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Non-technical summary

Statistical data analysis usually begins with the collection of observations from a cer-
tain population. However, the sampling process is subject to numerous sources of error.
Therefore, the data collected may contain some unusually small or large observations,
so-called outliers. Determining whether a data set contains one or more outliers is a
challenge commonly faced in applied statistics. This is a particularly difficult task if the
properties of the underlying population are not known. Nevertheless, in many empirical
analyzes, the assumption that the data come from a particular population is too restrictive
or unrealistic.

This paper develops a statistical test for outliers in data drawn from an unknown
population. Our methodology relies on a nonparametric bootstrap procedure. Simu-
lation experiments show that the proposed test detects outliers correctly whatever the
underlying population, even for relatively small samples. Consequently, our test could be
instrumental in a wide range of empirical applications where few observations are available
and the underlying population is unknown.

The empirical performance of the test is illustrated by means of two examples in the
fields of aeronautics and macroeconomics. Specifically, our second example investigates
annual inflation rates for Germany from 1428 to 2010. The nearly six centuries of mon-
etary history under study witnessed several episodes of hyperinflation, which constitute
potential outliers in the sense, that these observations do not belong to the same pop-
ulation as the others. Indeed, we find six outliers in the sample. The earliest outlier
occurred in 1621, at the peak year of the Kipper- und Wipperzeit (Tipper and Seesaw
Time), a monetary crisis in the Holy Roman Empire between 1619 and 1623, which was
characterized by hyperinflation through debasement of commodity (gold, silver, and cop-
per) money. Furthermore, we find that the infamous hyperinflation in the early 20th
century, and its collapse, was characterized by outlying annual inflation rates in 1917,
1920, 1922, 1923, and 1924, whereas other historical periods with high inflation/deflation
are not identified as outliers.



Nicht-technische Zusammenfassung

Die Analyse statistischer Daten beginnt in der Regel mit der Erhebung von Beobachtungen
aus einer bestimmten Grundgesamtheit. Der Prozess der Stichprobenerhebung unterliegt
jedoch einer Reihe von Fehlerquellen. Aus diesem Grund können die erfassten Daten
einige ungewöhnlich niedrige oder hohe Werte enthalten, die sogenannten Ausreißer. Die
Frage, ob ein Datensatz einen oder mehrere Ausreißer enthält, ist in der angewandten
Statistik ein weitverbreitetes Problem. Sie erweist sich als besonders schwierig, wenn die
Merkmale der zugrunde liegenden Grundgesamtheit nicht bekannt sind. Gleichwohl ist in
vielen empirischen Untersuchungen die Annahme, dass die Daten aus einer bestimmten
Grundgesamtheit stammen, zu restriktiv bzw. unrealistisch.

In der vorliegenden Arbeit wird ein statistischer Test entwickelt, um Daten aus ei-
ner unbekannten Grundgesamtheit auf Ausreißer hin zu untersuchen. Dabei kommt ein
nichtparametrisches Bootstrap-Verfahren zur Anwendung. Simulationsexperimente zei-
gen, dass der vorgeschlagene Test Ausreißer korrekt anzeigt, und zwar ungeachtet der
zugrunde liegenden statistischen Masse und sogar für vergleichsweise kleine Stichproben.
Der Test könnte also für eine Vielzahl empirischer Anwendungen, bei denen nur wenige
Beobachtungen verfügbar sind und die Grundgesamtheit nicht bekannt ist, hilfreich sein.

