is greater than minimum guaran-

tee return, the insurer will pay the investment income, otherwise, it will pay minimum 

guarantee return. Based on this, cumulative present value of claim payment � can be 

expressed as cumulative present value of call options with exercise prices 

GUE t ,0 � t � Y ,  i.e.,

� �

� �� �� �

� � � �� �

0 0

0

( )

0

1, exp

1 ( ) max ,0

1 max ,0

Y t

g u t

Y

t t t

Y
B t r

t t t

n r E r du X dt
n

E v t D h GUE D h dt
n

A t e D h GUE D h dt
n

� �

�

� �� �
� � �� �� �� �
 �
 �

� � �

� � �

� �

�

�

     (11)  
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A(t) � 2� e

 ��� �t

2

g(t)

�




�
��

�

�

�
��

2
�
3	 2

,

B(t) �
2 e� t �1� �
g(t)

,

g(t) � 2� � 
 � �� � e� t �1� �,
� � 
 2 � 2	 2 .

( )v t is the discount function and p is the non-claim payment expense percentage of 

claim payment. 

From (10) we know that when consumer is sensitive to credit risk of insurer, the val-

ues of default put option have both positive and negative effects on expected net 

present values of profit (ENPV ). On one hand, increasing the default put option value 

will decrease the value of liability and increase ENPV .  On the other hand, increasing 

the default put option value will cause policyholders to pay a lower price and result in 

the decrease ofENPV . Therefore, the effect of default put option value on ENPV de-

pends on net results of these two effects. 

3.2. Monte Carlo simulation and optimization 

Let us illustrate our methodology with an example. Consider the demand function 

PP(n,b(n,rg ),� (n,rg )) � AA � Bn �Gb � F� .        (12) 

In this function, the price is not only a function of market demand, but also a function 

of default risk and claim payment paid by insurers. Mao et al. (2004) provide justifica-

tion for this form of demand. The difference between this work and Mao et al. (2004) 

is that in the present article, the insurance product is assumed to be equity-linked, so 

we consider the factor of minimum guarantee return rate that is supposed to be posi-

tively related to claim payment and also positively related to the price of insurance 

policies. The rationality of this assumption is clear: the greater the minimum guaran-

teed return rate, the greater investment total return obtained by consumers, and 

therefore, the greater the price. Since 

D0 � AA � Bn �Gb � F�� �n,           (13) 

we have 
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DY � D0 1� rti�t � 	1�2 �t� �
i�0

s�1

� �

� AA � Bn �Gb � F�� �n 1� rti�t � 	1�2 �t� �,
j�0

s�1

�
    (14) 

and

b � EQ A(ti )e
�B(ti )rt

i�1

s

� �PUTti
�

�

�
��

� EQ A ti� �e�B ti� �rt

i�1

s

� max Xti � Dti� �,0� �� max Xti�1
� Dti�1� �,0� �� ��


�
�
��

.

            (15) 

We combine (8), (14), and (15) to obtain

� � � � � �

� � � �1

1
( )

1 2
1 0

2

1 1 2
0

max 1 ,0

  max 1 ,0

i

j

j

s i
B t rQ

i t t
i j

i

t t
j

b E A t e X AA Bn Gb F n r t t

X AA Bn Gb F n r t t

� 	 �

� 	 �
�

�
�

� �

�

�
�

� � �
� � � � � � � � � �� � �� 
 �


�� �� �
� � � � � � � � � �� �� �� ��
 �
 ��

� �

�
 (16) 

and equation (4) becomes 

� �

� � � �
� �

� � � �
� � � �

1

1 1

1

1 2
0

, 1,2

2

1 2
0

Pr

max , 1
Pr [

1 1

max , 1
1

1 1

g i

i j

i

i

g i

i j

Y Y

i
r t

t x t
j

t
t T i s

i
r t

t x t
j

QD D X

q ne h AA Bn Gb F n r t t
D

h p

q ne h AA Bn Gb F n r t t
p

h p

� 	 �

� 	 ��

� �

�

�

� �

�

�

� � �

� � �
� � � � � � �� � �

� 
 �� � �� � �
��



�� �
� � � � � � � �� �

�
 �� ��� �
��
�

�

�

�

             (17) 

