
Polasek, Wolfgang

Working Paper

The extended Hodrick-Prescott (HP) filter for spatial
regression smoothing

Reihe Ökonomie / Economics Series, No. 275

Provided in Cooperation with:
Institute for Advanced Studies (IHS), Vienna

Suggested Citation: Polasek, Wolfgang (2011) : The extended Hodrick-Prescott (HP) filter for spatial
regression smoothing, Reihe Ökonomie / Economics Series, No. 275, Institute for Advanced Studies
(IHS), Vienna

This Version is available at:
https://hdl.handle.net/10419/68527

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/68527
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 

 

 
 

  

The Extended Hodrick-
Prescott (HP) Filter for 

Spatial Regression 
Smoothing 

Wolfgang Polasek 

275 

Reihe Ökonomie 

Economics Series 

 



 



 

 

 

 

 

  

275 

Reihe Ökonomie 

Economics Series 

The Extended Hodrick-
Prescott (HP) Filter for 

Spatial Regression 
Smoothing 

Wolfgang Polasek 

 

November 2011 

 

 

Institut für Höhere Studien (IHS), Wien 

Institute for Advanced Studies, Vienna 



 

Contact: 
 
Wolfgang Polasek 
Department of Economics and Finance 
Institute for Advanced Studies  
Stumpergasse 56 
1060 Vienna, Austria 
: +43/1/599 91-155 
email: polasek@ihs.ac.at 
and  
University of Porto 
Rua Campo Alegre 
Portugal 

 

Founded in 1963 by two prominent Austrians living in exile – the sociologist Paul F. Lazarsfeld and the 

economist Oskar Morgenstern – with the financial support from the Ford Foundation, the Austrian 

Federal Ministry of Education and the City of Vienna, the Institute for Advanced Studies (IHS) is the 

first institution for postgraduate education and research in economics and the social sciences in 

Austria. The Economics Series presents research done at the Department of Economics and Finance 

and aims to share ―work in progress‖ in a timely way before formal publication. As usual, authors bear 

full responsibility for the content of their contributions.  

 

 

Das Institut für Höhere Studien (IHS) wurde im Jahr 1963 von zwei prominenten Exilösterreichern – 

dem Soziologen Paul F. Lazarsfeld und dem Ökonomen Oskar Morgenstern – mit Hilfe der Ford-

Stiftung, des Österreichischen Bundesministeriums für Unterricht und der Stadt Wien gegründet und ist 

somit die erste nachuniversitäre Lehr- und Forschungsstätte für die Sozial- und Wirtschafts-

wissenschaften in Österreich. Die Reihe Ökonomie bietet Einblick in die Forschungsarbeit der 

Abteilung für Ökonomie und Finanzwirtschaft und verfolgt das Ziel, abteilungsinterne 

Diskussionsbeiträge einer breiteren fachinternen Öffentlichkeit zugänglich zu machen. Die inhaltliche 

Verantwortung für die veröffentlichten Beiträge liegt bei den Autoren und Autorinnen. 

 



Abstract 

The extended Hodrick-Prescott (HP) method was developed by Polasek (2011) for a class of 

data smoother based on second order smoothness. This paper develops a new extended 

HP smoothing model that can be applied for spatial smoothing problems. In Bayesian 

smoothing we need a linear regression model with a strong prior based on differencing 

matrices for the smoothness parameter and a weak prior for the regression part. We define a 

Bayesian spatial smoothing model with neighbors for each observation and we define a 

smoothness prior similar to the HP filter in time series. This opens a new approach to model-

based smoothers for time series and spatial models based on MCMC. We apply it to the 

NUTS-2 regions of the European Union for regional GDP and GDP per capita, where the 

fixed effects are removed by an extended HP smoothing model. 
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1. Introduction

Data smoothing in time and space is an important tool for model building. Therefore the understanding

of methods should be beyond mechanical applications of black box methods. We will demonstrate in this

paper that the extension of the Hodrick-Prescott (HP) smoother can serve as such a role model for smoothing

data in time and space. The first approach of this type of ’HP’-smoothing was derived in Leser (1961).

Regional data smoothing from a spatial point of view is an important issue for many applied regional

scientists. In this paper, I consider the HP model from a Bayesian point of view and I show that the HP

smoother is the posterior mean of a (conjugate) Bayesian linear regression model that uses a strong prior

weight for the smoothness prior. For this purpose we have to define the ’multi-normal-gamma’ (mNG)

family of conjugate distributions. Using the smoothed squared loss (SSL) function, the classical approach

to HP smoothing is reviewed in section 2 and the Bayesian embedding into a regression model is explained

in section 3. Furthermore, in Section 4 I show that this approach enables us to define a spatial smoothness

concept that allows us to apply the Bayesian version of the HP filter to cross-sectional or regional data

in section 5 and the spatial extended model is applied in for spatial regional GNP data in Europe. The

approaches is based on a distance concept in order to define spatial nearest neighbors (NN). A final section

concludes. The appendix contains a result on combination of quadratic forms.

1.1. The HP filter for smoothing time series

The classical HP filter is a parametric estimation method to obtain a smooth trend component via the

solution to the minimization of a loss function for a fixed (known) λ penalty parameter. There are 2 terms

in the loss function. The first term in the loss function is a well-known measure of the goodness-of-fit, the

error sum of squares (ESS). The second term punishes variations in the long-term trend component. The

parameter λ is the key to the smoothing problem since it determines the trade-off between goodness-of-fit

and the smoothness of the trend component. In the limit as λ→∞ the trend becomes as smooth as possible

and eventually creates a sequence of parameter estimates that can be interpreted as cyclical component.