Die empirische Leistungsfähigkeit des Tests wird an zwei Beispielen aus den Bereichen
Luftfahrt und Makroökonomie verdeutlicht. Konkret werden dazu im zweiten Beispiel die
jährlichen Inflationsraten in Deutschland im Zeitraum von 1428 bis 2010 untersucht. Die
hier betrachteten rund sechs Jahrhunderte Währungsgeschichte umfassen mehrere Phasen
der Hyperinflation, die insofern potenzielle Ausreißer darstellen, als sie nicht zur selben
Grundgesamtheit gehören wie die anderen beobachteten Werte. Tatsächlich finden sich in
der Stichprobe sechs Ausreißer. Der erste Ausreißer lässt sich für das Jahr 1621 feststellen,
auf dem Höhepunkt der Kipper- und Wipperzeit, einer Krise des Münzwesens im Heiligen
Römischen Reich in der Zeit von 1619 bis 1623, in der es zu einer Hyperinflation durch eine
Entwertung des Warengeldes (Gold, Silber und Kupfer) kam. Als weiteres Ergebnis lässt
sich festhalten, dass die berüchtigte Hyperinflation und der Zusammenbruch Anfang des
20. Jahrhunderts durch Ausreißer bei den jährlichen Preissteigerungsraten in den Jahren
1917, 1920, 1922, 1923 und 1924 gekennzeichnet war, während andere historische Episo-
den mit hoher Inflation/Deflation nicht als Ausreißer identifiziert werden.
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1 Introduction

Determining whether a data set contains one or more outliers is a challenge commonly
faced in applied statistics. This is a particularly difficult task if the underlying data gen-
erating process (DGP) is unknown, since the corresponding probability density function
(pdf) can have a variety of shapes in its tails. Nevertheless, the assumption of a particular
DGP is often too restrictive or unrealistic. To tackle this issue, a distribution-free test for
outliers in large samples has been proposed by Walsh (1959). However, the problem of
nonparametric rejection of outliers is exacerbated in finite samples, i.e., when the number
of observations is relatively small.1 This highlights the need for a distribution-free test
for outliers in small samples, and our objective is to fill this gap.

Building on earlier work by Singh and Xie (2003) and Silverman (1981), we propose
a novel nonparametric test for multiple outliers in data drawn from an unknown DGP.
Besides, a sequential algorithm is proposed in order to identify the outlying observations in
the sample. The new outlier test relies on a two-stage nonparametric bootstrap procedure.
Monte Carlo experiments show that the test has good asymptotic properties, even for
relatively small samples and heavy tailed distributions. Our simulations also reveal the
importance of a scaling parameter for finite sample performance. We believe that the
proposed test could be instrumental in a wide range of statistical applications where few
observations are available and the underlying DGP is unknown.

The remaining sections are organized as follows. Section 2 introduces the elemen-
tary statistical definitions and describes the new outlier test. In Section 3, we explore
the asymptotic properties of the test in a Monte Carlo experiment. Section 4 presents
two empirical examples using aeronautic and macroeconomic data. Finally, concluding
remarks are contained in Section 5.

2 The Bootlier test

Consider a sample of observations labeled Y = [Y1, ..., Yn], where n = 1, 2, ..., N . The
cumulative distribution function (cdf) that generates this sequence, FY (.), is unknown. If
any observation Yi is not distributed according to FY (.), it is considered as an outlier. We
develop a two-step method to test for outliers in Y, where the sample is potentially small
and the underlying distribution FY (.) is not known. First, we construct a test for the
presence of one or more outliers, building on two established statistical methods (Singh
and Xie, 2003; Silverman, 1981). Second, we use a sequential algorithm to determine the
number of outlying observations and to locate them in Y.

2.1 A bootstrap based outlier detection plot

A characterizing property of bootstrap resampling is that, when there is an outlier in
a data set, it is contained in only a subset of bootstrap resamples. The outlier causes
a significant increase in the sample mean of the bootstrap resample, which makes the
bootstrap histogram of the sample mean a mixture distribution with more than one
mode. Exploiting this feature, Singh and Xie (2003) propose a graphical tool denoted

1See Barnett and Lewis (1994) for an overview of outlier detection and finite sample.
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Bootstrap Based Outlier Detection Plot (or simply ’Bootlier plot’), which can suggest the
presence of at least one (but possibly more) outlier(s) in a sample drawn from an unknown
distribution. However, unless the outlier(s) is (are) very severe, the multimodality of
the bootstrap histogram is not quite visible. Therefore, Singh and Xie (2003) propose
bootstrapping a statistic termed ’mean - trimmed mean’ (MTM), and inspecting the
modality of the MTM’s density for outliers.