where
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� �
1
n
EQ A(ti )e

�B(ti )r max ti
qxne

rgti ,h AA � Bn �Gb � F�� �n 1� rt j�t � 	1�2 �t� �
j�0

i�1

�
�


�
�

��
�

i�1

s

�
�



�

�max ti�1
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�

            (18) 

and

Xt � max ti
qxne

rgti ,h AA � Bn �Gb � F�� �n 1� rt j�t � 	1�2 �t� �
j�0

i�1

�
�


�
�

��
1� p� �

�max ti�1
qxne

rgti�1 ,h AA � Bn �Gb � F�� �n 1� rt j�1
�t � 	1�2 �t� �

j�0

i�2

�
�


�
�

��
1� p� �

 (19) 

Parameters  Values of parameters Parameters Values of parameters 

AA       0.075 51q       0.00720 

B 62 10� 52q       0.00784 

G      0.0004 53q       0.00857 

0r      0.07 Y       5 

F      0.1 
       0.24 

p      0.2 	       0.12 

�      0.05 12�       0.50 

1	      0.17 CON       0.05 

49q      0.00612 h       0.60 

50q      0.00663 x       49 

              Table 2: Values of parameters used in numerical calculations 

Table 2 lists the parameter values used in the numerical calculation. The process of 

optimization for this case is described as follows: When 

PP(n,b,rg ,� ) � AA � Bn �Gb � F�  and b = 0, the constrained condition (1) for objective 
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function maxENPV n,rg� � becomes AA � Bn � F� � 0 , or n � AA � F�
B

. While it is eas-

ily seen from equation (3) that b � 0 (The integrand and dPUTt  are greater than or 

equal to 0 andY � 0 ), and the up boundary limit of n for MaxENPV (n,rg )  is less or 

equal to AA � F�
B

,  for a given rg ,  with 0 � rg � max rg ,  the grid search procedure is em-

ployed to locate optimal solutions rg *  and n *  that satisfy constraints of 

AA � Bn �Gb � F� � 0 and ( , )gQD n r CON�  on the intervals 0,
AA � F�
B

�

�

�
��

 for n  and 

min rg ,max rg� � for rg . Since the return rate of investment is a random variable more or 

less centered at a positive interest rate, we first discuss the cases of rg � 0  (in the 

next section we will discuss the case of rg � 0 ). Table 3 lists the results of optimiza-

tion.

n Optimum rg QD PP(n,b,rg ,� ) ENPV (n,rg ) b(n,rg )

10600 0 0.0218 0.0532 346.3078 5.5670 

10800 0 0.0226 0.0527 349.2365 5.9555 

11000 0 0.0246 0.0520 353.3249 6.5796 

11200 0 0.0260 0.0511 355.3807 6.8648 

11400 0 0.0274 0.0505 356.7720 7.0328 

11600 0 0.0296 0.0499 358.4064 7.6816 

11800 0 0.0321 0.0490 359.2271 8.4012 

12000* 0* 0.0351* 0.0485* 359.4955* 10.4334* 

12200 0 0.0388 0.0476 359.0794 11.7744 

12400 0 0.0425 0.0464 358.4161 13.3046 

12600 0 0.0490 0.0447 355.4974 15.7414 

12800 0 0.0557 0.0441 349.2164 18.2843 

Table 3: Results of optimization 
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Figure 1: Results of optimization 

From Table 3 we gather that optimum solutions are 

* 0, * 12000, *( , ) 0.0351, *( , ( , ), ( , )) 0.0485,g g g gr n QD n r PP n b n r n r�� � � �
b *(n,rg ) � 10.4334.

