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Abstract

This paper presents models of growth, which put the neoclassical and neo-Schumpetarian
growth models in a unified framework. In doing so, it is argued that these two views of
growth, one based on factor accumulation and the other based on innovation, are
complementary in that they may capture different phases of a single growth experience. It is
shown that, under an empirically plausible condition, the economy achieves sustainable
growth through cycles, perpetually moving back and forth between two phases. One phase is
characterized by higher output growth, higher investment, no innovation and a competitive
market structure. The other phase is characterized by lower output growth, lower investment,
high innovation, and a more monopolistic market structure. Both investment and innovation
are essential in sustaining growth indefinitely, and yet the only one of them appears to play a
dominant role in each phase.
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1. Introduction.

The 0ld growth literature, which goes back at least to von-Neumann, focused
on factor accumulation as an engine of growth. One important contribution of the
neoclassical growth literature is to point out that the process of growth based
solely on factor accumulation must stop eventually, as it rums into diminishing
returns. The recent literature on the neo-Schumpetarian growth stressed the
innovation of new products, motivated by monopoly profits, as a way of aveiding
diminishing returns, and of sustaining growth indefinitely. Many recent studies
on growth accounting have attempted to access empirically the relative importance
of these two alternative views of growth. What is implicit in these studies is
the assumption that the relative contribution of the two sources of growth is
stable over time.

This paper presents models of growth, which put the neoclassical and neo-
Schumpetarian growth models in a unified framework. In doing so, it is argued
that these two views of growth, one based on factor accumulation and the other
based on innovation, are complementary in that they may capture different phases
of a single growth experience. It is shown that, under an empirically plausible
condition, the economy achieves sustainable growth through cycles, perpetually
moving back and forth between two phases. One phase is characterized by high
output growth, higher investment, no innovation and a competitive market
structure. The other phase is characterized by lower output growth, lower
investment, high innovation, and a more monopolistic market structure. In the
long run, both investment and innovation grow at the same rate, but the economy
alternates between the periods of high investment and the periods of high
innovation. Both investment and innovation are essential in sustaining growth

indefinitely, and yet the only one of them appears to play a dominant role in




each phase. The results in this paper should thus pro?ide at least a caution
when interpreting a country's growth experience. A country may have grown in the
past solely based on factor accumulation, and yet, its growth may not come to an
end, as the economy may enter a period of innovations, once it builds up
sufficiently large resource base. Or a country may record a faster output growth
during the period of less innovative activities, from which one should not
conclude that the innovation contributes less to the growth.

The intuition behind the emergence of cycles is easy to grasp. The
critical departure from the existing studies of neo-Schumpetarian growth made in
this paper is that the innovators of new products enjoy a temporary monopoly
power. This assumption plays a dual role in generating cycles. First, the
degree of monopoly prevailing in the economy can change over time. Second, a
potential innovator wants to enjoy its temporary monopoly power, when the degree
of monopoly prevailing in the economy is higher. This is because the potential
innovator needs to enter when the market for its product is large enough to
recover the cost of innovation. The size of the market depends in part on how
the products with which it competes with are priced. This leads to a
synchronization of innovative activities. If the innovator chooses to introduce
its product when others do, some of its competing products are monopolistically
priced. On the other hand, if the innovator enters after others have innovated,
the market for its product would be too small to recover the cost of innovation,
because the competing products would become more competitively priced, as their
innovators lose their monopoly power. As a result, the economy experiences the
period of high innovation with a monopolistic market structure, followed by the
period of no innovation with a competitive market structure. Once innovation

stops, the output and investment growth go up, partially because the resources




are now redirected from innovative activities to manufacturing activities and
partially because the competitive market structure allocates the resources more
efficiently among the existing products. &nd, as a result of high investment
growth, the economy will eventually build up enough resource base to enter
another period of innovative activities.

The intuition may be easy to grasp, yet its formal demonstration presents
a challenge for the theorist. The main difficulty is that only a global analysis
of nonlinear dynamical systems can reveal the possibility that the economy
switches back and forth between phases with markedly differing properties.
Looking at the steady state, or even at a neighborhood of the steady state would
not suffice. A rigorous and explicit analysis of nonlinear global dynamics is
possible only when the dimensionality of a system is kept sufficiently low. The
challehge is to make a carefully chosen set of simplifying assumptions so that
a model is simple enough to be tractable, rich enough to generate cycles, and has
sufficient structures that would enable us to gauge the empirical plausibility
of the condition for the cycles. In this paper, the following assumptions are
chosen in view of these requirements.?

First, it is assumed that there is only one type of the capital stock; that
the capital stock is converted to differentiated intermediate products, which
enter symmetrically into the production of the final good. Furthermore,
following Romer (1987), a restriction is imposed between two parameters; the
degree of substitution among differentiated products and the factor share. This
restriction helps to ensure the existence of a balanced growth steady state.

Second, the time is assumed to be discrete, where the period length is taken as

A wide range of alternative assumptions are discussed in Matsuyama (in
progress), which presents an wunified treatment of dymamic monopolistic
competitions in macroeconomics.




the duration of the monopoly power enjoyed by the innovators of new products.
In other words, monopoly lasts for only one period. This assumption, borrowed
from Deneckere and Judd (1992), obviates the need to evaluate the market value
of innovating firms, and hence helps to simplify the analysis drastically.? As
shown in section 2, all these assumptions jointly make it possible to summarize
the levels of output and innovation in each period effectively as a function of
a single variable.

Another critical modelling choice is on the formulation of intertemporal
consumption-saving decision. If the economy is populated by the infinitely-lived
representative agent with homothetic preferences, the equilibrium dynamics is
described by a discrete-time, two~dimensional system, whose global properties are
difficult, if not impossible, to analyze. Instead, if we assume two-period
overlapping generations of consumers with Cobb-Douglas preferences, the
equilibrium dynamics can be described in a discrete-time, one-~dimensional system,
whose global properties can be investigated thoroughly. Adopting the overlapping
generations framework, however, makes it difficult to interpret the period
length, which is already taken to be the duration of the innovator’s monopoly
power. Furthermore, some readers might suspect that the overlapping generations
structure may be responsible for the cycles. In view of the pluses and the
minuses, bbth formulations are used in this paper. First, section 3 deals with
the overlapping generations (OG) economy, and its global properties are examined
in detail. Then, section 4 looks at the representative agent (RA) economy. Much

of the results obtained in the 0G economy is shown to carry over to the RA

’If we add another period of monopoly, the dimensionality of the system
would increase by two. If a finite duration of the monopoly power were
introduced in a continuous time model, the dynamical system would become
infinite-dimensional.




economy, in a slightly weaker form. Having demonstrated the robustness of the
results, section 5 gauges the empirical plausibility of the condition for cycles.