The Bootlier plot is obtained as follows. Let Yb = [Y b
1 , ..., Y

b
n ] (b = 1, 2, ..., B) denote

the bootstrap counterpart of Y. First, consider the k-trimmed mean of the bth bootstrap
resample Yb, which is computed by taking the mean after removing the k smallest and
largest observations from Yb:

Ȳ
b
(k) =

1

n− 2k

n−k∑
i=k+1

Y b
(i), (1)

where Y b
(i) are the (ascending) order statistics and k is some trimming value.2 The MTM

of the bth bootstrap resample, M b, is the difference between the arithmetic mean and the
k-trimmed mean:

M b =
1

n

n∑
i=1

Y b
i − Ȳ

b
(k). (2)

By construction, the pdf of M b, fM(.), is very sensitive to unusually small or large obser-
vations – outliers – in the sample Y. In particular, Singh and Xie (2003) show that, in
the presence of outlier(s), the limiting bootstrap distribution of M b can be expressed as a
mixture of normal distributions. Therefore, if there is a minimum amount of separation
between the outliers and the remainder of the sample, then the mixture density – the
Bootlier plot – will be characterized by several modes.3 Hence, fM(.) typically exhibits
one mode associated with FY (.) and at least another mode corresponding to the outlier(s).
Consequently, testing for the presence of outlier(s) in Y is equivalent to testing for the
modality of the probability density function fM(.). If fM(.) is unimodal, the sample Y is
free of outliers, while if fM(.) is multimodal, the presence of outliers in Y is confirmed.
However, note that the number of modes does not necessarily match the number of out-
liers. Typically, several outliers of the same magnitude will be located around the same
pole and only one mode will appear in the probability density function fM(.). It is thus
not correct to associate a given number of outliers with the same number of modes in the
density fM(.).

Nevertheless, determining the modality of the bootstrap density absent an assumption
for the functional form of FY (.) is not straightforward. Singh and Xie (2003) introduce
a ’Bootlier index’ as a rule-of-thumb tool in order to determine the degree of bumpi-
ness of the density function, but they do not provide a statistical framework to test for
multimodality and thus for the presence of outliers. They state that ”Formal tests for
outliers can be constructed with the Bootlier index as test statistic under a distribu-
tional assumption” (page 543). Our approach is different. In what follows we consider a
distribution-free test for the null of no outliers.

2Following Singh and Xie (2003), we set k = 2 in our applications.
3We explore the degree of separation in a Monte Carlo experiment by introducing outliers of different

magnitudes into samples drawn from a known distribution.
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2.2 Testing for multimodality

A formal test for the presence of outlier(s) in Y can be formulated from the following
hypotheses:

• H0: fM(.) has precisely one mode (and no local minimum) in the interior of a given
closed interval =;

• H1: fM(.) has more than one mode in =.

H0 is equivalent to the null hypothesis that there are no outliers in Y, whileH1 corresponds
to the alternative that there is one or more outliers. In order to test these hypotheses,
we couple the Bootlier plot with a distribution-free test for multimodality proposed by
Silverman (1981), which is based on the property that the kernel density estimator is a
consistent nonparametric estimator of a pdf.