Using the equation (5), the optimal boundary of default, 

BARRt* � t q x n * erg *t 1� p
1� h(1� p)

�
1� 0.2

1� 0.6(1� 0.2)
�12000 t q49 � 51428.57t q49 ,

for 0 � t � T . Figure 1 describes the relationship among policy number (z-axis in Fig-

ure1), expected net present value (y-axis in Figure 1) and default probability (x-axis 

in Figure 1). The surface in Figure 1 is a convex quadratic three-dimensional surface 

and the top of this surface is flatter, which means that the optimal solution of ENPV

is insensitive to the change of n. From Table 1 we see that when n changes from 

11600 to 12000 (12000 to 12400), the change of the values of ENPV is only 1.0891 

(1.0854) and the elasticity coefficient is only 0.09 (0.09058). This characteristic is 

helpful is saving calculation time in optimization, because we can take larger iterative 

steps without losing accuracy in the process of searching for local optimal solutions. 

It should be noted that if the insolvency risk is not reflected in prices, the insolvency 

risk will increase the net values of insurers, which may be due to two situations where 

this would be the case. The first is the policyholder’s lack of information regarding the 
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risk-ness of the insurer or inability to assess that risk. The second is when the policy-

holder is covered by a credible outside guarantee and is therefore indifferent with 

regard to the risk of the insurer (see Babel et al., 2005). 

If insolvency risk is not considered in the function of prices, simply let G = 0 in the 

equation (12), orPP(n,b(n,rg ),� (n,rg )) � AA � Bn � F� . With the help of Monte Carlo 

simulation, we obtain optimal solutions that are listed in Table 4. 


 � 0.24,r0 � 0.07,� � 0.05,	 � 0.12

	1 0.05 0.17 

Considering

insolvency

risk in price 

function

Without

considering

insolvency

risk in price 

function

Considering

insolvency

risk in price 

function

Without con-

sidering in-

solvency risk 

in price func-

tion

maxENPV n*,r g*� � 440.0831 463.4242 359.4955 395.1984 

n * 17600 17600 12000 12000 

PP(n*,b(n*,rg*),� (n*,rg*)) 0.0398 0.0411 0.0485 0.0527 

� (n*,rg*) 0.0125 0.0128 0.0162 0.0175 

Claim payment per unit 

price after consideration 

for cost of default risk 

0.3138 0.3108 0.3331 0.3308 

b(n*,rg*) 3.1791 10.9077 10.4330 13.8226 

Liability Values 260.8209 259.4283 222.847 238.1774 

( *, *)gQD n r 0.0162 0.0421 0.0351 0.0425 

rg * 0 0.06 0 0.06 

Table 4: Optimization results using Monte Carlo simulation 
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From Table 4 we see in contrast with the optimal solutions where the insolvency risk 

is reflected in prices (G � 0 ), the net value of insurer increases at cost of increasing 

default risks and decreasing claim payment per each unit of price (after consideration 

for cost of credit risk) although optimal minimum guaranteed return rate increases. 

3.3. Convergence of default put option values and default probabilities 

For optimization, the convergence of default option values b  is very important. By 

iterative approximation calculation (For iterative equation, please see equation (16)), 

we find that the iterative values of b  are convergent, and the approximating value of 

b  and QD  can be found out by limited times of iteration.  The iterative process is as 

follow:

Put the initial value of 0b into the right side of equation (10), and calculate the value of 

1b . Put the value of 1b into the right side of equation (10), and calculate the value of 

2b . Through limited number of cycles, we can get the approximated solution.

Figures 2 and 3 illustrate convergence of the value of default option b  and default 

probabilityQD . We see from these figures that the iterative process is stable. 

0

5

10

15

20

25

0 5 10 15

Number of iterations

initial value
of
b(n,rg)=0

initial value
of
b(n,rg)=20

Figure 2: Convergence of iterative process in default put value calculation 
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Figure 3: Convergence of iterative process in default probability calculation 

From Figure 2 and Figure 3 we can also see that the results of b  and QD  are insen-

sitive to the initial values of b . The convergent speeds are all very high and the con-

vergence processes are all stable regardless of initial values of b.