When λ → 0 then the trend component becomes equal to the data series yt and the cyclical component

approaches zero.

Many researchers have used the Hodrick and Prescott (1980, 1997) smoothing method (briefly called the

HP filter). Hodrick and Prescott originally applied this procedure to post-war US quarterly data and their

findings have since been extended in a number of papers including Kydland and Prescott (1990) and Cooley

and Prescott (1995).
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Hodrick and Prescott (1997) take λ as a fixed parameter, which they set equal to 1600 for US quarterly

data. Their choice of this value was based upon a prior about the variability of the cyclical part relative to

the variability of the change in the trend component.

Recently Polasek (2011a,b) has shown that the Bayesian modeling for HP smoothing can be also done

using the conjugate concept of a multivariate normal-gamma (mNG) model. Furthermore, the Bayesian

approach allows model selection and Bayes testing.

2. The HP filter as minimizer of a loss function

This section describes the HP smoothing problem from a classical point of view of parameter estimation.

Starting point is the following homolog, i.e. having an equal number of observations and location parameters,

yielding actually to an over-parameterized or ’pera’-parametric (from the Greek pera= over) model regression

problem for the observations y = [y1, ..., yT ]>. This model for obtaining the smooth of a time series under

quadratic loss is called in this paper the ’HP regression model’.

y = τ + ε with ε ∼ N [0, σ2IT ], (1)

In this regression model with identity regressor matrix X = IT , the HP smoother is defined as parameter

vector τ = [τ1, ..., τT ]> and the ’HP smooth’ is the estimated τ vector. The classical estimation approach

for this problem is based on an optimization of a special loss function, which we will call the ”smoothed

squared loss” (SSL) function.
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Definition 1 (The smoothed squared loss (SSL) function). To obtain a HP-type smoother
for the observations y in model (1) we define the smoothed squared loss (SSL) function that yields
the smoother ŷ:

ŷ = min
τ

SSL(τ ) with SSL(τ ) = ESS(τ ) + λ ∗ smooth(τ ) (2)

where ESS is an error sum of squares function of the (homoskedastic) regression model:

ESS(τ ) =
∑
t

(yt − τ t)2.

The smooth(τ ) is a (quadratic) penalty function on the roughness of the fit: smooth(τ ) =
[∆k(τ )]2, where ∆k(τ ) can be a differencing function of fixed order (usually k = 2) between
neighboring observations of y. (Note that the notion of neighbors assumes a metric for all the
observations in y.) λ is assumed to be the known penalty parameter for the smooth.

The original HP filter problem can be defined as a minimizer of the smoothed square loss (SSL) function,

which has two components, the goodness of fit and the smooth: SSL = ESS + λ ∗ smooth or

τ̂ = min
τ

SSL(τ ) with SSL(τ ) =

T∑
t=1

(yt − τt)2 + λ

T∑
t=1

(∆2τt)
2. (3)

The solution to this SSL minimization problem is given by the next theorem.

Theorem 1 (The HP smoother as a posterior mean).

We consider the HP smoothing problem in the regression model (1) and we like to obtain the
minimum SSL estimate of τ under the SSL function as in Definition 1. The minimum of the
SSL function is under the assumption of a normal distribution given by

min
τ

[(y− τ )>(y− τ ) + λτ>K>Kτ ] = τ ∗∗, (4)

which is the posterior mean of the equivalent Bayesian model

τ ∗∗ = (IT + λK>K)−1y = A∗∗y (5)

with the posterior covariance matrix

A∗∗ = (IT + λK>K)−1. (6)
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The second order1 differencing matrix K : (T − 2)× T is given by

K =


1 −2 1 0 0 ... 0 0 0
0 1 −2 1 0 ... 0 0 0

... ... ... ... ... ...
0 0 0 0 0 ... 1 −2 1

 (7)

Proof 1. The proof relies on rewriting the SSL function SSL = ESS + λ ∗ smooth as a sum of 2 quadratic
forms in τ :

ESS(τ ) = (y− τ )>(y− τ ) and smooth(τ ) = τ>K>Kτ (8)

and we apply Theorem 7 for combining quadratic forms of the appendix:

(y− τ )>(y− τ ) + λτ>K>Kτ = (τ − τ ∗∗)>(τ − τ ∗∗) + y>λK>K(λK>K + IT )−1ITy (9)

where IT is a T × T identity matrix.
The second quadratic form is centered around zero, therefore the posterior mean τ ∗∗ has a simple form

in (5). From the combination of quadratic forms we see that only the first term involves τ , while the second
is independent of τ . Therefore the whole expression is minimized if the first term is set to zero and τ
is set equal to the posterior mean τ ∗∗. Therefore the HP smoother the equivalent to a Bayesian normal
(homoskedastic) regression model with highly informative prior:

y ∼ N [τ , σ2IT ] with Kτ ∼ N [0, (σ2/λ)IT−2]. (10)

Theorem 1 has led to the following ’signal + noise’ decomposition of the data y:

data = fit + rough or y = τ∗∗ + ê.