For the MTM statistics M1, ...,MB drawn from density fM(.), the kernel density
estimate at any point x is expressed as:

f̂(x, h) =
1

bh

B∑
b=1

K(
x−M b

h
), (3)

where h is a bandwidth (or smoothing parameter) and K(.) is a kernel function. Without
loss of generality, K(.) is chosen to be the standard normal density function following
Silverman (1981). For a large class of kernel functions – including the standard normal
–, the number of modes of the kernel density is a right-continuous decreasing function of
the bandwidth h. Thus, for a sufficiently large bandwidth, f̂(., h) has a single mode in
the interior of the given closed interval =. Furthermore, there is a narrowest bandwidth
hcrit, for which the kernel density estimated with this bandwidth, f̂(., hcrit), is unimodal.
This is the so-called critical bandwidth defined as hcrit = inf(h; f̂(., h) has precisely one
mode in =). The critical bandwidth is larger for a multimodal density function than for a
unimodal one, since for a multimodal density a larger bandwidth is required to smooth out
multiple modes. Using this property, Silverman (1981) proposes a bootstrap procedure
to test for the multimodality of any pdf.

Coupling the Bootlier plot with Silverman’s test provides a distribution-free test for
the presence of outliers in a sample drawn from an unknown pdf. We refer to this method
as the ’Bootlier test’. The testing procedure can be summarized as follows:

1. Draw a large number b = 1, 2, ..., B of random samples from Y with replacement,
and for each resample Yb compute the mean-trimmed mean statistic M b.

2. Obtain the kernel density estimate in Equation 3 for the mean-trimmed mean statis-
tics M1, ...,MB, denoted f̂M(., h).

3. Estimate the critical bandwidth ĥcrit of the density f̂M(., h), and re-estimate the
kernel density with the critical bandwidth, that is, f̂M(., ĥcrit).

4. Silverman (1981) bootstrap algorithm:
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(a) Let M1∗, ...,MB∗ denote a bootstrap resample drawn from the distribution
with density f̂M(., ĥcrit).

4

(b) Obtain the kernel density estimate in Equation 3 for the bootstrap mean-
trimmed mean statistics M1∗, ...,MB∗, denoted f̂M∗(., h).

(c) Estimate the bootstrap critical bandwidth ĥ∗crit of the bootstrap density f̂M∗(., h).

(d) Repeat steps (a) - (c) a large number of times.

5. The null hypothesis of unimodality (no outliers in Y) is rejected if Prob(ĥ∗crit ≤
λαĥcrit) ≥ 1 − α, where α is the nominal size (usually 5%) and λα is a scaling
parameter which ensures that the empirical size corresponds to the nominal size.

2.3 Identification of outliers

The Bootlier test can be implemented to test for the presence of outliers in a data set.
A multimodal pdf of the MTM statistics points to the existence of a single or multiple
outliers in the sample. However, the test does not indicate which observations are out-
liers. To locate the outlying observations, we build subsamples by sequentially canceling
observations from the tails of the original sample ordered in ascending order, and we per-
form the Bootlier test on each ordered subsample until the null hypothesis of unimodality
cannot be rejected for a particular subset of observations. The data points not contained
in this subset are the outliers.

Formally, the sequential algorithm can be summarized as follows. Consider the as-
cending order statistics Y(i) = [Y(1), Y(2), ..., Y(n−1), Y(n)]. First, we test for the presence
of outliers in Y(i) using the Bootlier test. If the unimodality null hypothesis is rejected,
then Y contains one or more outliers and these must be located in the upper and/or lower
tails of Y(i). We sequentially cancel observations from the tails, i.e., we take the following
subsamples: [Y(1), ..., Y(n−1)], [Y(2), ..., Y(n)], [Y(1), ..., Y(n−2)], [Y(2), ..., Y(n−1)], [Y(3), ..., Y(n)],
[Y(1), ..., Y(n−3)], etc., and we perform the Bootlier test for each subsample until we cannot
reject the null hypothesis, and we find the largest subsample which exhibits unimodal-
ity. The observations within this (ñ-dimensional) subset Yñ≤n are identically distributed,
while the complement set Yñ6=n contains the outliers. The number of outliers is n− ñ.5

3 Simulation study

We investigate the finite sample behavior of the Bootlier test in a Monte Carlo exper-
iment. Mammen, Marron, and Fisher (1992) and Hall and York (2001) have studied

4 In practice we compute bias-corrected resamples following Efron (1979):

M b∗ = µMb∗u + (M b∗u − µMb∗u + ĥcritεi)(1 + ĥcrit/σ
2
Mb∗u)−

1
2

where εi is an i.i.d variable drawn from the distribution K(.), µMb∗u is the sample mean of M b∗u, σ2
Mb∗u

denotes the variance of M b∗u, and the superscript u stands for uncorrected values of the bootstrap
resample.