Although mainly motivated by the question of growth, this paper can also
be viewed as a contribution to the literature on endogenous fluctuations (see
surveys by Boldrin and Woodford 1990 and Guesnerie and Woodford 1992). Among
these studies, Deneckere and Judd (1992), Gale (1996) and Shleifer (1986) all
constructed models of innovation cycles, based on the temporary nature of the
monopoly enjoyed by the innovators. Like the Deneckere-Judd model and those in
the neo-Schumpetarian growth literature, it is assumed that there is free entry
to innovative activities. This means that an incentive to delay implementing
innovations, a crucial element in the models of Gale and of Shleifer, plays no
role in generating cycles in the present study.

Evans, Honkapohja, and Romer (1996) recently developed a model of growth
cycles, which also builds upon the model of Romer (1987). Their study differs
from the present study in two crucial reséects. First, the cycles in their model
are based on sunspots, expectational indeterminacy, and the multiplicity of
equilibrium. In contrast, the results in this paper do not rely on multiple
equilibria; the cycles appear here, as the unique steady state loses its
stability. Second, in their model, the investment and the rate of innovation
always move together, as the economy alternates between the states of high and
low growth. On the other hand, the investment grows faster during the period of
no innovation than during the period of innovation in the models developed below.

Jovanovic and Rob (1990) is closest in spirit to this paper. They
developed a model of the economy, which could grow through two different forms
of innovation: intensive search and extensive search. They identified the

condition under which the economy alternates between the period of intensive




search and the period of extensive search. Their underlying model differs so

much from the models in this paper, which makes it difficult to make any direct

comparision.
2. The Structure of Production.
The time is discrete and extends from one to infinity: t ¢ T = {1,2,3,...}.

There is a single final good, which is produced competitively. The final good,
taken as a numeraire, can either be consumed or invested. For the notational
convenience, let K; denote the capital stock at the end of period t, i.e., the
amount of the final good left unconsumed in period t, and carried over to period
t+l. Note that this means that the amount of capital stock available for use in
period t is denoted by K.

There are two primary factors of production; capital (K) and labor {(L).
Labor goes directly into the production of the final good, and the supply of
labor is inelastic and equal to L in each period. Capital is first converted
intc a variety of differentiated intermediate products. These intermediates are
aggregated into the composite by a symmetric CES, as in Dixit and Stiglitz.
Labor and the composite of intermediates are combined with a Cobb-Douglas
technology. More specifically, the technology of the final goods producer is

expressed as

1 [¥e 1~
Y, = A(L)°® f[xc(z)] °dz ¢, (1)
[d]
where x.(z) is the amount of variety z employed in period t, ¢ € (1,o) is the
direct partial elasticity of substitution between every pair of intermediate
products, and (0,N,] represents the range of intermediates available in the
marketplace in period t. Some features of this specification, borrowed from
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Romer (1987), deserve comments. First, for a given availability of intermediate
products, Ny, the technology of the final goods production satisfies the property
of constant returns to scale, and hence it is consistent with the competitiveness
of the final goods industry. Second, the final goods producer’s demand for each
intermediate product has a constant price elasticity equal to ¢. Third, the
labor share of the economy is equal to 1/¢, and hence the total wage income of
this economy is equal to wyL = Y/0.

One significant departure from Romer (1987) lies in the market structure
of the intermediate inputs sector. At the beginning of period t, the economy
inherits all the intermediate inputs of variety z ¢ [0,N¢,]. These "old"
intermediates are manufactured by converting a units of capital into one unit of
an intermediate, and sold competitively. At the same time, the intermediate
inputs of variety z e [N ,,N;] may be introduced and sold exclusively by their
innovators in period t. These "new" intermediates require F units of capital to
innovate. The process of manufacturing new intermediates, just as old ones,
requires a units of capital per output.

Let r, denote the cost of capital. Then, the marginal cost of
- manufacturing intermediates in period t is equal to ary. The old products are
produced competitively and hence sold at the marginal cost; py(z) = p° = ar, for
z ¢ [0,Ny_;]. oOn the other hand, all the new products, if they exist, are sold
at pilz) = ptm = aory/{o-1), where z ¢ [N¢.,,N¢], because of the constant price
elasticity, o. Since all the intermediate products enter symmetrically in the
production function of the final goods, we have xy(z) = x¢ for z ¢ [0,N¢,], and

x¢(2) = %™ for z € [Ny,,N;], and they satisfy




T

e (2)

and

m

c,c -
Be X . [1—i]l° =6 > 1 .
Dy X¢

The parameter, 6, which plays an important role in the following analysis,
depends positively on ¢ and its value can range from 1 to e = 2.71828..., as one
varies ¢ froﬁ 1 to infinity.

The one-period monopoly enjoyed by the innovator gives an incentive for
innovation, and there is no barrier to entry for innovative activities. The
period t monopoly profit, net of the fixed cost, is my = py™"-ry(ax.™+F); it is
negative if and only if %™ < (0-1)F/a. Thus, free entry ensures the following

condition must hold in equilibrium:

x5 s (g-1)

fu lhy

, N, 2 N, (xf-(a-l)—g)(Nt—Nc_l) =0 . (3)

This is to say that, when potential innovators do not expect the sale of a new

product to reach the break-even point (i.e., x" < (0-1)F/a), there is no
incentive for innovating new products (i.e., Ny = Ny ;). On the other hand, when
innovation occurs and some new products are introduced (i.e., Ny > Ny_;), the

innovator cannot earn any excess profit and must break even, due to the free
entry.

The resource constraint on capital in period t is expressed as

K

o1 N, ax{ + (N~Nea){ax{+F) .