4 Discussions and Analysis 

4.1. Discussions on the influence of values of minimum guaranteed return rate on 

risks and benefits of insurers and the insured 

By general principles of game theory, insurers should establish their strategy assum-

ing their customers would maximize value to themselves. In this section, we will dis-

cuss the selection strategies for insurers based on the ideas of game theory. Be-

cause the return rate of investment can and does become negative often, it is natu-

rally necessary to extend our discussion to the cases of minimum guaranteed return 

rate 0gr � . Table 3 lists the numerical results to demonstrate the influence of values 

of minimum guarantee return rate gr on the benefits of insurers and the insured. We 

set gr  in five different levels (-0.06,  -0.03, 0, 0.03, 0.06) to see the corresponding 

changes in the values of put option, the probability of default, expected net present 

values, claim payment for unit price ( / PP� ).
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Table 5: Influence of values of minimum guarantee return rate on risks and benefits 

of insurers and the insured 

From Table 5 we see that when minimum guaranteed return rate gr increases, the 

probability of default also increases, at the same time the expected net present value 

decreases and claim payment for unit price (taking off cost of credit risk) at first in-

creases then decreases and reaches largest value at the point of 0gr � . From the 

insurer’s perspective, smallest negative minimum guaranteed return rate is best se-

lection based on the criterion of maximizing profit, but it is noticeable that the criterion 

of maximizing profit is established on the basis of the demand of customers. If the 

negative minimum guaranteed return decreases the demand of customers, it will re-

sult the decrease of insurer’s profit. Therefore, the insurer generally will not take 

smallest negative minimum guaranteed return rate as best choice due to fear of loss 

of customers. From the consumer’s perspective, gr = 0 is the best selection based on 

financial aspects. However, minimum return rate guarantee has life insurance protec-

tion and that has some value to customers. It is not uncommon for real life customers 

to accept effective minimum guarantee rate even at the cost of accepting lower claim 

payment. Insurance companies may consider giving up some value and choosing 

gr
Case1 

(-0.06) 

Case2 

(-0.03) 

Case 3 

(0.0)

Case4 

(0.03) 

Case5 

(0.06) 

*)*,( grnMaxENPV 390.1872 374.1127 359.495 342.336 324.0123 

*n 13000 12200 12000 11300 10200 

*))*,(*),*,(*,( gg rnrnbnPP � 0.0482 0.0493 0.0485 0.04880 0.05080 

( *, *)gn r� 0.0156 0.0160 0.01620 0.01630 0.01700 

Claim payment for unit 

price taking off cost of 

default risk 

0.3232 0.3240 0.33310 0.33280 0.32930 

*)*,( grnb 5.7894 7.1724 10.4330 13.2914 13.8644 

Values of Liability  236.9348 227.7857 222.847 207.736 194.2156 

( *, *)gQD n r 0.0202 0.0240 0.0351 0.0451 0.0499 
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sub-optimal strategy in order to satisfy customer’s need and stimulate demand. It 

also should be emphasized that minimum guaranteed rate should be a rate at which 

the company is able to fulfill its obligations. Otherwise, default option may expire in 

the money. The reality of this threat has been illustrated in the case of Nissan Mutual 

in Japan, a company that was unable to meet the interest rate guarantee. 

4.2. Analysis of effect on  when parameters of CON change 

Figure 4: Effect on ENPV when parameters of CON change 

Figure 4 shows the effect of changes of the constraint value of default probability 

CON on the expected net present value of profit. Note that lower value of CON de-

creases the benefit of insurers but provides better security against losses. When 

constraint value of default probability changes from 0.02 to 0.01, the benefit obtained 

by insurers decreases sharply especially in the cases of gr  taking larger values. For 

example, in the case of rg � 0.03,  cutting the value of CON from 0.02 to 0.01, the 

value of optimal ENPV decreases 26%, but in the case that cutting the value of CON

from 0.03 to 0.02, the optimal value of ENPV only decreases 5.89%. Therefore, the 

selection of a suitable constraint value of default probability should take into account 

of marginal effects of credit risk on the value of insurers, but same important thing is 

that the requirement of regulation and the attitude to risks of the two parties of insur-

ance contracts should be considered. 
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5 Conclusions 

This foregoing analysis discusses measurement of default risk and valuation of eq-

uity-linked life insurance contract. Models of default option value and default probabil-

ity is established incorporating stochastic interest rates, supply and demand, sto-

chastic investment return, mortality rates. The values of default boundary and price of 

insurance policy are determined by maximizing expected net present value of profit 

subject to the constrains of price 0� and default probability �  a constant with the 

help of stochastic optimization and Monte Carlo simulation. The term structure of sto-

chastic rates of return on the asset portfolo is based on the Cox, Ingersoll, Ross 