5For example, if the density of MTMs corresponding to the ((n − 2) × 1) vector [Y(2), ..., Y(n−1)] is
unimodal, then these observations are drawn from the same (unknown) distribution, and the observations
Y(1) and Y(n) are outliers (and ñ = 2).
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the asymptotic properties of the test proposed by Silverman (1981). The test is found
to be conservative, as the true probability that it incorrectly rejects the null hypothe-
sis of unimodality lies below the nominal level when the scaling parameter λα equals 1.
Furthermore, Fisher and Marron (2001) show that problems arise when the underlying
distribution is heavy tailed. Therefore, we correct for the downward bias in the empirical
size of the multimodality test by calibrating λα such that the empirical size is close to the
nominal size.

Two cdfs are considered, which have different shapes in their tails.6 Samples of size
n are generated from the standard normal distribution and from the Student-t(n − 1)
distribution with n−1 degrees of freedom, which has heavy mass on the tails. 1, 000 Monte
Carlo replications of the Bootlier test are performed. For each Monte Carlo replication,
the fM(.) density of the MTM statistics is estimated from 10, 000 bootstrap draws from
the sample Y, and Silverman’s test is performed with 1, 000 bootstrap replications of M b∗

drawn from the distribution with density f̂M(., hcrit). The asymptotic sample size is set
to n = 100 for ease of computer time. To explore the small sample performance of the
test, the second sample size is set to n = 10. The simulations are performed using the
Statistics Toolbox in MATLAB.

First, we simulate under the null hypothesis of no outliers, in order to assess the
size properties of the Bootlier test. Table 1 reports the rejection frequencies of the null
hypothesis of no outlier. The rejection frequencies confirm the findings of Hall and York
(2001) and Fisher and Marron (2001): Silverman’s modality test is undersized when the
scaling parameter equals λα = 1. Moreover, the size bias increases as the sample size
shrinks.

We calibrate λα such that the test achieves its nominal size in both large and small
samples. Thus, Table 1 also shows the optimal – size adjusted – λoptα , which ensures an
empirical size close to the nominal size of 5%. Overall, we find that λoptα is close to the
value obtained by Hall and York (2001).7 The scaling parameters are similar for both
distributions when n = 10. Moreover, for large n, they converge to 1, although the
convergence is slower for the fat tailed distribution.

Table 1: Monte Carlo simulation: Size

N(0,1) distribution Student-t distribution
Sample Size Rejec. Freq. λα Rejec. Freq. λα

n = 10 0.00 1 0.00 1
0.05 λoptα =1.137 0.05 λoptα =1.134

n = 100 0.01 1 0.04 1
0.05 λoptα =1.021 0.05 λoptα =1.070

Note: The top panel reports the rejection frequencies of the null hypothesis of no outlier for the standard
normal distribution, the bottom panel reports the rejection frequencies for the Student-t distribution with
λα = 1, and with λoptα set at a nominal size of 5%.

6Our procedure requires the existence of finite means for the computation of the MTM statistic.
Therefore, random variables generated from the Cauchy distribution cannot be considered, since for the
latter finite moments do not exist (see Casella and Berger, 2002).