Note that the left hand side of this equation is K;_,, which represents the

amount of capital carried over from period t-1, and hence available for use in




period t. Using egs. (2) and (3), the above constraint becomes

- K,
axf = a 1-.1.]°x:' = Min{ 2t , 6oF} , (4)
o Nt-l
and
K- (5)
N, = N., +Max{0 . —65-1;,3 ~6Nt,1}
From eq. (1), the total output is equal to
1 1-2 1.1
Y, = A(L) °[Nc_1(xf) © 4 (N=Ney) (x) °]
which can further be rewritten to, by using egs. (3}, (4) and (5},
% c11_71' K-y
a nd -
A[N., L] — if N < 6oF
YC = . 1 1_1
BoF a Neoy

Egs. (5) and (6) summarize what takes place on the production side of the
economy in period t, when the economy inherits K., and N{_, at the beginning of
the period. If K ,/Ny, s 60F, the resource base of the economy, K, is too small
relative to the number of the products, N, and there is no innovation. All the
products are competitively produced, and the reduced form aggregate production
function, given in eq. (6), has the standard neoclassical properties, including
the law of diminishing returns in capital. If K¢,/Nt_; > 8§¢F, on the other hand,
the resource base of the economy is sufficiently large relative to the number of
the products, and some new products are introduced. And the aggregate output is
linear in capital, as in many endogenous growth models.

Before proceeding, let us minimize the notational burden in the ensuing
analysis, by choosing the units of measurement in labor, in the gquantity of
intermediate inputs, and in the variety of intermediate inputs, so as to have

9




L =1 , a = 1, F o= 85
Furthermore, define
_Kt
ke = R,

With this normalization, the critical value of k, below which there is no

innovation, is k. = 1, and eqgs. (5) and (6) are simplified to

Nt
NE~1

= Max{1l ,1+6 (k. -1)} (7

and

= —‘2—Max{(kc_1)_% ) 1} (8)

Needless to say, nothing of substance would be affected by such choices of the
units.

In order to close the model, it is necessary to specify the mechanism of
determining the capital accumulation, which comes in two different forms. One’
is based on the overlapping generations consumers (section 3), and the other is

based on the infinitely-lived representative consumer (section 4).

3. The Overlapping Generations (OG) Economy.

The economy is populated by overlapping generations of the equal size, and
each generation lives for two periods. Every period, a new generation of workers
enters the economy and supplies L units of labor inelastically. The workers who
enter the economy in period t earns the wage income, w.L, some of which is
consumed in the first period, Ctl, and the rest is saved to finance their second

period consumption, Cg,;?. Their preferences are given by U' = (1-3)log(C!) +
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slog(Ce,;?), which yields a simple saving function, S; = wL - C¢' = swll =
(s/0)Yy. Since only this generation has an incentive to save in period t, the
asset market eguilibrium condition is K¢ = Sy = (s/0) Y. (Note that the only
asset that the consumer holds is the capital stock. The ownership share of
intermediate input producing firms is valueless, because their monopoly power
lasts for only one period, in which they break even.)

Hence, from egs. (7) and (8), the dynamics of the economy is uniquely

determined by the following system of the difference equations in K and N:

1
_ SA Keer V-5 (Sa)
K, = -O—Max{( T S, 11K,
and
N, = N, +Max{0 , 8 (K., - Noy) } (9b)
for an initial condition, K, and N,.
Note that, in deriving egs. (9a)-(9b), no reference was made concerning the

physical depreciation rate of the capital stock, 8. The dynamics is independent
of 6 in this model for two reasons. First, in the two-period OG economy, capital
accumulation is determined solely by the gross savings by the young, the wage-
earner. Second, due to the Cobb-Douglas preferences, the savings by the young
is independent of the rate of returns. It is precisely these features of the
model that would enable us to describe the equilibrium dynamics into an one-

dimensional system, as will be seen below.

3.A. The Steady State Analvsis.

Let us first look at the steady state of the economy, which is defined as

an equilibrium path (for a particular set of initial conditions), in which K./N,
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= k; stays constant over time.

First, suppose that k{; s 1 in a steady state. Then, from eq. (9%b), Ny =
N;_, and hence K = K;_,. In this steady state, there is no innovation, all goods
are competitively supplied and the economy does not grow: it is a neoclassical
stationary path. Eq. (9a) shows that, in a neoclassical stationary path, k¢,
= (sA/g)?. The existence of such a stationary path thus requires sA/g s 1.

Suppose now that ki, > 1 holds in a steady state. Then, from (%a) and

{sb),

= 1+0(k,, -1)>1
o Kea Neey (e-a )

Thus, in this steady state, where the resource base of the economy is
sufficiently large relative to the number of existing products, there is always
an incentive to innovate new broducts. The existence of such a balanced growth
path requires that sA/g > 1.

The above argument can be summarized as follows.
Preposition 1.
Let thé growth potential of the OG economy be defined by G = sA/¢. Then,
1) if G s 1, the economy is stationary in all the steady state paths. They

are given by {K¢,N¢} = {k"A,A} for any A > 0, where k" is defined by

k* = g = (22) <1
o

ii) if G > 1, the economy grows at the same rate in all the steady states
paths. They are given by ({K¢,N¢} = {k™AGY, AG'} for any A > 0, where k' is
defined by

LT G ~ 1

= + >
k 1 B 1
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The content of Proposition 1 is twofold. First, whether the economy grows
in a steady state depends on G = sA/g. If it is greater than one, the economy
grows. If it is less than one, the economy stays stationary. For this reason,
G is calléd the growth potential of the economy. Second, the steady state value
of k 1is uniquely determined, although the dynamical system governing the
evolution of the economy has two state variables, K and N, and a continuum of the
steady state paths exist. When G s 1 (the case of stationary paths), it is equal
to k. When G >1 {the case of balanced growth paths), it is equal to k", The
next subsection looks at the stability of the steady state by examining the

asymptotic behavior of ki = K¢/N;, for an arbitrary initial value, k, = Kq/Nj.

3.B. The Global Dynamical Analvsis.