The second term ê = Pλy with the ’rough’ projector

Pλ = K>(IT−2λ
−1 + KK>)−1K = IT −A−1∗∗ (11)

estimates the rough or noise component of the HP smoothing model.

3. The HP filter as a Bayesian smoothness regression model

The Bayesian HP type smoothing model starts also from the HP type regression (or ’smooth + noise

decomposition’) model (1), y = τ +ε, ε ∼ N [0, σ2IT ], with the identity matrix as ”regressors” and where

τ : T × 1 is the pera-parametric parameter vector containing the smooth and the error term ε, which is

assumed to be homoskedastic. The prior is obtained in the following way: we specify for τ a prior density

for a transformed parameter model, where the transformation for time series smoothing is the second order

1Note that the second or higher order differencing matrices can be created from the first order differencing matrix by matrix
powers: the second order by K2 = K1K1, the p-th order by Kp = Kp

1.
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differencing matrix K : (T − 2)× T :

Kτ ∼ N [0, (σ2/λ)IT−2]. (12)

For spatial smoothing we can define a smoothing matrix as in (19) that is K : T × T and invertible. In this

special case with prior mean 0 it is easy to see that the prior is equivalent to2 the distributional smoothness

assumption for τ

τ ∼ N [0, σ2A∗] with A∗ = (λK>K)−1. (13)

Since λ is in the denominator it has the form of an hypothetical sample size n′ = λ. In a typical regression

application we give the prior information only a small weight, like the equivalent of 1 or 2 sample points. In

the smoothing case we have to specify a large λ parameter, and this means that we give the prior density a

much larger weight than the sample mean (or likelihood). In this case the posterior mean (or HP) smooth is

shifted to the prior location, which is zero, but in the smoothing model to the transformed (= differenced)

form of the model. This means that the parameter τ is smoothed in the Bayesian model towards a function

that minimizes the second order difference of the τ ’s.

Now we can follow the recommendation of a λ = 1600 from a Bayesian point of view. If the series to be

smoothed is given in growth rates, a standard deviation of σ = 5% seems to be reasonable. Now we have

to come up with a guess of how big the variance of a smoothed series could or should be. The proposal of

Hodrick and Prescott (1997, p.4) was: not more than an eighth of a percent or σ2
τ = 1/8. This leads to the

hypothetical sample size (or expected noise to signal ratio)

λ = σ2/σ2
τ = 52/(1/8)2 = 25 ∗ 64 = 1600 (14)

and demonstrates clearly the subjectivity of the assumption ”smooth”. (For σ = 4% we get λ = 42/(1/8)/2 =

322 = 1024, for σ = 6% we get λ = 62/(1/8)/2 = 482 = 2304.) From Table 1 we see that the residual

standard deviation after removing the linear trend is about 6 per cent. As in many cases subjective priors

can be justified by ex-post rationalization: If the result is smooth enough, like e.g. a thick line, then the

(prior) assumptions are acceptable. In other words, to produce a smooth trend in this regression model, we

have to add 1600 hypothetical observations that the prior mean of τ is zero.

In the spatial context we can use the same reasoning for the smoothness constant as for time series, if

the data set to be smoothed consists of e.g. growth rates across regions. We could relax the assumption that

2p(τ ) ∝ exp[− 1
2

(Kτ )>(Kτ )λ/σ2] = exp[−0.5τ>K>Kτλ/σ2] ∝ N [0, (σ2/λ)(K>K)−1]
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the smooth should be 1/8 to 1/4 or 1/2 of a percentage point. In that case the smoothing constant becomes

smaller: λ = 400 or 100. In case the cross sectional variance σ2 goes up, say to 10%, then λ increases to

1600 or 400. Thus, we can expect for more volatile cross-sections about the same large λ’s as for less volatile

time series. For (cross-sectional) data sets that are not growth rates, the scaling is not important since the

scale factor cancels out in the λ defined as a ratio (14) and as long as we agree we the above reasoning of

what we expect to be smooth.

It is interesting to note that both, the classical HP and the Bayesian smoothing requires strong prior

information. In Bayesian terms this is made explicit through the assumption of a prior distribution, while in

classical terms this information is implicitly hidden in the term ”smoothing parameter”. But using strong

priors require special justification since it does not follow the ’principle of objectivity’ or ’non-involvement

of non-data information’ that is so often promoted in classical inference for regression coefficients. Thus we

are confronted with 2 types of parameters: the trend (nuisance) parameter τ and the focus parameter β

of the regression model. For the inference of β we try to minimize the influence of the prior (and choose

small n′), while for the smoothing problem we estimate τ and we maximize the influence of the prior (large

n′ = λ).

Following the textbook Bayesian regression approach, the posterior mean of the parameters µ is given

by the usual combination of prior and likelihood and relies on the algebraic solution of Theorem 7. In the

HP smoothing model this is a matrix weighted average between the prior location 0 and the maximum

likelihood location y. Note that in the Bayesian framework it does not matter that the τ parameter with

T components is pera-parametric, i.e. as many parameters as there are observations, as long as there is a

proper prior distribution.