7In Equation (4.1), on page 524, they obtain λoptα = 1.1294 for α = 5%.
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Next, we turn to the power of the test. Table 2 shows the rejection of the null
hypothesis when data is simulated under the presence of an outlier, such that the outlier
equals µ̂+ iσ̂, where µ̂ is the sample mean of the baseline sample (absent outliers), while
σ̂ is the sample standard deviation. The size of the outlier depends proportionally on the
value of i (we consider i = 3.5, 4, 4.5, and 5). The power is corrected for size distortions,
since the simulations are also performed with the optimal scaling parameter λoptα .

Table 2: Monte Carlo simulation: Power (size-adjusted)

N(0,1) distribution; Outlier = µ̂+ iσ̂
i=3.5 i=4 i=4.5 i=5

Sample Size Lambda Rejec. Freq. Rejec. Freq. Rejec. Freq. Rejec. Freq.
n=10 1 0.22 1.00 1.00 1.00

λoptα 0.96 1.00 1.00 1.00
n=100 1 1.00 1.00 1.00 1.00

λoptα 1.00 1.00 1.00 1.00

Student-t distribution; Outlier = µ̂+ iσ̂
i=3.5 i=4 i=4.5 i=5

Sample Size Lambda Rejec. Freq. Rejec. Freq. Rejec. Freq. Rejec. Freq.
n=10 1 0.19 0.98 1.00 1.00

λoptα 0.41 1.00 1.00 1.00
n=100 1 1.00 1.00 1.00 1.00

λoptα 1.00 1.00 1.00 1.00
Note: Rejection frequencies of the null hypothesis of no outlier when the distributions are simulated
under the presence of an outlier, with outliers specified as values corresponding to the mean µ̂ plus i
times the size of the sample standard deviation σ̂ (outlier = µ̂ + iσ̂). The power is corrected for size
distortions, as simulations are performed with the optimal λoptα .

Table 2 reveals that, when the test is undersized (i.e., λα = 1) and the outlier is
small in magnitude relative to the sample mean (i = 3.5), the test has moderate power.
This result holds for both distributions. However, when the test is correctly sized, it
generally attains good power (the only exception being the Student-t distribution when
both the sample size and the outlier is small). The frequency of correct rejection of the
null hypothesis reaches 100% (for a 5% nominal size) in all cases when the outlier is at
least four times the sample standard deviation, irrespective of the distribution considered.

4 Empirical illustration

Example 1

The empirical performance of the Bootlier test is illustrated by means of two examples.
First, we revisit an aeronautics data set studied earlier by Dalal, Fowlkes, and Hoadley
(1989) and Singh and Xie (2003). Shortly after liftoff on January 28, 1986, the space
shuttle Challenger disintegrated over the Atlantic Ocean. The explosion occurred due to
the leakage of an O-ring that sealed the right solid booster rocket of the vehicle, which
allowed pressurized gas from within the rocket to reach the outside, leading to combustion.
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It has been subsequently shown that the O-rings do not seal properly at low temperatures
(see Dalal et al., 1989).

Consider the recorded temperatures at which the O-rings were sealed on all 25 shuttle
launches of the Challenger, expressed in degrees Fahrenheit:

66 70 69 80 68 67 72 73 70 57 63 70 78 67 53 67 75 70 81 76 79 75 76 58 31.

The last observation is 31oF, the temperature on the day of the explosion. This data
point qualifies as a good candidate for being an outlier. Figure 1 shows the Bootlier
plot of the full sample, which exhibits 3 modes, and the Bootlier plot of the sample
after removing the last observation, which is unimodal. Hence, a visual inspection of the
Bootlier plots suggests that 31oF is indeed an outlier. Next, the Bootlier test is performed
to obtain formal statistical evidence. The test for the full sample gives a p-value lower
than 1%, indicating a clear rejection of the null hypothesis of unimodality (no outliers),
while the test on the subsample which does not contain 31oF leads to a p-value of 0.21.
Consequently, the null hypothesis cannot be rejected for the latter subsample, and the
temperature at which the O-rings were sealed on the day of the accident proves to be an
outlier.