It is straightforward to show that, from (9a)-(9b), the dynamics of k. is

governed by the following one-dimensional map, ¢: R, -» R,,

!
Glkey) ® if k., s 1
k, = d’(k:__l) =

kt-l
1 +6(kp,-1)

G if k., =2 1

Recall that the critical value of k, below which there is no innovation, is given
by k. = 1. Viewed as a dynamical system of k, the equilibrium of the economy has
a unique steady state. If G = 1, the unique steady state of the economy is a
neoclassical stationary path, and equal to k' = 67 < ke = 1. If G > 1, the
unique steady state is a balanced growth path, where the gross growth rate is G
and k™ =1 + (G-1)/8 > k. = 1.

Let us define the iteration of the map as follows: &' (k) = ¢(k) and #'(k)

13




= ¢(&'1(z)). Then, {#%(ky); t ¢ T} represents the equilibrium trajectory for an
initial condition, k,. For any integer n = 2, period-n cycles of the map are
defined as {#%'(k); t e T}, such that #'(k) = k for all 1 s t < n and &' (k) = k.

It is also useful to note that

O (k,) = G O (k,) = ___ifL__ P3I(k,) = —-—gi———r-%G
¢ ! ¢ 1+6(G-1) ' c 1+0(G-1) ’

As always, the graphical technique is useful for analyzing a nonlinear
dynamical system. Figures 1-3 all depict the dynamical system of k;. The map
is continuous and uni-modal. It is increasing in (0,1) and decreasing in (1, ).
When k., s k¢ = 1, there is no innovation in period t, hence N, = Ny,. In this
region, all the goods are supplied competitively and the economy grows solely by

the accumulation of the capital stock, which is subject to the law of diminishing

returns. The map is hence concave in this region, and the dynamic behavior
mimics that of the neoclassical growth model. Let us call this region the Solow

regime. On the other hand, when k¢, > k¢ = 1, new products are introduced. The
economy grows partially due to the innovation, and partially due to the fact that
capital accumulation is no longer subject to the diminishing returns. The
dynamic behavior in this region thus resembles those of the neo-Schumpetarian
model of endogenous growth. Let us call this region the Romer regime.

In Figure 1, G < 1 holds. This is the case where the steady state, ke =
k", is §tationary. For any initial condition, the economy is trapped into the
Solow regime, after at most one period, and then innovation stops. Once trapped,
the growth of the economy solely depends on the accumulation of capital, and
eventually peters out. The economy converges monotonically to the stationary
state, k.

Figures 2 and 3 both depict the case where G > 1 holds, or eguivalently

14
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®(ke) > ke. This is the case where the steady state, k¢ = k™, is a balanced

growth path. Two figures differ in the local stability of the steady state,

determined by the slope of the map at the steady state, k",

d® o, e 1-6
= = 0
dz(k ) <

Figure 2 shows the case of 1 < G < § ~ 1, the case where the steady state
is locally unstable. The interval, [&?(k.)},®(k.})] represents the trapping
region, i.e., the region which the economy enters eventually, and once entered,
it will never‘leave. Some algebra can show that the condition, G < § - 1, is
equivalent to $?(k;) < k., which is to say that the trapping region covers both
the Solow and Romer regimes. In the Solow regime, there is no innovation, and
the economy grows solely by capital accumulation. If started with a small kg,
the economy may stay in the Solow regime for many periods, but it eventually
accumulates enough capital to enter the Romer regime, and innovation begins.
This way, the economy starts sustainable growth through cycles, by bouncing back
and forth between the Romer and Solow regimes.

In Figure 3, G > 6 -~ 1 holds, and hence the slope of the map at k = k** is
less than one, and k. < #°(k;). As in the previous case, the economy may
initially stay in the Solow regime for many periods, but it eventually enters the
Romer regime. Then, the économy stays forever in the Romer regime and oscillates
around and converges toward the steady state, or a balanced growth path. This
is the case where the steady state is globally stable.

Thus, the graphical analysis suggests that the dymamics of k¢, given by the
one-dimensional map, k¢ = ®(k¢.,), has the three distinct asymptotic behaviors,

depending on parameter values. The following proposition states it more
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formally.?

Proposition 2.

Let the growth potential of the OG economy be defined by G = sA/c.

i) If G < 1, then, for any k, ¢ R,, {k¢; t € T} C (0,kc] and lime, k¢ = k",
That is, the economy immediately settles dqwn to the Solow regime and
converges to a neoclassical stationary path.

ii) if 1 « G < 8 - 1, there are period-2 cycles; k. fluctuates forever between
the Solow and Romer regimes, for k, ¢ R,\D, where D is at most countable
subset of R,. That is, the economy almost surely moves back and forth
between the Solow and Romer regimes.

iii) Suppose G > § - 1. Then, for any k, ¢ R,, there exists a t’ such that {ke;
t = t’} c [ke, ®(kc)] and lime, ke = k. That is, the economy eventually

settles down to the Romer regime, and then oscillates around and

eventually converges to a balanced growth path.

Proof.

i) . The graphical analysis would suffice.

ii). First, in order to show the existence of period-2 cycles, it suffices to
show that H(k) = #*(k) - k = 0 has a solution other than k = k™. Since
[ (ko) ,$(ke)] is the trapping region, H(#%(k.)) = #%(ke) - 2#2(ke) = 0 and H(ke)
= #2(k.) - k¢ < 0, hence H(k) = 0 has a solution in [&*(k) ,kc]. This proves the
existence of period-2 cycles. Next, suppose that &%'(k,) converges. Let the

3The proposition ignores the two non-generic cases: G = 1, and G = 8-1. The
former case is similar to case i). In the latter case, there are a continuum of
period-2 cycles, and for any initial condition, the economy converges to one of
the period-2 cycles.
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limit point be denoted by k®. Then, from the continuity of &, k* = limbmét“(ko)
= &(lime..®%(ky)) = ®(k®), therefore k® = k™. ©Let D = {k, ¢ R, | limg . #%(k,) =
k**}. Since k™ is locally unstable, &'(k,) cannot approach it asymptotically.
Hence, D = {k, ¢ R, | ' (k,) = k™ for a finite t’}, which is at most countable,
since the uni-modality of ¢ implies that, for any k, there are at most two x’s
that solve k = ¢(x). Hence, for almost all initial conditions, k; indefinitely
fluctuates. The graphical analysis would suffice that the economy cannot be
trapped in the Solow regime. To prove that the economy cannot be trapped in the
Romer regime unless k; = k", note that, as long as the economy stays in the
Romer regime, the dynamics can be described by 1/ke,s - 1/k" =
{(1-6)/G}S[1/ke-1/k™]. Hence, |(1-6)/G| > 1 implies that, after a finite number
of periods, kt,s < k¢.

iii) First, for any k, € R,, there exists a t’, such that kg € [ke, ®(ke)].