4. A spatial HP smoothness procedure

In analogy to the HP filter for time series models we consider a spatial HP filter model based on a spatial

autoregression (SAR) model of first order, which is defined as (see Anselin 1988)

y = ρWy + τ + ε, with ε ∼ N [0, σ2In], (15)

where W is a row-normalized weight matrix, Wy is the first order spatial lag of y, and ρ is the spatial

correlation coefficient (see Lesage and Pace 2009). Model (15) can be viewed as a SAR(1) model is equivalent
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to the transformed model

Ry = τ + ε, or y ∼ N [R−1τ , σ2(R>R)−1]

with the spatial spread matrix R = In − ρW. Using the SSL principle (1) we can define a spatial HP-type

smoothness filter. We assume a HP smoothing model based on a SAR(1) model

y ∼ N [ρWy + τ , σ2In] or y ∼ N [R−1τ , σ2(R>R)−1] (16)

with the spread matrix R = In − ρWy.

For the HP-type smoothing problem in space we have to define a metric: what is a first and second order

spatial difference? For the nearest neighbors (NN) metric this is easy: the first order is the difference to the

first NN and the second order is the difference to the second order NN. Similar to the HP filter (3) for time

series we can find the spatial HP smoother as the minimizer of the SSL function as in Definition 1

τ ∗∗ = min
τ

SSL(τ ) with

SSL(τ ) = (Ry− τ )>(Ry− τ ) + λ

n∑
i=1

(w
(0)
i y− 2w

(1)
i y−w

(2)
i y)2. (17)

The idea is that the penalty term minimizes the second order smoothness, i.e. the local distance between

the first 2 neighbors and the current observation, which in the spatial context is reflected by the original

observation W(0) = In, the first order W(1) and second order W(2) NN weighting matrix:

smooth =

n∑
i=1

(yi −w
(1)
i y−w

(1)
i y + w

(2)
i y)2 =

n∑
i=1

(∆(2)wiy)2 = y>K>Ky (18)

with w
(1)
i , and w

(2)
i being the i-th row of the first, and second order NN weighting matrices W(1) and W(2),

respectively, and the second order differencing matrix is ∆(2)wiy = ∆w
(1)
i y − ∆w

(2)
i y with ∆w

(1)
i y =

w
(0)
i y − w

(1)
i y, where the zero order NN weight matrix is just the original weight matrix W(0) = W,

and the difference is ∆w
(2)
i y = w

(1)
i y−w

(2)
i y; all the neighborhood matrices W are partitioned row-wise:

W =


w1

. . .

wn

.

This means that the spatial HP filter τ minimizes the SSL function in (1) using a spatial smooth penalty

function. The error sum of squares is ESS(τ ) =
∑n
i=1(yi − τi)

2 between the HP smoother τi and the
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observations yi’s while the spatial penalty term is defined in (18).

The spatial differencing matrix K is of order n× n, since we do not lose observations in the differencing

process, which has the following form:

K =



w
(0)
1 −2w

(1)
1 w

(2)
1 0 0 ... 0 0 0

0 w
(0)
2 −2w

(1)
2 w

(2)
2 0 ... 0 0 0

... ... ... ... ... ...

0 0 0 0 0 ... w
(0)
n −2w

(1)
n w

(2)
n


(1n⊗In) =



w
(0)
1 − 2w

(1)
1 + w

(2)
1

w
(0)
2 − 2w

(1)
2 + w

(2)
2

...

w
(0)
n − 2w

(1)
n + w

(2)
n


: n×n

(19)

The n2 × n block matrix (1n ⊗ In) is a block row summation operator for the spatial differencing matrix,

adding up the w
(d)
i terms. Now we can get a HP smoother for spatial (cross-sectional) data sets in similar

way as for time series using the smoothed squared loss function.

Theorem 2 (The classical spatial HP filter).
Consider the SAR model (16) and the spatial smoothness prior (18) based on distances and the the SSL

(smoothed squared loss) function in (1) based on the second order differencing matrix K : n×n as in (19).

The spatial HP smoother is obtained by minimizing the quadratic form in τ , where we rewrite
(3) with y = [y1, ..., yn]>, τ = [τ1, ..., τn]> and with R = In − ρW as

min
τ

(Ry− τ )>(Ry− τ ) + λτ>K>Kτ (20)

and the solution to the optimisation problem is attained at the posterior mean

τ ∗∗ = [R>R + λK>K]−1Ry. (21)

τ ∗∗ is sometimes called the ”least squares estimate under restrictions” and denoted by τ̂ to emphasize
the posterior mean as an classical estimate. Since τ ∗∗ depends on the unknown ρ, we have to minimize
the variance matrix of τ ∗∗ with respect to ρ. The variance matrix of the posterior mean is V ar(τ ∗∗) =
[R>R + λK>K]−1.

Proof 2. The proof relies on rewriting the optimisation problem as a sum of 2 quadratic forms in τ and to
apply Theorem 7 of the appendix:

(Ry− τ )>(Ry− τ ) + λτ>K>Kτ = (τ − τ ∗∗)>(τ − τ ∗∗) + y>λK>K(λK>K + R>R)−1R>Ry (22)

with the posterior mean τ ∗∗ = A−1∗∗R>y and the posterior precision matrix A∗∗ = [R>R + λK>K] as in
Theorem 1. If necessary, the point predictor for the spatial HP smooth is given by the posterior mean τ ∗∗.