Figure 1: Bootlier plots of Challenger data
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(a) Full sample
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(b) Subsample without 31oF

Example 2

Our second example investigates macroeconomic data. We consider annual inflation rates
(annual percent changes in the aggregate price level) for Germany from 1428 to 2010. The
data come from Reinhart and Rogoff (2011) and are available on the Internet site of the
American Economic Association.8

Figure 2 plots the time series. In order to obtain a good visualization of the series,
the data range is censored in the figure from above at 1920, 1922, and 1923 when the
rate of inflation was 291.45, 2715.224, and 2.11E+11 percent per annum respectively, and
from below at 1924 when the inflation rate was -200 percent per annum. The nearly six
centuries of monetary history under study witnessed several episodes of hyperinflation,
which constitute potential outliers. At first glance, three relatively more turbulent periods

8See: http://www.aeaweb.org/articles.php?doi=10.1257/aer.101.5.1676.
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stand out. First, the Thirty Years’ War in the early 17th century, second, the prolonged
inflationary period surrounding the industrial revolution from the late 18th to the late
19th century, and third, the infamous hyperinflation of the 1920s. The figure also reveals
that the most recent decades are characterized by the historically lowest and least volatile
inflation. This period is often described as the ”Great Moderation”, and it coincides with
the adaption of a proactive approach toward inflation in central banking.

Figure 2: Germany: inflation, annual percent change, 1428-2010.
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The results of the Bootlier test for the inflation data are reported in Table 3. We
find six outliers in the data, and once we remove these from the sample, we obtain a
p-value of 0.09 for the Bootlier test. The earliest outlier occurs in 1621, at the peak year
of the Kipper- und Wipperzeit (Tipper and Seesaw Time), a monetary crisis in the Holy
Roman Empire between 1619 and 1623, which was characterized by hyperinflation through
debasement of commodity (gold, silver, and copper) money. An exhaustive historical
account of the crisis is offered by Kindleberger (1991).

The other five outliers concentrate around the most severe hyperinflation and subse-
quent collapse in German history in the early 20th century, which has been investigated in
a seminal paper by Cagan (1956). Inflation peaked at approximately 211 billion percent
per annum in 1923, which is the most outlying observation. Nevertheless, all outliers are
relatively severe, given that the sample mean without the outliers is 2.352 percent and
the sample standard deviation is 14.250 percent.

Table 3: Outliers in German inflation (percent per annum)

Year Outlier
1621 105.290
1917 98.182
1920 291.450
1922 2715.224
1923 2.11E+11
1924 -200.000

Figure 3 (a) shows the Bootlier plot for the full sample. Again, the mutimodal pattern
is clearly visible, indicating the presence of outliers. Figure 3 (b) shows the Bootlier plot
once all outliers are removed. This figure reveals that a mere visual inspection of the
Bootlier plot in insufficient and may lead to misleading conclusions regarding outliers.
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Figure 3: Bootlier plots of inflation data
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(a) Full sample
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(b) Subsample without outliers

Even though the plot exhibits a minor kink, the modality test cannot statistically reject
the unimodality hypothesis at the conventional 5% significance level.

5 Concluding remarks

This paper has introduced a distribution-free test for outliers in statistical data drawn
from an unknown DGP. Building on earlier work by Singh and Xie (2003) and Silverman
(1981), we construct a test for the presence of one or more outliers, and we propose
a sequential algorithm to determine the number of outliers as well as their location in
the sample. Monte Carlo experiments show that this new method has good asymptotic
properties, even for relatively small samples, whatever shape the underlying pdf may have
in its tails.

The empirical performance of the outlier test is illustrated by means of two empirical
examples using aeronautic and macroeconomic data. The new test could be instrumental
in a wide range of statistical applications where few observations are available and the
underlying DGP is unknown. For instance, Candelon, Metiu, and Straetmans (2012)
employ the test proposed in this paper to investigate business cycle booms and depressions.
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