(1985) model. Convergence of iterative process of finding approximating value of de-

fault option and the effects of minimum guarantee return rate on default probability, 

price and expected net present value of profit are discussed. Our results indicate that 

the convergence speeds are very high and that convergence processes are all very 

stable no matter what initial values of b  are taken in feasible solution area of n  and 

b . The results also indicate that the default probability increases with the increase of 

minimum guaranteed return rate gr . Increasing minimum guaranteed return rate will 

decrease optimal expected net present value and change claim payment. Therefore, 

risk and benefit, advantage and disadvantage must be weighted and balanced in se-

lecting minimum return rate guarantee. The further work will be focus on discussing 

to use other credit measurement such as value at risk (VaR) and conditional value at 

risk (CVaR) as a constraint in establishing optimal model. Finally we could also ex-

tend our model to the case of level premium insurance policies. 

Appendix

Proof of continuity of equation (3): 

The equation (3) can be written as 

b(n,rg ) � E
Q A t� �e�B(t )r dmax Xt � Dt ,0� �

0

Y

�
�


�
�

��
�

� A t� �e�B(t )rd
0

Y

� EQ max Xt � Dt ,0� �� �.
      (20)

 where 

Xt � max Dt h,GUEt� �� �1� p� �� Dth � max GUEt � Dth,0� �� � 1� p� �.
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 From equation (20), we can easily know that the first term of the integrand of b---- rtBetA )()( �

is a continuous function, where

A(t) � 2� e 
 ��� �t /2

g t� �
�


�
�

��

2
� /	 2

B(t) �
2 e� t �1� �
g t� �

g(t) � 2� � 
 � �� � e� t �1� �
� � 
 2 � 2	 2

Let R � Xt � Dt ,  then dEQ max Xt � Dt ,0� �� �� dE
Q max R,0� �� �

dt
dt .

� � � � � �

� �� �� � � �

When  0,  max ,0

     max , 1

� � �

� � �

Q
tQ Q

t

Q
tQ

t t

dE DdR dE R E X dt dt
dt dt

dE Dd E D h GUE p dt
dt dt

�

d
dt
EQ Dth 1� p� �� �� dE

Q Dt� �
dt

dt when Dth � GUEt ,

� h 1� p� ��1� �dE
Q Dt� �
dt

dt

d
dt
EQ GUEt 1� p� �� �� dE

Q Dt� �
dt

dt otherwise.           

= fx t� �erg t 1� p� �n � dE
Q Dt� �
dt

dt

 

!

"
"
"
"
"

#

"
"
"
"
"

Based on the Cauchy-Schwarz inequality, 

dEQ Dt� �
dt

dt � EQ rDtdt � 	1Dt
dw1

dt
dt

�

�

�
��
� EQ rDtdt� �� EQ 	1Dt� �2 d

dt
EQ w1� �2 dt

 Since the variance of standard Wiener process ,)( 1 twDQ �  the expectation of standard Wiener 

process 0)( 1 �wEQ  and EQ (w1)2 � DQ (w1) � EQ (w1)� �2 � t ,

0)()()( 2
1 ��� dtDEdtrDEdt

dt
DdE

t
Q

t
Qt

Q

	

 so               
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dEQ max R,0� ��
h 1� p� ��1� � EQ rDt� �dt � EQ 	1Dt� �2 dt� � when Dth � GUEt

fx t� �ergt 1� p� �n                                             otherwise.            

 

!
"

#
"

 When R � 0, dEQ max(R,0) � 0.  Therefore )0,max(REQ  is differentiable and continuous. 

And since rtBetA )()( � is also continuous, ),( grnb is a continuous function. Similarly, we can 

prove that ),,,(1 Yrxn g� is also a continuous function. 

 While the price of life insurance contract and the expected net present value are the functions 
of ),( grnb  and ),,,( Yrxn g� , ),( grnENPV and )),(),,(,( gg rnrnbnPP � are also continuous 

functions.
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