5. The extended regression and smoothing model

In this section we extend the smoothing model (1) to a general regression framework, where the additional

regressors either control for other (ideosyncratic) influences or are the focus after the elimination of the HP

8



trend:

y = IT τ + Xβ + ε, ε ∼ N [0, σ2IT ]. (23)

The mean of this model is defined with Z = [IT : X] and γ>= (τ>,β>) by

µ = IT τ + Xβ = [IT : X]γ = Zγ. (24)

Note that now we have T + p parameters to estimate in γ since β : p × 1. The classical approach is based

on an optimisation problem with second order smoothness restriction similar to Definition 1

min
τ

SSL(τ ) with SSL(τ ) =

T∑
t=1

(yt − µt)2 + λ

T∑
t=1

(∆2µt)
2 (25)

with ∆2µt = ∆µt −∆µt−1 and from (24) we get

∆µt = µt − µt−1 = τt − τt−1 + (xt − xt−1)β, for t = 1, ..., T, (26)

5.1. The Bayesian extended HP smoothness model

In this section we discuss the extended HP (eHP) smoothing model from a classical and a Bayesian point

of view.

Definition 2 (The smoothed squared loss (SSL) function for extended regression).
We consider the extended (homoskedastic) regression model y = τ + Xβ + ε as in (23).

Conditional on β, the SSL function stays the same, only the ESS function changes and includes
the regression term of the extended model:

ESS(τ | β) =
∑
i

(yi − τ i − xiβ)2,

where xi is the i-th row of the regressor matrix X. This yields the smoother ŷβ:

ŷβ = min
τ

SSL(τ | β) with SSL(τ | β) = ESS(τ | β) + λ ∗ smooth(τ ) (27)

where smooth(τ ) is the quadratic penalty function as in Definition 1.

From this definition we see that a joint minimum SLL estimate can be found by minimizing over the joint

parameters (τ ,β). This is not the same as the HP smoother of the residuals when we purge (by regression)

9



from the y the Xβ component. Let the OLS residuals be û = y−Xβ̂ with Xβ the OLS estimate, then ûHP

can be obtained from Definition 1. But ûHP 6= ŷeHP and therefore the eHP method allows to generalize

the HP approach to models with trends, outliers or other types of breaks or regime shifts.

For the Bayesian solution we have to construct a prior distribution for γ that uses 2 hypothetical sample

sizes, λ is the one for the τ , and n2 for the regression parameters β. With additional regressors X we assume

for the stacked γ parameter we a conjugate normal-gamma model.

Definition 3 (eHP: The Bayesian extended HP smoothing model). We consider the nor-
mal linear regression model

y = Zγ + ε, ε ∼ N [0, σ2IT ], or y ∼ N [Zγ, σ2Σ0], (28)

with γ =

(
τ
β

)
and where Σ0 = In is a known covariance matrix. As prior we use the conjugate

’multivariate NG’ distribution

(γ, σ−2) ∼ Nn+pΓ[γ∗, Ã∗, σ
2
∗, n∗], with Ã∗ = diag(λK>K, n2Ip)

−1 =

(
(λK>K)−1 0

0 Ip/n2

)
(29)

that consists of 2 independent blocks for β and τ .

λ is the large hypothetical sample size for the τ parameter and n2 is the hypothetical sample size for the

β : p×1 regression coefficients and for the rather non-informative prior information it could be rather small,

like n2 = 1. This set-up allows a Bayesian inference with conjugate normal-gamma distributions:

Theorem 3 (The conjugate extended HP smoothing model).
The conjugate Bayesian inference of the extended HP smoothing model in (28) with parameters θ =

(γ, σ−2) as in Definition 3 is:

The prior distribution is given as a multi-normal-gamma (mNG) density

(γ, σ−2) ∼ Nn+pΓ[γ∗, Ã∗, s
2
∗, n∗]

and the likelihood of the data
y ∼ N [Zγ, σ2Σ0]

yields the posterior distribution

(γ, σ−2) | y ∼ NnΓ[γ∗∗, Ã∗∗, s
2
∗∗, n∗∗].
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with the parameters

γ∗∗ = Ã∗∗(Ã∗γ∗ + Σ−10 y),

Ã
−1
∗∗ = Ã

−1
∗ + Σ−10 ,

n∗∗ = n∗ + n,

n∗∗s
2
∗∗ = n∗s

2
∗ + ns2 + α

α = y>Ã∗(Ã∗ + Σ0)−1Σ0y (30)

The current error sum of squares is ns2 = (y− Zγ)>(y− Zγ) and α is the discrepancy term that serves as

a penalty term for the variance in all conjugate models.

Proof 3. Is given in Polasek (2011).

5.2. MCMC for the extended HP (eHP) smoother model

For the Bayesian eHP model we specify a prior distribution for the parameters as in (23):

Kτ ∼ N [0, (σ2/λ)IT ], β ∼ N [β∗,H∗], σ−2 ∼ Γ[σ2
∗n∗/2, n∗/2]. (31)

The estimation of the extended HP model (23) can be done conveniently by a MCMC procedure.

Theorem 4 (MCMC for the extended HP (eHP) model).

The posterior simulator of the parameters θ = (β, τ , σ−2) of the extended HP model (23) with
prior (31) is given by the following iteration:

1. Start with σ2 = σ2
OLS in the auxiliary model y = Xβ + u;

2. Draw β from N [β | β∗∗,H∗∗];
3. Draw τ from N [τ | τ ∗∗,A∗∗];
4. Draw σ−2 from Γ[σ−2 | s2∗∗n∗∗/2, n∗∗/2];

5. Repeat until convergence.

The hyper-parameters of the fcd’s are given in the proof: (33), (35) and (36).