Then, k¢ < #%(k.) implies that kei,; € [®%(ke) , @(ke)] © [ke,®(ke)]. Hence, for all

t = t', k¢ € l[ke,®(k)]. Hence, from |(1-6)/G| < 1, 1/ke - 1/k™ =
{(1-0) /6} " [1/ke-1/K™] > 0, as t > «. Q.E.D.

Remark. Some readers may wonder whether the equilibrium dynamics of this model
is chaotic if 1 <« G < § - 1.* It is straightforward to show that the dynamical
system is not chaotic in the sense of Li-York, by demonstrating the non-existence
of period-3 cycles. For this, it suffices to show that &3(k.) > k.. This

inequality takes the form

isee Grandmont (1986) for an accessible review of mathematics of chaos, and
Boldrin and Woodford (1990) and Guesnerie and Woodford (1992) for overviews of
chaotic dynamics in the economics literature.

17




Figure 4

Cs el //4;7’2’7 MW‘—'——

7o a Balawed

ot afl\_/

Bt ?uf)’/'ifl—éw?[— He c/z(afﬁ‘ﬂ(/.

oo Ao leisical %ﬁ’Mﬂ?{ Ltal=

———
pa

&~/




a

h(G) = G 71 —1—[1—%]“(@-1) > 0,

Since h is convex and h{(l) = 0, h(G) > 0 for all ¢ > 1 follows from
1-
R/(1) = 2+ °~[1-—1-]°>3—e>o
o-1 o
where e = 2.71828.... This does not rule out, however, the possibility that

some trajectories are chaotic; that is to say, for some initial conditions, the
economy indefinitely fluctuates, and yet may never converge to any cycles. To
rule out such a possibility, one needs to show that all the cycles have the
pericd length of a power of 2, a property that is difficult to demonstrate
analytically. Another difficulty is that the map, ¢, does not belong to any
class of the functions studied in mathematics. For example, its Schwartzian
derivative is not negative, which means, among other things, that the iteration
of the critical point, &%'(k;), may fail to converge to stable cycles, even if

they exist.®

Proposition 2 is depicted in Figure 4. Although G is not a primitive
parameter of the model, s or A can affect the property of the dynamics only
through their effects on G, so that we directly look at the effect of a change
in G. For any 6, a sufficiently large value of G leads to an oécillatory
convergence to a balanced growth bath, and a sufficiently small value of G leads
to a monotone convergence to a neoclassical stationary path. When 8 > 2, there
is an intermediate range of G, for which the economy fluctuates for almost all

initial conditions. Although the convergence to a balanced growth path is

5The author would like to thank Clark Robinson for his lecture on these
subtleties of the chaotic dynamics.
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possible (with zero probability), this is an unstable situation and cannot be
observed with occasional perturbations to the system.

To understand the mechanics of cycle-generating processes, let us consider
the following thought experiment. Initially, the parameter satisfies G > § - 1,
and the economy is in a balanced growth rate. Then, all of a sudden, there is
a decline in G caused by, say, a decline in the saving rate, s. As G becomes
smaller than 8 -~ 1, the balanced growth path loses its stability. This
bifurcation generates stable cycles of period-2. According to the simulation
exercises by Ehe author, the period-2 cycles remain stable for a wide range of
parameter values, but, as G is made even smaller, period-2 cycles eventually lose
their stability and this bifurcation leads to stable cycles of period-4. A
further decline in G causes another bifurcation to generate stable period-8
cycles, and then stable period-16 cycles. However, it seems that G must reach
1 and that the cycles should be replaced by a stable stationary state, before
such a series of period-doubling bifurcations would lead to a chaos.

Figure 4 is also useful for thinking about the effect of policies designe@
to affect the growth potential of the economy. For example, suppose that G < 1
initially, and the government adopts some policies to increase G, say, a wage
subsidy, financed by a lump-sum tax. If such a measure leads to 1 < G < 8 ~ 1,
then it generates sustainable growth, but also generate persistent fluctuations.
And even when such a pro-growth policy is effective enough to make G greater than
6§ - 1, the convergence to a balanced growth path is oscillatory, and the economy
will experience fluctuations for long time.

The instability of the balanced growth path and the emergence of cyclical
behavior are due to the complementarity in the timing of entry/innovation

decisions. The timing matters in this model, because innovators could enjoy only
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a temporary monopoly power. Innovations take place only when the market for a
new product is sufficiently large that the innovator can reach the break-even
level of the output. The size of the market partially depends on how the
products with which it competes are priced. If the innovator enters when other
firms also enter, some of the products are monopolistically priced. If it enters
in the following period, then these products become competitively priced, as
their innovators lose the monopoly power. This consideration gives an incentive
for firms to enter when other firms also enter. This effect is stronger when
different products are highly substitutable, i.e., when 8 is high. At the same
time, a growing resource base gives an offsetting force of spreading innovative
and entry activities, whose effect is stronger when G is high. When the former
effect dominates the latter, there is a bunching of the entry activity, and the
economy moves back and forth getween the Romer regime (the period of innovation)

and the Solow regime (the period of no innovation).

3.C. Properties of the Period-2 Cvycles.

To understand further the nature of cyclical behaviors, let us focus on the
period-2 cycles, in which the economy alternates between the Solow regime, k' <

1, and the Romer regime, k! > 1, where k' and k" are determined jointly by

.kH i q)(kL) ) G(kz’)l-% (10a)
and
kt = ®O(k¥) = Gk¥ (10b)
(k) 1+ 0(k¥~1)

Proposition 2 states that the period-2 cycles exist if and only 1 < G < § -~ 1.

And they are stable for a wide range of parameter values in this region.
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Let us consider

innovation rate, N,

the capital stock, K,

how the growth rate of the key wvariables,

and the output, Y,

such as the

change over the

(1la)

(11b)

{(1lc)

in the

cycles. If the economy is in the Solow regime in period t along the period-2
cycles, ki, = kM, ke, = kb, and k; = k". From eq. (7),
N
Ne -1 ; o= 1 +0 (k¥-1)
Ney N,
Hence,
Ke _ k¥ N k¥ ; K _ kENew _15:{1+6(k”-1)}
Keey k% Ney k= K, k% N, k4
From eqg. (8),
KL -% -1
A K L a
Yc = ( ) £-1 - (k)H {1+e(kH‘l)} :
Yi AK,_, k
Yeo _ AK, - k#
Y, .1 1~
A(kL) oKE—l (kL) L}
Inserting egs. (10a)-{10b) into egs. (1l1la)-(1llc) verifies that,
Solow regime,
-1
gy = 1 ; g = gy = G(kL) ° > @
and, in the Romer regime,
gy = 1 +8(k¥-1) i gr = gy = G

where gy denotes the (gross) growth rate of variable X.

over the cycles are hence given by

Hence,

-L

{1 +6(k¥-1)}* = G(kE) #° >

we can conclude
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Proposition 3.

Suppose that 1 < G < § - 1. Along the period-2 cycles, both the output and the
investment grow faster in the Solow regime (the period of no innovation) than in
the Romer regime (the period of innovation). The average growth rate of the
economy over the period-2 cycles exceeds G, the growth rate along the balanced

growth path.

The first half of Propostion 3 states that, although the innovation of new goods
is a crucial way of avoiding the diminishing returns and of sustaining growth
indefinitely, the economy actually experiences a lower growth in the output and
in the investment during the period of innovation. ©Only after the innovation
stops, and when the market structure becomes competitive, the economy enjoys
benefits of the innovation. The second half states that the cycles are indeed
growth enhancing; they allow the economy to grow even faster than along the
balanced growth path.

The assumption of the overlapping generations of consumers with Cobb-
Douglas preferences enabled us to describe the equilibrium dynamics in a one-
dimensional system, whose global properties can be examined in detail. But, it
has some drawbacks. The period length can be interpreted in two different ways:
the duration of the monopoly power enjoyed by the innovators, and the duration
of the working life. Some readers might alsc suspect that the overlapping
generations, rather than the temporary nature of monopoly, may be responsible for
the emergence of cycles. To respond such a criticism, the next section turns to
the model of the representative agent consumer, and demonstrates that the
assumption of overlapping generations is not critical for the results obtained

in this section.
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4. The Representative Agent (RA) Economy.

The economy is populated by the infinitely lived representative consumer,
The consumer supplies labor, L = 1, inelastically and choose the optimal
consumption path that maximizes the discounted utility defined by
v = Y ptln(ce) (P <1)
r=1

subject to the initial asset holding, K,, the flow budget constraint,

K. = weL+rkK._, + (1-38)K,, - C,
and the intertemporal solvency condition, which rules out a Ponzi-scheme,
Kz

I
II (2-6+zp

t=1

lim,.. 2 0

Recall that the only asset that the consumer holds across periods is the capital

stock.

As 1is well-known, the optimal consumption path is characterized by the

Euler equation
= D(1~6+r:,1) ) (12)

and the binding intertemporal solvency condition

: Kr ] r X
llm.r__ 7 1 1Mr.. p -—C-'; = 0 (13)
II (2-6+zp
t=1
In equilibrium, Y, = wiL + r K., and r¢K¢; = (1-1/0)¥Y; hold. Hence, using

the flow budget constraint, egs. (7) and (8), eq. (12) can be written to

1 C (1-8+ab(k,) ) kKo, W (K,)
B[l a+(1 .E)Ad:(kc)] B o s e oy

¥ (kpop) (14)

and eq. (13) becomes
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ke (kr.y)

- 0 (15)
1-8+A¢ (Kpy) ) Kpoy KW (Kpy)

limp_BT(

where

-1
]

p(k) = Max{k °,1} ; ¥Y(k) = Max{1l,1 +6(k-1)]}

For a given initial condition, k;, the equilibrium of the economy is a
trajectory, {k¢; t € T}, which satisfies egs. (14) and (15). ‘Note that any
bounded trajectory satisfies eqg. (15), so that only eq. (14) needs to be checked
to see whethe¥ a bounded trajectory is an equilibrium.

The equilibrium dynamics of the RA economy differs in many ways from that
of the OG economy. First, it depends on the physical depreciation rate of the
capital stock, 6. Second, the dynmamics of k is now described by a two-
dimensional system, as eq. (14) determines (ky, ky,;) as a function of (k¢ ;, k¢).
Third, the equilibrium may not be unique. In spite of these differences,
however, much of the results obtained for the OG economy carries over to the RA

economy, in a slightly weaker form.

4.A. The Steady State.

Let us now look at the steady state of the economy, and find out the
appropriate definition of the growth potential for the RA economy. Since any
steady state satisfies eqg. (15), one needs to check only eqg. (14). First,

o

suppose that a steady state is in the Solow regime, k¢ = k = 1. Egq. (14)

becomes

p{l-m(l-%)mk')'ﬂ =1 > ﬁ[1—6+(1-%}}1]

Now, suppose that a steady state is in the Romer regime, ky = k™ > 1. Then,
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from (7) and (14), the economy is growing at the rate equal to

= 2t = 1 4@8(k"-1) = B[1~5+(1—%)A] > 1
The above argument can be summarized as follows:

Proposition 4.

Let the growth potential of the RA economy be defined by

o v ooy

Then,
i) if G s 1, the economy is stationary in all the steady state paths. They

are given by {K¢,N¢} = k*A,A} for any A > 0, where k* s 1 is defined by
g t Nt

B {1 -8 +(1—%}A (k*) ‘“3] = 1

ii) if G > 1, the economy grows at the same rate in all the steady states
paths. They are given by {K¢,N¢} = {k™AGY,AG'} for any A > 0, where k™ is
defined by
G -1
o= + >
k 1 B 1

Just as Proposition 1 for the case of the OG economy, the content of Proposition
4 is twofold. First, it shows the appropriate definition of the growth potential
for the RA economy. Second, it states that a steady state value of k is uniquely

determined.

4.B. The Local Stability of the Steady State.
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Now, let us study the local stability of the unique steady state. That is,
when the initial condition is sufficiently close to the steady state, is there
an equilibrium path, along which the economy stays close to the steady state and

converges to it?