Proof 4. The full conditional distributions (fcd) are:

1. The fcd for the beta regression coefficients is

p(β | y, θc) = N [β | b∗,H∗] · N [y | Xβ, σ2IT ]

= N [β | b∗∗,H∗∗] (32)

with the parameters

H−1∗∗ = H−1∗ + σ−2X>X,

b∗∗ = H∗∗[H
−1
∗ b∗ + σ−2X>(y− τ )] (33)

2. The fcd for the residual precision σ−2

p(σ−2 | τ ,y) ∝ Γ
[
σ−2 | n∗∗s2∗∗, n∗∗/2

]
(34)
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is a gamma distribution with the parameters n∗∗ = n∗ + n

n∗∗s
2
∗∗ = n∗s

2
∗ +

n∑
i=1

(yi − τi − xiβ)2 (35)

3. The fcd for the τ coefficients is

p(τ | y, θc) = N [τ | 0,A∗] N [y | τ + Xβ, σ2IT ]

= N [τ | τ ∗∗,A∗∗] (36)

with the parameters τ ∗∗ = A∗∗y and A−1∗∗ = Ã
−1
∗ + σ−2X>X.

6. Regional extended HP filtering of GDP and employment

In this section we show how the spatial HP model can be applied to smooth the regional GDP and

employment data across the 239 (contiguous) NUTS-2 regions in Europe for the year 2005. The data with

the coordinates of the center points of the NUTS-2 regions are taken from EUROSTAT. The model we

have specified is an extended HP model y = τ + Xβ + ε, where X contains the dummy variables for the

25 EU countries to catch the fixed effects plus an extra dummy variable Dagg for regions that are city

agglomerations. The car driving times were obtained by own calculations based on pairwise queries by

internet search machines and are used for the W matrix and to define the smoothing metric.

Figure 1: Spatial HP smooth of GDP 05, NUTS-2, 2005 Spatial HP smooth of Employment, NUTS-2, 2005

To define a smooth surface for a spatial cross-sectional data set we have to define a differencing matrix.

As it was shown in the above section, this can be easily done if we have a distance matrix between the
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centers of the NUTS-2 regions. Thus we identify for each region a nearest neighbor (by distance) and a

second nearest neighbor (also by distance). This produces the following K matrix, where - for demonstration

- we display the first 6 rows.

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15]
[1,] 1 0 -2 0 0 0 0 0 0 0 0 0 0 0 0
[2,] 1 1 -2 0 0 0 0 0 0 0 0 0 0 0 0
[3,] -2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
[4,] 0 0 0 1 -2 0 1 0 0 0 0 0 0 0 0
[5,] 1 0 0 -2 1 0 0 0 0 0 0 0 0 0 0
[6,] 0 -2 0 0 0 1 1 0 0 0 0 0 0 0 0

The effect of the spatial smoothing is seen in alphabetical order of the 24 countries3 in Figure 1. The
volatility of the smooth can be attributed to the heterogeneity between and within the countries. The
median fixed effects coefficients of the extended spatial HP procedure were estimated with MCMC and are
shown in Figure 2. These are the median effects of the 25 country dummy variables in X: The smallest
one is Portugal and the largest one is Malta. The geographical maps for the smoothed GDP and GDPpc
of NUTS-2 regions are given in the Figure 3 and in Figure 4, respectively, together with the observed raw
values.

Figure 2: Median country effects in the extended spHP smooth of GDPpc, NUTS-2, 2005

lm(formula = log(y) ~ 0 + ZZ)
Residuals:

Min 1Q Median 3Q Max
-3.00630 -0.40641 -0.02213 0.46751 2.22527
Coefficients:

Estimate Std. Error t value Pr(>|t|)
Dagg 1.4260 0.6161 2.32 0.0216 *
at 9.9837 0.2815 35.47 < 0.000 ***
be 9.8617 0.2607 37.83 < 0.000 ***
bg 8.0539 0.3448 23.36 < 0.000 ***
cy 9.5222 0.8445 11.28 < 0.000 ***
cz 9.3844 0.2986 31.43 < 0.000 ***
de 10.7655 0.1407 76.49 < 0.000 ***
ee 9.3245 0.8445 11.04 < 0.000 ***
es 10.1280 0.1937 52.28 < 0.000 ***
fi 9.6111 0.3777 25.45 < 0.000 ***
fr 10.8617 0.1800 60.33 < 0.000 ***
gr 9.3272 0.2815 33.14 < 0.000 ***
hu 9.2109 0.3192 28.86 < 0.000 ***
ie 11.0647 0.5971 18.53 < 0.000 ***
it 10.5937 0.1843 57.49 < 0.000 ***

3AT BE BG CY CZ DE EE E FI F GR HU IE I LT LU LV MT NL PL PT RO SK UK without DK SE SL
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Figure 3: Spatial HP smooth of GDP NUTS-2, 2005 Map of 239 GDP NUTS-2 regions, 2005 (raw data)