Let us first suppose G < 1, or k" < 1, so that the stationary state is in

the interior of the Solow regime. Then, in a neighborhood of the stationary
state, ¥(k) = 1 and hence, eq. (14) becomes
ke, = (1-3+2d(k,))k, + ﬁ[1-6+(1~—(1;)A¢(k;)] {ke= (1-8+2¢ (k,.,) ) k,_y)

Linearizing around k" yields the following second-order difference equation in

Dky = k¢ - x*:

Dk,,, - {F‘i_l[%_(l'b)]z+%+l}ljk‘ + --[13-1)}%_1 =0

The two characteristic roots of this equation are both positive: one of them is
greater than one, and the other smaller.than one. In other words, x* has the
one-dimensional locally stable manifold. If the initial condition, ko.is in a
neighborhood, there exists a trajectory, (ky; t € T}, that stay in the
neighborhood and converges to k" monotonically.

Now, suppose G > 1. In a neighborhood of k**, ¢(k) = 1 and ¥(k) = 1 + 8 (k-

1), so that egqg. (14) becomes

(1-3+A) Gk, 1
1+ 0(k,_,-1)|1+0(k.~1)

Ky, = |(1-8+2+@)k, -

Linearization around k™ yields the second-order difference equation in Dk¢ = ke~

ok
.

k

Dk, - VMG

-3+2) (1-8
(10+2) 10) e = o
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which has one positive and one negative characteristic roots,

1-8+A
G

>1;ié9<o

If1<G< § -1, the absolute values of the two roots are both greater than one,
hence there exists no locally stable manifold around k™. (i.e., in other words,
k"™ is a source). Hence, the equilibrium dynamics, which starts in a
neighborhood, will not stay in the neighborhood. If § - 1 < G, then the negative
root has the absolute value smaller than one, while the positive root is greater
than one. In other words,}f* has a one-dimensional locally stable manifold, and
if the initial condition, k, is in a neighborhood, there exists a trajectory,
{k¢; t € T}, that stays in the neighborhood and converges to k™ oscillatorily.

By virtue of the Local Manifold Theorem (see, e.g., Guckenheimer and Holmes

(1983, p.1l6)), one can translate the above findings into the following form.

Proposition 5.

Let the growth potential of the RA economy be defined by
G = P [1 -3 +(1--1-)A]
a

i) If G < 1, the neoclassical stationary state, k', is locally stable in that
there exists a neighborhood of k*, U, such that,.if ko € U, there exists
an equilibrium, whose entire trajectory stays in U, and along which the
economy converges monotonically to k™; lim,, ke = k",

ii) If 1 < G < § - 1, the balanced growth path, k™, is locally unstable in
that there exists a neighborhood of k", U, such that, if k, ¢ U, there
exists some t such that k, € U, along any equilibrium path. That is, when

the economy starts close to the balanced growth path, it will move away
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from it.

iii) If 8 - 1 < G, the balanced growth path, k™, is locally stable in that
there exists a neighborhood of k", U, such that if ko € U, there exists
an equilibrium path, whose entire trajectory stays in U, and along which

the economy converges oscillatorily to x™; lime,, ky = k™.

Proposition 5 states that, once the growth potential, G, is appropriately
redefined, the condition for the local stability of the steady state in the RA
economy takes the same form as in the OG economy, given in Proposition 2. Unlike
Proposition 2, however, Proposition S5 deals only with the local dynamics, so that
it does not tell us whether the neociassical stationary state is globally stable
when G < 1, nor whether the balanced growth is globally stable when 6 - 1 < G.
For the case of 1 < G < § - 1, however, the following statement about the global

dynamics can be made as a direct corollary of Proposition 5.

Corollary. If 1 < G < 8§ - 1, the economy fluctuates forever, for ko, € R,\D,

where D is at most countable subset of R,.

Proof. The two-dimensional dymamical system, defined by eg. (14), is continuous,
and its unique steady state, (k", k"), is a source. Hence, if the economy
converges along the equilibrium path, (kg, k;) must be mapped into the steady

wk L2 4

state, (k' , k ), in a finite time, from which the result follows. Q.E.D,

4.C. Period-2 Cycles.

Characterizing the equilibrium dynamics for an arbitrary initial condition

for the RA economy is beyond the scope of this paper. Nevertheless, one can
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obtain some ideas about the global equilibrium dymamics, by studying the period-2
cycles, whose existence is demonstrated below.
Suppose that the economy alternates between kb < 1 and k" > 1. Setting ki,

= k', k¢ = k", and k;,, = k! in eq. (14) yields

(1-3+4) k*-k by (k¥) (16a)
(1-8+ad (k%)) kL-k¥

Likewise, setting ki, = kM, ky = kb, and k¢,; = k" in eq. (14) yields

_ 1 ry] - {1-8+Ad (k")) kEi-k* " (16b)
B[l 6+(1 U)Acb(k )} (1=6+2) KFK oy (£9) (k") .

Since eq. (15) holds automatically along such a path, the period-2 cycles exist
if egs. (16a)-(16b) have a solution, k' < 1 and k" > 1.
The following proposition states that some parts of Proposition 3 can be

extended to the RA economy.

Proposition 6.

Let the growth potential of the RA economy be defined by

o+ sfioo 2y

then, the period-2 cycles, characterized by egs. (16a)-{(16b), exist if and only
if 1 <« G < § - 1. Furthermore, the average growth rate of the economy over the

period-2 cycles exceeds G, the growth rate along the balanced growth path.