Figure 4: Spatial HP smooth of GDPpc, NUTS-2, 2005 239 GDPpc NUTS-2 regions, 2005 (raw data)

lt 9.9366 0.8445 11.77 < 0.000 ***
lu 8.8840 1.0453 8.50 0.000 ***
lv 9.4736 0.8445 11.22 < 0.000 ***
mt 8.4671 0.8445 10.03 < 0.000 ***
nl 10.3268 0.2438 42.36 < 0.000 ***
pl 9.4063 0.2111 44.55 < 0.000 ***
pt 9.9515 0.3777 26.35 < 0.000 ***
ro 9.1704 0.2986 30.72 < 0.000 ***
sk 9.1493 0.4222 21.67 < 0.000 ***
uk 10.5717 0.1482 71.34 < 0.000 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 ’.’ 0.1 ’’ 1
Residual standard error: 0.8445 on 214 degrees of freedom
Multiple R-squared: 0.9939, Adjusted R-squared: 0.9931
F-statistic: 1386 on 25 and 214 df, p-value: < 2.2e-16
Ordered effects:
Dagg bg mt lu sk ro hu ee
1.426 8.054 8.467 8.884 9.149 9.170 9.211 9.325
gr cz pl lv cy fi be lt

9.327 9.384 9.406 9.474 9.522 9.611 9.862 9.937
pt at es nl uk it de fr ie

9.952 9.984 10.128 10.327 10.571 10.594 10.766 10.862 11.065
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Figure 5: Spatial extended HP smooth of GDP Nuts-2, 2005 Spatial extended HP smooth of log GDP Nuts-2, 2005

6.1. Employment

Figure 6: Employment: NUTS-2, 2005 (raw data) MCMC Spatial HP smooth of Employment NUTS-2, 2005

Figure 6 shows the raw data together with the smooth of the employment data in 2005: the first things
to note are the high employment effects in central Poland and Romania. The smooth in Figure 6 shows
the smooth (posterior mean) of the spatial HP model while Figure 7 shows the smooth (posterior mean)
of the spatial extended HP model. The X matrix of the extended model (eHP) just contains the fixed
effect dummy variables for the countries plus an extra dummy for the new central and eastern European
states (CEE). The border of the regions in the East and West of the smooth can be seen in both figures,
which stretch until France. The somewhat unexpected map is due to the fact that German regions have
less employment than the regions in Poland and Romania. Therefore we see higher smoothed values at the
periphery and lower values in the center (Germany, the Czech Republic and Austria.) Also, by taking into
account the large variation of levels across EU countries we see that these ”low smooth” values are still
present in those 3 central European states.
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Figure 7: MCMC of the spatial extended HP model, smooth of Employment NUTS-2, 2005

7. Model selection and Bayes testing

This section shows how to compute the Bayes factor for the HP smoother and to select the order of
smoothness prior by marginal likelihoods. The assumption to do this requires a normal prior distribution
with full rank. The first order differencing matrix is denoted as K1 and the higher order differencing
matrices are matrix powers: Ki = Ki

1 and therefore the prior covariance matrix of the i-th smoothness
model is Ai∗ = (λK>iKi)

−1 = (K>K)−i/λ. For the conjugate normal-gamma regression model the marginal
likelihood can be computed in closed form as the next theorem shows.

Theorem 5 (The marginal likelihood for the conjugate eHP model).

The marginal (data) likelihood (MDL) of the eHP regression model is given by a product of 3
factors (that are 3 ratios of prior to posterior parameters):

p(y | eHP ) = (π)−
n
2
|Ã∗∗ |

1
2

|Ã∗ |
1
2

×
Γ(n∗∗2 )

Γ(n∗2 )
× (n∗s

2
∗/2)

n∗
2

(n∗∗s2∗∗/2)
n∗∗
2

, (37)

where n∗∗ and s2∗∗ are the posterior parameter given in (30) of Theorem 3.

Note that the marginal data likelihood for the HP model follows the ordinary MDL formula for the
normal-gamma sampling model MDLeHP = pHP (y)

peHP (y) = (π)−
n
2 ×Rdet ×Rdf ×RESS

the ratio of determinants (Rdet), the ratio of d.f. (Rdf ), and the ratio of residual variances (RESS). Usually
it is better to compute the lml = log(MDL) given by

lmleHP = −n
2
log(π) + log(Rdet) + log(Rdf ) + log(RESS). (38)

The lmlHP times −2 is (with ESS∗ = n∗s
2
∗/2 and ESS∗∗ = n∗∗s

2
∗∗/2)

−2lmlHP = nlog(π)+ log
|Ã
−1
∗∗ |

|Ã
−1
∗ |

+(n∗∗−3)log(2)+2log(Γ(n∗∗−1))+n∗log(ESS∗)−n∗∗log(ESS∗∗). (39)

16



The ratio of determinants in the eHP model is computed by the inverses

R2
det =|Ã∗ | / |Ã∗∗ |=

|A∗ | np2
|A∗∗ ||G−1 |

with A∗ = (λK>iKi)
−1, A∗∗ = (IT + λK>iKi)

−1 and G−1 = I−A∗∗, where Ki is the differencing matrix of
order i.

Proof 5. The determinant of the prior is | Ã∗ |=| A∗ | np2 while for the determinant of the partitioned

posterior we find4 | Ã∗∗ |=|A∗ ||G−1 | with G depending on the i-th differencing matrix: G−1i = n2Ip +
X>Pi,λX with Pi,λ as before. The ratio of determinants for differencing matrices of order i is

R2
det,i =

|Ã
−1
i∗ |

|Ã
−1
i∗∗ |

=
|λK>iKi |

|In + λK>iKi |
np2
|Gi |

and the ESS ratio can be computed as

RESS =
(n∗s

2
∗/2)

n∗
2

(n∗∗s2∗∗/2)
n∗∗
2

=
(n∗s

2
∗/2)

n∗
2

((n∗s2∗ + αi)/2)
n∗∗
2

.