Proof. Since
LA
(kL) = (kv °  ;  P(k¥ = 1 +0(k¥-1)

egs. (16a)-(16b) are equivalent to
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.1
BG{(l—b)kL+A(kL)l °}+(1—e) (1-3+A+G) (17a)

kH)
i 1-8+A+G-0k*™

and

-1
y(kH) = Gﬁ[l—h(l-—i—)A(kL) ﬂ} . (17b)

As depicted in Figure 5, the RHS of egs. (17a) is increasing in k', while the RHS
of eg. (17b) is decreasing in kb and goes to infinity as kbt > 0. Hence, the two
curves, intersects in the relevant range, if and only if the RHS of eq. (17b),
when evaluated at k' = 1, is greater than one and less than the RHS of eqg. (17a),

evaluated at k! = 1. In other words, the period-2 cycles exist if and only if

8G(1-6+4) +(1-6) (1-83+4+G) _ . , (1-3+A+G) (G-1) (6-1-G)
1-6+A+G-0 1-3+A+G-6

1 < G? <

which is equivalent to 1 < G < 8 - 1.
Since the growth rate in N is equal to one in the Solow regime and it is
equal to ¥ (k") in the Romer regime, the average growth rate of the economy over

the cycles satisfies

gy = 9x = gy = (W(kH)? > G
as depicted in Figure S. Q.E.D.
Remark: Proposition 4 through 6 can be extended for general intertemporally

homothetic preferences of the form:

- c 1-1/y - 1
U = peit
E 1-1/y

if the growth potential is redefined as
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o = a2y

as long as the equilibrium exist. Allowing for such general preferences,
however, causes a technical difficulty of ensuring the existence of equilibrium.
This is because, when y =# 1, a bounded sequence, {k{; t ¢ T}, does not
necessarily satisfy the intertemporal solvency condition. To ensure the
existence, one need to impose an additional restriction, which takes the form
that A cannot be too large for a given 7y, or that y cannot be toc large for a
given A. Assuming y = 1, or equivalently Cobb-Douglas preferences, would suffice
for this purpose. It also has an advantage of simplifying the exposition

drastically.

To see whether the rest of Proposition 3 can be extended for the RA economy, note
that eqgs. (1la)-(llc) are also applicable to the RA economy. Hence, one need to

demonstrate the following inequalities

kA k* T
[—k_i} > 1L +68(k¥-1) > e

(k)
for k! and k% that solve eqs. (16a)-(16b), or equivalently, egs. (17a)-{(17b), in
order to show that both the output and the investment grow faster in the Solow
regime than in the Romer regime along the period-2 cycles. For each set of
parameter values we examined, the above inequalities turn out to hold. Hence,
it appears that the rest of Proposition 3 carries over to the RA economy, as
well. However, we are able to prove it only for a special case, in spite of our

best efforts.

Proposition 7.
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Let 6 = 1. Then, along the period-2 cycles, which exist if and only if 1 < G <
8§ - 1, both the output and the investment grow faster in the Solow regime (the

period of no innovation) than in the Romer regime (the period of innovation).

Proof. When 8 = 1, the growth potential is equal to

and one can verify that a pair, k't < 1 and k" > 1, defined by

-1
k" = q;(kL) = G(kL)l I
and
H
k: = @(k¥) = — Gk
(&%) 1+ 9(k¥~1)
solves egs. (l6a)-(1eb). Inserting these expressions into egs. (1l1la)-{(1l1ic)

verifies that, in the Solow regime,

gy = 1 : g = gy = G(k?%) > G
~and, in the Romer regime,
gy = 1+ 0(k¥-1) ; g = gy = G
The result follows from k' < 1 and k" > 1. Q.E.D.®

In summary, this section has demonstrated that much of the results obtained in

the OG economy indeed carries over to the RA economy, once the parameter G is

8The proof makes use of the fact that the two equations, which characterizes
the period-2 cycles in the RA economy for & = 1, have exactly the same form with
egs. (10a)~(10b), which characterizes the period-2 cycles in the OG economy. It
is not clear, however, if there is any significance to this equivalence.
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appropriately redefined. In particular, Figure 4 is applied to the RA economy,

without any modification.

5. Empirical Plausibility of Cycles.

Only a global analysis can demonstrate the possibility that the economy
experiences a persistent growth by moving back and forth between the Solow regime
and the Romer regime. And a rigorous and explicit analysis of the global
equilibrium dynamics is possible only when the dimensibnality of a dynamical
system is kepﬁ sufficiently low. Much of the restrictions imposed in the models
were chosen due to the need to keep the models tractable, rather than due to
their realism. Hence, these restrictions may well be rejected by the data. Nor
should one expect the two models developed above to be capable of generating the
equilibrium behavior that closely mimics the time series observed in the real
world, due the low dimensionality of the systems. Nevertheless, one could still
gauge the empirical plausibility of the EOndition for cycles, 1 < G < 6 - 1.

To answer this question, let G = (1+g)”, where g and 7 represent the annual
rate of the growth potential, and the period length in years, respectively.

Then, the condition can be rewritten as

1
0 < g < (6-1)° -1,

Table 1 shows the upper bound of this range, for some values of 6§ and T.
To consider a reasonable range for §, recall that ¢ plays two distinctive roles
in this model. First, 1-1/¢ is the capital share in GNP. It is now the standard
practice in the growth literature to interpret capital to include not only
physical capital, but also human capital, because the capital stoék in growth

models represent a broad category of factors, which can be accumulated to enhance
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TABLE 1:
(theta-1)"(1/tau)-1

2.40 245 2.50 2.55 2.60 2.65 2.70
3 11.87% 13.19% 1447% 15.73% 16.96% 18.17% 19.35%

6 5.77% 6.39% 6.99% 7.58% 8.15% 8.70% 9.25%
9 3.81% 421%  4.61% 4.99% 5.36% 5.72% 6.07%
12 | 2.84%  3.14% 3.44% 3.72% 3.99% 4.26% 4.52%
15 | 2.27% 2.51% 2.74% 2.96% 3.18% 3.39% 3.60%

18 | 1.89% 2.09% 2.28% 2.46% 2.65% 2.82% 2.99%

our income in future. The standard estimates for the share of human capital is
approximately one-half. To this, if we add one-third for physical capital, a
plausible value for ¢ would be around six, or 8 = 2.49. Second, ¢ represents the
price elasticity, and the monopoly margin enjoyed by the innovator of a new
product is given by 1/(¢-1). Conservatively, this suggests that ¢ should be in
the range from five to twenty, or that 2.44 < # < 2.65. 1In Table 1, ¢ ranges
from 2.40 to 2.70. It is much harder to come up with a tight range for 7, the
period length, which represents the duration of monopoly power enjoyed by the
innovator of a new product. It all depends on what sort of products and what
sort of industries one may have.in mind. The agnosticism leads us to use a wide
range of 7 in Table 1, from 3 years to 18 years. Table 1 hence suggests that,
for a reasonable annual rate of the growth potential, it is quite plausible that

the condition for cycles would be satisfied.
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