The ratio of d.f. (Rdf ) is given for n∗ = 1 by Γ(1/2) =
√
π and therefore we find

Rdf =
Γ(n∗∗2 )

Γ(n∗2 )
=

(n∗∗ − 2)!!

2(n∗∗−1)/2
(40)

The log df-ratio is

log(Rdf ) = log
(n∗∗ − 2)!!

2(n∗∗−1)/2
= (n∗∗ − 2)log(2) + log((n∗∗ − 2)!)− (n∗∗ − 1)

2
log(2) =

=
(n∗∗ − 3)

2
log(2) + log(Γ(n∗∗ − 1)), (41)

because log(n∗∗− 2)!! = (n∗∗− 2)log(2) + log((n∗∗− 2)!) and the double factorial is defined as (2k)!! = 2k ·k!
.

4using |
(

E F
G H

)
|=|E ||H−GE−1F |

17



Theorem 6 (Bayes test between HP models of different smoothness order).

For the Bayes test between two eHP models of order i and j we need the Bayes factor (BF),
which is defined as the ratio of the 2 marginal likelihoods of HP models and the BF is given by

BF =
p(y | eHPi)
p(y | eHPj)

=
RESS,i
RESS,j

Rdet,i
Rdet,j

and the log BF is computed by

log(BF ) =
n∗∗
2
log
(
n∗s

2
∗ + αi

)
+
p

2
log(n2)

with αi the discrepancy factor of the smoothness model of order i:

αi = y>n′K>iKi(n
′K>iKi + Σ0)−1Σ0y =

= y>(C>C/n′ + R>R)−1y (42)

with Ci = K−1i and Σ0 = (R>R)−1. If n2 = 1 then log(n2) = 0 and the second term vanishes.

Proof 6. The BF is given by the ratio of marginal likelihoods, with the ESS ratio of ratios (RoR) given by

RESS,i
RESS,j

=
((n∗s

2
∗ + αi)/2)

n∗∗
2

((n∗s2∗ + αj)/2)
n∗∗
2

=

(
n∗s

2
∗ + αi

n∗s2∗ + αj

)n∗∗
2

and the determinant ratio given by

R2
det,i

R2
det,j

=
|Gj |
|Gi |

|λK>iKi |
|In + λK>iKi |

/
|λK>jKj |

|In + λK>jKj |

because the Rdf and the constant involving π cancels out.

The marginal likelihood for models M that are estimated by MCMC can be computed by the Newton-
Raftery formula

m̂(y | M)−1 =
1

nrep

nrep∑
j=1

(
n∑
i=1

ln l(Di | M, θj)

)−1
l(Di | M, θ)−1 (43)

where Di = (yi,xi) is the i-th data observation and with the likelihood given by the HP model (23).

8. Summary

This paper has shown that the extended HP filter can be also used to smooth spatial regional data.
HP filtering is an over-parameterized regression problem from a Bayesian point that can be estimated in a
conjugate normal-gamma model with a strong prior on the smoothness component. The large value of the
smoothness parameter λ serves in the Bayesian model as a hypothetical sample size (of the prior information)
for the smooth component τ , i.e. the parameter vector to be estimated. For the remaining coefficient we
assume a small hypothetical sample size to express diffuse knowledge.

The Bayesian view of the extended HP procedure opens a new modeling technique for smoothing out-
put variables in more complex econometric models. These are models that require more adjustments and
simplifications before the smoothing procedure can be applied. The Bayesian interpretation of HP models
shows how to obtain more flexibility via the prior information that is used for the estimation of the smooth
and the non-smooth part in such a complex smoothing models. The non-conjugate estimation of the HP
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model uses the MCMC approach and allows application of the HP smoothing approach to extended HP
models for non-stationary data and to a spatial smoothing model as it is discussed in Polasek (2011a).

In the spatial context, the extended HP filter allows a spatial smoothing of data and this was demon-
strated for the 239 NUTS-2 regions of the European Union for GDP and employment data. The smoothness
in a spatial context is defined by the distance of neighboring regions. The spatial extended HP smoother
can be computed easily using MCMC procedures of the linear regression model or the spatial autoregression
(SAR) model. Possibly, this new family of extended HP procedures opens a new approach for smoothing
output variables in more complex models that requires more adjustments and simplifications before the
smoothing can be done. The Bayesian formulation allows to give more flexibility for the prior information
that combines the smooth and the non-smooth part in such more complex HP-type smoothing models. Thus,
our approach has demonstrated that econometric smoothing problems can be either embedded in simple
univariate set-ups or in complex model-based applications.

9. Appendix: The Combination of Quadratic Forms

The standard result for combining quadratic forms in normal Bayes models is:

Theorem 7 (Combination of Quadratic Forms).

Let H and H∗ be two symmetric quadratic matrices. Then the sum of the two quadratic forms
can be combined as

(β − b)>H(β − b) + (β − b∗)
>H∗(β − b∗)

= (β − b∗∗)
>H∗∗(β − b∗∗) + (b− b∗)

>H∗(H∗ + H)−1H(b− b∗) (44)

with the parameters H∗∗ = H∗ + H and b∗∗ = H−1∗∗ (H∗b∗ + Hb).
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